
Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

CSE 1020, Summer 2006, Bill Kapralos

Aggregation
Thursday, July 6 2006

Bill Kapralos

Overview (1):
Before We Begin

Some administrative details

Some questions to consider

Aggregation
Overview / Introduction

The aggregate’s constructor

Mutator and Accessor Methods
Accessor methods

Mutator methods

Overview (2):
Mutator and Accessor Methods

Accessor methods

Mutator methods

The client’s perspective

Working With Collections
Creating collections

Adding/removing elements

Search complexity

Big-O notation

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Before We Begin

Administrative Details (1):
Lab Test 2

Due to technical problem, lab test 2 will be re-
scheduled during next week’s lab period

Some Questions to Consider (1):
What is debugging ?

What are the four main debugging techniques ?

Describe the use of print statements to debug code

When describing a class in UML, what are the three
possibilities we examined ?

What are the three relationships we looked at in UML ?

What is aggregation ?

What is inheritance ?

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Aggregation

Overview (1):
What is Aggregation ?

The classes used by an application we develop may
contain attributes that themselves are instances of
other classes → objects within objects

This is known as aggregation
The presence of aggregation makes the features of
both the aggregate and the aggregated available
directly or indirectly to the program
Aggregation is the most general framework for
implementing layering

We will learn how to recognize aggregates , what
to expect to see in their APIs…

Introduction (1):
Aggregation and Real-World Analogies

The world we live in is full of “complex” objects →
objects made up of other objects

A car is a compound object that contains a radio
→ the radio itself is a separate object
manufactured at a different factory
A portable CD player that plays CDs → a CD that
it plays is itself an object

We will need to determine whether an object is
compound or not

Everyday objects exhibit a “whole-part
relationship” → the same holds with software

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Introduction (2):
Some Definitions

Aggregate
A class C is an aggregate if one of its attributes
(instance variables) is an object reference
Assuming the reference is of type T → C and T
have a “has-a” relationship and C (the “whole”) has
a T (the “part”)
This relationship between C and T is also called
aggregation
If the attributes of a class are all primitive →
the class is not an aggregate

Introduction (3):
Some Definitions (cont.)

Aggregate (cont.)
But what about Strings that are masqueraded as
primitive types → this leads to a revised
definition of aggregation

Revised definition of aggregation
An aggregate class has at least one attribute
whose type is not primitive or String

Introduction (4):
Aggregation Example

Suppose we create an instance (object) of class C
This involves assigning values to all attributes of
C including the object reference of type T
Assigning a value to the object T means to create
an instance (object) of type T and assign the
reference to it (of course we can also assign the
value null to the reference but we will ignore this)
Every instance of object C has an instance of T
within it → an object within an object e.g.,
“whole-part”

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Introduction (5):
Aggregation and UML

An example
Aggregation between CDPlayer class and CD class
→ CDPlayer class has one attribute of type CD
Multiplicity → the number of attributes of a
particular class and it is written next to the
aggregated part
Variable multiplicity → the number of attributes
of a particular class is not fixed and the
aggregate class is known as the collection and
each instance is known as an element of the
collection

Introduction (6):
Aggregation and UML (cont.)

An example (cont.)
A class may aggregate several classes, each with
a different multiplicity
Composition → if creating an instance of the
aggregate automatically leads to creating an
instance of an aggregated part, the aggregation
then becomes a composition (the aggregate and
the aggregated object are born together and die
together)

Introduction (7):
Aggregation and UML (cont.)

An example → graphical illustration

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Introduction (8):
Aggregation and UML (cont.)

Another example → CreditCard class in type.lib is an
example of an aggregate

Encapsulates a credit card and has the following
attributes → card number, cardholder’s name,
credit limit, balance, issue/expiry dates
Aggregate because issue/expiry dates are of the
class type Date (java.util) → actually a
composition since automatically created/deleted

The Aggregate’s Constructor (1):
Attributes Initialized in Constructor

When we create an instance of aggregate C, the
constructor of C is used to initialize C’s attributes

Since one of the attributes is an object
reference, it is initialized by making it point to an
instance of the aggregate T
But who instantiates T → two possibilities

1. The aggregate’s constructor
2. The client

The Aggregate’s Constructor (2):
Attributes Initialized in Constructor (cont.)

Initializing in the aggregate’s constructor
As a client, we do not do anything with T →
create C and this automatically creates T and we
don’t necessarily need to be concerned with it
Corresponds to a composition → the part is
created together with the whole by the whole and
since we don’t have access to it, it dies when the
whole dies

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

The Aggregate’s Constructor (3):
Attributes Initialized in Constructor (cont.)

Initializing in the client
We create (in the client) the part instance and
pass its reference to the constructor of the
aggregate as an argument
The part is created before the whole
Since the reference is created in the client, we
have access to the reference in the client and it
can remain alive even if the whole dies → not a
composition

The Aggregate’s Constructor (4):
Attributes Initialized in Constructor (cont.)

Example → Investment class
Consider the constructor shown below

Constructor must receive a reference of type Stock
from the caller

In other words, the Stock object must be
created in the client and passed to the
Investment constructor

The Aggregate’s Constructor (5):
Attributes Initialized in Constructor (cont.)

Example → Investment class
Consider the following code fragment

int number = 15;
double cost = 12.25;
Stock stock = new Stock(“.AB”);
Investment inv = new Investment(stock, number, cost);

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

The Aggregate’s Constructor (6):
Attributes Initialized in Constructor (cont.)

Example → Investment class (cont.)
stock and inv don’t share a common lifetime and
inv can be deleted without deleting stock

Stock stock = new Stock(“.AB”);
{

Investment inv = new Investment(stock, number, cost);
}
Output.println(stock);

At the end of the fragment, the “whole” is
deleted (exit its scope), while the “part” remains

Mutator and Accessor
Methods

Accessor Methods (1):
What is an Accessor Method ?

Allows a user of the class to access data from the
class (e.g., instance variables etc.) that may not be
directly accessible (e.g., may be private)

Again, the user does not need to be aware of how
the data is actually maintained by the class → the
user only needs to know the value!
Typically these methods do not have any
parameters

public int getWidth()

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Accessor Methods (2):
What is an Accessor Method ? (cont.)

Example → Consider the area attribute of a
Rectangle

Can have instance variable that holds the area
value or,
When needed, it can be computed “on the fly” (e.g.,
width × height)
Whether or not we have an instance variable or
not, is irrelevant to the user of the class → this is
an implementation detail

Accessor Methods (3):
Privacy Leaks

The returned reference of an accessor method may
point directly at the aggregated part itself or at a
copy of it

If it is pointing to the part itself, then the client
(the one who invoked the accessor) has access to
the part directly and can actually change the state
of the part → this is known as a privacy leak

Which approach does the Investment class follow ?
Lets find out…

Accessor Methods (4):
Privacy Leaks (cont.)

To determine the approach the Investment class
uses, consider the following code segment

Stock stock = inv.getStock();
boolean old = stock.titleCaseName;
stock.titleCaseName = !old;
boolean isCopy = (inv.getStock().titleCaseName == old);
System.out.println(isCopy);

After executing above code fragment
isCopy == false → reference returned
isCopy == true → copy returned

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Accessor Methods (5):
Privacy Leaks (cont.)

Consider the following code segment

Person citizen = new Person(“Joe Citizen”,
new Date(“January”, 1, 1900), new Date(“January”, 1, 1990));

Date myDate = citizen.getBirthDate();
myDate.setDate(“April”, 1, 3000);

We have basically circumvented the private declared
instance variable

We have changed the birth date of the Person
object to a date after the death → impossible!

Accessor Methods (6):
Privacy Leaks (cont.)

But myDate refers to the private instance variable!
→ we have changed the value of a private declared
instance variable!

When returning a class type instance variable, be
sure to avoid this memory leak
Return a copy of the class - not the reference!

Mutator Methods (1):
Typically Class Attributes (Instance

Variables) Will be Private
Do not have direct access to the attributes

But there may be times that we need to change
the value of data within an object

But allowing the programmer to access an objects
data (e.g., declaring instance variables as public) goes
against the whole idea of information hiding

This means the user of our class is aware of the
implementation details!

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Mutator Methods (3):
What is a Mutator Method ?

A public declared method of a class
Allows the user of the class to modify attributes
of an object without having to worry about the
underlying implementation and without access to
the data (instance variables)
User passes the new data via the mutator method
and the method changes the data regardless of
the implementation
Also allows for a check to be made to ensure that
the passed data is valid → this may not be the
case if the user had access to the data.

Mutator Methods (4):
What is a Mutator Method ? (cont.)

Typically, mutator methods begin with the word “set”
to indicate it is a mutator method

Many times they also do not return a value → “void”
method

At times they can return a boolean → true is
returned if the passed argument is valid and false
otherwise

public void setWidth(int width)

Mutator Methods (5):
Aggregate Cloning

Given instance x of an aggregate, make a copy y

Three ways to perform the copying
Aliasing (set y equal to x) → a second reference
and the instance itself is not copied and any
changes made through x are reflected through y

Before
the copy

After
the copy

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Mutator Methods (6):
Aggregate Cloning (cont.)

Three ways to perform the
copying (cont.)

Shallow copying → make a
new instance of the
aggregate with same state
as the given one but of
course, non-primitive
attributes are simply
aliased and not copied (any
changes made through x will
be reflected through y)

After shallow copying

Mutator Methods (7):
Aggregate Cloning (cont.)

Three ways to perform the
copying (cont.)

Deep copy → y will point
to a new instance in
which each non-primitive
attribute is itself deep-
copied and any changes
made throughx will not
be seen through y

After deep copying

The Client’s Perspective (1):
Aggregation and Layered Abstraction

As a client, we delegate work to other components
Implementation of the components does not have
to be from “scratch” → they can also delegate
their work to other components
This second layer of delegation occurs when the
implementer uses a feature of another class →
create instance of that class and store it as an
attribute

But then this implies that aggregation is an
implementer’s concern ???

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

The Client’s Perspective (2):
Aggregation and Layered Abstraction (cont.)

But then this implies that aggregation is an
implementer’s concern ???

Why should the client care if implementer
performs the task from scratch or uses other
components → doesn’t knowing this information
lead to “breaking the encapsulation” ???
Flexibility → at one extreme components are so
basic clients find them complex to build an
application out of them and at the other extreme,
components are too complex and the client can’t
find components to meet its requirements

The Client’s Perspective (3):
Aggregation and Layered Abstraction (cont.)

Aggregation provides a solution that combines the
benefits of both extremes

“Basic” components are still able to interface with
other components
Gives client flexibility in choosing components
without the complexity of assembling them

Consider a real-world analogy
Building a car with what may be a peculiar
combination of features…

Working With Collections

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Recall (1):
What is a Collection

An aggregate whose multiplicity is variable and which
the aggregated parts are called elements

A variable amount of variables, requires the use of a
special API

Enable the client to add and remove elements on
demand, browse elements or search for a
particular element

Creating the Collection (1):
Collection Constructor

The elements of the collection don’t have to be
specified upon creation

Basically, the constructor creates an empty
collection
Other methods allow us to add elements after the
collection has been created

How much memory is set aside for the collection ?
Static allocation sets aside memory once
(according to application) and doesn’t change
afterwards → any potential problems with this ?

Creating the Collection (2):
Collection Constructor (cont.)

How much memory is set aside for the collection ?
Dynamic allocation sets aside memory “on the fly”
as it is needed → application doesn’t need to
specify an initial size

Lets look at the constructor of the Portfolio collection

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Adding/Removing Elements (1):
Adding Elements

A collection must provide methods for inserting
elements → often called add

Two issues can arise
Collection is full → statically allocated methods
that cannot grow automatically - add method fails
Element is already present → trying to insert the
same element twice (by “same” we mean the
equals() method returns true) although some
collections do allow for duplicate elements

Adding/Removing Elements (2):
Adding Elements (cont.)

Add method in the Portfolio class

Examples (1):
What is the Easiest Way to Learn About

Collections ?
Practice!

Lets examine some code → Figures 8.15 – 8.20

Introduction to Computer Science I

CSE 1020 Summer 2006

Bill Kapralos

Search Complexity (1):
Defining Search Complexity

The number of tests it must perform in the worst
case before it can reach a conclusion → e.g.,
determine whether element is or is not in the list

If a collection has N elements complexity of
exhaustive search is N → why ?

Complexity of algorithms/programs including search
is given in big-O notation → exhaustive search has a
complexity of O(N)

Since it is a linear function of the number of
elements in the collection → linear search

Complexity and big-O (2):
Complexity Doesn’t Measure Execution Time

Provides a measure of how the execution time
depends on the size of the input

Consider linear search with O(N) complexity → if
we double the input then we double the complexity
(e.g., leads to a doubling of execution time)

Some different big-O complexities
O(1), O(logN), O(NlogN), O(N2), O(N3), O(N!) …

Complexity is concerned with large input not small!
Not concerned with complexity for small N

Complexity and big-O (3):
Big-O

For large values of N it can be shown that the
execution time T of a program with complexity
O(f(N)) is given by

T ≈ αf(N)

where α is a proportionality constant → allows us
to predict execution time at N1 given its value at
N2

