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Abstract

We consider a class of geometric facility location problemsin which the goal is to determine a setX of disks given by
their centers (t j ) and radii (r j ) that cover a given set of demand pointsY ⊂ R2 at the smallest possible cost. We consider cost
functions of the form∑ j f (r j ), where f (r) = rα is the cost of transmission to radiusr. Special cases arise forα = 1 (sum of
radii) andα = 2 (total area); power consumption models in wireless network design often use an exponentα > 2. Different
scenarios arise according to possible restrictions on the transmission centerst j , which may be constrained to belong to a given
discrete set or to lie on a line, etc.

We obtain several new results, including (a) exact and approximation algorithms for selecting transmission pointst j on a
given line in order to cover demand pointsY ⊂ R2; (b) approximation algorithms (and an algebraic intractability result) for
selecting an optimal line on which to place transmission points to coverY; (c) a proof of NP-hardness for a discrete set of
transmission points inR2 and any fixedα > 1; and (d) a polynomial-time approximation scheme for the problem of computing
a minimum cost covering tour(MCCT), in which the total cost is a linear combination of thetransmission cost for the set of
disks and thelengthof a tour/path that connects the centers of the disks.
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1 Introduction
The problem. We study a geometric optimization problem that arises in wireless network design, as well as in robotics and
various facility location problems. The task is to select a number of locationst j for the base station antennas (servers), and
assign a transmission ranger j to eacht j , in order that eachpi ∈Y for a given setY = {p1, . . . , pn} of n demand points (clients)
is covered. We say that clientpi is covered if and only ifpi is within range of some transmission pointt j i , i.e.,d(t j i , pi) ≤ r j i .
The resulting cost per server is some known functionf , such asf (r) = rα. The goal is to minimize the total cost,∑ j f (r j ), over
all placements of at mostk servers that cover the setY of clients. In thediscreteversion, a setX of mpotential locations for the
servers is specified.

In the context of modeling the energy required for wireless transmission, it is common to assume a superlinear (α > 1)
dependence of the cost on the radius; in fact, physically accurate simulation often requires superquadratic dependence (α > 2).
A quadratic dependence (α = 2) models the total area of the served region, an objective arising in some applications. A
linear dependence (α = 1) is sometimes assumed, as in Lev-Tov and Peleg [18], who study the base station coverage problem,
minimizing the sum of radii. The linear case is important to study not only in order to simplify the problem and gain insight
into the general problem, but also to address those settingsin which the linear cost model naturally arises [10,20]. Forexample,
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the model may be appropriate for a system with a narrow-anglebeam whose direction can either rotate continuously or adapt
to the needs of the network. Another motivation for us comes from robotics, in which a robot is to map or scan an environment
with a laser scanner [13, 14]: For a fixed spatial resolution of the desired map, the time it takes to scan a circle corresponds to
the number of points on the perimeter, i.e., is proportionalto the radius.

Our problem is a type of clustering problem, recently namedmin-size k-clusteringby Bilò et al. [7]. Clustering problems
tend to be NP-hard, so most efforts, including ours, are aimed at devising an approximation algorithm or a polynomial-time
approximation scheme (PTAS).

We also introduce a new problem, which we callminimum cost covering tour(MCCT), in which we combine the problem
of finding a short tour and placing covering disks centered along it. The objective is to minimize a linear combination of the
tour length and the transmission/covering costs. The problem arises in the autonomous robot scanning problem [13,14],where
the covering cost is linear in the radii of the disks, and the overall objective is to minimize the total time of acquisition (a
linear combination of distance travelled and sum of scan radii). Another motivation is the distribution of a valuable orsensitive
resource: There is a trade-off between the cost of broadcasting from a central location (thus wasting transmission or risking
interception) and the cost of travelling to broadcast more locally, thereby reducing broadcast costs but incurring travel costs.

Location Constraints. In the absence of constraints on the server locations, it maybe optimal to place one server at each
demand point. Thus, we generally set an upper bound,k, on the number of servers, or we restrict the possible locations of the
servers. Here, we consider two cases of location constraints:

(1) Servers are restricted to lie in a discrete set{t1, . . . ,tm}; or

(2) Servers are constrained to lie on a line (which may be fully specified, or may be selected by the optimization).

Our results. We provide a number of new results, some improving previous work, some giving the first results of their kind.

In the discrete case studied by Lev-Tov and Peleg [18], and Biló et al. [7], we give improved results. For the discrete
1D problem whereY ⊆ R, we improve their 4-approximation to a linear-time 3-approximation by using a “Closest Center
with Growth” (CCG) algorithm, and, as an alternative to the previousO((n+ m)3) algorithm [18], we give a near-linear-time
2-approximation that uses a “Greedy Growth” (GG) algorithm.

In the general 2D case with clientsY ⊂ R2, we strengthen the hardness result of Biló et al. [7] by showing that the discrete
problem is already hard for any superlinear cost function, i.e., f (r) = rα with α > 1. Furthermore, we generalize the min-
size clustering problem in two new directions. On the one hand, we consider less restrictive server placement policies.For
instance, if we only restrict the servers to lie on a given fixed line, we give a dynamic programming algorithm that solves the
problem exactly, in timeO(n2 logn) for anyLp metric in the linear cost case, and in timeO(n4 logn) in the case of superlinear
non-decreasing cost functions. For simple approximations, our algorithm “Square Greedy” (SG) gives in timeO(nlogn) a 3-
approximation to the square covering problem with any linear or superlinear cost function. A small variation, “Square Greedy
with Growth” (SGG), gives a 2-approximation for a linear cost function, also in timeO(nlogn). The results are also valid for
covering byLp disks for anyp, but with correspondingly coarser approximation factors.

If the servers are restricted to lie on a horizontal line, butthe location of this line may be chosen freely, then we show that the
exact optimal position (withα = 1) is not computable by radicals, using an approach similar to that of Bajaj [5,6] in addressing
the unsolvability of the Fermat-Weber problem. On the positive side, we give a fully polynomial-time approximation scheme
(FPTAS) requiring timeO((n3/ε) logn) if α = 1 and timeO((n4/ε) logn) if α > 1.

For servers on an unrestricted line, of any slope, andα = 1, we giveO(1)-approximations (4-approximation inO(n4 logn)
time, or 8

√
2-approximation inO(n3 logn) time) and an FPTAS requiring timeO((n5/ε2) logn).

We give the first algorithmic results for the new problem, minimum cost covering tour (MCCT), which we introduce. Given
a setY ⊆ R2 of n clients, our goal is to determine a polygonal tourT and a setX of k disks of radiir j centered onT that cover
Y while minimizing the cost length(T)+C∑ rα

i . Our results are forα = 1. The ratioC represents the relative cost of touring
versus transmitting. We show that MCCT is NP-hard ifC is part of the input. At one extreme, ifC is small then the optimum
solution is a single server placed at the circumcenter ofY (we can show this to be the case forC≤ 4). At the other extreme (if
C very large), the optimum solution is a TSP among the clients.For any fixed value ofC > 4, we present a PTAS for MCCT,
based on a novel extension of them-guillotine methods of [19].

Related work. There is a vast family of clustering problems, among which are thek-centerproblem in which one minimizes
maxj r j , thek-medianproblem in which one minimizes∑i d(pi ,t j i ), and thek-clusteringproblem in which one minimizes the
maximum over all clusters of the sum of pairwise distances between points in that cluster. For the geometric instances ofthese
related clustering problems, refer to the survey by Agarwaland Sharir [1]. Whenk is fixed, the optimal solution can be found in
timeO(nk) using brute force. In the plane, one of the only results for the min-size clustering problem is a small improvement for
k = 2 by Hershberger [16], in subquadratic timeO(n2/ loglogn). Approximation algorithms and schemes have been proposed,
particularly for geometric instances of these problems (e.g., [4]). Clustering for minimizing the sum of radii was studied for
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points in metric spaces by Charikar and Panigrahy [9], who present anO(1)-approximation algorithm using at mostk clusters.

For the linear-cost model (α = 1), our problem has been considered recently by Lev-Tov and Peleg [18] who give an
O((n+m)3) algorithm when the clients and servers all lie on a given line(the 1D problem), and a linear-time 4-approximation
in that case. They also give a PTAS for the two-dimensional case when the clients and servers can lie anywhere in the plane.
Bilò et al. [7] show that the problem is NP-hard in the plane for the casef (r) = rα, α ≥ 2, either when the setsX andY are
given andk is left unspecified (k = n), or whenk is fixed but thenX = Y. They give a PTAS for the linear cost case (α = 1)
and a slightly more involved PTAS for a more general problem in which the cost function is superlinear, there are fixed additive
costs associated with each transmission server and there isa boundk on the number of servers.

There are many problems dealing with covering a set of clients by disks ofgivenradius. Hochbaum and Maass [17] give a
PTAS for covering with a minimum number of disks of fixed radius, where the disk centers can be taken anywhere in the plane.
They introduce a “grid-shifting technique,” which is used and extended by Erlebach et al. [12]. Lev-Tov and Peleg [18] and
Bilò et al. [7] extend the method further in obtaining theirPTAS results for the discrete version of our problem.

When a discrete setX of potential server locations is given, Gonzalez [15] addresses the problem of maximizing the
number of covered clients while minimizing the number of servers supplying them, and he gives a PTAS for such problems
with constraints such as bounded distance between any two chosen servers. In [8], a polynomial-time constant approximation
is obtained for choosing a subset of minimum size that coversa set of points among a set of candidate disks (the radii can be
different but the candidate disks must be given).

The closest work to our combined tour/transmission cost (MCCT) is the work on covering tours: the “lawn mower” problem
[2], and the TSP with neighborhoods [3, 11], each of which hasbeen shown to be NP-hard and has been solved with various
approximation algorithms. In contrast to the MCCT we study,the radius of the “mower” or the radius of the neighborhoods to
be visited is specified in advance.

2 Scenario (1): Server Locations Restricted to a Discrete Set
2.1 The one-dimensional discrete problem with linear cost

Consider the case ofm fixed server locationsX = {t1, ...,tm}, n client locationsY = {p1, ..., pn}, and a linear (α = 1) cost
function, with clients and servers all located along a fixed line. Without loss of generality, we may assume thatX andY are
sorted in the same direction, at an extra cost ofO((n+m) log(n+m)). Lev-Tov and Peleg [18] give anO((n+m)3) dynamic
programming algorithm for finding an exact solution. Bilò et al. [7] show that the problem is solvable in polynomial timefor
any value ofα by reducing it to an integer linear program with a totally unimodular constraint matrix. The complexities of
these algorithms, while polynomial, is high. Lev-Tov and Peleg also give a simple “closest center” algorithm (CC) that gives a
linear-time 4-approximation. We improve to a 3-approximation in linear time, and a 2-approximation inO(m+nlogm) time.

Closest Center with Growth (CCG) Algorithm : Process the clients{p1, ..., pn} from left to right keeping track of the right-
most extending disk. LetωR denote the rightmost point of the rightmost extending disk,and letR denote the radius of this
disk. (In fact the rightmost extending disk will always be the last disk placed.) IfωR is equal to, or to the right of the next
client processed,pi , thenpi is already covered so ignore it and proceed to the next client. If pi is not yet covered, consider the
distance ofpi to ωR compared with the distance ofpi to its closest center̂ti . If the distance ofpi to ωR is less than or equal to
the distance ofpi to its closest center̂ti , then grow the rightmost extending disk just enough to capture pi . Otherwise use the
disk centered at̂ti of radius|pi− t̂i| to coverpi .

Lemma 1 CCG yields a3-approximation to OPT in O(n+m) time.

Proof. Consider any diskD in OPT. We attribute to each client a segmentJi as follows. If, in the execution of CCG, the
client pi was not used because it had already been covered, we setJi = /0. If pi was captured by placing a disk centered at the
closest center,̂ti to pi then setJi = {[t̂i, pi ] if t̂i ≤ pi , [pi , t̂i ] if pi < t̂i}. On the other hand, ifpi was captured by growing an
existing disk with initial rightmost pointωR, let Ji denote the half-open interval through which this rightmostpoint moved out,
i.e. Ji = (ωR, pi ]. Observe thatJi ∩Jj = /0 as long asi 6= j and that the sum of the lengths of theJi equals the sum of the radii of
disks in the CCG cover. The leftmost and rightmostJi cannot extend more than radius(D) to the left ofD or radius(D) to the
right of D.

Let tD denote the center ofD. At most oneJi corresponding to a client inD extends outward to the right from the right
edge ofD. If there is no such right-most interval, the we clearly haveat most a 3-approximation. Thus assume there is such an
interval, and call itJR. JR corresponds to a center, not growth, since it emanates from the right. Call the associated clientpR. If
there is a clientpi to the right oftD not contained inJR then length(JR) < radius(D)−d(tD, pi) since otherwise in the algorithm
we would have grown the disk containingpi to capturepR, rather than allow it to be captured by a center. It follows that the
coverage by disks in CCG to the right oftD has sum of radii at most radius(D). The 3-approximation follows. 2

If we consider a single diskD with clientspL andpR on the left and right edges ofD, associated centers ˆxL, x̂R at distances

3



respectively radius(D)−ε to the left and radius(D)−ε to the right, along with a dense set of clients in the left handhalf of D we
see that 3 is the best possible constant for CCG.

Greedy Growth (GG) Algorithm : Start with a disk with center at each server all of radius zero. Now, amongst all clients, find
the one which requires the least radial disk growth to capture it. Repeat until all clients are covered. An efficient implementation
uses a priority queue to determine the client that should be captured next. One can set up the priority queue inO(m) time. Note
that the priority queue will never have more than 2m elements, and that eachpi eventually gets captured, either from the right
or from the left. Each capture can be done in timeO(logm) for a total running time ofO(m+nlogm).

Lemma 2 GG yields a2-approximation to OPT in O(m+nlogm) time.

Proof. Define intervalsJi as follows: when capturing a clientpi from a servert j whose current radius (prior to capture) isr j ,
let Ji = (t j + r j , pi ] if pi > t j , andJi = [pi ,t j − r j) otherwise. Our first trivial yet crucial observation is thatJi ∩Jk = /0 if i 6= k.
Also note that the sum of the lengths of theJi is equal to the sum of the radii in the GG cover.

Consider now a fixed diskD in OPT, centered attD, and the list of intervalsJi whosepi is insideD. As before, at most one
suchJi extends outward to the right from the right edge ofD. If so, call itJR, and defineJL symmetrically. IfJR exists, it cannot
extend more than radius(D) to the right ofD. Let λ = length(JR). We argue that there is an interval of lengthλ in D, to the
right of tD, which is free ofJi ’s. It follows that there is at most radius(D) worth of segments to the right oftD. Of course, this is
also true ifJR does not exist. By symmetry, there is also radius(D) worth of segments to the left oftD, whetherJL exists or not,
yielding the claimed 2-approximation.

AssumeJR exists. Then the algorithm successively extendsJR by growth to the left up to some maximum point (possibly
stopping right atpR). Since the growth could have been induced by clients to the right of JR, that maximum point is not
necessarily a client. There is, however, some client insideD that is captured last in this process. This clientpi (possiblypR)
cannot be withinλ of tD, since otherwise it would have been captured prior to the construction ofJR.

If there is no client betweentD andpi we are done, since then there could be no intervalJk in between. Thus consider the
client pi−1 just to the left ofpi . Supposed(pi−1, pi)≥ λ. Then, if pi−1 is eventually captured from the left, we would have the
region betweenpi−1 andpi free ofJk’s and be done. On the other hand, ifpi−1 is captured from the right, it must be captured
by a server betweenpi−1 andpi , and that server is at leastλ to the left ofpi since otherwisepi would be captured by that server
prior to pR. This leaves the distance from the server topi free ofJk’s.

Hence the only case of concern is ifd(pi−1, pi) < λ. Clearly pi−1 must not have been captured at the time whenpR is
captured since otherwisepi would have been captured beforepR, contradicting the assumption thatpi is captured by growth
leftward frompR. Similarly, there cannot be a server betweenpi−1 andpi , since otherwise bothpi−1 andpi would be captured
beforepR. Together with the definition ofpi , this implies thatpi−1 is captured from the left. Therefore, to the left ofpi−1,
there must be one or more intervals{Jl i} whose length is at leastλ that are constructed beforepi−1 is captured. Similarly, to
the right of pi , there must be some one or more intervals{Jr j} whose length is at leastλ, constructed beforepi is captured.
However, either the lastJl i is placed before the lastJr j or vice versa. In the first case, there are noλ length obstructions left in
the left-hand subproblem, sopi−1 will be covered, and withλ length obstructions remaining in the right subproblem,pi will be
captured by growth rightward. The second case is symmetrical to the first. In either case we have a contradiction. 2

To see that the factor 2 is tight, just consider servers at−2+ ε,0 and 2− ε and clients at−1 and 1.

2.2 Hardness of the two-dimensional discrete problem with superlinear cost

In 2D, we sketch an NP-hardness proof, for anyα > 1. This strengthens the NP-hardness proof of [7], which onlyworks in
the caseα ≥ 2. Our proof is based on PLANAR 3SAT: Only use a subset of the set of critical locations as candidate locations
by only choosing the points that are “halfway” between two adjacent client points along a variable gadget. This allows only
two perfect matchings on each variable gadget as locally optimal solutions; these matchings map to truth assignments ina
canonical way. A satisfying truth assignment on a variable allows picking up an additional point at a clause gadget, yielding an
inexpensive solution. See the Appendix for an illustrationof clause gadgets.

Theorem 3 For any a fixedα > 1, let the cost function of a circle of radius r be f(r) = rα. Then it is NP-hard to decide whether
a discrete set of n clients in the plane, and a discrete set of mpotential transmission points allow a cheap set of circles that
covers all demand points.

3 Scenario (2): Server Locations Restricted to a Line
3.1 Servers along a fixed horizontal line

3.1.1 Exact solutions Suppose that the servers are required to lie on a fixed horizontal line, which we take without loss of
generality to be thex-axis. Such a restriction could arise naturally (e.g., the servers must be connected to a power line, must lie
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on a highway, or in the main corridor in a building). In addition, this case must be solved first before attempting to solve the
more general problem—along a polygonal curve.

In this section, we describe dynamic programming algorithms to compute a set of server points of minimum total cost.
For notational convenience, we assume that the clientsY are indexed in left-to-right order. Without loss of generality, we also
assume that all the clients lie on or above thex-axis, and that no two clients have the samex-coordinate. (If a clientpi lies
directly above another clientp j , then any circle enclosingpi also enclosesp j , so we can removep j from Y without changing
the optimal cover.)

Let us call a circleC pinnedif it is the leftmost smallest axis-centered circle enclosing some fixed subset of clients. Equiv-
alently, a circle is pinned if it is the leftmost smallest circle passing through a chosen client or a chosen pair of clients. Under
anyLp metric, there are at mostO(n2) pinned circles. As long as the cost functionf is non-decreasing, there is a minimum-cost
cover consisting entirely of pinned circles.

Linear Cost. If the cost functionf is linear (or sublinear), we easily observe that the circlesin any optimum solution must
have disjoint interiors. (If two axis-centered circles of radiusr i and r j intersect, they lie in a larger axis-centered circle of
radius at mostr i + r j .) In this case, we can give a straightforward dynamic programming algorithm that computes the optimum
solution under anyLp metric.

The algorithm given in Figure 1 (left) finds the minimum-costcover by disjoint pinned circles, where distance is measured
using anyLp metric. We call the rightmost point enclosed by any pinned circleC theownerof C.

If we use brute force to compute the extreme points enclosed by each pinned circle and to test whether any points lie directly
above a pinned circle, this algorithm runs inO(n3) time. With some more work, however, we can improve the running time by
nearly a linear factor.

This improvement is easiest in theL∞ metric, in which circles are axis-aligned squares. Each point pi is the owner of exactly
i pinned squares: the unique axis-centered square withpi in the upper right corner, and for each pointp j to the left ofpi , the
leftmost smallest axis-centered square withpi andp j on its boundary. We can easily compute all these squares, as well as the
leftmost point enclosed by each one, inO(i logi) time. (To simplify the algorithm, we can actually ignore anypinned square
whose owner does not lie on its right edge.) If we preprocessP into a priority search tree inO(nlogn) time, we can test in
O(logn) time whether any client lies directly above a horizontal line. The overall running time is nowO(n2 logn).

For any otherLp metric, we can compute the extreme points enclosed by allO(n2) pinned circles inO(n2) time using the
following duality transformation. IfC is a circle centered at(x,0) with radiusr, letC∗ be the point(x, r). For each clientpi , let
p∗i = {C∗ | p∈C}, and letY∗ = {p∗i | pi ∈Y}. We easily verify that each setp∗i is an infinitex-monotone curve. (Specifically,
in the Euclidean metric, the dual curves are hyperbolas withasymptotes of slope±1.) Moreover, any two dual curvesp∗i and
p∗j intersect exactly once; i.e.,Y∗ is a set of pseudo-lines. Thus, we can compute the arrangement of Y∗ in O(n2) time. For each
pinned circleC, the dual pointC∗ is either one of the clientspi or a vertex of the arrangement of dual curvesY∗. A circle C
encloses a clientpi if and only if the dual pointC∗ lies on or above the dual curvep∗i . After we compute the dual arrangement,
it is straightforward to compute the leftmost and rightmostdual curves below every vertex inO(n2) time by depth-first search.

Finally, to test efficiently whether any points lie directlyabove an axis-centered (Lp) circle, we can use the following
two-level data structure. The first level is a binary search tree over thex-coordinates ofY. Each internal nodev in this tree
corresponds to a canonical vertical slabSv containing a subsetpv of the clients. For each nodev, we partition thex-axis into
intervals by intersecting it with the furthest-point Voronoi diagram ofpv, in O(|pv| log|pv|) time. To test whether any points lie
above a circle, we first find a set ofO(logn) disjoint canonical slabs that exactly cover the circle, andthen for each slabSv in
this set, we find the furthest neighbor inpv of the center of the circle by binary search. The region abovethe circle is empty
if and only if all O(logn) furthest neighbors are inside the circle. Finally, we can reduce the overall cost of the query from
O(log2n) to O(logn) using fractional cascading. The total preprocessing time isO(nlog2n).

Theorem 4 Given n clients in the plane, we can compute in O(n2 logn) time a covering by circles (in any fixed Lp metric)
centered on the x-axis, such that the sum of the radii is minimized.

Superlinear Cost. A similar dynamic programming algorithm computes the optimal covering under any superlinear (in fact,
anynon-decreasing) cost functionf . As in the previous section, our algorithm works for anyLp metric. For the moment, we
will assume thatp is finite.

Although two circles in the optimal cover need not be disjoint, they cannot overlap too much. Clearly, no two circles in the
optimal cover are nested, since the smaller circle would be redundant. Moreover, the highest point (orapex) of any circle in the
optimal cover must lie outside all the other circles. If one circle A contains the apex of a smaller circleB, then the luneB\A
is completely contained in an even smaller circleC whose apex is the highest point in the lune; it follows thatA andB cannot
both be in the optimal cover. See Figure 2(a).

To compute the optimal cover ofY, it suffices to consider subproblems of the following form. For each pinned circleC,
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M INSUMOFRADIUSCIRCLECOVER(Y) :
for every pinned circleC

find the leftmost and rightmost points enclosed byC
Cost[0]← 0
for i← 1 ton

Cost[i]← ∞
for each pinned circleC owned bypi

if no points inP lie directly aboveC
p j ← leftmost point enclosed byC
Cost[i]←min{Cost[i], Cost[ j−1]+ radius(C))}

returnCost[n]

M INSUPERLINEARCOSTCIRCLECOVER(Y, f ) :
sort the pinned circles from left to right by their centers
Cost[0]← 0
for j ← 1 to p+1

Cost[ j ]← ∞
for i← 1 to j−1

if Ci andCj exclude each other’s apices
andB(Ci ,Cj ) is empty

Cost[ j ]←min{Cost[ j ], Cost[i]+ f (radius(Ci)))}
returnCost[p+1]

Figure 1. The dynamic programming algorithm: Left: linear cost; Right: superlinear cost function.

A
B

C

C

PC

A C

B(A,C)

(a) (b) (c)
Figure 2. (a) The apex of each circle in the optimal cover lies outside the other circles. (b) The points YC lie in the shaded region. (c) If A and C are adjacent
circles in the optimal covering, the shaded region B(A,C) is empty.

let YC denote the set of clients outsideC and to the left of its center; see Figure 2(b). Then for each pinned circleC, we
havecost(YC) = minA( f (radius(A))+cost(YA)), where the minimum is taken over all pinned circlesA satisfying the following
conditions: (1) The center ofA is left of the center ofC; (2) the apex ofA is outsideC; (3) the apex ofC is outsideA; and (4)A
encloses every point inYC \YA. The last condition is equivalent to there being no clients inside the regionB(A,C) bounded by
thex-axis, the circlesA andC, and vertical lines through the apices ofA andC; see Figure 2(c).

Our dynamic programming algorithm (Figure 1 (right)) considers the pinned circlesC1,C2, . . . ,Cp in left to right order by
their centers; that is, the center ofCi is left of the center ofCj wheneveri < j. To simplify notation, letYi =YCi . For convenience,
we add two circlesC0 andCp+1 of radius zero, centered far to the left and right ofY, respectively, so thatY0 = ∅ andYp+1 = Y.

Implementing everything using brute force, we obtain a running time ofO(n5). However, we can improve the running time
to O(n4 logn) using the two-level data structure described in the previous section, together with a priority search tree. The
regionB(Ci ,Cj) can be partitioned into two or three three-sided regions, each bounded by two vertical lines and either a circular
arc or thex-axis. We can test each three-sided region for emptiness inO(logn) time.

Theorem 5 Let f : R+→R be a fixed non-decreasing cost function. Given n clients in the plane, we can compute in O(n4 logn)
time a covering by circles (in any fixed Lp metric) centered on the x-axis, such that the sum of the costsof the circles is minimized.

The algorithm is essentially unchanged in theL∞ metric, except now we define the apex of a square to be its upperright
corner. It is easy to show that there is an optimal square cover in which no square contains the apex of any other square.
Equivalently, we can assume without loss of generality thatif two squares in the optimal cover overlap, the larger square is on
the left. To compute the optimal cover, it suffices to consider subsetsYC of points either directly above or to the right of each
pinned squareC. For any two squaresA andC, the regionB(A,C) is now either a three-sided rectangle or the union of two
three-sided rectangles, so we can use a simple priority search tree instead of our two-level data structure to test whetherB(A,C)
is empty inO(logn) time.

However, one further observation does improve the running time by a linear factor: Without loss of generality, the rightmost
box in the optimal cover ofYC has the rightmost point ofYC on its right edge. Thus, there are at mostn candidate boxesCi to
test in the inner loop; we can easily enumerate these candidates inO(n) time.

Theorem 6 Let f : R+→R be a fixed non-decreasing cost function. Given n clients in the plane, we can compute in O(n3 logn)
time a covering by axis-aligned squares centered on the x-axis, such that the sum of the costs of the squares is minimized.

3.1.2 Fast and simple solutions In this section we describe simple and inexpensive algorithms that achieve constant factor
approximations for finding a minimum-cost cover with disks centered along a fixed horizontal lineL, using anyLp metric. The
main idea for the proofs of this section is to associate with agiven diskD in OPT, a set of disks in the approximate solution
and argue that the set of associated disks cannot be more thana given constant factor cover ofD, in terms of cumulative edge
length, cumulative area, and so forth.

As in section 3.1.1, the case ofL∞ metric is the easiest to handle. By equivalence of all theLp metrics, constant-factor
c-approximations for squares will extend to constant-factor c′-approximations forLp disks.

Square Greedy Cover Algorithm (SG):Process the client points in order of decreasing distance from the lineL. Find the
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farthest pointp1 from L; cover p1 with a squareS1 exactly of the same height asp1 centered at the projection ofp1 on L.
Remove all points covered byS1 from further consideration and recurse, finding the next farthest point fromL and so forth. In
the case where two points are precisely the same distance from L, break ties arbitrarily.

Obviously, SG computes a valid covering ofY by construction.We begin the analysis with a simple observation.

Lemma 7 In the SG covering, any point in the plane (not necessarily a client) cannot covered by more than two boxes.

Proof. SupposeSi andSj are two squares placed during the running of SG and thati < j so thatSi was placed beforeSj .
ThenSi cannot contain the center point ofSj since thenSj would not have had the opportunity to be placed, and similarly Sj

cannot contain the center point ofSi . Now consider a pointp∈ Si ∩Sj . If p were covered by a third squareSk then either one
of {Si,Sj} would contain the center ofSk, or Sk would contain the center of one of{Si,Sj}, neither of which is possible. 2

Theorem 8 Given a set Y of n clients in the plane and anyα≥ 1, SG computes in time O(nlogn) a covering of Y by axis-aligned
squares centered on the x-axis whose cost is at most three times the optimal.

Proof. Let Y = {p1, . . . , pn} and consider a squareS in OPT. We consider those squares{Si j} selected by SG corresponding
to points{pi j : pi j ∈ S}, see Figure 3.1.2, and argue that these squares cannot have more than three times the total edge length

iS
1

iS
4

iS
5

iS
2

iS
3

< s/2 < s/2

S

L

Figure 3. Squares of the SG algorithm inside a square of the optimal solution.

of S. The same will then follow for all of SG and all of OPT. The argument, without modification, covers the case of cost
measured in terms of the sum of edge length raised to an arbitrary positive exponentα≥ 1.

Arguing as in Lemma 7 it is easy to see that at most two boxesSi j associated with pointspi j ∈ Sprocessed by SG actually
protrude outside ofS, one on the left and one on the right. Denote byr the total horizontal length of these protruding parts of
squares, thenr ≤ s, the side length ofS, since the side length of each protruding square is at mosts and at most half of each
square is protruding.

Because of Lemma 7 the total horizontal length of all nonprotruding parts of the squaresSi j is at most 2s, consequently all
points covered byS in OPT are covered by a set of squaresSi j in SG whose total (horizontal) edge length∑ j si j is at most 3s.

For exponentsα > 1 observe that∑ j si j ≤ 3sand 0≤ si j ≤ s for all j implies that∑ j si j
α ≤ 3sα.

To analyze the running time of the algorithm we need some moredetails about the data structures used: Initially, sort the
points byx-coordinate and separately by distance from the lineL in timeO(nlogn) and process the points in order of decreasing
distance fromL. As the pointpi at distancedi from L is processed, we throw away points which are within horizontal distance
di from pi . This takes timeO(logn+ki) time whereki is the number of points withindi from pi . Since we do this up ton times
with k1 + · · ·+kl = n the total running time isO(nlogn). 2

For the linear cost function, it is easy to modify the SG algorithm to get a 2-approximation algorithm.

Square Greedy with Growth Algorithm (SGG): Process the points as in SG. However, if capturing a pointpi by a square
Si would result in an overlap with already existing squareSj then, rather than placingSi, grow Sj just enough to capturepi ,
keeping the vertical edge furthest frompi at the same point onL. If placingSi would overlap two squares, grow the one which
requires the smallest edge extension. Break ties arbitrarily.

A proof somewhat similar to that of Lemma 2 (given in the Appendix) shows that:

Theorem 9 Given n clients in the plane, SGG computes in time O(nlogn) a covering by axis-aligned squares centered on the
x-axis whose cumulative edge length is at most twice the optimal.

Unlike SG, SGG is not a constant factor approximation for area. Considern consecutive points at height 1 separated one
from the next by distance of 1+ε. Processing the points left to right using SGG covers all points with one square of edge length
n+(n−1)ε, and so areaO(n2) , while covering all points withn overlapping squares each of edge length 2, uses total area 4n.
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Finally, extending these results from squares to disks in any Lp metric is not difficult. Enclosing each square in the algorithm
by anLp disk leads to an approximation factor 3c2 for GG and 2c2 for SGG, wherec = pα/p. In particular, forL2 disks, this
yields a 2

√
2-approximation forα = 1 and a 4-approximation forα = 2.

3.2 Finding the best axis-parallel line

When the horizontal lineℓ is not given but its orientation is fixed, we first prove that finding the best line, even forα = 1, is
uncomputable, then in this linear case give a simple approximation, and finally a PTAS.

3.2.1 A hardness result – uncomputability by radicals Our approach is similar to the approach used by Bajaj on the
unsolvability of the Fermat-Weber problem and other geometric optimization problems [5,6].

Theorem 10 Let c(t) = ∑i r i denote the minimum cost of a cover whose centers lie on the line of equation y= t. There exists a
set Y of clients such that, if t0 is the value that minimizes c(t), then t0 is uncomputable by radicals.

The proof proceeds by exhibiting such a point set and showingby differentiatingc(t) that t0 is the root of a polynomial
which is proven not to be solvable by radicals. The full proofis deferred to the Appendix.

3.2.2 Fast and simple constant-factor approximations The simple constant factor approximations for a fixed line can be
extended to the case of approximations to the optimal solution on an arbitrary axis-parallel line with the same constantfactors,
though with an additional multiplicative factor ofO(n2) added to the cost.

3.2.3 A PTAS for finding the best horizontal line Let d denote the distance between the highest and lowest point. Clearly,
d/2≤ OPT≤ nd. Cover this strip withn/ε regularly-spaced horizontal lines, where the space between successive lines is
δ = dε/2n. For each line, run the exact dynamic programming algorithm. Consider the line that contains OPT. Moving this line
by at mostδ and enlarging OPT so that it still covers the points and remains centered on the line (an operation calledshifting)
increases the cost of a circle by at mostδ, for a total of at mostδn = εd/2≤ ε OPT. Thus the algorithm computes a(1+ ε)-
approximation in running timeO((n3/ε) logn).

In order to generalize this result to the caseα > 1, let us write PSEUDO-OPT for the lowest cost of a solution onany of the
regularly spaced horizontal lines, SHIFT for the result of shifting OPT to the closest of these lines, andr1, ..., rm for the radii of
the optimal set of disks. For an arbitrary powerα≥ 1, we have

PSEUDO-OPT≤ SHIFT≤
m

∑
i=1

(r i + δ)α ≤
m

∑
i=1

rα
i + δα

m

∑
i=1

(r i + δ)α−1≤OPT(1+ δαn22α−1n/d).

The latter step usesδ≤ d, r i ≤ d and OPT≥ (d/2)α. Choosingδ = εd/(α22α−1n) gives the desired(1+ ε)-approximation.

Together with the results from previous sections we have:

Theorem 11 Given n clients in the plane and a fixedα≥ 1 , there exists a PTAS for finding an optimally positioned horizontal
line and a minimum-cost covering by disks centered on that line. It runs in time O(n3 logn) in the linear case(α = 1) and
O(n4 logn) for α > 1.

3.3 Approximating the best line - any orientation

Finally, we sketch approximation results for selecting thebest line whose orientation is not given. We give both a constant
factor approximation and a PTAS for the linear cost case (α = 1).

3.3.1 Fast and simple constant-factor approximations Given a lineℓ, we say that a setD of disksD1,. . . ,Dk is ℓ-centered
if the centers of every diskCj in D belongs toℓ. Recall that the cost ofD is the sum of all its radii.

Lemma 12 Given k≥ 1, a lineℓ, anℓ-centered setD of k disks that cover Y , and any point p0 on ℓ, there exist p′ ∈Y and an
ℓ′-centered setD ′ of k disks that cover Y , whereℓ′ is the line that joins p0 and p′, such that the cost ofD ′ is at most twice that
of D.

Proof. We will assume without loss of generality thatℓ is thex-axis, p0 is the origin and that no other point inY lies on the
y-axis. The latter restriction can easily be enforced by a small perturbation. Let the coordinates ofpi bexi andyi , and letmi

denote the slopeyi/xi of the lineℓi for 1≤ i ≤ n. First, we reorderY so that|m1| ≤ · · · ≤ |mn|. In what follows we assume that
x1≥ 0 andy10. The other cases can be treated analogously.

For each diskD j = D(t j , r j) in D, we construct a diskD′j whose radius isr ′j = 2r j and centert ′j is obtained fromt j by
rotating it around the origin counterclockwise by an angle tan−1(m1). The setD ′ of k disks thus defined isℓ′-centered, where
ℓ′ = {(x,y) ∈ R2 | y = m1x} andp1 ∈ ℓ′. To see thatD ′ coversY, simply observe thatd(t j ,t ′j )≤ r j for all 1≤ j ≤ k and apply
the triangle inequality: any point inD j must be at distance at most 2r j of t ′j . The cost of this new solution is clearly twice that
of D. 2
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By a double appplication of this lemma, first about an arbitrary p0 yielding a pointp′ = pi , then aboutpi yielding another
p′ = p j , it is immediate that anyℓ-centered cover ofY can be transformed into anℓi, j -centered cover whose cost is increased at
most four-fold, whereℓi,i is the line joiningpi andp j . By computing (exactly or approximately) the optimal set ofdisks for all
O(n2) lines defined by two different points ofY, we conclude:

Theorem 13 In O(n4 logn) time, we can find a collinear set of disks that cover P at cost atmost4OPT, and in O(n3 logn)
time, we can find a collinear set of disks that cover P at cost atmost8

√
2OPT.

3.3.2 A PTAS for finding the best line with unconstrained orientation We prove (in the Appendix) that finding the best
line with unconstrained orientation and a minimum-cost covering with disks whose centers are on that line admits a PTAS.

Theorem 14 Let P be a set of n clients in the plane that can be covered by an optimal collinear set of disks at cost OPT, and
ε > 0. In O((n5/ε2) logn) time, we can find a collinear set of disks that cover P at cost atmost(1+ ε)OPT.

4 Minimum-Cost Covering Tours
We now consider the minimum cost covering tour (MCCT) problem: Givenk ≥ 1 and a setY = {p1, . . . , pn} of n clients,
determine a cover ofY by (at most)k disks centered atX = {t1, . . . ,tk} with radii r j and a tourT visiting X, such that the cost
length(T)+C∑ rα

i is minimized. We refer to the tourT, together with the disks centered onX, as acovering tourof Y. Our
results are for the case of linear transmission costs (α = 1). We first show a weak hardness result, then characterize the solution
for C≤ 4, and finally give a PTAS for a fixedC > 4.

4.1 A hardness result

We prove the NP-hardness of MCCT whereC is also part of the input. Note that this does not prove the NP-hardness of MCCT
whereC is a fixed constant, which is the problem for which we give a PTAS below. Note also thatC appears in the run time
exponent of that PTAS, and so the PTAS no longer runs in polynomial time if C is not a fixed constant.

Theorem 15 MCCT with linear cost is NP-hard if the ratio C is part of the input.

Proof (sketch). We show a reduction from HAMILTON CYCLE IN GRID GRAPHS. Given a set ofn points on a grid, we
construct an instance of MCCT in which each of the given points is a client. We setC to be larger than 2n. In the full proof, we
show that this grid graph has a Hamiltonian cycle if and only if there is a covering tourT whose cost is at mostn. 2

4.2 The caseC≤ 4: The exact solution is a single circle

Theorem 16 In the plane, with a cost function oflength(T)+C∑ r i and C≤ 4, the minimum-cost solution is to broadcast to
all clients from the circumcenter of the client locations and no tour cost.

The proof rests on the following elementary geometry lemma (whose proof is omitted here).

Lemma 17 For three points p, q and r in the plane, such that the trianglepqr contains its own circumcenter, the length of a
trip from p to q to r and back to p is at least4r where r is the circumradius of the points.

Proof of Theorem 16. Let r(X) andr(Y) denote the minimum radius of a circle enclosingX or Y, respectively. LetT be a
covering tour ofY, X ⊆ T be the set of disk centers andr j their radii. Finally, letrmax = maxj r j .

By the triangle inequality, Lemma 17 implies that the length(T) ≥ 4r(X). Since the tour visits all the centers inX and
the disks centered atX coverY, we haver(Y) ≤ r(X)+ rmax. By definition, the cost ofT is length(T) +C∑ j r j , which by
the observation above is at least 4r(X) +C∑ j r j ≥ 4r(X) +Crmax. The assumptionC ≤ 4 then implies that it be at least
C(r(X)+ rmax)≥Cr(Y), which is the cost of covering by a single disk with a zero-length tour. 2

4.3 The caseC > 4: A PTAS

We distinguish between two cases for the choice of transmission points: they may either be arbitrary points in the plane (selected
by the algorithm) or they may be constrained to lie within a discrete setT of candidate locations.

The constantC specifies the relative weight associated with the two parts of the cost function – the length of the tour, and
the sum of the disk radii. IfC is very small (C≤ 4), then the solution is to cover the setY using a single disk (the minimum
enclosing disk), and a corresponding tour of length 0 (the singleton point that is the center of the disk). IfC is very large, then
the priority is to minimize the sum of the radii of thek disks. Thus, the solution is to compute a covering ofY by k disks that
minimizes the sum of radii (as in [18]), and then link the resulting disk centers with a traveling salesman tour (TSP). (Inthe
case thatk≥ n, the disks in the covering will be of radius 0, and the problembecomes that of computing a TSP tour onY.)
Note that our algorithm gives an alternative to the Lev-Tov and Peleg PTAS [18] for coverage alone.

9



Our algorithm is based on applying them-guillotine method [19], appropriately adapted to take into account the cost function
and coverage constraint.1 We need several definitions; we largely follow the notation of [19]. Let G = (V,E) be an embedding
of a connected planar graph, of total Euclidean edge-lengthL. Let D be a set of disks centered at each vertexv of G of radius
rv. We refer to the pair(G,D) as acovering networkif the union∪v∈VDv of the disks covers the clientsY. We can assume
without loss of generality thatG is restricted to the unit squareB, i.e.,∪e∈Ee⊂ int(B).

Our algorithm relies on there being a polynomial-size set ofcandidate locations for the transmission points that will serve
as the vertices of the covering tour we compute. In the case that a setT of candidate points is given, this is no issue; however,
in the case that the transmission points are arbitrary, we appeal to the following grid-rounding lemma (proved in the Appendix).

Lemma 18 One can perturb any covering network(G,D) to have its vertices all at grid points on a regular grid of spacing
δ = O(ε ·diam(S)/n), while increasing the total cost by at most a factor of(1+ ε).

An axis-aligned rectangle,W⊆ B, is called awindow; rectangleW will correspond to a subproblem in a dynamic program-
ming algorithm. An axis-parallel lineℓ that intersectsW is called acut.

For a covering network with edge setE and a set of disksD, we say that(E,D) satisfies them-guillotine property with
respect to window Wif either (1) all clientsY ⊂W lie within disks ofD that intersect the boundary ofW; or (2) there exists a
cutℓ with certain properties (anm-good cut with respect to W) that splitsW intoW1 andW2, and(E,D) recursively satisfies the
m-guillotine property with respect to bothW1 andW2. Due to the lack of space, we cannot give the full definition ofanm-good
cut (see the Appendix).

A crux of the method is a structural theorem which shows how toconvert any covering network(G,D) into another
covering network(G′,D ′), such that the new graphG′ satisfies them-guillotine property, and that the total cost of the new
instance(G′,D ′) is at mostO((L+CR)/m) larger than the original instance(G,D), whereL is the total edge length ofG and
R the sum of the radii ofD. The construction is recursive: at each stage, we show that there exists a cut with respect to the
current windowW (which initially is the unit square B), such that we can afford (by means of a charging scheme) to add short
horizontal/vertical edges in order to satisfy them-guillotine property, without increasing the total edge length too much..

We then apply a dynamic programming algorithm, running inO(nO(m)) time, to compute a minimum-cost covering network
having a prescribed set of properties: (1) it satisfies them-guillotine property (with respect toB), which is necessary for the
dynamic program to have the claimed efficiency; (2) its diskscover the clientsY ; and (3) its edge set contains an Eulerian
subgraph. This third condition allows us to extract a tour inthe end. In the proof of the following theorem (see Appendix), we
give the details of the dynamic programming algorithm that yields:

Theorem 19 The min-cost covering tour problem has a PTAS.
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Appendix
4.4 Sketch of Theorem 3

Let I be an instance of PLANAR 3SAT, and letGI be the corresponding variable-clause incidence graph. After choosing a
suitable layout of this planar graph, resulting in integer variables with coordinates bounded by a polynomial in the size of GI

for all vertices and edges, we replace each the vertex representing any particular variable by a closed loop, using the basic idea
shown in the left of Figure 4; this allows two fundamentally different ways of covering those points cheaply (using the “odd”
or the “even” circles), representing the two truth assignments. For each edge from a vertex to a variable, we attach a similar
chain of points that connects the variable loop to the clausegadget; the parity of covering a variable loop necessarily assigns
a parity to all incident chains. Note that choosing sufficiently fine chains guarantees that no large circles can be used, as the
overall weight of all circles in a cheap solution will be lessthan 1. (It is straightforward to see that for any fixedα > 1, this can
be achieved by choosing coordinates that are polynomial in the size ofGI , with the exponent beingO(1/(α−1)).)

For the clauses choose a hexagonal arrangement as shown in the right of Figure 4: There is one central point that must be
covered somehow; again,α > 1 guarantees that it is cheaper to do this from a nearby transmission point, rather than increasing
the size of a circle belonging to a chain gadget.

Now it is straightforward to see that there is a cheap cover, using only the forced circles, iff the truth assignment corre-
sponding to the covering of variabe loops assures that each clause has at least one satisfying variable.

client points

transmission
points

even circles

odd circles

Figure 4. (Left) The switch structure of a variable gadget. Note how there are two fundamentally different ways to cover all points cheaply. (Right) The structure
of a clause gadget. One small circle is needed for picking up the client point at the center of the gadget.

4.5 Proof of Theorem 9

As we process pointspi using SGG, attribute to each pointpi a line segmentsi alongpL as follows. If processingpi resulted
in the placement of a squareSi centered at the projection ofpi in L then attribute topi the projection onL of a horizontal edge
of Si (Case 1). If, on the other hand, processing ofpi resulted in the growing of a prior squareSj to just capturepi , attribute
to pi the projection onL of the portion of the horizontal edge of the expandedSj needed to capturepi (Case 2). (This amount
is at most the distance ofpi to L since otherwisepi would have been fallen into case 1.) We must show that the lengths of the
segments is no more than twice the edge lengths of squares in OPT.

It suffices to show that for any squareS in OPT, the segmentssi associated with pointspi ∈ S processed by SGG cannot
have total edge length which exceeds twice the edge lengthsof S.
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To see this observe that the sum of the lengths of thosesi lying completely insideS does not exceeds since they are
nonoverlapping. In addition, each of the parts of the at mosttwo segments protruding fromScan have length at mosts/2, in
case 1 for the same reason as in the SG algorithm, in case 2 since the total length of the segment is at mosts/2.

In order to make SGG efficient, we proceed as in SG. In addition, we maintain a balanced binary search tree containing
thex-coordinates of the vertical sides of the squares already constructed. For each new pointpi to be processed we locate its
x-coordinate within this structure to obtain its neighboring squares and to decide whether case 1 or case 2 applies. This can be
done in timeO(logn) just as adding a new square in case 1 or updating an existing square in case 2. Removing points covered
by the new or updated square is done as in SG, so that the total runtime remainsO(nlogn). 2

4.6 Proof of Theorem 10

The following definitions and facts can be found in a standardabstract algebra reference, for instance by Rotman [Rot02].A
polynomial with rational coefficients issolvable by radicalsif its roots can be expressed using rational numbers, the field
operations, and takingkth roots. Thesplitting fieldof a polynomialf (x) over the field of rationalsQ is the smallest subfield of
the complex numbers containing all of the roots off (x). TheGalois groupof a polynomialf (x) with respect to the coefficient
field Q is the group of automorphisms of the splitting field that leaveQ fixed. If the Galois group off (x) overQ is a symmetric
group on five or more elements, thenf (x) is not solvable by radicals overQ.

Consider the following set of points:{(3,4),(−3,−2),(102,2),(98,−2),(200,−2)}. By exhaustive case analysis, we can
show that the optimal solution must consist of one circle through the first two points, a second circle through the next two
points, and a third circle touching the last point, and the optimal horizontal line must lie in the range−2≤ y≤ 2. For a given
value ofy in this range, the cost of the best cover is

c(y) =
√

2(y−1)2+18+
√

2y2+8+(2−y).

Therefore, in order to find the best horizontal line, we must minimizec(y). Setting the derivative to zero, we obtain the equation

c′(y) =
2(y−1)

√

2(y−1)2+18
+

2y
√

2y2 +8
−1 = 0.

We easily verify thatc′′(y) is always positive. The minimum valuec(y)≈ 8.3327196 is attained aty≈ 1.4024709, which is a
root of the following polynomial:

f (y) = 1024+512y−1600y2+1536y3−960y4+368y5−172y6+28y7−7y8.

Using the computational system GAP [GAP],we compute that the Galois group off (y) is the symmetric groupS8, so the
polynomial is not solvable by radicals.

[GAP] The GAP Group.GAP – Groups, Algorithms, and Programming, Version 4.4, 2005.http://www.gap-system.org.

[Rot02] J. Rotman.Advanced Modern Algebra. Prentice Hall, 2002.

Proof of Theorem 14

Let H be a strip of minimal widthh that containsP. Using a rotating-caliper approach,H can be computed inO(nlogn) time,
cf. [Tou83].If h = 0, we can conclude thatOPT = 0, and we are done.

Otherwise, we can assume wlog thatH is horizontal. Letw denote the width of the smallest enclosing axis-parallel rectangle
Rof P. The height ofR is h, andh≤ w. Moreoverh/2≤OPT≤min(w/

√
2,nh/2).

Let APPbe the cost of the solution computed inO(n4 logn) time according to Theorem 13,d = εAPP
wn , andθ = tan−1(d).

Assume an optimal collinear solutionS∗ = {d(t∗1, r∗1), . . . ,d(t∗k , r∗k)} lies on the lineℓ∗. Let z be an intersection point ofℓ∗

with the boundary ofR. For all p∈ P we have that‖z− p‖ ≤
√

2w.

We now distinguish two cases:

Case 1. w≤ 2nh: For 1≤ i ≤ ⌈ π
2θ⌉ let ℓi be the line through the origin that forms an angle ofiθ with thex-axis.

The number of these lines isN = O(1/θ) = O(1/ tan−1(d)). Note that forn≥ 4
√

2ε we have thatd ≤ 1/2, and therefore

tan−1(d) > d/2, soN = O(1/d) = O( wn
εAPP) = O( wn

εOPT). Sincew≤ 2nh andh/2≤ OPT we getN = O( wn
εOPT) = O( n2h

εOPT) =

O(n2

ε ).

Let OPTi denote the cost of an optimalℓ-collinear set of disks that coverP, whereℓ is a line that is parallel toℓi . We claim
that mini OPTi ≤ (1+4

√
2ε)OPT.
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To see this, observe that there is someℓi such that the smallest angleβi betweenℓi andℓ∗ is at mostθ. If we rotateℓ∗ by
βi (in the right direction) aroundz, it becomes parallel toℓi . Let ℓ̂ denote this rotated line. When rotatingℓ∗ we also rotate the
midpointst∗1, . . . ,t∗k of S∗. By t̂1, . . . , t̂k we denote their final position on̂ℓ.

Since for allp ∈ P, ‖p− z‖ ≤
√

2w, the distance ofp to ℓ̂ is at most∆ =
√

2wtanθ =
√

2wd =
√

2εAPP
n larger than its

distance toℓ∗.

Thus, the set of diskŝS = {d(t̂1, r∗1 + ∆), . . . ,d(t̂k, r∗k + ∆)}, on ℓ̂ coversP at a cost of at most∑k
i=1(r

∗
i + ∆) ≤ OPT+

∑k
i=1

√
2εAPP

n ≤ (1+4
√

2ε)OPT.

We can compute a(1+ ε)-approximationAPPi to OPTi in O(n3 logn) time. We then get that mini APPi ≤ (1+5
√

2ε)OPT,
and the total running time of this procedure isO(Nn3 logn) = O((n5/ε2) logn).

Case 2. w> 2nh: We will take a slightly different approach here. LetR′ be the axis-parallel rectangle obtained fromR by
moving the left and right side ofR inwards bynh/2. Clearly the height ofR′ is h, and its width isw′ = w−nh. Let Sdenote the
lower left corner ofR′ andT denote the upper right corner ofR′.

If the absolute value of the slope of a lineℓ is larger thanM = h/w′ (i.e., the aspect-ratio ofR′) the lineℓ either intersects
the top and the bottom edge ofR′, or S andT lie on the same side ofℓ. In any case, there is at least one point ofP that has
distance larger thannh/2 to ℓ.

SinceOPT < nh/2, we can therefore conclude that the absolute value of the slope ofℓ∗ can be at mostM. With w > 2nh it
follows thatM < 2h/w≤ 2.

Let λ = tan−1(M) and for 1≤ i ≤ ⌈ λ
θ⌉ let ℓi be the line through the origin that forms an angle ofiθ with thex-axis.

The number of these lines isN = O(λ
θ ) = O( tan−1(M)

tan−1(d)
). Note that as before tan−1(d) > d/2, and sinceM≤ 2, tan−1(M)≤M,

soN = O(M/d) = O( hwn
wεAPP) = O( hn

εOPT). Sinceh/2≤OPT we getN = O(n
ε ).

With the above reasoning, we can argue as before that there issomeℓi such that the smallest angleβi betweenℓi andℓ∗ is
at mostθ. If we rotateℓ∗ by βi (in the right direction) aroundz, it becomes parallel toℓi . Let ℓ̂ denote this rotated line.

Repeating the previous argumentation, we get a solution onℓ̂ that coversP at a cost of at most(1+4
√

2ε)OPT.

Again, we can compute a(1+ε)-approximationAPPi to OPTi in O(n3 logn) time and get that mini APPi ≤ (1+5
√

2ε)OPT,
and the total running time of this procedure isO(Nn3 logn) = O((n4/ε) logn). 2

[Tou83] G. T. Toussaint. Solving geometric problems with the rotating calipers. InProc. IEEE MELECON ’83, pages
A10.02/1–4, 1983.

Proof Lemma 18
By making a detour for each vertex of the network, to the closest point on a grid of spacingδ = O(ε ·diam(S)/n), we add length
at mostnδ = O(ε ·diam(S)), since there are at mostn vertices of the network (otherwise, the cost of the network can be improved
by deleting some vertices). Now, we can shift the disks ofD to be centered at the corresponding grid points, and slightly enlarge
them (by radiusδ), so that they still cover all ofY. The total increase in cost is thenO(nδ(1+C)) = O(ε · diam(S)). Since
Ω(diam(S)) is a lower bound on the cost of an optimal solution, we see thatthe grid-rounded solution is within a factor(1+ ε)
of optimal.

Complete details of the PTAS for the MCCT problem
An axis-aligned rectangle,W⊆B, is called awindow; rectangleW will correspond to a subproblem in a dynamic programming
algorithm. An axis-parallel lineℓ that intersectsW is called acut.

l l
Figure 5. Left: The 3-span, σ3(ℓ) of ℓ with respect to the window W⊂ B is highlighted with a thick shaded vertical segment. Right: The 3-disk-span, σ3,D (ℓ) of
ℓ with respect to the window W⊂ B is highlighted with a thick shaded vertical segment.

For a positive integerm, we define them-span, σm(ℓ), of ℓ with respect toW, as follows. For each edgeeof E, e∩ℓ∩ int(W)
is either empty, a point, or a subsegment ife⊆ ℓ ande∩ int(W) 6= /0. Let p1, . . . , pξ denote all these points and endpoints of
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subsegments (with multiplicities), in order of decreasingy-coordinate alongℓ. If ξ > 2(m−1), thenσm(ℓ) is the line segment
pmpξ−m+1, elseσm(ℓ) = /0. Note thatσm(ℓ) may be of zero length in casepm = pξ−m+1.

We also define them-disk span, σm,D(ℓ) of ℓ with respect toW, as follows. First, we surround each (circular) diskDv with
an axis-aligned squareBv of side length 2rv, centered atv. LetB = {Bv : v∈V}, B∩W = {Bv : Bv∩W 6= /0}, andξB = |B ∩W|.
Starting from the top (resp. bottom) endpoint ofℓ∩W and going downwards (resp. upwards), letum (resp.bm) be the point
whereℓ crosses themth top (resp. bottom) edge of a bounding box, if such a point exists. If bothum andbm exist and ifum is
abovebm, thenσm,D(ℓ) is the vertical line segmentumbm, elseσm,D(ℓ) = /0. (The definition is similar if the cutℓ is horizontal.)

We say that a cutℓ is anm-good cut with respect to Wif σm(ℓ) ⊆ E andσm,D(ℓ) is either empty or lies fully within a
single disk ofD. In particular, ifξ ≤ 2(m−1) andξB ≤ 2m, thenℓ is trivially an m-good cut, since both them-span and the
m-disk-span are empty in this case.

For a covering network with edge setE and a set of disksD, we say that(E,D) satisfies them-guillotine property with
respect to window Wif either (1) all clientsY ⊂W lie within disks ofD that intersect the boundary ofW; or (2) there exists
anm-good cutℓ with respect toW that splitsW into W1 andW2, and(E,D) recursively satisfies them-guillotine property with
respect to bothW1 andW2.

Theorem 20 Let G be an embedded connected planar graph on vertices V, with edge set E, of total length L, and a setD
of k = |V| disks, of total radii R, centered at vertices of V that cover agiven set Y of clients. Assume that E andD are
contained in the unit square B. Then, for any positive integer m, there exists a planar graph G′, together with a setD ′ of
at most k disks centered on the vertices V′ of G′, that satisfies the m-guillotine property with respect to B,has an edge set

E′ ⊇ E of length L′ ≤
(

1+
√

2
m

)

L and has vertices V′ either at points of an input setT or at points of a regular grid of spacing

δ = O(ε ·diam(S)/n).

Proof. We show how to convertG into a new graphG′ by adding toE a new set of horizontal/vertical edges whose total length
is “small”, and we convertD into a new set,D ′, of at mostk covering disks centered at the vertices ofG′ (which are a subset of
T or of the regularδ-grid), so that the total cost of the new instance(E′,D ′) is at mostO((L+CR)/m) longer than the original
instance(E,D).

The construction is recursive: at each stage, we show that there exists a cut,ℓ, with respect to the current windowW (which
initially is the unit squareB), such that we can “afford” (by means of a charging scheme) toadd both them-span and the
m-disk-span toE.

A point p on a cutℓ is m-dark with respect toℓ and W if, alongℓ⊥∩ int(W), there are at leastm edges ofE intersected by
ℓ⊥ on each side ofp, whereℓ⊥ is the line perpendicular toℓ passing throughp. We say that a subsegment ofℓ is m-dark(with
respect toW) if all points of the segment arem-dark with respect toℓ andW. The important property ofm-dark points alongℓ
is the following: Assume, without loss of generality, thatℓ is horizontal. We consider any line segment that lies along an edge
of E to have atop side and abottomside; the top is the side that can be seen from above, from a point with y = +∞. Then,
if all points on subsegmentpq of ℓ arem-dark, we can charge the length ofpq off to the bottoms of the firstm subsegments,
E+ ⊆ E, of edges that lie abovepq, and the tops of the firstmsubsegments,E− ⊆E, of edges that lie belowpq, since we know
that there are at leastmedges “blocking”pq from the top/bottom ofW. We chargepq’s length half toE+, charging each of the
m levels ofE+ from below, with 1

2m units of charge, and half toE−, charging each of them levels ofE− from above, with 1
2m

units of charge. We refer to this type of charge as the “red” charge.

A point p on a cutℓ is m-disk-dark with respect toℓ and W if, alongℓ⊥∩ int(W), there are at leastm disks ofD whose top
edges of their bounding box lie abovep in W andthere are at leastmdisks ofD whose bottom edges of their bounding box lie
belowp in W. We say that a subsegment ofℓ is m-disk-darkwith respect toW if all points of the segment arem-disk-dark with
respect toℓ andW. Thechargeablelength withinW of a cutℓ is defined to be the sum of the lengths of itsm-dark portion and
C times itsm-disk-dark portion. Refer to Figure 6.

l

Figure 6. Definition of m-disk-dark: Here, the points that are 2-disk-dark with respect to ℓ are those two highlighted subsegments of ℓ that lie within the shaded

regions, which comprise the set of points R(2,D)
x of W that are 2-disk-dark with respect to horizontal cuts.
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The important property ofm-disk-dark points along horizontalℓ is the following: If all points on subsegmentpq of ℓ are
m-disk-dark, then we can charge the length ofpqoff to the tops of the bounding boxes of the firstmdisks that lie abovepq, and
the bottoms of the bounding boxes of the firstmdisks that lie belowpq, since we know that there are at leastmdisks “blocking”
pq from the top/bottom ofW. We chargepq’s length half upwards, charging the tops of each of them “levels” of bounding
boxes of disks with1

2m units of charge, and half downwards, charging the bottoms ofeach of them “levels” of bounding boxes
of disks with 1

2m units of charge. We refer to this type of charge as the “blue” charge.

We say that a cutℓ is favorableif its chargeable length withinW is at least as large asthe sum of the lengths of them-span
andC times them-disk-span. The existence of a favorable cut is guaranteed by the following key lemma, whose proof (in the
Appendix) is similar to that of the key lemma in [11,19]:

Lemma 21 For any G, with disk setD, and any window W, there is a favorable cut.

Proof. We show that there must be a favorable cut that is either horizontal or vertical.

Let f (x) denote the “cost” of the vertical line,ℓx, passing through the point(x,0), where “cost” means the sum of the lengths
of them-span and them-disk-span forℓx. Then,

f (x) = |σm(ℓx)|+C|σm,D(ℓx)|.

Thus,

Ax =
Z 1

0
f (x)dx= A(m)

x +C ·A(m,D)
x =

Z 1

0
|σm(ℓx)|dx+C ·

Z 1

0
|σm,D(ℓx)|dx,

whereA(m)
x =

R 1
0 |σm(ℓx)|dx is the area of thex-monotone regionR(m)

x of points ofB that arem-dark with respect to horizontal

cuts, andA(m,D)
x =

R 1
0 |σm,D(ℓx)|dx is the area of thex-monotone regionR(m,D)

x of points ofB that arem-disk-dark with respect
to horizontal cuts. Refer to Figure 6. Similarly, defineg(y) to be the cost of the horizontal line throughy, and letAy =

R 1
0 g(y)dy.

Assume, without loss of generality, thatAx ≥ Ay. We claim that there exists a horizontal favorable cut; i.e., we claim that
there exists a horizontal cut,ℓ, such that its chargeable length is at least as large as the cost of ℓ, meaning that the length
of its m-dark portion plus itsm-disk-dark portion is at least|σm(ℓ)|+ |σm,D(ℓ)|. To see this, note thatAx can be computed

by switching the order of integration, “slicing” the regions R(m)
x and R(m,D)

x horizontally, rather than vertically; i.e.,Ax =
R 1

0 h(y)dy=
R 1

0 hm(y)dy+C · R 1
0 hm,D(y)dy, wherehm(y) is them-dark length of the horizontal line throughy, hm,D(y) is the

length of the intersection ofR(m,D)
x with a horizontal line throughy, andh(y) is the chargeable length of the horizontal line

throughy. In other words,hm(y) (resp.,hm,D(y)) is the length of them-dark (resp.,m-disk-dark) portion of the horizontal line
throughy. Thus, sinceAx ≥ Ay, we get that

R 1
0 h(y)dy≥ R 1

0 g(y)dy≥ 0. Thus, it cannot be that for all values ofy ∈ [0,1],
h(y) < g(y), so there exists ay = y∗ for whichh(y∗)≥ g(y∗). The horizontal line through thisy∗ is a cut satisfying the claim of
the lemma.

If, instead, we hadAx≤ Ay, then we would get avertical cut satisfying the claim. 2

Now that we know there must be a favorable cut,ℓ, we can charge off the cost of them-span and them-disk-span ofℓ,
making “red” charge on the bottoms (resp., tops) of segmentsof E that lie above (resp., below)m-dark points ofℓ, and making
“blue” charge on the tops (resp., bottoms) of bounding boxesof disks that lie above (resp., below)m-disk-dark points ofℓ. We
then recurse on each side of the cut, in the two new windows.

After a portion ofE has been chargedred on one side, due to a cutℓ, it will be within m levels of the boundary of the
windows on either side ofℓ, and, hence, withinm levels of the boundary of any future windows, found deeper inthe recursion,
that contain the portion. Thus, no portion ofE will ever be chargedred more than once from each side, in each of the two
directions, horizontal or vertical, so no portion ofE will ever pay more than

√
2/m times its length in red charge. It is important

to note that we are always charging red portions of the original edge setE: the new edges added are never themselves charged,
since they lie on window boundaries and cannot therefore serve to make a portion of some future cutm-dark. We charge at
the rate of 1

2m per unit length of the perimeter of the segment’s axis-aligned bounding box, and the worst case is achieved for a

segment of slope±1. Thus, the total red charge is at most
√

2
m L. Similarly, no side of a bounding box of a disk ofD will ever

be chargedbluemore than once. Since we do blue charging at the rate of1
2m per unit length of the bounding box, we get a total

blue charge of at most8R
m .

Overall, then, the total increase in cost caused by adding them-spans andm-disk-spans along favorable cuts is bounded by√
2

m L+C · 8
mR.

Thus, we can afford to add toE the vertical/horizontal segments that are them-spans of the favorable cuts. Also, we can
afford to replace the set of disks ofD that intersect them-disk-span,umbm, with asingledisk, centered at the midpoint ofumbm,
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of radius|umbm|. This disk is large enough to contain them-disk-spanumbm and is also large enough to perform all of the
covering that was done previously by the disks pierced byumbm, which shows that:

Lemma 22 The single disk of radius|umbm| centered at the midpoint of umbm is large enough to cover all of the region covered
by the disks ofD whose bounding box is pierced (from top to bottom) by umbm.

tm

bm

l

Figure 7. Proof of Lemma.

Furthermore, by adding length at mostO(|umbm|) we can also afford to add toE the length of a detour that connects the
midpoint of umbm to the center of one of the disks ofD that is pierced byumbm (since pierced disks have radius at most
|umbm|/2).

Our goal is to obtain a succinct representation of the set of disks that straddle the boundary of a window; indeed, we end up
with only a constant-size description, since we replace thepossibly many disks intersecting them-disk-span with a single disk
that does at least as much coverage ofY. This allows us to specify succinctly which clients are required to be covered within a
subproblem. 2

In the proof of the following theorem, we give details of the dynamic programming algorithm that yields:

Theorem 23 The min-cost covering tour problem has a PTAS.

Proof. Consider an optimal covering tour,OPT, of lengthL∗, whose associated disk setD∗ has total sum of radiiR∗. The
cost ofOPT is L∗+C ·R∗. Now, OPT is a simple polygon. If we are in the case of arbitrary transmission points, we can
(by Lemma 18) perturb the vertices ofOPT (and slightly grow the disks ofD∗) so that each lies at a grid point in a grid of
resolutionδ = O(ε ·diam(S)/n); otherwise, we know the vertices ofOPT lie among them input candidate transmission points.
Theorem 20 implies that we can convertOPT into a covering network,(E′,D ′), having them-guillotine property, while not
increasing the total cost by too much. In particular, the cost of OPT′ is at most

(

1+

√
2

m

)

L∗+C ·
(

1+
8
m

)

R∗ ≤ (1+O(1/m))(L∗+C ·R∗).

We now apply a dynamic programming algorithm, running inO(nO(m)) time, to compute a minimum-cost covering network
having a prescribed set of properties: (1) it satisfies them-guillotine property, which is necessary for the dynamic program to
have the claimed efficiency; (2) its disks cover the clientsY; and (3) its edge set contains an Eulerian subgraph. This third
condition allows us to extract a tour in the end. We only outline here the dynamic programming algorithm; the details are very
similar to those of [19], with the modification to account forthem-disk-span and the coverage constraints.

A subproblem is defined by a rectangleW whose coordinates are among those of theδ-grid points or of the input setT of
candidate transmission points, together with a constant amount (O(m)) of information about how the solution to the subproblem
interacts across the boundary ofW with the solution outside ofW. This information includes the following:

(a) For each of the four sides ofW, we specify a “bridge” segment and at most 2m other segments with endpoints amongG
that cross the side; this is done exactly as in the case of the Euclidean TSP on points, as in [19].

(b) For each of the four sides ofW, we specify a “disk bridge” disk corresponding to the disk centered on them-disk-span,
and, we specify each of at most 2mdisks ofD that are not intersected by the disk bridge segment, but are intersecting the
boundary ofW. TheseO(m) disks make up the disk boundary information; all points ofY within W that arenot already
covered by these disks are required to be covered by the subproblem.
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(c) We specify a required “connection pattern” withinW. In particular, we indicate which subsets of theO(m) specified edges
crossing the boundary ofW are required to be connected withinW. This, again, is done exactly as is detailed for the
Euclidean TSP on point sets in [19].

(d) We specify the number,k′, of disks that are budgeted to the subproblem.

The dynamic programming algorithm optimizes over all possible cuts, and all possible choices of disk information (using
O(m) disks) along the cut, and all possible partitions of the budgetk′ into the subproblems on each side of the cut.

In order to end up with a network having an Eulerian subgraph (so we can extract easily a tour), we use the same trick
as done in [19]: we “double” the bridge segments, and then require that the number of connections on each side of a bridge
segment satisfy a parity condition. Exactly as in [19], thisallows us to extract a tour from the network that results fromthe
dynamic programming algorithm, which gives a minimum-costcovering network that obeys the specified conditions.

The result is that in polynomial time (O(nO(m))) one can compute a minimum-cost covering network, from a special class of
such networks (with disk sets), and this network’s disks cover all ofY using at mostk disks. Theorem 20 guarantees that the cost
of the resulting covering network is very close, within factor 1+O(1/m), to the cost,L∗+C ·R∗, of an optimal solution. Thus,
once we extract a tour from the Eulerian subgraph, we have thedesired(1+ ε)-approximation solution, whereε = O(1/m). 2
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