
CSE 1030 Introduction to Computer Science II

Test 2

10:30 — 11:30, May 1, 2009

Last name

First name

Student number

Instructions

• No questions are allowed during the test.
• This is a closed book test. No aids are permitted.
• Answer each question in the space provided.
• Make sure that you have answered all 5 questions.
• Manage your time carefully—you do not need to answer the questions in order.
• Do not leave during the last 5 minutes; stay seated and do not talk until all of the tests have been

collected.

Question Total marks
available

Mark

1 12

2 18

3 10

4 15

5 15

Total 70

1. [12 marks] Suppose a Person has-an age, has-a name, and has-a date of birth:

public class Person
{
 private int age;
 private String name;
 private Date birthday;
 // …
}

a) [4 marks] Which of the three attributes do not suffer from privacy leaks? Explain why.
Recall that a privacy leak is when a client obtains a reference to a private attribute.
age, because it is a primitive type and Java uses pass-by-value.
name, because it is immutable and immutable objects can be freely shared.

b) [2 marks] Should Person use composition with any of the attributes? Which ones? Explain why.
Recall that composition implies ownership; that is the Person object is responsible for the attribute.
birthday, because Date is mutable

c) [3 marks] Complete the following constructor so that Person does not have any privacy leaks; the
first attribute is done for you. You do not need to use mutator methods.

public Person(int age, String name, Date birthday)
{
 this.age = age;

 this.name = name;
 this.birthday = new Date(birthday.getTime());

}

d) [3 marks] Complete the following two accessors so that Person does not have any privacy leaks.

public String getName()
{
 return this.name;

}

public Date getDate()
{
 return new Date(this.birthday.getTime());

}

2. [18 marks] Questions 2, 3, and 5 refer to the classes Appointment and AppointmentsCalendar .
You will find the implementation of both of these classes on the last page of this test.

a) [3 marks] Complete the UML class diagram for the Appointment class.

b) [4 marks] Complete the UML class diagram for the AppointmentsCalendar class.

c) [2 marks] AppointmentsCalendar promises that it always maintains the appointments in
chronological order (sorted by time of the appointment). Can the implementation that was provided to
you keep such a promise? Why or why not?
The intent of this question was to see if you realized that the iterator method exposes references to
Appointments; I accepted two answers for full marks, although only the first one below is completely
correct.

Yes, even though references to Appointment objects are exposed by the iterator method, Appointment
is immutable; thus, there is no way to change the date of an appointment once it is added to the
calendar. [Note: Appointment is not final, so it is possible for a client to extend Appointment and
circumvent immutability, so really, the answer is no].

No, because the iterator method exposes references to appointments that might be changed by clients.

d) [2 marks] What type of copying does the AppointmentsCalendar copy constructor use?

deep copy

String Appointment

AppointmentsCalendar

Date
1 1

ArrayList Appointment
1 *

e) [7 marks] Complete the parts of the memory diagram indicated with the ← symbol for the following
fragment of code. You may extend the memory diagram if you wish.

Date d1 = new Date(109, 5, 2); // June 2, 2009
Date d2 = new Date(109, 8, 9); // Sept 9, 2009

Appointment a1 = new Appointment(“end exams”, d1);
Appointment a2 = new Appointment(“start school”, d2);

Appointment[] apps = new Appointment[2];
apps[0] = a1;
apps[1] = a2;

100 Date instance d1

200 Date instance d2

300 String instance

 “end exams”

400 String instance
 “start school”

500 Appointment instance a1

description 300 ←

date 800 (but not 100) ←

600 Appointment instance a2

description 400 ←

date 900 (but not 200) ←

700 Appointment[] instance apps

length 2 ←

apps[0] 500 ←

apps[1] 600 ←

The constructor for Appointment creates a new Date instance; thus, the date attribute of a1 and a2
are deep copies of d1 and d2 (and not simply aliases for d1 and d2).

3. [10 marks] This question refers to the AppointmentsCalendar class. You will find the
implementation of the class on the last page of this test.

Suppose that the implementer of AppointmentsCalendar had chosen to use an array of

appointments instead of a list. Because AppointmentsCalendar implements

Iterable<Appointment> , it must supply a method that returns a class that implements

Iterator<Appointment> . Describe how you would implement a class that represents an iterator on
an array of appointments. You should use one or two short sentences to describe the purpose of each
attribute. You should use one or two short sentences to describe the purpose, name, and return type (if
any) of each method. Do not provide details regarding the constructors of your class.

attribute 1: int next , to hold the index of the next element in the iteration

attribute 2: Appointment[] app , a copy of the array to iterate over

method 1: boolean hasNext , returns true if there is another element in the iteration and false
otherwise

method 2: Appointment next , returns the next element of the iteration if it exists and throws an
exception otherwise

method 3: void remove , removes the last element returned by the iterator; not supported by all
iterators

4. [15 marks] Consider the following inheritance hierarchy.

Fill in the blanks to complete the sentences for (a)—(g); (h) and (i) are short answer questions.

a) RuntimeException is a __subclass______________ of Exception .

b) RuntimeException is a __superclass____________ of ArithmeticException .

c) _Runtime/Arithmetic/IllegalArgumentException_ is substitutable for Exception .

d) _nothing_______________________ is substitutable for ArithmeticException .

e) _RuntimeException _____________ must call a constructor of Exception . It uses the keyword

_super________________________ to call a constructor of Exception .

f) _ArithmeticException____________ is allowed to call a constructor of ArithmeticException .

It uses the keyword __this_______________ to call a constructor of ArithmeticException .

g) IllegalArgumentException can call non-overridden methods of Exception that have the

access modifiers __public or protected_______.

h) A class X defines a method doSomething that says it may throw an exception of type

RuntimeException . List all of the types of exceptions that doSomething can throw.

Runtime/Arithmetic/IllegalArgumentException

i) A class Y extends X and overrides doSomething . The Y version of doSomething can say that it

throws which types of exceptions without surprising clients of X?

Runtime/Arithmetic/IllegalArgumentException

Exception

RuntimeException

ArithmeticException IllegalArgumentException

5. [15 marks] This question refers to the Appointment class. You will find the implementation of the
class on the last page of this test. Complete the implementation of the three methods in
PeriodicAppointment class below. Where possible, you should use the facilities of the superclass,
and you should prevent privacy leaks.

/*
 * A class that represents an appointment that regu larly
 * repeats (examples: weekly meeting, monthly mortg age
 * payment deadline, birthdays).
 */
public class PeriodicAppointment extends Appointmen t
{
 protected Date next; // next time that the appoi ntment will occur

 public PeriodicAppointment(String description, Da te date, Date next)
 {
 super(description, date);
 this.next = new Date(next.getTime());

 }

 public PeriodicAppointment(PeriodicAppointment ot her)
 {
 this(other.getDescription(), other.getDate(), other.next);

 }

 /*
 * Two PeriodicAppointments are considered equal if their
 * descriptions are the same, start times are the same,
 * and next times are the same.
 */
 @Override public boolean equals(Object obj)
 {
 boolean eq = super.equals(obj);
 if(eq) {
 PeriodicAppointment other = (PeriodicAppointment)obj;
 if(!this.next.equals(other.next)) {
 eq = false;
 }
 }
 return eq;
 }
}

Appendix: The Appointment and AppointmentsCalendar classes

/*
 * A class representing an appointment event. An ap pointment has
 * a description and a starting date/time. Implemen ts the Comparable
 * interface so that clients can sort appointments based on the
 * starting time.
 */
public class Appointment implements Comparable<Appo intment> {
 protected String description; // reason for the a ppointment
 protected Date date; // date/time of the appointment

 public Appointment(String description, Date date) {
 this.description = description;
 this.date = new Date(date.getTime());
 }

 public Appointment(Appointment other) {
 this.description = other.description;
 this.date = new Date(other.date.getTime());
 }

 public String getDescription()
 { return this.description; }

 public Date getDate()
 { return new Date(this.date.getTime()); }

 @Override public int compareTo(Appointment other)
 { return this.date.compareTo(other.date); }

 /*
 * Two appointments are considered equal if both a re not null
 * and their descriptions and start date/times are the same.
 */
 @Override public boolean equals(Object obj) {
 boolean eq = false;
 if(obj != null && this.getClass() == obj.getClass ()) {
 Appointment other = (Appointment) obj;
 eq = this.description.equals(other.description) &&
 this.date.equals(other.date);
 }
 return eq;
 }
}

/*
 * A class representing a calendar of zero or more appointments. The
 * class always maintains the appointments in chron ological order
 * (i.e. sorted by the starting date and time of th e appointment).
 */

public class AppointmentsCalendar implements Iterab le<Appointment>
{
 private ArrayList<Appointment> apps;

 // default constructor
 public AppointmentsCalendar()
 {
 this.apps = new ArrayList<Appointment>();
 }

 // copy constructor
 public AppointmentsCalendar(AppointmentsCalendar o ther)
 {
 this.apps = new ArrayList<Appointment>();
 for(Appointment a : other.apps)
 {
 this.apps.add(new Appointment(a));
 }
 }

 /*
 * Adds an appointment to the calendar, maintainin g
 * the appointments in order sorted by the appoint ment date.
 */
 public void addAppointment(Appointment a)
 {
 // implementation not shown
 }

 @Override
 public Iterator<Appointment> iterator()
 {
 return this.apps.iterator();
 }
}

