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Capsules and stuff and vision

Making use of the work of Sara Sabour, Geoff Hinton, Yao Qin, and me Nick Frosst



Convolutions - x y translation invariance built in




Deep Image prior
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(c) Bicubic, Not trained (d) Deep prior, Not trained

You don't really need to train convnets
to get good image results



This isn't really true for Resnets

"~ (d) Encoder-decoder, depth=2 (e) ResNet, depth






Rotational Equiverient Conv Nets

standard mpul
p4 - P4
2 p4

rotated input

pd — Z? - convolution
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But there are many more transformations than rotation
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Capsule Network

e Build a network that has units which output more than just a single value:



Capsule Network

e Build a network that has units which output more than just a single value:

o Capsule: A group of units.
m Is it present or not? (Activation)
m How itis present? (Instantiation parameter)
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Capsule Network

e Activate by agreement between incoming predictions, instead of pattern
matching.

Higher -> more active

M :Multiply by trainable parameters



Capsule Network

e Activate by agreement between incoming activations, instead of pattern
matching.

Coincidence \ More agreement ->
Detection more active

Higher -> more active
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M :Multiply by trainable parameters m :Multiply by trainable transformations




Coincidence Detection

Face Face
instantiation . instantiation
prediction prediction
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Coincidence Detection
Face Face
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Coincidence Detection

Face Face
Instantiation 75 instantiation
prediction prediction

¥



Routing

Face Capsule
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Butterfly Capsule
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Votes Agree

Routing  \/otes Disagree
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Votes Agree  Routing  \/otes Disagree
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Votes Agree
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Capsule implementations - 2 takes

Commonalities between the two

- Capsules output more than a
single value

- Capsules are activated if
there is agreement between
incoming activity patterns

- Capsules have dynamic
routing algorithm between
then to improve coincidence
detection

Dynamic Routing Between Capsules

Sara Sabour Nicholas Frosst

Geoffrey E. Hinton
‘Google Brain
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Abstract

A \cxpmie s 1 oy
rameters. ofnpmﬁc type of entity such as an nhjccv or an object part. We use
T length of the p and

level
‘make predictions, via transformation matrices, for the instantiation parameters of
higher-level capsules. When multiple predictions agree, a higher level capsule
el e oy iy sl
hi h i
P

a MNIST

h a pring digs. Toahiev these

results we

ettt ol higherievel capales whose aciviy vecors bave a big
scalar product with the prediction coming from the lower-level c

1 Introduction

‘Human vision ignores irrelevant details by using a carcfully determined sequence of fixation points
to ensure that only a tiny fraction of the optic array is ever processed at the highest resolution.
Introspection is a poor guide to understanding how much of our knowledge of a scene comes from
the sequence of fixations and how much we glean from a single fixation, but n this paper we will

assume that a single fixation gives s much more than just a single identified object and its properties.

‘We assume that our multi-layer visual system creates a parse tree-like structure on each fixation, and
we ignore the issue of parse trees ‘muliple fixations.

Parse trees are generally constructed on the fly by dynamically allocating memory. Following
), bowever,we shll asume that, fo a singl fixation, 3 pane e is carved out of ufixed
multilayer ork I I i k. Each layer will be di
small oo o eroas o “capsules” (¢ 341wl xch oot pare o will
will choose a
capeule i he ayer above 1o be it parent i the ree For th higher lorels of  vissa sy, s
Serativ process will e sobving the ot f asigring parts i whole

‘The activities of the neurons within an active capsule represent the various properties of a particular

e proerisca nclude many ifrnt types ofisaninion
ize, orientation), deformation, velocity, albedo, etc.
One very special property is the existence of the instantiated entity in s image. Ve
represent existence is by using a separate logistic unit whose output s the pn\b.\hxll\) that the entity
exists. In this paper we explore an interesting alternative which is to use the overall length of the
vector of instantiation parameters to represent the existence of the entity and to force the oricntation

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Published as a conference paper at ICLR 2018

MATRIX CAPSULES WITH EM ROUTING

Geoffrey Hinton, Sara Sabour, Nicholas Frosst
Google Brain

Toronto, Canada
{geotthinton, sasabour, fr

s5t)egoogle. con

ABSTRACT

A capsule is a group of neurons whose outputs represent different properties of
the same entity. Each layer in a capsule network contains many capst

scribe a version of capsules in which each capsule has a logistic unit to represent
the presence of an entity and a 4x4 matrix which could learn to represent the rela-

(the pos
for the pose matrix of many different capsules in the layer above by multiplying
its own pose matrix by trainable viewpoint-invariant transformation matrices that
could learn to represent part-whole relationships. Each of these votes is weighted
by an assignment coefficient. These coefficients are teratively updated for each
image using the E:

capsal s ruted 103 capsle i thelayersbove that receives 3 e of similar
votes. The

5o g s i st o KT oo ks e et e
layers. On the smallNORB benchmark, capsules reduce the number of test e

by 45% compared to the state-of-the-art. Capsules also show far more resistance
10 white box adversarial attacks than our baseline convolutional neural network.

1 INTRODUCTION

Convolutional neural nets are based on the simple fact that a vision system needs o use the
Knowledge t llocations i the mage. Thi i ahiev b ying the weights offesturc detctrs so
at etures e aon octionar avilable s o oatos. Convolational capslsexend
ing of knowledge across locations to include knowledze about the part-whole relationships
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hu »m\plm linea ffects on h pose mar: that rpresents the reltoship between a objec o
ject | ules is to make good use of this underlying lincarity
i dc:llmn At ncmpmm o o lmpmvmg egmenation decisions

c
agreement between votes for its pose matrix. These votes come from parts that have already been
detected. A part produces a vote by multiplying its own pose matrix by a leamed transformation
matrix that represents the viewpoint invariant relationship between the part and the whole.
Viewpoint changes, the pose matrices of the parts and the whole will change in a coordinated way
50 that any agreement between votes from different parts wil persist.

Finding tight clusters of high-dimensional votes that agree in a mist of imelevant votes is one way
of solving the problem of assigning parts to wholes. This is non-trivial because we cannot grid
the high-dimensional pose space in the way the low-dimensional translation space i gridded to
facilitate convolutions. To solve this challenge, we use a fast iteraive process called “routing
ient” that updates the probability with which a part is assigned to a whole based or
eoximiy ofthe Vol soming B that ar o th otes coming Irom other parts hat are wsigaed

at whole. familiar shapes to
derive segmentation, rather than just using low-level cues such as proximity or agreement in col
or velocity. An nets s that the activation

o e W s e o o
andard neural net it is based on  comparison between a single incoming actvity vector and a
o i




Capsule implementations - 2 takes

Commonalities between the two

- Capsules output more than a
single value

- Capsules are activated if
there is agreement between
incoming activity patterns

- Capsules have dynamic
routing algorithm between
them to improve agreement
detection
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Matrix capsules with Em routing

Matrix Capsules

Instantiation parameters is represented
by pose matrix

Separate activation variable
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Em capsules with Matrix Transformations

Matrix Capsules

Instantiation parameters is represented
by pose matrix

Separate activation variable

Matrix transformations between capsules

Capsules output the center of the cluster

as well as a confidence value . -
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Em capsules with Matrix Transformations

Matrix Capsules

Instantiation parameters is represented
by pose matrix

Separate activation variable
Matrix transformations between capsules

Capsules output the center of the cluster
as well as a confidence value

Clusters are found with iterative EM
routing algorithm

In this one the routing iterations provably
converge

Activation [l [ |
Capsule = ll
e @ [
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Capsule Architecture
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Capsule Architecture

256 x32x (4x4+1)

Rel U Convl .

. o

" Activation

Capsule . -{
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Capsule . = {
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Capsule Architecture

256 X 32X (4 x4+1)

.l Activation

32X32X5%x5%x4x%x4
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Capsule Architecture

256x32x(4x4+1) 32X32X5%x5%x4x%x4 32XxX5%x4x4

ReLU Conv

. o

. Activation

Capsule . -{
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Norb Classification Results

‘ EM style version (100k trainable variables)

e smallNORB ~ 1.8% error (SOTA: 2.6%)

‘ . o e fullNORB ~ 2.6% error (SOTA: 2.7%)

7 b
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Norb transformation extrapolation

Test set |

V o | CNN  Capsules || CNN  Capsules

Familiar viewpoints | 3.7% 37% || 4.3% 4.3%

Azimuth | Elevation




Norb transformation extrapolation

Test set
- e CNN Capsules || CNN  Capsules
V el Novel viewpoints | 20%  13.5% || 17.8%  12.3%

Familiar viewpoints | 3.7% 3.7% 4.3% 4.3%

Azimuth Elevation




- Train on mnist, test on affnist
- CNN gets %66 test accuracy
- CapsNet get %79




Is there time left?
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Adversarial Examples

“airliner”

- Calculus

- Attack

Enginnering + 0.005 x

- Failure

Source: http://people.csail.mit.edu/madry/lab/blog/adversarial/2018/07/06/adversarial_intro/



The Cycle of defense breaking

1. Propose a defense mechanism and claim to solve the problem
2. Propose a new attack that breaks the defense

3. Repeat

This has been mostly fruitless.
We don't want models robust to adversarial attack, we want better models.



What exactly is an ‘Adversarial Examples’

There is debate
ie | debate it

Is it imperceptible changes?
Imperceptible to whom?

Is it small changes?
How small?

| posit that people are important to the definition
It's really just intentionally crafted inputs we thought the network would get right that it doesn't.



Are they a security risk?




So should we even care about adversarial

robustness?
Not really.
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Are adversarial examples interesting and worth
studying?

- yes!

Google



Capsule Reconstruction Network

- Take the class pose parameters
- And learn to reconstruct the input

Input Q
Output Q




Capsule Networks now have two outputs

- A classification
- Areconstruction

Input

a9

Classification
Network

Classification

\
/

Reconstruction
Network

Reconstruction

s \
—P




Reconstructlon form the wrong class




We can detect outlier data

Capsule Model

S0
mm Real Data
mm Adversarial Data
80
70
60
. MNIST
40
30
20
10
o -
0 20 40 140
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Deflected attacks on SVHN

Deflected I
Attacks ‘

Target Label 0

Clean
Input

Correct Label 8




Deflected attacks on CIFAR10

<A 0 E ™ o e B i

Target Label automobile bird cat deer dog airplane frog horse  ship truck

- R RELEaEs

Correct Label ship deer frog dog ship ship deer airplane airplane ship

Deflected
Attacks




Human Study

1.0¢ B Original Class
B Adversarial Target

o
o

Percentage of Images Labeled
o
D
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Thank you :)

email :
twitter : @nickfrosst
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