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Abstract

Selecting an appropriate software clustering algorithm
that can help the process of understanding a large software
system is a challenging issue. The effectiveness of a partic-
ular algorithm may be influenced by a number of different
factors, such as the types of decompositions produced, or
the way clusters are named.

In this paper, we introduce an effectiveness measure for
software clustering algorithms based on MoJo distance,
and describe an algorithm that calculates its value. We also
present experiments that demonstrate its improved perfor-
mance over previous measures, and show how it can be used
to assess the effectiveness of software clustering algorithms.

1 Introduction

One of the main goals of software clustering research is
to develop algorithms that automatically decompose large
software systems into smaller, easier to comprehend sub-
systems. Many such techniques have been presented in the
literature [11, 5, 10, 8, 2, 14, 3, 1]. They all demonstrate
promising results when tested on example systems.

However, evaluating the effectiveness of various soft-
ware clustering algorithms, and comparing their strengths
and weaknesses, remains an open question. The software
clustering field needs to designate a set of large, publically
available software systems with well-understood decompo-
sitions that can be used as benchmarks.

Even if such a benchmark set existed though, the ques-
tion of how to compare automatically created decomposi-
tions to the “gold standards” would remain a challenging
one. Several researchers have attempted to tackle this diffi-
cult problem [7, 3, 6, 9]. One of the first approaches to be
presented in the literature, was the MoJo distance measure
[12, 15].

MoJo distance between two clusteringsA andB of the
same software system is defined as the minimum number
of Moveor Join operations one needs to perform in order

to transform eitherA to B or vice versa. The smaller the
MoJo distance between an automatically created decompo-
sitionA and the “gold standard” decompositionB, the more
effective the algorithm that createdA.

This indicates that MoJo distance can be helpful in com-
paring the relative effectiveness of various clustering algo-
rithms. However, it is not particularly well-suited to assess
the effectiveness of an algorithm in isolation, since the same
distance value might indicate a good result if the algorithm
was applied to a large software system, and a poor result if
the software system in question was of small size.

For this reason, a “quality metric” given by the following
formula was presented in [12]:

Q(M) = (1 −
MoJo(A, B)

n
) × 100% (1)

whereM is the software clustering technique being ex-
amined,A is the automatically created decomposition,B is
the “gold standard” one, andn is the number of software
entities being clustered.

In this paper, we outline several shortcomings of this
metric, and introduce a new “eFfectivenessMeasure” based
on MoJo distance that we call MoJoFM.

The structure of the rest of this paper is as follows: Sec-
tion 2 introduces the features of MoJoFM that help over-
come the shortcomings of the original “quality metric”.
Section 3 presents the parts of the algorithm for the cal-
culation of MoJo distance presented in [15] that are neces-
sary for the calculation of MoJoFM, which is described in
section 4. Experiments that showcase the improved perfor-
mance of MoJoFM, as well as its usefulness for assessing
the effectiveness of software clustering algorithms are pre-
sented in section 5. Finally, section 6 concludes the paper.

2 MoJoFM features

The idea behind the original “quality metric” (we will
refer to it asQ from now on) was that an algorithm that pro-
duces the farthest partition away from the “gold standard”



should have a quality of 0%, while an algorithm that pro-
duces the “gold standard” should have a quality of 100%.
While this is the basis for our effectiveness measure as well,
there were three shortcomings in the way this was imple-
mented in [12]:

1. The original implementation was using a heuristic al-
gorithm called HAM to calculate the value of MoJo
distance. As shown in [15], the actual MoJo distance
might have been significantly smaller than the calcu-
lated one (up to 19%, with an average difference of
4%).

2. MoJo distance is a non-symmetric measure, i.e. the
minimum number ofMoveor Joinoperations to trans-
form partitionA to partitionB is not necessarily the
same as the minimum number of operations to trans-
form B to A. We express this as:mno(A, B) 6=
mno(B, A). The distance betweenA andB is defined
asMoJo(A, B) = min(mno(A, B), mno(B, A). As
a result, usingMoJo(A, B) in formula 1 is incorrect
since we are only interested in how closeA comes to
B (expressed bymno(A, B)), and not in how close
B comes toA (expressed bymno(B, A) and possibly
by MoJo(A, B)). Also, usingmno(A, B) instead of
MoJo(A, B) avoids the following paradox:

Let ONE be a clustering algorithm that always pro-
duces a clustering of cardinality 1 (all objects in one
cluster). The quality of such an algorithm should be
very low. However, if we useMoJo(A, B) in our
quality measure, the computed value will be very high.
Using TOBEY1 as an example (its authoritative clus-
tering contains 69 clusters and 939 objects) we would
haveQ(ONE) = (1 − 68/939) × 100% = 92.8%,
a value no “normal” clustering algorithm could ever
hope to reach. This is because the authoritative clus-
tering of TOBEY can be transformed into the output
of algorithm ONE by just joining all its clusters. Us-
ing mno(A, B) instead, we get the more reasonable
value of 17.9% for the quality of algorithm ONE.

Interestingly enough, the quality metric value of al-
gorithm EACH, which always produces a clustering
where each cluster contains exactly one object, is the
same whether we usemno(A, B) or MoJo(A, B) in
formula 1. In the case of TOBEY, this value is 7.3%.

3. The denominator in formula 1 was chosen to ben since
it is trivial to show thatMoJo(A, B) < n (any parti-
tion of n objects can be transformed to any other par-
tition of the same set of objects using less or equal to
n − 1 Move operations). Therefore, the value ofQ

1See section 5 for a description of TOBEY.
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Figure 1. Example partition B.

would always have been between0% and100%. How-
ever, usingn as the denominator is not optimal, be-
cause it is the maximum MoJo distance between two
specific partitions, the ones produced by algorithms
ONE and EACH. For a given “gold standard”B, the
maximum distance to it might be smaller. For exam-
ple, consider the partition shown in figure 1. Though
we usen = 9 as the denominator, the maximum MoJo
distance to this partition is in fact 6. The value ofQ
in this case will be always between33.3% and100%.
Therefore, its range has been shortened and its value
over-evaluated. A more accurate calculation of the
maximum distance to a given partitionB is desirable.

The effectiveness measure presented in this paper over-
comes the above shortcomings. MoJoFM has the following
features:

1. It usesmno(A, B) instead ofMoJo(A, B) in the nu-
merator of its formula to avoid the paradox mentioned
above.

2. It uses the optimal algorithm presented in [15] for the
calculation ofmno(A, B).

3. It calculates the actual maximum distance to partition
B for the denominator of its formula. We denote this
by max(mno(∀A, B)), and present its calculation in
section 4.

Therefore, the MoJoFM formula is:

MoJoFM(M) = (1−
mno(A, B)

max(mno(∀A, B))
)×100% (2)

In the following section, we present the algorithm that
computesmno(A, B).

3 Calculating mno(A,B)

AssumeS is a software system containingn objects, and
A andB are two decompositions ofS, A = A1, A2, ..., Al

andB = B1, B2, ..., Bm. An example is shown in figure
2, whereA andB are two partitions of the same system
containing 16 objects.
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Figure 2. Example partitions A and B.

For each object inA, we find its corresponding subsys-
tem inB. If an object inAi belongs inBj in partitionB, we
give this object a tagTj. The tags are shown in figure 3 as a
rectangle next to each object. For example, since object4

is in B2 in partitionB, it is assigned tagT2 (shown as 2 ).
Let us denote the intersection betweenAi andBj asvij .

Thus,vij = |Ai ∩ Bj | or vij = |Ai(Tj)|. For example, in
figure 3,v11 = 2, v12 = 1, v14 = 1, v21 = 2, v22 = 2, etc.
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Figure 3. Partition A with the tags.

Our algorithm considers only the tags of each object
from now on. Figure 4 presents partitionA including only
the tags of each object.
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Figure 4. Partition A containing only tags.

Next, we createm setsGk, one for each cluster inB (we
will refer to setGk as groupGk). For everyAi, we say
that Ai belongs in groupGk if vik = maxm

j=1(vij). For
example, in figure 4,A1 contains two 1 s, one 2 and one

4 . Thus,A1 belongs in groupG1.
It is a requirement for our algorithm, that each cluster

belong to exactly one group. However, the above definition
of group assignment might create some ambiguity. In our
example,A2 contains two 1 s and two 2 s, which means
it may belong in eitherG1 or G2. A3 contains two 2 s and
two 3 s, which means it may belong in eitherG2 or G3.
A4 contains two 2 s and two 3 s, which means it may be-
long in eitherG2 on G3. Our algorithm chooses the group
for these clusters, so that the number of non-empty groups
is maximized. We useg to denote the maximum number of
non-empty groups. Figure 5 reflects such a group assign-
ment. ClusterA4 was assigned to groupG3 (assigning it to
groupG2 would also work).
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Figure 5. Group assignment for partition A.
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We are now ready to performMoveandJoinoperations.
As a preliminary step, we create and assign an empty cluster
to each empty group. Next, we perform the followingMove
operations:

For each groupGk, we move all objects tagged withTk

that belong to clusters in other groups to any cluster inGk.
The result of this process to our example is shown in figure
6. G1, G2, andG3 were non-empty, so we moved tags1 ,

2 and 3 to clusters in those groups.G4 was an empty
group, so we first created a new clusterA5, then moved the
lone tag 4 to it.

The total number ofMove operations is as follows:
Each cluster needs to move out all objects except those
belonging to its own group. The moving cost for clus-
ter Ai is |Ai| − maxm

j=1(vij). Thus the total cost is

n−
∑l

i=1 maxm
j=1(vij). We useM to denote the total num-

ber ofMoveoperations.
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Figure 6. Partition A after all the Moveopera-
tions.

After all theMoveoperations have been performed, any
cluster in groupGk will contain only tagsTk. Then, we join
all clusters belonging to the same group. After all theJoin
operations, every group is non-empty and contains exactly
one cluster. Thus, our transformation is complete.

In our example, since onlyG3 contains two or more clus-
ters, we need only joinA3 andA4. The resulting partition
(shown in figure 7) is isomorphic to partitionB.

The number ofJoinoperations within groupGk is |Gk|−
1. SinceJoin operations happen only within original non-
empty groups (i.e. non-empty before anyMove andJoin
operations), the total cost ofJoinoperations isl − g, where
l is the number of clusters in partitionA andg is the number
of non-empty groups. Therefore, the total cost of our algo-
rithm isM + l− g. This gives us some intuition on why we
attempted to maximizeg. The more non-empty groups, the
smaller the cost.

This section presented a brief outline of the algorithm
that calculates MoJo distance. Details on how to maximize
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Figure 7. Partition A after all the Join opera-
tions.

g and the proof of correctness of this algorithm can be found
in [15]. For this paper, it is sufficient to recall that MoJo
distance is calculated asM + l − g =

n −

l∑

i=1

maxm
j=1(vij) + l − g (3)

4 Calculating MoJoFM

Having already described an algorithm that calculates
mno(A, B), we need only calculate the denominator in for-
mula 2, i.e. max(mno(∀A, B)). In order to do this, we
will:

1. Prove that for any partitionB, the most distant target
partition from it is also the most distant source partition
to it (section 4.1). This is expressed by the following
formula:

max(mno(∀A, B)) = max(mno(B, ∀A))

2. Show a method of finding the most distant target
partition starting from partitionB, i.e. calculate
max(mno(B, ∀A)) (section 4.2).

4.1 The maximum distance to a specific target
partition

We begin by showing that we need only worry about par-
titions for whichmaxm

j=1(vij) = 1.

Lemma 4.1. For any source partitionA that contains a
clusterAi for which max(vij) > 1, we can find another
partition A′ where max(vij) = 1 and mno(A′, B) ≥
mno(A, B).
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Proof. For a given target partitionB, we want to find a
source partitionA that has the maximum MoJo distance
to B among all the partitions on the same set of objects.
Since n is fixed in formula 3, our goal is to minimize∑l

i=1 maxm
j=1(vij) − l + g.

If a clusterAi hasmax(vij) > 1, we modifyAi in the
following way. We extract one object from each kind of
tag and then construct a new cluster. We do this iteratively
until all vij = 1. For example, ifA1 contains 3T1, 2T2,
1T3, after the modification,A1 will contain 1T1 , a newly
createdA2 will contain 1T1,1T2 and another newly created
A3 will contain 1T1,1T2 and 1T3 (figure 8). Let us analyze
what is the effect to the MoJo distance.

Let us assume the originalmax(vij) of Ai is v.∑l
i=1 maxm

j=1(vij) remains the same.l is increased by
v − 1. We will prove thatg will be increased by at most
v − 1. This seems obvious at first because onlyv − 1 clus-
ters were created, sog can be increased by at mostv − 1.
This is definitely true ifAi does not change its group after
the modification. However it is possible that the originalAi

also changes its group. If thev − 1 newly created clusters
can increaseg by v − 1 andAi can also changeg by 1 after
changing its group,g will be increased byv in total. In the
following, we will prove this is impossible.

A 1

1

1 2

1

2 3

A 1

1

A 2

2

3

1

A 3

2

1

Figure 8. Decomposing A1 to A1, A2 and A3

We assume the originalAi belongs in groupGx, and it
changes its group toGy (y 6= x) after the modification.
We also know thatAi after the modification will contain
only the original maximum tags. This means that in original
Ai, vix = viy = max(vij) andy 6= x, i.e., Gy is also a
possible group selection for originalAi. There arev − 1
newly created clusters. If any of these clusters belongs in
groupGx or groupGy, g will be increased by at mostv−1.
Let us assume none of these clusters belongs in groupGx or
Gy. If g can be increased by 1 afterAi moves from group
Gx toGy, it must hold thatGx had a cardinality of 2 or more
andGy was empty originally. This is not possible, because
Ai could have chosen eitherGx or Gy. Ai should have
been assigned toGy to maximize the non-empty groups in
this case.

Thus, we have proven thatg will be increased by at most
v − 1 in all cases.

Lemma 4.2. For any partitionB, if partition A has any
clusterAi for which max(vij) > 1, we can find another
partition B′ for whichmax(vij) = 1 andmno(A, B′) ≥
mno(A, B).

Proof. For a given source partitionA, we want to find a tar-
get partitionB which satisfies that the MoJo distance from
A to B is greater or equal than the MoJo distance fromA
to any other partition of the current software system. This
time, bothn andl are fixed in formula 3. As a result, if we
want to maximize the MoJo distance, we need to minimize∑l

i=1 maxm
j=1(vij) + g. We useS to denote this value.

Figure 9 is an example of how we decreasemax(vij)
for Ai to 1. For any tagTj wherevij > 1, we assign all
objects with tagTj to a new and unique cluster in partition
B. Because partitionB is not fixed, we can always change
an object’s tag as we wish. This shows that it is possible to
constructB′ so that allvij = 1.
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43

B 1

B	2

1 1 2

B 1 B 3

3 4

B 2 B 4

42

A 1

22

1 1

2

4

Partition B Partition B’

Figure 9. Modifying tags to ensure that all
vij=1.

This waymax(vij) for Ai changes to 1. IfAi changes
its group, theng will be increased at most by 1. At the same
time,max(vij) will be decreased at least by 1. ThusS will
not be increased.

Lemma 4.3. If everyvij is 1 for partitionA andB, then
mno(A,B)= mno(B,A).

Proof. We first assumemno(A, B) = x andmno(B, A) =
y. If everyvij is equal to 1, then according to the algorithm
presented in section 3 (Move first, thenJoin within each
group),Joinoperations can be replaced byMoveoperations.
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This is because after all theMoveoperations, there will be
at most 1 cluster containing more than one objects in each
group. In order to join two clusters where at least one of
them contains only one object, one can use either aJoin or
aMoveoperation. So all theJoinoperations can be replaced
by Moveoperations.

We also know thatMove operations are reversible. If
partitionA can be transformed to partitionB usingx Move
operations,B can also be changed back toA using the same
number ofMoveoperations, which meansmno(B, A) =
y ≤ x = mno(A, B).

Moreover, it holds thatvij = vji. Therefore, if everyvij

is 1, everyvji is also 1, which means that partitionB can
also be transformed toA using mno(B, A) Move opera-
tions. If partitionB can be transformed toA usingy Move
operations,A can also be transformed toB usingy Move
operations, i.e.mno(A, B) = x ≤ y = mno(B, A). As a
result,x = y = mno(A, B) = mno(B, A).

Theorem 4.4.For any partitionB, the maximum MoJo dis-
tance to it is also the maximum MoJo distance from it.

Proof. We assume there exists a partitionA so that the
MoJo distance fromB to A is the maximum MoJo distance
from B to any other partition. We also assume that par-
tition A′ has the maximum MoJo distance to partitionB
among all partitions (Figure 10). Based on lemma 4.1 and
4.2, we can assume that according to partitionB everyvij

of A andA′ is equal to 1. Then we know thatmno(A, B) =
mno(B, A) and mno(A′, B) = mno(B, A′). Be-
causemno(B, A) ≥ mno(B, A′) and mno(A′, B) ≥
mno(A, B), we conclude thatmno(B, A) = mno(A′, B).

A

A’

B

mno(A,B)=mno(B,A)

mno(A’,B)=mno(B,A’)

Figure 10. MoJo distances between A, B and
A’.

4.2 The maximum distance from a specific source
partition

Based on lemma 4.2, we know that if a partitionB is the
most distant partition fromA, either everyvij = 1, or we
can find anotherB′ that is as distant fromA and satisfies
that allvij are equal to 1. Then we need only consider those
partitionsB for whom eachvij in partitionA is equal to 1.
In this case, the formula of MoJo distance becomesn− l +
l − g = n − g.

Next, we describe the method of minimizingg when
eachvij in partitionA is equal to 1. Because eachvij =
1 = max(vij), each clusterAi has|Ai| groups for selec-
tion. To minimize the total maximum group selection, i.e.
g, we want to make the group selection of each cluster as
overlapping with each other as possible.

We constructB as follows: We first find themax(|Ai|),
then constructmax(|Ai|) clusters, fromB1 to Bmax(|Ai|).
For each clusterAi in partition A, we let it contain only
tagsT1, T2, . . . ,T|Ai|. For example, in figure 11, we have
|A1| = 1, |A2| = |A3| = 4 and|A4| = 7 = max(|Ai|). As
a result, we construct clustersB1 to B7, letA1 contain only
1T1, let bothA2 andA3 containT1 to T4, andA4 contain
all kinds of tags, fromT1 to T7. Without loss of generality,
we assume that the clusters ofA are ordered in ascending
order of |Ai|. For example, in figure 11, we have|A1| ≤
|A2| ≤ |A3| ≤ |A4|. In that case, we know that ifx < y,
then|Ax| < |Ay| andtags|Ax| ⊆ tags|Ay|, where we use
tags|Ai| to denote the set of all tags in clusterAi. As we see
in figure 11,tags|A1| ⊆ tags|A2| ⊆ tags|A3| ⊆ tags|A4|.

5 6 7

1 42

A

Partition A

2A

A 3
1

82 7

9 10 15 16

A 4
3

1

1

3

12 13 14

114 5 6

4321

4321

Figure 11. Tag assignment consistent with the
most distant partition B.

Now we will prove whyB is the most distant partition
from A. We assume that partitionA has clusters fromA1 to
Al. Then, we have|A1| ≤ |A2| ≤ · · · ≤ |Al|. We also have
tags|A1| ⊆ tags|A2| ⊆ · · · ⊆ tags|Al|.

Since Al contains all possible tags, we haveg ≤
|Al|. Because we havetags|A1| ⊆ tags|A2| ⊆ · · · ⊆
tags|Al−1|, Al−1 has all possible group selections for all
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clusters exceptAl. If Al’s group contains only one cluster
Al, then we have|Al−1| ≥ g − 1. If Al’s group contains
more than one clusters, then we have|Al−1| ≥ g. There-
fore, in general we haveg−1 ≤ |Al−1|. We can easily show
by induction that for anyx ≤ g, we haveg − x ≤ |Al−x|.
For example, in figure 12, we haveg = 4, and

|A4| = 7 ≥ g = 4,
|A3| = 4 ≥ g − 1 = 3,
|A2| = 4 ≥ g − 2 = 2,
|A1| = 1 ≥ g − 3 = 1.

654 11

141312
1

1 2 3 4

1 2 3 4

2 3 41

765

1A G1

3
1

G33A

G2A 2 4A G4

1615109

72 8

Partition A

Figure 12. Group assignment for partition A

Let us assume there is another partitionB′ such that∀i, k
vik = 1 in partitionA and maximum possible groups inA,
g′ < g. Because|Al| ≥ g > g′, Al has more thang′

groups to choose from. This means thatAl could have cho-
sen an empty groupgx. Therefore,Al’s group must con-
tain onlyAl, since otherwise we can increase the number of
non-empty groups by assigningAl to gx instead.

As a result, clustersA1 to Al−1 are assigned tog′ − 1
groups. Since|Al−1| ≥ g − 1 > g′ − 1, we can simi-
larly prove thatAl−1 is also the only cluster in its group.
This means that clustersAl to Al−g′ will also have to be in
groups of cardinality 1. But then we will have at leastg′+1
groups, which is a contradiction to our first assumption.

Having proven the correctness of our algorithm, we can
also simplify it. We assume|A1| ≤ |A2| · · · ≤ |Al|, and
useGi to denote a mapping from clustersA1, . . . , Ai to
their groups, i.e.,{A1, . . . , Ai} 7→ {G1, . . . , Gm}. Re(Gi)
is defined as the range ofGi andri = |Re(Gi)| is the cardi-
nality of the range ofGi. We also usegi = maxGi

|Re(Gi)|
to denote the maximum cardinality of the range ofGi, i.e.,
the maximum possible groups that clustersA1, . . . , Ai can
cover. Therefore, the maximum possible groupsg is equal
to gl.

When i = 1, we haveg1 = 1. For anyi such that
1 < i ≤ l, we know thatAi contains all possible group
selections for clustersA1 to Ai. Thus, we haveAi ≥ gi ≥
gi−1 ≥ . . . ≥ g1.

If ri−1 < |Ai|, thenAi can select a new group. We
can haveri = ri−1 + 1. If ri−1 = |Ai|, thenAi can not

belong in a new group. We will haveri = ri−1. If we
havegi−1 < |Ai|, we can havegi = gi−1 + 1. If we have
|Ai| = gi−1, there are two possible cases:

1. The group selection for clusters fromA1 to Ai−1 is
not maximized, i.e.,ri−1 < gi−1. In this case, we can
haveri = ri−1 + 1 ≤ gi−1.

2. The group selection is already maximized. Then, we
can only haveri = gi−1 = gi.

Because in the second case we can get the maximum
value ofri, we should always maximize the value ofri−1.
This is true for all clusters fromA1 toAl. Therefore, we can
use this method to get the total maximum possible groups.
We can write the algorithm in pseudo code as follows:

Sort A[i] in ascending order of |A[i]|
G := 0
for i:=1 to l do begin

if |A[i]| > G then G := G + 1
assign A[i] to group G

end return G

5 Experiments

We have implemented the algorithm that cal-
culates the value of MoJoFM. It is available at
http://www.cs.yorku.ca/˜bil/downloads .
The implementation has been used to conduct several
experiments. In this section we present some of these
experiments, including the comparison of different soft-
ware clustering techniques and the comparison between
MoJoFM andQ.

5.1 Comparison of different clustering techniques

In order to assess the effectiveness of various software
clustering techniques, we applied them to two large soft-
ware systems of known authoritative decomposition, and
computed their MoJoFM values.

The two large software systems we used for our exper-
iments were of comparable size, but of different develop-
ment philosophy:

1. TOBEY . This is a proprietary industrial system that is
under continuous development. It serves as the opti-
mizing back end for a number of IBM compiler prod-
ucts. The version we worked with was comprised of
939 source files and approximately 250,000 lines of
code. The authoritative decomposition of TOBEY was
obtained over a series of interviews with its developers.
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2. Linux . We experimented with version 2.0.27a of this
free operating system that is probably the most famous
open-source system. This version had 955 source files
and approximately 750,000 lines of code. The author-
itative decomposition of Linux was presented in [4].

The software clustering approaches we evaluated were
the following:

1. LIMBO . LIMBO is a scalable hierarchical clustering
algorithm based on minimizing information loss when
clustering a software system. It combines structural
and non-structural information in an integrated fash-
ion. In the interest of fairness, only structural infor-
mation was used for our experiments, since several of
the algorithms cannot handle non-structural informa-
tion [1].

2. ACDC. This is a pattern-based software clustering
algorithm that attempts to recover subsystems com-
monly found in manually-created decompositions of
large software systems [13].

3. Bunch. This is a suite of algorithms that attempt to
find a decomposition that optimizes a quality measure
based on high-cohesion, low-coupling. We experi-
mented with two versions of a hill-climbing algorithm,
we will refer to as NAHC and SAHC (for nearest- and
shortest-ascend hill-climbing) [8].

4. Cluster Analysis Algorithms. We also used several
hierarchical agglomerative cluster analysis algorithms
for our experiments. We used the Jaccard co-efficient
that has been shown to work best in a software clus-
tering context [3]. We experimented with four differ-
ent algorithms: single linkage (SL), complete linkage
(CL), weighted average linkage (WA), and unweighted
average linkage (UA).

The MoJoFM values for all these algorithms on both ex-
ample software systems are shown in table 1.

These values denote that the above software clustering
tools can be of help to reverse engineering projects since
they appear to be able to correctly cluster a large portion of
the software system at hand.

At the same time, the MoJoFM values can provide valu-
able intuition into which algorithm is better suited for a par-
ticular software system. For example, LIMBO and NAHC
appear to perform best on Linux, while LIMBO and ACDC
do better with TOBEY.

Of course, the MoJoFM value is not the only factor one
needs to consider when choosing a clustering algorithm.
For instance, when the difference is as small as 1.27%, as is
the case when LIMBO and NAHC are applied on Linux,
other features of these algorithms, such as the way they

LINUX TOBEY
LIMBO 75.00% 65.82%
ACDC 63.19% 64.84%
NAHC 73.73% 58.02%
SAHC 62.76% 47.03%

SL 54.64% 24.40%
CL 61.92% 52.75%
UA 62.34% 49.01%
WA 37.03% 55.38%

Table 1. MoJoFM values for several algo-
rithms on both example input systems.

name clusters, will probably be the deciding factors. How-
ever, MoJoFM can help identify algorithms that are clearly
ill-suited for a particular software system.

5.2 Comparison of MoJoFM andQ

As mentioned before,Q used to over-evaluate the quality
of the software clustering algorithms examined. We verified
this experimentally and also observed how big is the differ-
ence between MoJoFM andQ.

We first compared the values of the two measures on TO-
BEY. Table 2 shows the values obtained for all the cluster-
ing algorithms presented above. The computed value was
indeed over-evaluated by up to 2.25%.

However, all of these values were based on the same
“gold standard” decomposition (the one for TOBEY). It is
more interesting to investigate how is the MoJoFM value af-
fected as the “gold standard” changes. If the over-evaluation
is uniform, thenQ could still be used for comparison pur-
poses. If the amount of over-evaluation is significantly dif-
ferent, a case can be made for replacingQ with MoJoFM.

For this purpose, we developed a random partition gener-
ator that created both “candidate” (simulated automatically

Q MoJoFM
LIMBO 66.84% 65.82%
ACDC 65.88% 64.84%
NAHC 59.28% 58.02%
SAHC 48.61% 47.03%

SL 26.65% 24.40%
CL 54.16% 52.75%
UA 50.53% 49.01%
WA 56.72% 55.38%

Table 2. Comparison of the values of MoJoFM
and Q for several algorithms, using TOBEY as
input.
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Figure 13. Comparison of the values of the three different me asures as the number of objects in-
creases.

created decompositions) and “reference” (simulated “gold
standards”) partitions.

For the first set of experiments, we fixed the number of
clusters in both candidate and reference partitions to 10.
The number of objects (n) to be clustered ranged from 20
to 5000. For each value ofn, we created 100 random parti-
tions and calculated the average value of both measures. In
fact, in order to make the comparison fairer forQ, we cal-
culated its value using both algorithms for the calculation
of MoJo distance. We denote these two versions asQHAM

andQMoJo.
Figure 13 presents our results. A first observation is

that the amount of over-evaluation is not uniform. In some
cases it is close to 0, while in others the value ofQ is more
than double the value of MoJoFM. This indicates that using
Q may provide erroneous results. Furthermore, it is clear
that using a better algorithm for MoJo distance calculation
would not have improved the accuracy ofQ.

To ensure that the aforementioned results were not influ-
enced by the experiment setup used, we conducted a second
set of experiments. This time we fixed the number of ob-
jects to 100, while allowing the number of clusters to range
from 2 to 50. The results obtained are shown in figure 14.

We can again make the same observations. The amount
of overevaluation is not uniform, while the accuracy ofQ is
not improved by the use of the optimal algorithm for MoJo
distance calculation.

Finally, it is quite interesting to note that the value of all
measures was very low when the reference partition con-
tained a large number of clusters. This is a desirable prop-
erty that agrees with our intuition that an algorithm, that
produces course clusters when detailed ones are expected,
is not very effective.

6 Conclusion

This paper introduced an effectiveness measure for soft-
ware clustering algorithms called MoJoFM. We described
an algorithm that calculates its value, and indicated the fea-
tures that make it an improvement over existing measures.
Finally, we presented experiments that demonstrate this im-
proved performance, and showed how this measure can be
used to assess the effectiveness of software clustering algo-
rithms.
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