An effectiveness measure for software clustering algoritims

Zhihua Wen and Vassilios Tzerpos
York University
Toronto, Ontario, Canada
{zhihua,bil @cs.yorku.ca

Abstract to transform eitherd to B or vice versa. The smaller the
MoJo distance between an automatically created decompo-
Selecting an appropriate software clustering algorithm sition A and the “gold standard” decompositi® the more
that can help the process of understanding a large software effective the algorithm that createt!
system is a challenging issue. The effectiveness of a partic This indicates that MoJo distance can be helpful in com-
ular algorithm may be influenced by a number of different paring the relative effectiveness of various clusterirgpal
factors, such as the types of decompositions produced, orithms. However, it is not particularly well-suited to asse
the way clusters are named. the effectiveness of an algorithm in isolation, since theesa
In this paper, we introduce an effectiveness measure fordistance value might indicate a good result if the algorithm
software clustering algorithms based on MoJo distance, was applied to a large software system, and a poor result if
and describe an algorithm that calculates its value. We also the software system in question was of small size.
present experiments that demonstrate its improved perfor- For this reason, a “quality metric” given by the following
mance over previous measures, and show how it can be use¢brmula was presented in [12]:
to assess the effectiveness of software clustering altgosit

_ MoJo(A, B)
n

QM) = (1) x 100% (1)

1 Introduction whereM is the software clustering technique being ex-
amined,A is the automatically created decompositidhis
One of the main goals of software clustering research isthe “gold standard” one, and is the number of software
to develop algorithms that automatically decompose largeentities being clustered.
software systems into smaller, easier to comprehend sub- In this paper, we outline several shortcomings of this
systems. Many such techniques have been presented in theetric, and introduce a newFéectivenes easure” based
literature [11, 5, 10, 8, 2, 14, 3, 1]. They all demonstrate on MoJo distance that we call MoJoFM.
promising results when tested on example systems. The structure of the rest of this paper is as follows: Sec-
However, evaluating the effectiveness of various soft- tion 2 introduces the features of MoJoFM that help over-
ware clustering algorithms, and comparing their strengthscome the shortcomings of the original “quality metric”.
and weaknesses, remains an open question. The softwargection 3 presents the parts of the algorithm for the cal-
clustering field needs to designate a set of large, pubficall culation of MoJo distance presented in [15] that are neces-
available software systems with well-understood decompo-sary for the calculation of MoJoFM, which is described in
sitions that can be used as benchmarks. section 4. Experiments that showcase the improved perfor-
Even if such a benchmark set existed though, the quesmance of MoJoFM, as well as its usefulness for assessing
tion of how to compare automatically created decomposi- the effectiveness of software clustering algorithms age pr

tions to the “gold standards” would remain a challenging sented in section 5. Finally, section 6 concludes the paper.
one. Several researchers have attempted to tackle this diffi

cult problem [7, 3, 6, 9]. One of the first approaches to be
presented in the literature, was the MoJo distance measurg MoJoFM features
[12, 15].

MoJo distance between two clusteringsand B of the The idea behind the original “quality metric” (we will
same software system is defined as the minimum numberrefer to it asy) from now on) was that an algorithm that pro-
of Move or Join operations one needs to perform in order duces the farthest partition away from the “gold standard”

duces the “gold standard” should have a quality of 100%. ‘_B_ __________ B W E; __________ !
While this is the basis for our effectiveness measure as well : ! @ @ @ 2 @@ @ : @ @ :
there were three shortcomings in the way this was imple-- - - —=====< - - - - “====—_ - _"====-__
mented in [12]:

Figure 1. Example partition B.

1. The original implementation was using a heuristic al-
gorithm called HAM to calculate the value of MoJo

distance. As shown in [15], the actual MoJo distance
might have been significantly smaller than the calcu-
lated one (up to 19%, with an average difference of
4%).

2. MoJo distance is a non-symmetric measure, i.e. the
minimum number oMoveor Join operations to trans-

would always have been betwe@# and100%. How-
ever, usingn as the denominator is not optimal, be-
cause it is the maximum MoJo distance between two
specific partitions, the ones produced by algorithms
ONE and EACH. For a given “gold standard, the
maximum distance to it might be smaller. For exam-
ple, consider the partition shown in figure 1. Though

form partition A to partition B is not necessarily the
same as the minimum number of operations to trans-
form B to A. We express this asmno(A, B) #
mno(B, A). The distance betweetiand B is defined
asMoJo(A, B) = min(mno(A, B), mno(B, A). As
a result, using\foJo(A, B) in formula 1 is incorrect
since we are only interested in how cladecomes to
B (expressed bynno(A, B)), and not in how close
B comes toA (expressed bynno(B, A) and possibly
by MoJo(A, B)). Also, usingmno(A, B) instead of
MoJo(A, B) avoids the following paradox:

we usen = 9 as the denominator, the maximum MoJo
distance to this partition is in fact 6. The value@f

in this case will be always betweé.3% and100%.
Therefore, its range has been shortened and its value
over-evaluated. A more accurate calculation of the
maximum distance to a given partitidhis desirable.

The effectiveness measure presented in this paper over-
comes the above shortcomings. MoJoFM has the following
features:

1. It usesmno(A, B) instead ofMoJo(A, B) in the nu-
merator of its formula to avoid the paradox mentioned
above.

Let ONE be a clustering algorithm that always pro-
duces a clustering of cardinality 1 (all objects in one
cluster). The quality of such an algorithm should be
very low. However, if we useéMoJo(A4, B) in our 2
quality measure, the computed value will be very high.
Using TOBEY! as an example (its authoritative clus-
tering contains 69 clusters and 939 objects) we would 3,
haveQ(ONE) = (1 — 68/939) x 100% = 92.8%,

a value no “normal” clustering algorithm could ever
hope to reach. This is because the authoritative clus-
tering of TOBEY can be transformed into the output
of algorithm ONE by just joining all its clusters. Us-
ing mno(A, B) instead, we get the more reasonable
value of 17.9% for the quality of algorithm ONE.

. It uses the optimal algorithm presented in [15] for the
calculation ofmno(A, B).

It calculates the actual maximum distance to partition
B for the denominator of its formula. We denote this
by maxz(mno(VA, B)), and present its calculation in
section 4.

Therefore, the MoJoFM formula is:

__mno(4, B)
maz(mno(VA, B))

Interestingly enough, the quality metric value of al- MoJoFM(M) = (1) x100% (2)

gorithm EACH, which always produces a clustering
where each cluster contains exactly one object, is the
same whether we useno(A, B) or MoJo(A, B) in
formula 1. In the case of TOBEY, this value is 7.3%.

In the following section, we present the algorithm that
computesnno(A, B).

3. The denominatorin formula 1 was chosen tausince 3 CaICU|atlng mno(A'B)

it is trivial to show thatMoJo(A, B) < n (any parti-] o]
tion of . objects can be transformed to any other par- ASSUmeS'is a software system containingpbjects, and
tition of the same set of objects using less or equal to 4 andB are two decompositions df, A = Ay, Ay, ..., A

n — 1 Move operations). Therefore, the value @f ~ @ndB = B, By, ..., B,,. An example is shown in figure
2, whereA and B are two partitions of the same system

containing 16 objects.

1See section 5 for a description of TOBEY.

Partition A

'A A

elaelbICHE

A,

506 EPEE

Figure 2. Example partitions A and B.

For each object imM, we find its corresponding subsys-
teminB. If an objectinA4; belongsinB; in partition B, we
give this object a tad’;. The tags are shown in figure 3 as a
rectangle next to each object. For example, since object
is in By in partition B, it is assigned ta@» (shown ag2]).

Let us denote the intersection betwegnand B; asv;;.
Thus,v;; = |4; N B;| orv;; = |A;(T})|. For example, in
figure 3011 = 2, Vi = 1, V14 = 1, Vo1 = 2,’022 = 2, etc.

o (5
@ @

OROR
OROP

RehciiG
CRCANE

Figure 3. Partition A with the tags.

Our algorithm considers only the tags of each object
from now on. Figure 4 presents partitighincluding only
the tags of each object.

A, A,
[1] (3] [3]
(4] [2] 2] [2]
A, A
2] [2] Yz 2]
1] [1] (3] [3]

Figure 4. Partition A containing only tags.

Next, we createn setsGy, one for each cluster if? (we
will refer to setGy as groupGy). For everyA;, we say
that A, belongs in grougsy, if v, = ma:cj";l(vij). For
example, in figure 44, contains twd tJs, onel 2] and one
[4]. Thus,A; belongsin grouydr;.

It is a requirement for our algorithm, that each cluster
belong to exactly one group. However, the above definition
of group assignment might create some ambiguity. In our
example,A, contains twd t]Js and twol2]s, which means
it may belong in eithe€; or G5. A3 contains twd 2]s and
two (3]s, which means it may belong in eithés or Gs.

A4 contains twd 2]s and twd 3]s, which means it may be-
long in eitherGs on Gs. Our algorithm chooses the group
for these clusters, so that the number of non-empty groups
is maximized. We usg to denote the maximum number of
non-empty groups. Figure 5 reflects such a group assign-
ment. Clusterd, was assigned to grou@s (assigning it to
groupG4 would also work).

G, G,
A D, |
/@ N BB
@ =/ \m =/

G, A, A,
oo/ \® Y

Figure 5. Group assignment for partition A.

We are now ready to perforiMoveandJoin operations.

As a preliminary step, we create and assign an empty cluster

to each empty group. Next, we perform the followidgve
operations:

For each groug-, we move all objects tagged withj;
that belong to clusters in other groups to any cluste®jin

The result of this process to our example is shown in figure

6. G1, G2, andG3s were non-empty, so we moved tags,
(2] and =] to clusters in those groupsy, was an empty
group, so we first created a new clustey, then moved the
lone tagl4] to it.

The total number ofMove operations is as follows:

Each cluster needs to move out all objects except those

belonging to its own group. The moving cost for clus-
ter A; is |A;] — maz’l,(vi;). Thus the total cost is

n—Zﬁzl mazx}L, (vij). We uselM to denote the total num-
ber ofMoveoperations.

Figure 6. Partition A after all the Moveopera-
tions.

After all the Moveoperations have been performed, any
cluster in grougs;, will contain only tagsl.. Then, we join
all clusters belonging to the same group. After all floin

operations, every group is hon-empty and contains exactly

one cluster. Thus, our transformation is complete.

In our example, since onl§s contains two or more clus-
ters, we need only joills and A4. The resulting partition
(shown in figure 7) is isomorphic to partitia®.

The number ofoinoperations within groufy, is |G| —

1. SinceJoin operations happen only within original non-
empty groups (i.e. non-empty before alpve and Join
operations), the total cost dbin operations i$ — g, where
lis the number of clusters in partitiohandg is the number

of non-empty groups. Therefore, the total cost of our algo-

rithm is M + [— g. This gives us some intuition on why we
attempted to maximize. The more non-empty groups, the
smaller the cost.

This section presented a brief outline of the algorithm

Figure 7. Partition A after all the Join opera-
tions.

g and the proof of correctness of this algorithm can be found
in [15]. For this paper, it is sufficient to recall that MoJo
distance is calculated dd +1 — g =

l
n—Y maz}(viy)+1—g (3)
=1

4 Calculating MoJoFM

Having already described an algorithm that calculates
mno(A, B), we need only calculate the denominator in for-
mula 2, i.e. maz(mno(VA, B)). In order to do this, we
will:

1. Prove that for any partitio®, the most distant target
partition from it is also the most distant source partition
to it (section 4.1). This is expressed by the following
formula:

max(mno(VA, B)) = max(mno(B,VA))

2. Show a method of finding the most distant target
partition starting from partition, i.e. calculate
max(mno(B,VA)) (section 4.2).

4.1 The maximum distance to a specific target
partition

We begin by showing that we need only worry about par-
titions for whichmaz], (v;;) = 1.

Lemma 4.1. For any source partitionA that contains a
cluster A; for whichmaz(v;;) > 1, we can find another
partition A’ where maz(v;;) = 1 and mno(A’,B) >

that calculates MoJo distance. Details on how to maximize mno(4, B).

Proof. For a given target partitio3, we want to find a Lemma 4.2. For any partition B, if partition A has any
source partitiond that has the maximum MoJo distance cluster 4; for whichmaz(v;;) > 1, we can find another
to B among all the partitions on the same set of objects. partition B’ for whichmax(v;;) = 1 andmno(4, B") >
Sincen is fixed in formula 3, our goal is to minimize mno(A, B).

l m
> im maxyty (vig) — L+ g.

If a clusterA; hasmax(v;;) > 1, we modify 4; in the
following way. We extract one object from each kind o
tag and then construct a new cluster. We do this iteratively
until all v;; = 1. For example, if4; contains 37, 275,

173, after the modificationA; will contain 17} , a newly
createdA, will contain 177,175 and another newly created
As will contain 177,175 and 175 (figure 8). Let us analyze
what is the effect to the MoJo distance.

Let us assume the originahax(v;;) of A; is v.
Zi:l mazx}’(vi;) remains the samel is increased by
v — 1. We will prove thatg will be increased by at most
v — 1. This seems obvious at first because anly 1 clus-
ters were created, spcan be increased by at mast- 1.
This is definitely true ifA; does not change its group after 5 A
the modification. However it is possible that the origirdal ! t
also changes its group. If the— 1 newly created clusters @E @E @E @E
can increase by v — 1 and A; can also changeby 1 after —
changing its groupg will be increased by in total. In the @@ @E @@ @E

following, we will prove this is impossible.

Proof. For a given source partitiod, we want to find a tar-
f get partitionB which satisfies that the MoJo distance from
A to B is greater or equal than the MoJo distance frdm
to any other partition of the current software system. This
time, bothn and! are fixed in formula 3. As a result, if we
want to maximize the MoJo distance, we need to minimize
S5 maz? (vij) + g. We useS to denote this value.
Figure 9 is an example of how we decreasez(v;;)
for A; to 1. For any tadl; wherev;; > 1, we assign all
objects with tadl’; to a new and unique cluster in partition
B. Because partitiods is not fixed, we can always change
an object’s tag as we wish. This shows that it is possible to
constructB’ so that alk;; = 1.

A,

Figure 8. Decomposing Al to Al, A2 and A3

We assume the original; belongs in grougr,, and it
changes its group t&/, (y # x) after the modification.
We also know thatd; after the modification will contain
only the original maximum tags. This means thatin original _ o
A, iz = viy = maz(vy;) andy # z, i.e., G, is also a Figure 9. Modifying tags to ensure that all
possible group selection for original;. There arev — 1 vi=1.
newly created clusters. If any of these clusters belongs in
groupG,, or groupG,, g will be increased by at most— 1.

Let us assume none of these clusters belongs in grQuyr

G,. If g can be increased by 1 aftdr, moves from group
G, to Gy, itmust hold that7, had a cardinality of 2 or more
andG, was empty originally. This is not possible, because

A; could have chosen either, or Gy. A; should have | emma 4.3. If everyw,; is 1 for partition A and B, then
been assigned t¢, to maximize the non-empty groups in - mno(4,B)= mno(B,A).

len A T\ Patins Partion8'
ER[E1NN = B, B, B, ;
&) G o [oe

B, — i

This waymaz(v;;) for A; changesto 1. If4; changes
its group, thery will be increased at most by 1. At the same
time, max(v;;) will be decreased at least by 1. Theisvill
not be increased. O

this case.
Thus, we have proven thawill be increased by at most ~ Proof. We firstassumenno(A, B) = = andmno(B, A) =
v — 1in all cases. y. If everywv;; is equal to 1, then according to the algorithm

0 presented in section 3ove first, thenJoin within each
group),Joinoperations can be replacedipveoperations.

This is because after all thdoveoperations, there will be

at most 1 cluster containing more than one objects in each

group. In order to join two clusters where at least one of
them contains only one object, one can use eith&ri@or
aMoveoperation. So all thdoinoperations can be replaced
by Moveoperations.

We also know thatMove operations are reversible. |If
partition A can be transformed to partitids usingz Move
operationsB can also be changed backAaising the same
number ofMove operations, which meanano(B, A) =
y < x =mno(A, B).

Moreover, it holds that;; = v;;. Therefore, if every;;
is 1, everyv;; is also 1, which means that partitids can
also be transformed t@l using mno(B, A) Move opera-
tions. If partitionB can be transformed td usingy Move
operations,A can also be transformed 8 usingy Move
operations, i.emno(A, B) = ¢ <y = mno(B, A). As a
result,z =y = mno(A, B) = mno(B, A). O

Theorem 4.4. For any partitionB, the maximum MoJo dis-
tance to it is also the maximum MoJo distance from it.

Proof. We assume there exists a partitighso that the
MoJo distance fronB to A is the maximum MoJo distance
from B to any other partition. We also assume that par-
tition A’ has the maximum MoJo distance to partitin

4.2 The maximum distance from a specific source
partition

Based on lemma 4.2, we know that if a partitiBris the
most distant partition fromd, either everyy;; = 1, or we
can find anotheB’ that is as distant fromd and satisfies
that allv;; are equal to 1. Then we need only consider those
partitionsB for whom eachy;; in partition A is equal to 1.

In this case, the formula of MoJo distance becomes! +
l—g=n-—g.

Next, we describe the method of minimizingwhen
eachwv;; in partition A is equal to 1. Because eacly =
1 = max(v;), each clusterd; has|A;| groups for selec-
tion. To minimize the total maximum group selection, i.e.
g, we want to make the group selection of each cluster as
overlapping with each other as possible.

We construcB as follows: We first find thenax (| 4;]),
then constructnaz(|A;|) clusters, fromB; to B,z 4,))-
For each clusterd; in partition A, we let it contain only
tagsTi, Tz, ... T|4,- For example, in figure 11, we have
|A1| =1, |A2| = |A3| = 4and|A4| =7= mCLI(|A1|) As
a result, we construct clusteB; to Bz, let A; contain only
1T, let both A5 and A5 containT; to Ty, and A4 contain
all kinds of tags, fronil} to T,. Without loss of generality,
we assume that the clusters afare ordered in ascending
order of | 4;|. For example, in figure 11, we hayd,| <
|[As] < |As] < |A4|. Inthat case, we know that if < y,

among all partitions (Figure 10). Based on lemma 4.1 andthen|A,| < |A,| andtags|A,| C tags|A,|, where we use

4.2, we can assume that according to partitidbeveryv;;
of AandA’ is equalto 1. Then we know thatno(A, B) =
mno(B,A) and mno(A’, B) mno(B,A"). Be-
causemno(B,A) > mno(B,A’) and mno(A’,B) >
mno(A, B), we conclude thatino(B, A) = mno(A’, B).

mno(A,B)=mno(B,A)

mno(A’,B)=mno(B,A’)

Figure 10. MoJo distances between A, B and
A

tags|A;| to denote the set of all tags in clustér. As we see
infigure 11tags|A;| C tags|As| C tags|As| C tags|Ayl.

Partition A

Figure 11. Tag assignment consistent with the
most distant partition B.

Now we will prove why B is the most distant partition
from A. We assume that partitiat has clusters from; to
A;. Then, we havéAd, | < |As] < --- < |A4;]. We also have
tags|Ai| C tags|Az| C -+ - C tags|Ay].

Since A; contains all possible tags, we haye <
|A;|. Because we havéngs|A1| C tags|As] C --- C
tags|A;—1|, A;—1 has all possible group selections for all

clusters excepti;. If A;’s group contains only one cluster

A;, then we haveA; ;| > g — 1. If A;’s group contains
more than one clusters, then we have_;| > ¢. There-
fore, in general we hawg—1 < |A4;_;|. We can easily show
by induction that for any: < g, we havey — x < |4;_,]|.
For example, in figure 12, we haye= 4, and

A4 =7> g =4,

|As| =4>g—1=3,

|A2| =4>g—-2=2,

A1 =1>g-3=1.

Partition A

Figure 12. Group assignment for partition A

Let us assume there is another partit®rsuch thavi, k
vy, = 1in partition A and maximum possible groups ify
g < g. BecausdA;| > g > ¢, A; has more than’
groups to choose from. This means tatcould have cho-
sen an empty group,. Therefore,A;’s group must con-

tain only A;, since otherwise we can increase the number of

non-empty groups by assignin to g, instead.

As a result, clustersl; to A;_; are assigned tg’ — 1
groups. SincgA;—1] > g—1 > ¢’ — 1, we can simi-
larly prove thatA;_; is also the only cluster in its group.
This means that cluster; to 4;_, will also have to be in
groups of cardinality 1. But then we will have at leaSt-1
groups, which is a contradiction to our first assumption.

Having proven the correctness of our algorithm, we can

also simplify it. We assumed;| < |Aq|--- < |4, and
useG,; to denote a mapping from clusters, ..., A; to
their groups, i.e{4;,..., 4;} — {G1,...,Gn}. Re(G))
is defined as the range 6f, andr; = |Re(G;)| is the cardi-
nality of the range of7;. We also usg; = mazg,|Re(G;)|
to denote the maximum cardinality of the rangef i.e.,
the maximum possible groups that clustdrs ..., A; can
cover. Therefore, the maximum possible groyps equal
to qgi-

Wheni = 1, we haveg; = 1. For any: such that
1 < i < I, we know thatA; contains all possible group
selections for clusterd; to A;. Thus, we haveld; > g; >
gi-12 ... 2 g1.

If r,_1 < |A;|, then A4, can select a new group. We
can haver; = r;,_1 + 1. If r;_y = |4,|, thenA; can not

belong in a new group. We will have = r;_;. If we
haveg;_1 < |4;|, we can havg; = g;—1 + 1. If we have
|A;| = gi—1, there are two possible cases:

1. The group selection for clusters frody to A;_; is
not maximized, i.ey;_1 < g;_1. In this case, we can
haveri =ri1+1<gi1.

2. The group selection is already maximized. Then, we
canonly have; = g;_1 = g;.

Because in the second case we can get the maximum
value ofr;, we should always maximize the valueof ;.
This is true for all clusters from to 4;. Therefore, we can
use this method to get the total maximum possible groups.
We can write the algorithm in pseudo code as follows:

Sort Afi] in ascending order of |A[i]|
G =0
for i:=1 to | do begin
if [Ali]]l > G then G =G + 1
assign AJ[i] to group G
end return G

5 Experiments

We have implemented the algorithm that cal-
culates the value of MoJoFM. It is available at
http://www.cs.yorku.ca/"bil/downloads .

The implementation has been used to conduct several
experiments. In this section we present some of these
experiments, including the comparison of different soft-
ware clustering techniques and the comparison between
MoJoFM andQ).

5.1 Comparison of different clustering techniques

In order to assess the effectiveness of various software
clustering techniques, we applied them to two large soft-
ware systems of known authoritative decomposition, and
computed their MoJoFM values.

The two large software systems we used for our exper-
iments were of comparable size, but of different develop-
ment philosophy:

1. TOBEY. This is a proprietary industrial system that is
under continuous development. It serves as the opti-
mizing back end for a number of IBM compiler prod-
ucts. The version we worked with was comprised of
939 source files and approximately 250,000 lines of
code. The authoritative decomposition of TOBEY was
obtained over a series of interviews with its developers.

2. Linux. We experimented with version 2.0.27a of this LINUX | TOBEY
free operating system that is probably the most famous LIMBO | 75.00%| 65.82%
open-source system. This version had 955 source files ACDC | 63.19%| 64.84%
and approximately 750,000 lines of code. The author- NAHC | 73.73%| 58.02%
itative decomposition of Linux was presented in [4]. SAHC | 62.76% | 47.03%

SL 54.64% | 24.40%

The software clustering approaches we evaluated were CL 61.92% | 52.75%
the following: UA | 62.34%]| 49.01%
WA 37.03% | 55.38%

1. LIMBO . LIMBO is a scalable hierarchical clustering
algorithm based on minimizing informationlosswhen Taple 1. MoJoFM values for several algo-
clustering a software system. It combines structural jthms on both example input systems.
and non-structural information in an integrated fash-
ion. In the interest of fairness, only structural infor-
mation was used for our experiments, since several of

the algorithms cannot handle non-structural informa- hame clusters, will probably be the deciding factors. How-
tion [1]. ever, MoJoFM can help identify algorithms that are clearly

ill-suited for a particular software system.
2. ACDC. This is a pattern-based software clustering
algorithm that attempts to recover subsystems com-g o Comparison of MoJoFM andQ
monly found in manually-created decompositions of

large software systems [13]. As mentioned before) used to over-evaluate the quality

3. Bunch. This is a suite of algorithms that attempt to ©Of the software clustering algorithms examined. We verified
f|nd a decomposition that Optimizes a qua“ty measure th|S eXperimenta”y and a.ISO Observed hOW b|g iS the diﬁer'
based on high-cohesion, low-coupling. We experi- €nce between MoJoFM arggl

mented with two versions of a hill-climbing algorithm, ~ We first compared the values of the two measures on TO-
we will refer to as NAHC and SAHC (for nearest- and BEY. Table 2 shows the values obtained for all the cluster-
shortest-ascend hill-climbing) [8]. ing algorithms presented above. The computed value was
indeed over-evaluated by up to 2.25%.
4. Cluster Analysis A|gOI’itth. We also used several However, all of these values were based on the same

hierarchical agglomerative cluster analysis algorithms “gold standard” decomposition (the one for TOBEY). It is
for our experiments. We used the Jaccard co-efficient more interesting to investigate how is the MoJoFM value af-
that has been shown to work best in a software clus- fected as the “gold standard” changes. If the over-evainati
tering context [3]. We experimented with four differ- s uniform, thenQ could still be used for comparison pur-
ent algorithms: single linkage (SL), complete linkage poses. If the amount of over-evaluation is significantly dif
(CL), weighted average linkage (WA), and unweighted ferent, a case can be made for repladihgith MoJoFM.
average linkage (UA). For this purpose, we developed a random partition gener-

i ator that created both “candidate” (simulated automagical
The MoJoFM values for all these algorithms on both ex-

ample software systems are shown in table 1.

These values denote that the above software clustering Q MoJoFM
tools can be of help to reverse engineering projects since LIMBO | 66.84%| 65.82%
they appear to be able to correctly cluster a large portion of ACDC | 65.88%| 64.84%
the software system at hand. NAHC | 59.28%| 58.02%

At the same time, the MoJoFM values can provide valu- SAHC | 48.61%| 47.03%
able intuition into which algorithm is better suited for apa SL 26.65% | 24.40%
ticular software system. For example, LIMBO and NAHC CL 54.16% | 52.75%
appear to perform best on Linux, while LIMBO and ACDC UA 50.53% | 49.01%
do better with TOBEY. WA 56.72%| 55.38%

Of course, the MoJoFM value is not the only factor one
needs to consider when choosing a clustering algorithm. Table 2. Comparison of the values of MoJoFM
For instance, when the difference is as small as 1.27%, asis and @ for several algorithms, using TOBEY as
the case when LIMBO and NAHC are applied on Linux, input.
other features of these algorithms, such as the way they

50 ———— —

MoJoFM ——

45

40

35

30

25

20

15 -

Measure value (average over 100 partition

10 1 1 MR | 1 1 oo | 1 |.--|--.|||||
10 100 1000 100C

Number of objects

Figure 13. Comparison of the values of the three different me asures as the number of objects in-
creases.

created decompositions) and “reference” (simulated “gold Finally, it is quite interesting to note that the value of all

standards”) partitions. measures was very low when the reference partition con-
For the first set of experiments, we fixed the number of tained a large number of clusters. This is a desirable prop-

clusters in both candidate and reference partitions to 10.erty that agrees with our intuition that an algorithm, that

The number of objects) to be clustered ranged from 20 produces course clusters when detailed ones are expected,

to 5000. For each value af we created 100 random parti- is not very effective.

tions and calculated the average value of both measures. In

fact, in order to make the comparison fairer @r we cal- 6 Conclusion

culated its value using both algorithms for the calculation

of MoJo distance. We denote these two version§ gs s

This paper introduced an effectiveness measure for soft-
andQMoJo-

‘) .. ware clustering algorithms called MoJoFM. We described
Figure 13 presents our results. A first observation is g gigorithm that calculates its value, and indicated the fe
that the amount of over-evaluation is not uniform. In SOMe y,re that make it an improvement over existing measures.
cases itis close to 0, while in others the valughit more Finajly, we presented experiments that demonstrate this im
than double the value of MoJoFM. This indicates that using proved performance, and showed how this measure can be

Q may provide erroneous results. Furthermore, it is clear ;seq to assess the effectiveness of software clustering alg
that using a better algorithm for MoJo distance calculation \ihms.

would not have improved the accuracy@f
To ensure that the aforementioned results were not influ-
enced by the experiment setup used, we conducted a seconlgeferences
set of experiments. This time we fixed the number of ob-
jects to 100, while allowing thg number of Clus.ter.s torange information loss minimization. If®roceedings of the Tenth
from 2 to 50. The results obtained are shoyvn in figure 14. Working Conference on Reverse Engineeripgges 334—
We can again make the same observations. The amount 344, Nov. 2003.

[1] P. Andritsos and V. Tzerpos. Software clustering based o

of overevaluation is not uniform, while the accuracy(pis [2] N.Anquetil and T. Lethbridge. File clustering using riam
not improved by the use of the optimal algorithm for MoJo conventions for legacy systems.Pnoceedings of CASCON
distance calculation. 1997 pages 184-195, Nov. 1997.

Figure 14. Comparison of the values of the three different me
fixed, and the number of clusters ranges from 2 to 50. Legend: T
MoJoFM. The solid line with unfilled circles is

(3]

(4]

(5]

(6]

[[N N w w
o ol o ol o al

Measure value (average over 100 partitions)
o

al
S o
)

30

20
Number of clusters

in candidate partition 10

N. Anquetil and T. Lethbridge. Experiments with cluster
ing as a software remodularization method.Phoceedings

of the Sixth Working Conference on Reverse Enginegring
pages 235-255, Oct. 1999.

I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as
a case study: Its extracted software architecture.Prio
ceedings of the 21th International Conference on Software
Engineering May 1999.

S. C. Choi and W. Scacchi. Extracting and restructurfrey t
design of large systemd$EEE Softwarepages 66-71, Jan.
1990.

R. Koschke and T. Eisenbarth. A framework for experimen-
tal evaluation of clustering techniques. Pmoceedings of
the Eighth International Workshop on Program Comprehen-
sion pages 201-210, June 2000.

[7] A. Lakhotia and J. M. Gravley. Toward experimental eval-

(8]

(9]

uation of subsystem classification recovery techniques. In [14]

Proceedings of the Second Working Conference on Reverse
Engineering pages 262—-269, July 1995.

S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner. Buoinc

A clustering tool for the recovery and maintenance of soft-
ware system structures. Rroceedings of the International
Conference on Software MaintenantEEE Computer So-
ciety Press, 1999.

B. S. Mitchell and S. Mancoridis. Comparing the decom-
positions produced by software clustering algorithms us-
ing similarity measurements. IRAroceedings of the Inter-
national Conference on Software Maintenanpages 744—
753, Nov. 2001.

10

Quan- The dashed line with unfilled circles is

50

20 Number of clusters
in reference partition

asures as the number of objects remains
he solid line with solid circles is

Q]Wo]o-

[10] H. A. Muller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A

reverse engineering approach to subsystem structure-ident
fication. Journal of Software Maintenance: Research and
Practice 5:181-204, Dec. 1993.

R. W. Schwanke. An intelligent tool for re-engineerisft-
ware modularity. InProceedings of the 13th International
Conference on Software Engineeringages 83-92, May
1991.

V. Tzerpos and R. C. Holt. MoJo: A distance metric for
software clusterings. IRroceedings of the Sixth Working
Conference on Reverse Engineeripgges 187-193, Oct.
1999.

V. Tzerpos and R. C. Holt. ACDC: An algorithm for
comprehension-driven clustering. Pnoceedings of the Sev-
enth Working Conference on Reverse Engineerimages
258-267, Nov. 2000.

A. van Deursen and T. Kuipers. Identifuing objects gsin
cluster and concept analysis. Rroceedings of the 21th
International Conference on Software Engineeripgges
246-255, May 1999.

] Z. Wen and V. Tzerpos. An optimal algorithm for MoJo

distance. IrProceedings of the 11th International Workshop
on Program Comprehensippages 227-235, May 2003.

