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Abstract

We consider a class of geometric facility location problémsvhich the goal is to determine a S¢tof disks given by
their centerst{) and radii ;) that cover a given set of demand poilts RR? at the smallest possible cost. We consider cost
functions of the formiy ; (r;), wheref(r) =r is the cost of transmission to radius Special cases arise far= 1 (sum of
radii) anda = 2 (total area); power consumption models in wireless nétwiesign often use an exponemt> 2. Different
scenarios arise according to possible restrictions onrémsmission centets, which may be constrained to belong to a given
discrete set or to lie on a line, etc.

We obtain several new results, including (a) exact and aqpiation algorithms for selecting transmission poitjten a
given line in order to cover demand pointsc R?; (b) approximation algorithms (and an algebraic intratitgtresult) for
selecting an optimal line on which to place transmissiomizoto coverY; (c) a proof of NP-hardness for a discrete set of
transmission points iR? and any fixedx > 1; and (d) a polynomial-time approximation scheme for tfebfsm of computing
aminimum cost covering touiMCCT), in which the total cost is a linear combination of th@nsmission cost for the set of
disks and théengthof a tour/path that connects the centers of the disks.
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1 Introduction

The problem. We study a geometric optimization problem that arises ireless network design, as well as in robotics and
various facility location problems. The task is to selectuanier of locations; for the base station antennae(ver3, and
assign a transmission rangeto eacht;, in order that eacly € Y for a given se¥Y = {py,..., pn} of ndemand pointsafients

is covered. We say that cliept is covered if and only ify; is within range of some transmission poipti.e.,d(tj,, pi) <rj.
The resulting cost per server is some known funcfipsuch asf (r) = r®. The goal is to minimize the total cogt, f(rj), over

all placements of at mo&tservers that cover the sétof clients. In thediscreteversion, a seX of m potential locations for the
servers is specified.

In the context of modeling the energy required for wireleasigmission, it is common to assume a superlinaas (1)
dependence of the cost on the radius; in fact, physicallyrate simulation often requires superquadratic deperaens 2).
A quadratic dependencel = 2) models the total area of the served region, an objectigingrin some applications. A
linear dependencei(= 1) is sometimes assumed, as in Lev-Tov and Peleg [18], wiily $he base station coverage problem,
minimizing the sum of radii. The linear case is importanttiedy not only in order to simplify the problem and gain indigh
into the general problem, but also to address those settinvgsich the linear cost model naturally arises [10, 20]. &@mple,
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the model may be appropriate for a system with a narrow-aregen whose direction can either rotate continuously ortadap
to the needs of the network. Another motivation for us comasfrobotics, in which a robot is to map or scan an environment
with a laser scanner [13, 14]: For a fixed spatial resolutitihe desired map, the time it takes to scan a circle corredptm

the number of points on the perimeter, i.e., is proportitméhe radius.

Our problem is a type of clustering problem, recently nammétatsize k-clusteringy Bild et al. [7]. Clustering problems
tend to be NP-hard, so most efforts, including ours, are diatedevising an approximation algorithm or a polynomiaidi
approximation scheme (PTAS).

We also introduce a new problem, which we aalhimum cost covering toMCCT), in which we combine the problem
of finding a short tour and placing covering disks centeredg@lit. The objective is to minimize a linear combination loé t
tour length and the transmission/covering costs. The prolarises in the autonomous robot scanning problem [13wtre
the covering cost is linear in the radii of the disks, and tkierall objective is to minimize the total time of acquisiti¢a
linear combination of distance travelled and sum of scaii)rahother motivation is the distribution of a valuablesensitive
resource: There is a trade-off between the cost of broadgasbm a central location (thus wasting transmission skirig
interception) and the cost of travelling to broadcast mocally, thereby reducing broadcast costs but incurringetreosts.

Location Constraints. In the absence of constraints on the server locations, it lmeagptimal to place one server at each
demand point. Thus, we generally set an upper bolgnah) the number of servers, or we restrict the possible lonatof the
servers. Here, we consider two cases of location constraint

(1) Servers are restricted to lie in a discrete{set. .. ,tm}; or
(2) Servers are constrained to lie on a line (which may bg &pkcified, or may be selected by the optimization).

Ourresults. We provide a number of new results, some improving previaukysome giving the first results of their kind.

In the discrete case studied by Lev-Tov and Peleg [18], amd &ial. [7], we give improved results. For the discrete
1D problem wherér C R, we improve their 4-approximation to a linear-time 3-apgmation by using a “Closest Center
with Growth” (CCG) algorithm, and, as an alternative to theviousO((n+ m)3) algorithm [18], we give a near-linear-time
2-approximation that uses a “Greedy Growth” (GG) algorithm

In the general 2D case with clientsc R?, we strengthen the hardness result of Bilo et al. [7] by shgwhat the discrete
problem is already hard for any superlinear cost functian, f(r) = r® with a > 1. Furthermore, we generalize the min-
size clustering problem in two new directions. On the onedhare consider less restrictive server placement polidies.
instance, if we only restrict the servers to lie on a givendikee, we give a dynamic programming algorithm that solves t
problem exactly, in tim@(n?logn) for anyL, metric in the linear cost case, and in ti®n*logn) in the case of superlinear
non-decreasing cost functions. For simple approximationsalgorithm “Square Greedy” (SG) gives in tifdénlogn) a 3-
approximation to the square covering problem with any lirauperlinear cost function. A small variation, “Squane&ly
with Growth” (SGG), gives a 2-approximation for a linear thsction, also in timed(nlogn). The results are also valid for
covering byl disks for anyp, but with correspondingly coarser approximation factors.

If the servers are restricted to lie on a horizontal line thatlocation of this line may be chosen freely, then we shawttie
exact optimal position (witlx = 1) is not computable by radicals, using an approach singl#rdt of Bajaj [5, 6] in addressing
the unsolvability of the Fermat-Weber problem. On the pasiide, we give a fully polynomial-time approximation sche
(FPTAS) requiring timeD((n*/¢)logn) if a = 1 and timeO((n*/¢)logn) if o > 1.

For servers on an unrestricted line, of any slope, @ad1, we giveO(1)-approximations (4-approximation @(n*logn)
time, or 8,/2-approximation ir0(n®logn) time) and an FPTAS requiring tim@((n>/&2)logn).

We give the first algorithmic results for the new problem, imiam cost covering tour (MCCT), which we introduce. Given
a sety C R? of n clients, our goal is to determine a polygonal tduand a seX of k disks of radiirj centered ol that cover
Y while minimizing the cost lengtfT) +C3 r{. Our results are foo = 1. The ratioC represents the relative cost of touring
versus transmitting. We show that MCCT is NP-har@ iis part of the input. At one extreme,@fis small then the optimum
solution is a single server placed at the circumcent&f @fe can show this to be the case @K 4). At the other extreme (if
C very large), the optimum solution is a TSP among the clielRts.any fixed value o€ > 4, we present a PTAS for MCCT,
based on a novel extension of timeguillotine methods of [19].

Related work. There is a vast family of clustering problems, among whiehthek-centerproblem in which one minimizes
max; rj, thek-medianproblem in which one minimizeg; d(pi,tj; ), and thek-clusteringproblem in which one minimizes the
maximum over all clusters of the sum of pairwise distancéwd®en points in that cluster. For the geometric instancelsaxfe
related clustering problems, refer to the survey by Agaemal Sharir [1]. Whelk is fixed, the optimal solution can be found in
time O(nX) using brute force. In the plane, one of the only results ferttin-size clustering problem is a small improvement for

k = 2 by Hershberger [16], in subquadratic tit®én?/ loglogn). Approximation algorithms and schemes have been proposed,
particularly for geometric instances of these problemg.(¢4]). Clustering for minimizing the sum of radii was sted for



points in metric spaces by Charikar and Panigrahy [9], wies@nt arO(1)-approximation algorithm using at mdstlusters.

For the linear-cost modebi(= 1), our problem has been considered recently by Lev-Tov aldgF[18] who give an
O((n+m)3) algorithm when the clients and servers all lie on a given (the 1D problem), and a linear-time 4-approximation
in that case. They also give a PTAS for the two-dimensionsé eehen the clients and servers can lie anywhere in the plane.
Bilo et al. [7] show that the problem is NP-hard in the plaaethe casef (r) =r®, a > 2, either when the se$ andY are
given andk is left unspecifiedK = n), or whenk is fixed but therX =Y. They give a PTAS for the linear cost case=£ 1)
and a slightly more involved PTAS for a more general problenvhich the cost function is superlinear, there are fixedtagdi
costs associated with each transmission server and theteoigndk on the number of servers.

There are many problems dealing with covering a set of dibgitdisks ofgivenradius. Hochbaum and Maass [17] give a
PTAS for covering with a minimum number of disks of fixed ragjiwhere the disk centers can be taken anywhere in the plane.
They introduce a “grid-shifting technique,” which is usattleextended by Erlebach et al. [12]. Lev-Tov and Peleg [18] an
Bilo et al. [7] extend the method further in obtaining thefAS results for the discrete version of our problem.

When a discrete seX of potential server locations is given, Gonzalez [15] adsdes the problem of maximizing the
number of covered clients while minimizing the number ofvees supplying them, and he gives a PTAS for such problems
with constraints such as bounded distance between any tesentservers. In [8], a polynomial-time constant approxiona
is obtained for choosing a subset of minimum size that coaesest of points among a set of candidate disks (the radii can be
different but the candidate disks must be given).

The closest work to our combined tour/transmission cost@QWds the work on covering tours: the “lawn mower” problem
[2], and the TSP with neighborhoods [3, 11], each of whichlieesn shown to be NP-hard and has been solved with various
approximation algorithms. In contrast to the MCCT we stulg, radius of the “mower” or the radius of the neighborhoads t
be visited is specified in advance.

2 Scenario (1): Server Locations Restricted to a Discrete §e
2.1 The one-dimensional discrete problem with linear cost

Consider the case onh fixed server locationX = {ti,...,tm}, n client locationsY = {ps,...,pn}, and a linearq = 1) cost
function, with clients and servers all located along a fixad.l Without loss of generality, we may assume tandY are
sorted in the same direction, at an extra cogd@fn -+ m)log(n+m)). Lev-Tov and Peleg [18] give a@((n+m)3) dynamic
programming algorithm for finding an exact solution. Bildat [7] show that the problem is solvable in polynomial tifoe
any value ofa by reducing it to an integer linear program with a totallymodular constraint matrix. The complexities of
these algorithms, while polynomial, is high. Lev-Tov anddgealso give a simple “closest center” algorithm (CC) thaeg a
linear-time 4-approximation. We improve to a 3-approxiimatn linear time, and a 2-approximation@(m+ nlogm) time.

Closest Center with Growth (CCG) Algorithm: Process the clientsps, ..., pn} from left to right keeping track of the right-

most extending disk. Lebr denote the rightmost point of the rightmost extending d@std letR denote the radius of this

disk. (In fact the rightmost extending disk will always be tlast disk placed.) ltor is equal to, or to the right of the next
client processedy;, thenp; is already covered so ignore it and proceed to the next cliept is not yet covered, consider the
distance ofp; to wr compared with the distance of to its closest centdy. If the distance ofj; to wr is less than or equal to

the distance ofy to its closest centd, then grow the rightmost extending disk just enough to aagtu Otherwise use the

disk centered d of radius|p; — fi| to coverp.

Lemma 1 CCG yields &3-approximation to OPT in Qh+ m) time.

Proof. Consider any dislb in OPT. We attribute to each client a segménéas follows. If, in the execution of CCG, the
client pj was not used because it had already been covered, wWe-s@t If p; was captured by placing a disk centered at the
closest centef to p; then setd = {[f, pi] if & < pi, [pi,fi] if pi <fi}. On the other hand, ifi was captured by growing an
existing disk with initial rightmost pointg, let J; denote the half-open interval through which this rightnaasht moved out,
i.e.Jy = (wr, pi]. Observe thaliNJ; = 0 as long as # j and that the sum of the lengths of theequals the sum of the radii of
disks in the CCG cover. The leftmost and rightmgstannot extend more than radidg(to the left ofD or radiusD) to the
right of D.

Lettp denote the center dd. At most oneJ; corresponding to a client iB extends outward to the right from the right
edge ofD. If there is no such right-most interval, the we clearly havenost a 3-approximation. Thus assume there is such an
interval, and call itlr. Jr corresponds to a center, not growth, since it emanates fierright. Call the associated cliepg. If
there is a clienpy; to the right oftp not contained idg then lengtliJr) < radiugD) —d(tp, pi) since otherwise in the algorithm
we would have grown the disk containipgto capturepg, rather than allow it to be captured by a center. It followet ttne
coverage by disks in CCG to the righttgfhas sum of radii at most radius(D). The 3-approximatiorofes. O

If we consider a single disk with clientsp. and pr on the left and right edges &f, associated centexs, Xr at distances



respectively radiug)—e to the left and radiugf)—e to the right, along with a dense set of clients in the left hialf of D we
see that 3 is the best possible constant for CCG.

Greedy Growth (GG) Algorithm : Start with a disk with center at each server all of radius z&low, amongst all clients, find
the one which requires the least radial disk growth to caatuRepeat until all clients are covered. An efficient inmpéntation
uses a priority queue to determine the client that shouldapéuced next. One can set up the priority queu®(m) time. Note
that the priority queue will never have more than @lements, and that eagh eventually gets captured, either from the right
or from the left. Each capture can be done in ti@®#gm) for a total running time o©(m+ nlogm).

Lemma 2 GG yields a2-approximation to OPT in Qn+ nlogm) time.

Proof. Define intervals); as follows: when capturing a cliept from a servet; whose current radius (prior to capture) js
letJ = (t; +rj, pi] if pi >tj, andJ = [pi,tj —rj) otherwise. Our first trivial yet crucial observation is tdat J, = 0 if i # k.
Also note that the sum of the lengths of thes equal to the sum of the radii in the GG cover.

Consider now a fixed disk in OPT, centered dp, and the list of intervals;, whosep; is insideD. As before, at most one
suchJ; extends outward to the right from the right edgéofif so, call itJr, and defingl. symmetrically. IfJr exists, it cannot
extend more than radiu3f to the right ofD. LetA = length(Jr). We argue that there is an interval of lengtfin D, to the
right of tp, which is free of};’s. It follows that there is at most radiu3) worth of segments to the right &f. Of course, this is
also true ifJg does not exist. By symmetry, there is also rad)sforth of segments to the left &f, whetherJ, exists or not,
yielding the claimed 2-approximation.

Assumelr exists. Then the algorithm successively extediglby growth to the left up to some maximum point (possibly
stopping right atpr). Since the growth could have been induced by clients to itfte of Jg, that maximum point is not
necessarily a client. There is, however, some client inBidkat is captured last in this process. This clipnf{possiblypr)
cannot be withir\ of tp, since otherwise it would have been captured prior to thetroation ofJg.

If there is no client betweets andp; we are done, since then there could be no intelyal between. Thus consider the
client pi_1 just to the left ofp;. Supposa(pi—1,pi) > A. Then, ifpi_1 is eventually captured from the left, we would have the
region betweenm;_; andp; free ofJ¢'s and be done. On the other handpif ; is captured from the right, it must be captured
by a server betweep 1 andp;, and that server is at leasto the left ofp; since otherwisg; would be captured by that server
prior to pr. This leaves the distance from the servepitéree of J¢'s.

Hence the only case of concern isdifpi_1, pi) < A. Clearly pi_1 must not have been captured at the time wipgns
captured since otherwigg would have been captured befqug, contradicting the assumption thgtis captured by growth
leftward frompg. Similarly, there cannot be a server betwggery andp;, since otherwise botp; 1 andp; would be captured
beforepr. Together with the definition of;, this implies thatp;_1 is captured from the left. Therefore, to the leftmf 1,
there must be one or more intervdly } whose length is at leadtthat are constructed befope_ is captured. Similarly, to
the right of pj, there must be some one or more intervals } whose length is at leadt constructed beforg; is captured.
However, either the lasl; is placed before the Ias]Ij or vice versa. In the first case, there areength obstructions left in
the left-hand subproblem, sB_; will be covered, and with length obstructions remaining in the right subproblgmwyill be
captured by growth rightward. The second case is symmeEtoi¢he first. In either case we have a contradiction. O

To see that the factor 2 is tight, just consider serverszt €,0 and 2— € and clients at-1 and 1.

2.2 Hardness of the two-dimensional discrete problem withiugperlinear cost

In 2D, we sketch an NP-hardness proof, for @any 1. This strengthens the NP-hardness proof of [7], which evdyks in
the casax > 2. Our proof is based onLRNAR 3SAT: Only use a subset of the set of critical locations aglickate locations
by only choosing the points that are “halfway” between twgednt client points along a variable gadget. This allowly on
two perfect matchings on each variable gadget as locallyngptsolutions; these matchings map to truth assignmends in
canonical way. A satisfying truth assignment on a varialitee picking up an additional point at a clause gadgetdjig an
inexpensive solution. See the Appendix for an illustratbolause gadgets.

Theorem 3 For any a fixedx > 1, let the cost function of a circle of radius r bérj =r®. Thenitis NP-hard to decide whether
a discrete set of n clients in the plane, and a discrete set pbtantial transmission points allow a cheap set of circleat t
covers all demand points.

3 Scenario (2): Server Locations Restricted to a Line
3.1 Servers along a fixed horizontal line

3.1.1 Exact solutions Suppose that the servers are required to lie on a fixed hdailzZame, which we take without loss of
generality to be th&-axis. Such a restriction could arise naturally (e.g., #r@ears must be connected to a power line, must lie



on a highway, or in the main corridor in a building). In addiitj this case must be solved first before attempting to sblwe t
more general problem—along a polygonal curve.

In this section, we describe dynamic programming algoritimmcompute a set of server points of minimum total cost.
For notational convenience, we assume that the cli¢émtise indexed in left-to-right order. Without loss of genéyalve also
assume that all the clients lie on or above &haxis, and that no two clients have the saxagoordinate. (If a clien; lies
directly above another cliemg;, then any circle enclosing; also enclosepj, so we can removp; fromY without changing
the optimal cover.)

Let us call a circleC pinnedif it is the leftmost smallest axis-centered circle enalgssome fixed subset of clients. Equiv-
alently, a circle is pinned if it is the leftmost smallestabér passing through a chosen client or a chosen pair of slidsrider
anyLp metric, there are at mo€X(n?) pinned circles. As long as the cost functibis non-decreasing, there is a minimum-cost
cover consisting entirely of pinned circles.

Linear Cost. If the cost functionf is linear (or sublinear), we easily observe that the cirglesny optimum solution must
have disjoint interiors. (If two axis-centered circles afliusr; andr; intersect, they lie in a larger axis-centered circle of
radius at most; +rj.) In this case, we can give a straightforward dynamic prognéng algorithm that computes the optimum
solution under any., metric.

The algorithm given in Figure 1 (left) finds the minimum-cosver by disjoint pinned circles, where distance is measure
using anyLp metric. We call the rightmost point enclosed by any pinnedeC theownerof C.

If we use brute force to compute the extreme points enclogedth pinned circle and to test whether any points lie direct
above a pinned circle, this algorithm runsxn®) time. With some more work, however, we can improve the rugtime by
nearly a linear factor.

This improvementis easiest in thg metric, in which circles are axis-aligned squares. Eachtgwis the owner of exactly
i pinned squares: the unique axis-centered squarepyiththe upper right corner, and for each popjtto the left of p;, the
leftmost smallest axis-centered square wittandp; on its boundary. We can easily compute all these squaresglaasithe
leftmost point enclosed by each one Qfilogi) time. (To simplify the algorithm, we can actually ignore grigned square
whose owner does not lie on its right edge.) If we preprogesgo a priority search tree i@(nlogn) time, we can test in
O(logn) time whether any client lies directly above a horizontatliithe overall running time is no®(n?logn).

For any othelL, metric, we can compute the extreme points enclosed b®(@f) pinned circles ir0(n?) time using the
following duality transformation. I€ is a circle centered gk, 0) with radiusr, letC* be the poin{x,r). For each clienp;, let
pi ={C*| peC}, andletYy* = {p; | pi € Y}. We easily verify that each sef is an infinitex-monotone curve. (Specifically,
in the Euclidean metric, the dual curves are hyperbolas asfimptotes of slopg:1.) Moreover, any two dual curves and
pj intersect exactly once; i.e¢;" is a set of pseudo-lines. Thus, we can compute the arrangeifiénin O(n?) time. For each
pinned circleC, the dual poinC* is either one of the clientp; or a vertex of the arrangement of dual cur¥és A circle C
encloses a clien; if and only if the dual poinC* lies on or above the dual curyg. After we compute the dual arrangement,
it is straightforward to compute the leftmost and rightmaisal curves below every vertex @(n?) time by depth-first search.

Finally, to test efficiently whether any points lie directipove an axis-centeretlq) circle, we can use the following
two-level data structure. The first level is a binary searek bver thex-coordinates off. Each internal node in this tree
corresponds to a canonical vertical sbcontaining a subsaty, of the clients. For each nodge we partition thex-axis into
intervals by intersecting it with the furthest-point Vominliagram ofpy, in O(|py|log|py|) time. To test whether any points lie
above a circle, we first find a set @flogn) disjoint canonical slabs that exactly cover the circle, rah for each slal§, in
this set, we find the furthest neighbor i of the center of the circle by binary search. The region allbeecircle is empty
if and only if all O(logn) furthest neighbors are inside the circle. Finally, we caduoe the overall cost of the query from
O(log?n) to O(logn) using fractional cascading. The total preprocessing t&@nlog?n).

Theorem 4 Given n clients in the plane, we can compute imogn) time a covering by circles (in any fixed, metric)
centered on the x-axis, such that the sum of the radii is nimeidh

Superlinear Cost. A similar dynamic programming algorithm computes the opficovering under any superlinear (in fact,
any non-decreasingcost functionf. As in the previous section, our algorithm works for digymetric. For the moment, we
will assume thap is finite.

Although two circles in the optimal cover need not be digjaimey cannot overlap too much. Clearly, no two circles i th
optimal cover are nested, since the smaller circle woulcdedamdant. Moreover, the highest point éuey of any circle in the
optimal cover must lie outside all the other circles. If oirele A contains the apex of a smaller cirdie then the luneB\ A
is completely contained in an even smaller cii€levhose apex is the highest point in the lune; it follows thandB cannot
both be in the optimal cover. See Figure 2(a).

To compute the optimal cover of, it suffices to consider subproblems of the following fornar Each pinned circl€,



MINSUMOFRADIUSCIRCLECOVER(Y) : MINSUPERLINEARCOSTCIRCLECOVER(Y, f):
for every pinned circl€ sort the pinned circles from left to right by their centers
find the leftmost and rightmost points encloseddy Cost0] — 0
Cost0] — 0 forj—1ltop+1
fori«< 1ton Costj] «
Cosfi] « o fori—1ltoj—1
for each pinned circl€ owned byp; if Cj andC;j exclude each other’s apices
if no points inP lie directly aboveC andB(C;,Cj) is empty
p; — leftmost point enclosed by Costj] < min{Cos{j], Costi] + f(radiug(C;)))}
Cosfli] < min{Cost]i], Cost/j — 1] +radius(C))} returnCostp+ 1]
returnCostn|

Figure 1. The dynamic programming algorithm: Left: linear cost; Right: superlinear cost function.

(@) (b) (c)
Figure 2. (a) The apex of each circle in the optimal cover lies outside the other circles. (b) The points Yc lie in the shaded region. (c) If A and C are adjacent
circles in the optimal covering, the shaded region B(A,C) is empty.

let Yc denote the set of clients outsi@zand to the left of its center; see Figure 2(b). Then for eacimgd circleC, we
havecost(Yc) = mina(f(radius(A)) + cost(Ya)), where the minimum is taken over all pinned circhesatisfying the following
conditions: (1) The center &is left of the center o€; (2) the apex oA is outsideC; (3) the apex o€ is outsideA; and (4)A
encloses every point it \ Ya. The last condition is equivalent to there being no clienssde the regioB(A,C) bounded by
thex-axis, the circlef\ andC, and vertical lines through the apicesf&ndC; see Figure 2(c).

Our dynamic programming algorithm (Figure 1 (right)) calesi the pinned circleS,Cy, ... ,Cp in left to right order by
their centers; that is, the center@fis left of the center o€; whenever < j. To simplify notation, let; =Y. For convenience,
we add two circle€y andCp, 1 of radius zero, centered far to the left and rightYofespectively, so thap = @ andYp 1 =Y.

Implementing everything using brute force, we obtain a imgtime ofO(n®). However, we can improve the running time
to O(n*logn) using the two-level data structure described in the previrction, together with a priority search tree. The
regionB(Ci,C;) can be partitioned into two or three three-sided regions) @aunded by two vertical lines and either a circular
arc or thex-axis. We can test each three-sided region for emptineSg¢lagn) time.

Theorem 5 Let f: R, — R be a fixed non-decreasing cost function. Given n clientsdptane, we can compute in(#logn)
time a covering by circles (in any fixed Inetric) centered on the x-axis, such that the sum of the ob8ts circles is minimized.

The algorithm is essentially unchanged in themetric, except now we define the apex of a square to be its ujyer
corner. It is easy to show that there is an optimal squarerdovehich no square contains the apex of any other square.
Equivalently, we can assume without loss of generality ifitato squares in the optimal cover overlap, the larger seguson
the left. To compute the optimal cover, it suffices to consalésets of points either directly above or to the right of each
pinned squar€. For any two squareA andC, the regionB(A,C) is now either a three-sided rectangle or the union of two
three-sided rectangles, so we can use a simple prioritglsé@e instead of our two-level data structure to test wdrdbA, C)
is empty inO(logn) time.

However, one further observation does improve the runriing by a linear factor: Without loss of generality, the rigloist
box in the optimal cover ofc has the rightmost point of; on its right edge. Thus, there are at mostandidate boxe§; to
test in the inner loop; we can easily enumerate these caegidgO(n) time.

Theorem 6 Let f: R, — R be a fixed non-decreasing cost function. Given n clientsdiptane, we can compute in6¥logn)
time a covering by axis-aligned squares centered on théx-gpich that the sum of the costs of the squares is minimized.

3.1.2 Fast and simple solutions In this section we describe simple and inexpensive algoistthat achieve constant factor
approximations for finding a minimum-cost cover with disksitered along a fixed horizontal lihg using anyL, metric. The
main idea for the proofs of this section is to associate witfivan diskD in OPT, a set of disks in the approximate solution
and argue that the set of associated disks cannot be mora tigen constant factor cover BY, in terms of cumulative edge
length, cumulative area, and so forth.

As in section 3.1.1, the case bi, metric is the easiest to handle. By equivalence of allltpenetrics, constant-factor
c-approximations for squares will extend to constant-fact@approximations fot, disks.

Square Greedy Cover Algorithm (SG): Process the client points in order of decreasing distarara the lineL. Find the



farthest pointp; from L; cover p; with a squares; exactly of the same height gg centered at the projection @f on L.
Remove all points covered 1§y from further consideration and recurse, finding the nexhést point fronL and so forth. In
the case where two points are precisely the same distarmoefrbreak ties arbitrarily.

Obviously, SG computes a valid coveringoby construction.We begin the analysis with a simple obseEma
Lemma 7 In the SG covering, any point in the plane (not necessarillfemt) cannot covered by more than two boxes.

Proof. Suppose5 andS; are two squares placed during the running of SG anditkaj so thatS was placed befor§.
ThenS cannot contain the center point §f since thers; would not have had the opportunity to be placed, and siryilgyl
cannot contain the center point&f Now consider a poinp € SNS;. If p were covered by a third squagg then either one
of {S,S;j} would contain the center &, or Sc would contain the center of one ¢§,S;}, neither of which is possible. O

Theorem 8 Given asetY of n clients in the plane and any 1, SG computes in time(@logn) a covering of Y by axis-aligned
squares centered on the x-axis whose cost is at most thres tive optimal.

Proof. LetY = {ps,...,pn} and consider a squain OPT. We consider those squares, } selected by SG corresponding
to points{pj, : pi; € S}, see Figure 3.1.2, and argue that these squares cannot bag¢han three times the total edge length

Figure 3. Squares of the SG algorithm inside a square of the optimal solution.

of S. The same will then follow for all of SG and all of OPT. The angent, without modification, covers the case of cost
measured in terms of the sum of edge length raised to anampfiositive exponerd > 1.

Arguing as in Lemma 7 it is easy to see that at most two b&esssociated with pointg;; € Sprocessed by SG actually
protrude outside o8, one on the left and one on the right. Denoterhifie total horizontal length of these protruding parts of
squares, then < s, the side length 0§, since the side length of each protruding square is at siastl at most half of each
square is protruding.

Because of Lemma 7 the total horizontal length of all nompiding parts of the squar&; is at most 2, consequently all
points covered byin OPT are covered by a set of squaggsn SG whose total (horizontal) edge lengihs; is at most 3.

For exponents > 1 observe thay ; §; < 3sand 0< §; < sforall j implies thaty ; sj“ < 3%,

To analyze the running time of the algorithm we need some rdetails about the data structures used: Initially, sort the
points byx-coordinate and separately by distance from thelliiretime O(nlogn) and process the points in order of decreasing
distance froni. As the pointp; at distancel; from L is processed, we throw away points which are within horiabaistance
d; from p;. This takes time&(logn+ ki) time wherek; is the number of points withid; from p;. Since we do this up totimes
with kg + - - - + ki = nthe total running time i©(nlogn). O

For the linear cost function, it is easy to modify the SG ailtpon to get a 2-approximation algorithm.
Square Greedy with Growth Algorithm (SGG): Process the points as in SG. However, if capturing a pagifily a square
S would result in an overlap with already existing squ&rehen, rather than placing, grow S; just enough to capturg;,

keeping the vertical edge furthest frgmnat the same point oh. If placingS would overlap two squares, grow the one which
requires the smallest edge extension. Break ties arlytrari

A proof somewhat similar to that of Lemma 2 (given in the Apgiehshows that:

Theorem 9 Given n clients in the plane, SGG computes in tinfal@yn) a covering by axis-aligned squares centered on the
x-axis whose cumulative edge length is at most twice thenati

Unlike SG, SGG is not a constant factor approximation foaax@onsiden consecutive points at height 1 separated one
from the next by distance ofte. Processing the points left to right using SGG covers atlisovith one square of edge length
n+(n—1)¢, and so are®(n?) , while covering all points witm overlapping squares each of edge length 2, uses total area 4



Finally, extending these results from squares to disksyrLammetric is not difficult. Enclosing each square in the aldorit
by anL, disk leads to an approximation factor®¥or GG and 22 for SGG, wherec = p®/P. In particular, forL, disks, this
yields a &/2-approximation foo = 1 and a 4-approximation far = 2.

3.2 Finding the best axis-parallel line

When the horizontal liné is not given but its orientation is fixed, we first prove thatlfirg the best line, even far = 1, is
uncomputable, then in this linear case give a simple appration, and finally a PTAS.

3.2.1 A hardness result — uncomputability by radicals Our approach is similar to the approach used by Bajaj on the
unsolvability of the Fermat-Weber problem and other geoimeptimization problems [5, 6].

Theorem 10 Let gt) = 3;r; denote the minimum cost of a cover whose centers lie on thefiaquation y=t. There exists a
setY of clients such that, i ts the value that minimizegtg, then g is uncomputable by radicals.

The proof proceeds by exhibiting such a point set and showyndifferentiatingc(t) thattp is the root of a polynomial
which is proven not to be solvable by radicals. The full prisafeferred to the Appendix.

3.2.2 Fast and simple constant-factor approximations The simple constant factor approximations for a fixed line loa
extended to the case of approximations to the optimal swiuwth an arbitrary axis-parallel line with the same condfaators,
though with an additional multiplicative factor 6f(n?) added to the cost.

3.2.3 APTAS for finding the best horizontal line Letd denote the distance between the highest and lowest poesrlg|
d/2 < OPT < nd. Cover this strip withn/e regularly-spaced horizontal lines, where the space betwaecessive lines is
0 =de/2n. For each line, run the exact dynamic programming algorit@onsider the line that contains OPT. Moving this line
by at mostd and enlarging OPT so that it still covers the points and remeéntered on the line (an operation cabédting)
increases the cost of a circle by at mostor a total of at mosbn = €d/2 < € OPT. Thus the algorithm computeg B+ €)-
approximation in running tim®((n3/¢) logn).

In order to generalize this result to the case 1, let us write PSEUDO-OPT for the lowest cost of a solutiorany of the
regularly spaced horizontal lines, SHIFT for the resulttoftsng OPT to the closest of these lines, and..,ry, for the radii of
the optimal set of disks. For an arbitrary power 1, we have

m

m m
PSEUDO-OPTK SHIFT < Z(ri +8)% < erf* +3a Zl(ri +8)% 1 < OPT(1+ 8an2? n/d).
i= i= i=

The latter step uses< d,r; <d and OPT> (d/2)%. Choosingd = £d/(a2?*~n) gives the desiredl + €)-approximation.
Together with the results from previous sections we have:

Theorem 11 Given n clients in the plane and a fixad> 1, there exists a PTAS for finding an optimally positioned ramial
line and a minimum-cost covering by disks centered on that lit runs in time @n3logn) in the linear casga = 1) and
O(n*logn) for a > 1.

3.3 Approximating the best line - any orientation

Finally, we sketch approximation results for selecting llest line whose orientation is not given. We give both a conist
factor approximation and a PTAS for the linear cost case ().

3.3.1 Fast and simple constant-factor approximations Given a line/, we say that a seb of disksDy,. .. D is /-centered
if the centers of every disg; in D belongs to/. Recall that the cost ab is the sum of all its radii.

Lemma 12 Given k> 1, a line ¢, an¢-centered se® of k disks that cover Y, and any poing @n ¢, there exist pe Y and an
¢'-centered se®)’ of k disks that cover Y, wheféis the line that joins pand g, such that the cost @’ is at most twice that
of D.

Proof. We will assume without loss of generality thais thex-axis, pg is the origin and that no other pointifilies on the
y-axis. The latter restriction can easily be enforced by allgpeaturbation. Let the coordinates pf bex; andy;, and letm
denote the slopsg /X of the linel; for 1 <i < n. First, we reordeY so thatjmy| < --- < |my|. In what follows we assume that
x1 > 0 andy;0. The other cases can be treated analogously.

For each diskDj = D(tj,r;) in D, we construct a disP| whose radius isj = 2r; and centet; is obtained front; by
rotating it around the origin counterclockwise by an anglet(m). The set? of k disks thus defined i€-centered, where
¢ ={(x,y) € R? | y=mx} andp; € . To see thatl’ coversY, simply observe thad(t; tj) <rjforall 1< j <kand apply
the triangle inequality: any point iD; must be at distance at most; 2f tJf. The cost of this new solution is clearly twice that
of D. O



By a double appplication of this lemma, first about an arbjt@ yielding a pointp’ = pj, then aboup; yielding another
p’ = pj, itis immediate that any-centered cover of can be transformed into &h;-centered cover whose cost is increased at
most four-fold, wher ; is the line joiningp; andp;. By computing (exactly or approximately) the optimal setisks for all
O(n?) lines defined by two different points &f, we conclude:

Theorem 13 In O(n*logn) time, we can find a collinear set of disks that cover P at coshast4OPT, and in @n3logn)
time, we can find a collinear set of disks that cover P at cost@t8/20PT .

3.3.2 A PTAS for finding the best line with unconstrained orietation We prove (in the Appendix) that finding the best
line with unconstrained orientation and a minimum-costerog with disks whose centers are on that line admits a PTAS.

Theorem 14 Let P be a set of n clients in the plane that can be covered by#imal collinear set of disks at cost OPT, and
€ > 0. In O((n®/€?)logn) time, we can find a collinear set of disks that cover P at cost@dt(1+¢)OPT.

4  Minimum-Cost Covering Tours

We now consider the minimum cost covering tour (MCCT) prafnleGivenk > 1 and a setY = {pi,...,pn} Of n clients,
determine a cover of by (at most)k disks centered at = {t1,...,t} with radiirj and a touiT visiting X, such that the cost
length(T) +C3 r' is minimized. We refer to the todr, together with the disks centered Bnas acovering tourof Y. Our
results are for the case of linear transmission casts (). We first show a weak hardness result, then characteezsoiltion
for C < 4, and finally give a PTAS for a fixed > 4.

4.1 A hardness result

We prove the NP-hardness of MCCT whé&és also part of the input. Note that this does not prove thehidRihess of MCCT
whereC is a fixed constant, which is the problem for which we give a BT#elow. Note also tha appears in the run time
exponent of that PTAS, and so the PTAS no longer runs in pohyaldime if C is not a fixed constant.

Theorem 15 MCCT with linear cost is NP-hard if the ratio C is part of thepiut.

Proof (sketch). We show a reduction from KMILTON CYCLE IN GRID GRAPHS. Given a set of points on a grid, we
construct an instance of MCCT in which each of the given mama client. We set to be larger than2 In the full proof, we
show that this grid graph has a Hamiltonian cycle if and ohtlgére is a covering touF whose cost is at most o

4.2 The caseéC < 4: The exact solution is a single circle

Theorem 16 In the plane, with a cost function &&ngthT) + C S r; and C< 4, the minimum-cost solution is to broadcast to
all clients from the circumcenter of the client locationslaro tour cost.

The proof rests on the following elementary geometry lemwtzo§e proof is omitted here).

Lemma 17 For three points p, g and r in the plane, such that the triangég contains its own circumcenter, the length of a
trip from p to q to r and back to p is at leadt where r is the circumradius of the points.

Proof of Theorem 16. Letr(X) andr(Y) denote the minimum radius of a circle enclosk@r Y, respectively. LeT be a
covering tour ofY, X C T be the set of disk centers andtheir radii. Finally, letrmax = max;rj.

By the triangle inequality, Lemma 17 implies that the leri@th> 4r(X). Since the tour visits all the centers ¥and
the disks centered &t coverY, we haver(Y) < r(X) +rmax. By definition, the cost of is lengt{T) +C¥rj, which by
the observation above is at leastX) +Cyrj > 4r(X) +Crmax. The assumptio€® < 4 then implies that it be at least
C(r(X) +rmax) = Cr(Y), which is the cost of covering by a single disk with a zerogldrtour. O

4.3 The caseC > 4: APTAS

We distinguish between two cases for the choice of transomgmints: they may either be arbitrary points in the plassdgcted
by the algorithm) or they may be constrained to lie within scdéte sef” of candidate locations.

The constan€ specifies the relative weight associated with the two pdrtiseocost function — the length of the tour, and
the sum of the disk radii. I€ is very small C < 4), then the solution is to cover the $¢using a single disk (the minimum
enclosing disk), and a corresponding tour of length 0 (thglsiton point that is the center of the disk)Qis very large, then
the priority is to minimize the sum of the radii of tlkedisks. Thus, the solution is to compute a coveringy dfy k disks that
minimizes the sum of radii (as in [18]), and then link the &g disk centers with a traveling salesman tour (TSP).tlji
case thak > n, the disks in the covering will be of radius 0, and the probleomes that of computing a TSP tourYon
Note that our algorithm gives an alternative to the Lev-Tod Beleg PTAS [18] for coverage alone.



Our algorithm is based on applying theguillotine method [19], appropriately adapted to take itcount the cost function
and coverage constraihtWe need several definitions; we largely follow the notati6[16]. Let G = (V,E) be an embedding
of a connected planar graph, of total Euclidean edge-lelngtlet D be a set of disks centered at each vextex G of radius
rv. We refer to the pai(G, D) as acovering networkf the unionUyey Dy of the disks covers the clients We can assume
without loss of generality tha® is restricted to the unit squaB i.e.,Uscee C int(B).

Our algorithm relies on there being a polynomial-size setavfdidate locations for the transmission points that weit/e
as the vertices of the covering tour we compute. In the casethet? of candidate points is given, this is no issue; however,
in the case that the transmission points are arbitrary, wealo the following grid-rounding lemma (proved in the Apglix).

Lemma 18 One can perturb any covering netwo(t, ) to have its vertices all at grid points on a regular grid of sjreg
0 = O(e-diam(S)/n), while increasing the total cost by at most a factofbf-€).

An axis-aligned rectangl®y C B, is called avindow rectanglé/N will correspond to a subproblem in a dynamic program-
ming algorithm. An axis-parallel linéthat intersectdV is called acut

For a covering network with edge sEtand a set of disk®, we say thatE, D) satisfies then-guillotine property with
respect to window Wf either (1) all clientsy c W lie within disks of D that intersect the boundary ¥f; or (2) there exists a
cut/ with certain properties (am-good cut with respect to Y¥hat splitsw intoW; andWs,, and(E, D) recursively satisfies the
m-guillotine property with respect to both; andWs. Due to the lack of space, we cannot give the full definitioamfi-good
cut (see the Appendix).

A crux of the method is a structural theorem which shows howdnovert any covering networkG, D) into another
covering networkG', '), such that the new grap®’ satisfies them-guillotine property, and that the total cost of the new
instance(G', 2') is at mostO((L + CR)/m) larger than the original instan¢&, D), whereL is the total edge length @& and
R the sum of the radii ofD. The construction is recursive: at each stage, we show lieat exists a cut with respect to the
current windowV (which initially is the unit square B), such that we can aff@by means of a charging scheme) to add short
horizontal/vertical edges in order to satisfy theguillotine property, without increasing the total edgedéh too much..

We then apply a dynamic programming algorithm, runnin@{n®™) time, to compute a minimum-cost covering network
having a prescribed set of properties: (1) it satisfiesnbguillotine property (with respect tB), which is necessary for the
dynamic program to have the claimed efficiency; (2) its disbger the client¥ ; and (3) its edge set contains an Eulerian
subgraph. This third condition allows us to extract a touhmend. In the proof of the following theorem (see Appendig
give the details of the dynamic programming algorithm thatds:

Theorem 19 The min-cost covering tour problem has a PTAS.
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Appendix
4.4 Sketch of Theorem 3

Let | be an instance of IANAR 3SAT, and letG, be the corresponding variable-clause incidence grapher &ftoosing a
suitable layout of this planar graph, resulting in integariables with coordinates bounded by a polynomial in the sifd5
for all vertices and edges, we replace each the vertex repting any particular variable by a closed loop, using tredidea
shown in the left of Figure 4; this allows two fundamentaliffetent ways of covering those points cheaply (using theéd'd
or the “even” circles), representing the two truth assigntseFor each edge from a vertex to a variable, we attach dasimi
chain of points that connects the variable loop to the claasiget; the parity of covering a variable loop necessasbygms

a parity to all incident chains. Note that choosing suffidiefine chains guarantees that no large circles can be usdtiea
overall weight of all circles in a cheap solution will be lekan 1. (It is straightforward to see that for any fixed 1, this can
be achieved by choosing coordinates that are polynomiakirsize ofG,, with the exponent bein@(1/(a —1)).)

For the clauses choose a hexagonal arrangement as shovenrighthof Figure 4: There is one central point that must be
covered somehow; agaia,> 1 guarantees that it is cheaper to do this from a nearby trige&m point, rather than increasing
the size of a circle belonging to a chain gadget.

Now it is straightforward to see that there is a cheap cov@nguonly the forced circles, iff the truth assignment cerre
sponding to the covering of variabe loops assures that daokechas at least one satisfying variable.

. * client points
odd circles

o transmissiol
points

even circles

Figure 4. (Left) The switch structure of a variable gadget. Note how there are two fundamentally different ways to cover all points cheaply. (Right) The structure

of a clause gadget. One small circle is needed for picking up the client point at the center of the gadget.

4.5 Proof of Theorem 9

As we process pointp; using SGG, attribute to each poipta line segmeng alongpL as follows. If processing; resulted
in the placement of a squa&centered at the projection @f in L then attribute tqo; the projection ol of a horizontal edge
of § (Case 1). If, on the other hand, processingpfesulted in the growing of a prior squaBgto just capturep;, attribute
to pi the projection orl of the portion of the horizontal edge of the expan@gdeeded to capturg (Case 2). (This amount
is at most the distance @ to L since otherwisg; would have been fallen into case 1.) We must show that theHeraf the
segments is no more than twice the edge lengths of squard®Tn O

It suffices to show that for any squagin OPT, the segments associated with pointp; € S processed by SGG cannot
have total edge length which exceeds twice the edge lesftls.
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To see this observe that the sum of the lengths of tlspgeng completely insideS does not exceed since they are
nonoverlapping. In addition, each of the parts of the at mestsegments protruding fro@can have length at most2, in
case 1 for the same reason as in the SG algorithm, in case€thimtotal length of the segment is at mga2.

In order to make SGG efficient, we proceed as in SG. In additia@maintain a balanced binary search tree containing
the x-coordinates of the vertical sides of the squares alreadgtoacted. For each new poiptto be processed we locate its
x-coordinate within this structure to obtain its neighbgraguares and to decide whether case 1 or case 2 applies.aftiec
done in timeO(logn) just as adding a new square in case 1 or updating an existiragesq case 2. Removing points covered
by the new or updated square is done as in SG, so that theuatahe remain©(nlogn). O

4.6 Proof of Theorem 10

The following definitions and facts can be found in a stanadostract algebra reference, for instance by Rotman [R&t02]
polynomial with rational coefficients isolvable by radicalsf its roots can be expressed using rational numbers, the fiel
operations, and takinigh roots. Thesplitting fieldof a polynomialf (x) over the field of rational§) is the smallest subfield of
the complex numbers containing all of the rootsf &%). TheGalois groupof a polynomialf (x) with respect to the coefficient
field Q is the group of automorphisms of the splitting field that E@\fixed. If the Galois group of (x) overQ is a symmetric
group on five or more elements, thé(x) is not solvable by radicals ovér.

Consider the following set of pointg(3,4), (—3,-2), (102 2), (98, —2), (200 —2)}. By exhaustive case analysis, we can
show that the optimal solution must consist of one circl®tigh the first two points, a second circle through the next two
points, and a third circle touching the last point, and thénoal horizontal line must lie in the range2 <y < 2. For a given
value ofy in this range, the cost of the best cover is

c(y) =1/2(y—1)2+ 18+ /22 + 8+ (2—y).

Therefore, in order to find the best horizontal line, we mustimize c(y). Setting the derivative to zero, we obtain the equation

2(y—1
c(y) = St B S
V2(y—1)2+18 /22 +8
We easily verify that” (y) is always positive. The minimum valwgy) ~ 8.3327196 is attained gt~ 1.4024709, which is a
root of the following polynomial:

f(y) = 10244512 — 1600+ 15367 —960y*+368° — 172° + 28y’ — 78,
Using the computational system GAP [GAP],we compute that@alois group off (y) is the symmetric groujss, so the
polynomial is not solvable by radicals.

[GAP] The GAP Group.GAP — Groups, Algorithms, and Programming, Version 2@05.ht t p: / / www. gap- syst em or g.
[Rot02] J. RotmanAdvanced Modern AlgebraPrentice Hall, 2002.

Proof of Theorem 14
LetH be a strip of minimal widthh that containg. Using a rotating-caliper approadh,can be computed i®(nlogn) time,
cf. [Tou83].Ifh= 0, we can conclude th@PT = 0, and we are done.

Otherwise, we can assume wlog thhis horizontal. Letv denote the width of the smallest enclosing axis-parallethmegle

Rof P. The height oRis h, andh < w. Moreoverh/2 < OPT < min(w/+/2,nh/2).
Let APPbe the cost of the solution computed@in*logn) time according to Theorem 18,= %’, and® = tan1(d).
Assume an optimal collinear solutight = {d(t;,r7),...,d(t;,rs)} lies on the line/*. Letzbe an intersection point a@f

with the boundary oR. For all p € P we have thafjz— p|| < v2w.
We now distinguish two cases:

Case l. w< 2nh: Forl<i< (2—’51 let 4; be the line through the origin that forms an angléf#ith the x-axis.

The number of these lines ¢ = O(1/6) = O(1/tan1(d)). Note that fom > 41/2¢ we have thatl < 1/2, and therefore
tan1(d) > d/2, soN = O(1/d) = O(48s) = O(z55+). Sincew < 2nhandh/2 < OPT we getN = O(:551) = O(%) =
o).

Let OPT denote the cost of an optiméicollinear set of disks that cov®;, wherel is a line that is parallel té;. We claim
that min OPT; < (1+4+/2¢)OPT.
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To see this, observe that there is sofnsuch that the smalJest andbe betweery; and/* is at most®. If we rotate/* by
Bi (in the right direction) around it becomes parallel t§. Let/ denote this rotated line. When rotatifigwe also rotate the
midpointst;, ...t of $*. By fy,....f we denote their final position ah

Since for allp € P, ||p—z|| < V2w, the distance op to / is at mostA = v2wtan8 = v2wd = v/2AP® Jarger than its
distance ta’*.

Thus, the set of disks = {d(f1,r; +4),...,d(f,r; +A)}, on 7 coversP at a cost of at mosyk (i +A) < OPT +
511 V2P < (144v2¢)OPT.

We can compute &l + €)-approximatiomAPR to OPT in O(nlogn) time. We then get that miAPR < (1+ 51/2¢)OPT,
and the total running time of this proceduredéNn®logn) = O((n°/€?)logn).

Case 2. w>2nh:  We will take a slightly different approach here. LRtbe the axis-parallel rectangle obtained frénby
moving the left and right side d® inwards bynh/2. Clearly the height oR is h, and its width isv’ = w— nh. Let Sdenote the
lower left corner ofR andT denote the upper right corner Bf.

If the absolute value of the slope of a lifiés larger tharM = h/w (i.e., the aspect-ratio d¥) the line/ either intersects
the top and the bottom edge Bf, or SandT lie on the same side df In any case, there is at least one poinPahat has
distance larger thanh/2 to ¢.

SinceOPT < nh/2, we can therefore conclude that the absolute value of tieif¢* can be at mod¥l. With w > 2nhit
follows thatM < 2h/w < 2.

LetA =tanm (M) and for 1<i < [%1 let ¢; be the line through the origin that forms an anglé6fvith the x-axis.

The number of these lineslié= O(}) = O(t;';:l(('g)) ). Note that as before tah(d) > d/2, and sinc < 2, tarr 1(M) < M,
sON = O(M/d) = O(55) = O(38; ). Sinceh/2 < OPT we getN = O(2).

With the above reasoning, we can argue as before that theoeniel; such that the smallest andlebetweery; and/* is

at most9. If we rotate?* by B; (in the right direction) around it becomes parallel té. Let 7 denote this rotated line.
Repeating the previous argumentation, we get a solutiohtbat covers at a cost of at mogtl + 4/2¢)OPT.

Again, we can compute(d + €)-approximatio’APR to OPT in O(n®logn) time and get that mji\PR < (1+5/2¢)OPT,
and the total running time of this procedured§Nn®logn) = O((n*/¢)logn). O

[Tou83] G. T. Toussaint. Solving geometric problems witk tiotating calipers. IfProc. IEEE MELECON ’'83 pages
A10.02/1-4,1983.

Proof Lemma 18

By making a detour for each vertex of the network, to the dbpeint on a grid of spacing= O(e-diam(S)/n), we add length
atmosind = O(e-diam(S)), since there are at masvertices of the network (otherwise, the cost of the netwarklze improved
by deleting some vertices). Now, we can shift the disk®ab be centered at the corresponding grid points, and sjightarge
them (by radius), so that they still cover all of. The total increase in cost is thé{nd(1+C)) = O(¢ - diam(S)). Since
Q(diam(9)) is a lower bound on the cost of an optimal solution, we seetkteagrid-rounded solution is within a fact(t + €)
of optimal.

Complete details of the PTAS for the MCCT problem

An axis-aligned rectangl®y C B, is called avindow rectangléV will correspond to a subproblem in a dynamic programming
algorithm. An axis-parallel liné that intersect8V is called acut

/\j\/

\%\

_—

I I
Figure 5. Left: The 3-span, 03(¢) of £ with respect to the window W C B is highlighted with a thick shaded vertical segment. Right: The 3-disk-span, 03 5 () of
£ with respect to the window W C B is highlighted with a thick shaded vertical segment.

For a positive integem, we define then-spanom(¢), of ¢ with respect tdW, as follows. For each edgf E, en¢Nint(W)
is either empty, a point, or a subsegmeng i ¢ andenint(W) # 0. Let p,..., ps denote all these points and endpoints of
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subsegments (with multiplicities), in order of decreasirapordinate alond. If & > 2(m— 1), thenan(¢) is the line segment
PmPs_m+1, €lseom(£) = 0. Note thatom(¢) may be of zero length in cag®n = pg_m:1-

We also define then-disk spanay, (¢) of £ with respect taV, as follows. First, we surround each (circular) didkwith
an axis-aligned squai, of side length 2, centered at. Let B={B,:veV}, BNW = {B,: B,NW # 0}, ands = |BNW|.
Starting from the top (resp. bottom) endpoint/@iW and going downwards (resp. upwards), Ugt (resp.bm) be the point
where/ crosses thenth top (resp. bottom) edge of a bounding box, if such a poirgtex|f bothuy, andby, exist and ifum is
abovebn, thenoy, 1 () is the vertical line segment,bm, elseom »(¢) = 0. (The definition is similar if the cut is horizontal.)

We say that a cuf is anm-good cut with respect to W om(¢) C E andom o(¢) is either empty or lies fully within a
single disk ofD. In particular, if§ < 2(m— 1) andgz < 2m, then/ is trivially an m-good cut, since both the-span and the
m-disk-span are empty in this case.

For a covering network with edge sEtand a set of disk®, we say thatE, D) satisfies then-guillotine property with
respect to window Wf either (1) all clientsy C W lie within disks of D that intersect the boundary @f; or (2) there exists
anm-good cut?/ with respect toV that splitsW into Wi andWs, and(E, D) recursively satisfies the-guillotine property with
respect to bothvy andwWs.

Theorem 20 Let G be an embedded connected planar graph on vertices Y ,edije set E, of total length L, and a Bt
of k= |V| disks, of total radii R, centered at vertices of V that covegieen set Y of clients. Assume that E afdare
contained in the unit square B. Then, for any positive integethere exists a planar graph’Gtogether with a setD’ of
at most k disks centered on the verticéso¥/ G, that satisfies the m-guillotine property with respect tohBs an edge set

E' DE oflength L< (1+ %2) L and has vertices \either at points of an input séf or at points of a regular grid of spacing
0= O(e-diam(S)/n).

Proof. We show how to convef® into a new grapi@’ by adding toE a new set of horizontal/vertical edges whose total length
is “small”, and we conver® into a new set?”, of at mostk covering disks centered at the vertices36{which are a subset of

T or of the regulad-grid), so that the total cost of the new instaiE&, ) is at mostO((L + CR)/m) longer than the original
instance(E, D).

The construction is recursive: at each stage, we show thet #xists a cut,, with respect to the current winddw (which
initially is the unit squareB), such that we can “afford” (by means of a charging scheme)db both them-span and the
m-disk-span tce.

A point p on a cut is m-dark with respect téd and Wif, along ¢+ nint(W), there are at leash edges o intersected by
¢ on each side op, where/™- is the line perpendicular tbpassing througlp. We say that a subsegmentés m-dark(with
respect taV) if all points of the segment ama-dark with respect téd andW. The important property aftdark points alond
is the following: Assume, without loss of generality, tlias horizontal. We consider any line segment that lies alongdge
of E to have aop side and &ottomside; the top is the side that can be seen from above, fromrd with y = +. Then,
if all points on subsegmentq of £ arem-dark, we can charge the length jof off to the bottoms of the firsin subsegments,
E* C E, of edges that lie abovaq, and the tops of the firsh subsegment& ~ C E, of edges that lie beloywq, since we know
that there are at leastedges “blocking’pg from the top/bottom o¥. We chargepg's length half toE ™, charging each of the
m levels of E™ from below with %n units of charge, and half t&~, charging each of them levels of E~ from abovewith %q
units of charge. We refer to this type of charge as the “redirgh.

A point p on a cut/ is m-disk-dark with respect tband Wif, along /* Nint(W), there are at leash disks of D> whose top
edges of their bounding box lie abopén W andthere are at leash disks ofD whose bottom edges of their bounding box lie
belowpin W. We say that a subsegmentit m-disk-darkwith respect taV if all points of the segment are-disk-dark with
respect to andW. Thechargeabldength withinW of a cut/ is defined to be the sum of the lengths ofritdark portion and
C times itsm-disk-dark portion. Refer to Figure 6.

T
1hage

[@ ::”::”
n oo CERE -

Figure 6. Definition of m-disk-dark: Here, the points that are 2-disk-dark with respect to ¢ are those two highlighted subsegments of ¢ that lie within the shaded

regions, which comprise the set of points R)((z.@) of W that are 2-disk-dark with respect to horizontal cuts.
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The important property ofi-disk-dark points along horizontélis the following: If all points on subsegmept of ¢ are
m-disk-dark, then we can charge the lengtipgfoff to the tops of the bounding boxes of the finstlisks that lie aboveq, and
the bottoms of the bounding boxes of the firstlisks that lie belowpq, since we know that there are at leastlisks “blocking”
pq from the top/bottom ofV. We chargepqs length half upwards, charging the tops of each ofrthevels” of bounding
boxes of disks with}m units of charge, and half downwards, charging the bottonesaoh of them “levels” of bounding boxes
of disks With%n units of charge. We refer to this type of charge as the “blinrge.

We say that a cut is favorableif its chargeable length withiWV is at least as large athe sum of the lengths of the-span
andC times them-disk-span. The existence of a favorable cut is guarantgddddfollowing key lemma, whose proof (in the
Appendix) is similar to that of the key lemmain [11, 19]:

Lemma 21 For any G, with disk sef, and any window W, there is a favorable cut.

Proof. We show that there must be a favorable cut that is either twot@ or vertical.

Let f (x) denote the “cost” of the vertical liné, passing through the poifit, 0), where “cost” means the sum of the lengths
of themrspan and ther-disk-span forly. Then,

F(X) = [om(£)] + Clomp (£x)]-

Thus,
! (m) (mD) ! !
AX:/O f(x)dx=Ax" +C- A" :/o |0m(£x)|dx+C-/O |Om.o(¢x)|dX,

whereA!" = fol |om(¢x)|dxis the area of th&-monotone regioﬂ%((m> of points ofB that arem-dark with respect to horizontal

cuts, and\(™?) = fol |om.o(¢x)|dxis the area of th&-monotone regioR&m’@) of points ofB that arem-disk-dark with respect

to horizontal cuts. Refer to Figure 6. Similarly, defg(g) to be the cost of the horizontal line througland letA, = folg(y)dy.

Assume, without loss of generality, that > Ay. We claim that there exists a horizontal favorable cut; e claim that
there exists a horizontal cut, such that its chargeable length is at least as large as 8teoté, meaning that the length

of its m-dark portion plus itan-disk-dark portion is at leagom(¢)| + |om o (¢)|. To see this, note tha, can be computed

by switching the order of integration, “slicing” the reg'r;;)l%(<m> and R&m’@) horizontally, rather than vertically; i.eAx =

folh(y)dy: fol hm(y)dy+C-fo1 hmo(y)dy, wherehm(y) is them-dark length of the horizontal line through hy 5 (y) is the
length of the intersection d?f@((m’ﬂ> with a horizontal line througly, andh(y) is the chargeable length of the horizontal line
throughy. In other wordshm(y) (resp.,hm »(y)) is the length of then-dark (resp.m-disk-dark) portion of the horizontal line
throughy. Thus, sinceA, > Ay, we get thatfolh(y)dyz folg(y)dyz 0. Thus, it cannot be that for all values pE [0, 1],

h(y) < dg(y), so there exists = y* for whichh(y*) > g(y*). The horizontal line through thig' is a cut satisfying the claim of
the lemma.

If, instead, we had\y < Ay, then we would get aertical cut satisfying the claim. O

Now that we know there must be a favorable ditywe can charge off the cost of tme-span and then-disk-span oft,
making “red” charge on the bottoms (resp., tops) of segnritsthat lie above (resp., below)}-dark points of/, and making
“blue” charge on the tops (resp., bottoms) of bounding batebksks that lie above (resp., belomydisk-dark points of. We
then recurse on each side of the cut, in the two new windows.

After a portion ofE has been charge®d on one side, due to a cdt it will be within m levels of the boundary of the
windows on either side df, and, hence, withim levels of the boundary of any future windows, found deepéhérecursion,
that contain the portion. Thus, no portion Bfwill ever be chargeded more than once from each side, in each of the two
directions, horizontal or vertical, so no portion®fvill ever pay more thar/2/mtimes its length in red charge. It is important
to note that we are always charging red portions of the calgidge seE: the new edges added are never themselves charged,
since they lie on window boundaries and cannot therefonseeser make a portion of some future autdark. We charge at
the rate of%n per unit length of the perimeter of the segment’s axis-&tjhounding box, and the worst case is achieved for a

segment of slope-1. Thus, the total red charge is at mqgtL. Similarly, no side of a bounding box of a disk &f will ever
be chargedluemore than once. Since we do blue charging at the ra%qifer unit length of the bounding box, we get a total
blue charge of at mos¥.

Overall, then, the total increase in cost caused by addmgibpans anan-disk-spans along favorable cuts is bounded by
Y2 yc.8R

Thus, we can afford to add  the vertical/horizontal segments that are thspans of the favorable cuts. Also, we can
afford to replace the set of disks #fthat intersect thexdisk-spanumbm, with asingledisk, centered at the midpoint ofby,
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of radius|umbm|. This disk is large enough to contain thedisk-spanumbm and is also large enough to perform all of the
covering that was done previously by the disks piercedHy,, which shows that:

Lemma 22 The single disk of radiusimbm| centered at the midpoint oo, is large enough to cover all of the region covered
by the disks of> whose bounding box is pierced (from top to bottom) Qlgu

b

Figure 7. Proof of Lemma.

Furthermore, by adding length at md@3f|umbm|) we can also afford to add t6 the length of a detour that connects the
midpoint of unby, to the center of one of the disks @b that is pierced byumbny, (since pierced disks have radius at most
|Umbm|/2).

Our goal is to obtain a succinct representation of the seisébdhat straddle the boundary of a window; indeed, we end up
with only a constant-size description, since we replacetssibly many disks intersecting thedisk-span with a single disk
that does at least as much coverag¥ oT his allows us to specify succinctly which clients are rieggito be covered within a
subproblem. O

In the proof of the following theorem, we give details of thedmic programming algorithm that yields:
Theorem 23 The min-cost covering tour problem has a PTAS.

Proof. Consider an optimal covering tou®PT, of lengthL*, whose associated disk &t has total sum of radiR*. The
cost of OPT is L* +C-R*. Now, OPT is a simple polygon. If we are in the case of arbitrary trarssion points, we can
(by Lemma 18) perturb the vertices OPT (and slightly grow the disks oD*) so that each lies at a grid point in a grid of
resolutiond = O(e - diam(S)/n); otherwise, we know the vertices T lie among them input candidate transmission points.
Theorem 20 implies that we can conv&®T into a covering network(E’, '), having them-guillotine property, while not
increasing the total cost by too much. In particular, the c6©OPT' is at most

<1+ %) L*+C. (1+ %) R* < (1+0(1/m))(L*+C-R").

We now apply a dynamic programming algorithm, runnin@im®™) time, to compute a minimum-cost covering network
having a prescribed set of properties: (1) it satisfiesntkguillotine property, which is necessary for the dynamiogyram to
have the claimed efficiency; (2) its disks cover the cliefitand (3) its edge set contains an Eulerian subgraph. Thig thi
condition allows us to extract a tour in the end. We only oethere the dynamic programming algorithm; the details arg v
similar to those of [19], with the modification to account fbe m-disk-span and the coverage constraints.

A subproblem is defined by a rectanglewhose coordinates are among those of&ggid points or of the input seT” of
candidate transmission points, together with a constantatrO(m)) of information about how the solution to the subproblem
interacts across the boundaryfwith the solution outside d. This information includes the following:

(a) For each of the four sides ¥Y¥, we specify a “bridge” segment and at most 8ther segments with endpoints amogg
that cross the side; this is done exactly as in the case ofubkdean TSP on points, as in [19].

(b) For each of the four sides &Y, we specify a “disk bridge” disk corresponding to the diskteged on then-disk-span,
and, we specify each of at mosn2lisks of D that are not intersected by the disk bridge segment, buh&esiecting the
boundary ofV. TheseO(m) disks make up the disk boundary information; all point¥ afithin W that arenotalready
covered by these disks are required to be covered by thechiepr.
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(c) We specify a required “connection pattern” witt In particular, we indicate which subsets of t8gm) specified edges
crossing the boundary & are required to be connected withii. This, again, is done exactly as is detailed for the
Euclidean TSP on point sets in [19].

(d) We specify the numbek!, of disks that are budgeted to the subproblem.

The dynamic programming algorithm optimizes over all pligscuts, and all possible choices of disk information (gsin
O(m) disks) along the cut, and all possible partitions of the lu#ginto the subproblems on each side of the cut.

In order to end up with a network having an Eulerian subgraohwe can extract easily a tour), we use the same trick
as done in [19]: we “double” the bridge segments, and theniredghat the number of connections on each side of a bridge
segment satisfy a parity condition. Exactly as in [19], thisws us to extract a tour from the network that results ftben
dynamic programming algorithm, which gives a minimum-austering network that obeys the specified conditions.

The result is that in polynomial tim&(n°(™)) one can compute a minimum-cost covering network, from aiapelass of
such networks (with disk sets), and this network’s disksec@ll of Y using at mosk disks. Theorem 20 guarantees that the cost
of the resulting covering network is very close, within fact + O(1/m), to the costL* +C- R*, of an optimal solution. Thus,
once we extract a tour from the Eulerian subgraph, we havedbieed(1 + €)-approximation solution, where= O(1/m). O
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