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Mihai Bădoiu∗ Kenneth L. Clarkson†

May 2006

Abstract

Given a set of points P ⊂ R
d and value ε > 0, an ε-core-set S ⊂ P has the property that

the smallest ball containing S is within ε of the smallest ball containing P . This paper shows

that any point set has an ε-core-set of size d1/εe, and this bound is tight in the worst case.

Some experimental results are also given, comparing this algorithm with a previous one, and

with a more powerful, but slower one.

1 Introduction

Given a set of points P ⊂ R
d and value ε > 0, an ε-core-set S ⊂ P has the property that the

smallest ball containing S is within ε of the smallest ball containing P : the center of the smallest
ball containing S is within (1 + ε)rP distance to any point of P , where rP is the radius of the
smallest ball containing P . Bădoiu et al. showed that for any given ε, there is an ε-core-set whose
size depends only on ε, and not on the dimension d [BHI]. That paper also gave applications in
approximate k-center and k-flat clustering. (See also [HV] .) Some of these algorithms have a
running time that is exponential in the size of an ε-core-set, and so it is important to have a tight
estimate of that size.

An earlier paper showed that there are core-sets of size at most 2/ε, but the worst-case lower
bound, easily shown by considering regular simplices, is only d1/εe[BC]. (Another earlier paper
independently showed that there are ε-core-sets of size O(1/ε), as well as other results related to
the minimum enclosing ball problem[KMV]). Here we show that the lower bound is tight: there
are always ε-core-sets of size d1/εe. A key lemma in the proof of the upper bound is the fact that
the bound for Löwner-John ellipsoid pairs is tight for simplices.

The existence proof for these optimal core-sets is an algorithm that repeatedly tries to improve
an existing core-set by swapping: given S ⊂ P of size k, it tries to swap a point out of S, and another
in from P , to improve the approximation made by S. Our proof shows that a 1/k-approximate
ball can be produced by this procedure. (That is, if the smallest ball containing the output set is
expanded by 1 + 1/k, the resulting ball contains the whole set.) While it is possible to bound the
number of iterations of the procedure for a slightly sub-optimal bound, such as 1/(k − 1), no such
bound was found for the optimal case. However, we give experimental evidence that for random
pointsets, the algorithm makes no change at all in the core-sets produced by the authors’ previous
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procedure, whose guaranteed accuracy is only 2/k. That is, the algorithm given here serves as a
fast way of verifying that the approximation ε is 1/k, and not just 2/k.

We also consider an alternative local improvement procedure, with no performance guarantees,
that gives a better approximation accuracy, at the cost of considerably longer running time.

Some notation: given a point set P , let B(P ) denote the 1-center of P , that is, the smallest ball
containing P . Let cP denote the center of B(P ), and let rP denote the radius of B(P ). (Note that
if P is itself a ball, cP and rP are the center and radius of that ball.)

The next two sections give the lower and upper bounds, respectively. Section 4 shows that similar
bounds hold, using similar constructions, for a slightly different definition of core-sets. Next, the
experimental results are given, and then some concluding remarks.

2 A Lower Bound for Core-Sets

Theorem 2.1 Given ε > 0, there exists d ∈ N and a point set P ⊂ R
d+1 such that any ε-core-set

of P has size at least d1/εe.

Proof: We can take P to be the set of d + 1 vertices of a regular d-simplex, where d ≡ b1/εc.
A convenient representation for such a simplex has vertices that are the natural basis vectors
e1, e2, . . . , ed+1 of R

d+1, where ei has the i’th coordinate equal to 1, and the remaining coordinates
zero. Let core-set S contain all the points of P except one point, say e1. The circumcenter cP is
(1/(d + 1), 1/(d + 1), . . . , 1/(d + 1)), and its circumradius is

rP :=
√

(1− 1/(d + 1))2 + d/(d + 1)2 =
√

d/(d + 1).

The circumcenter cS is (0, 1/d, 1/d, . . . , 1/d), and the distance ‖e1− cS‖ of that circumcenter to e1

is
‖e1 − cS‖ =

√

1 + d/d2 =
√

1 + 1/d.

Thus
‖e1 − cS‖/rP = 1 + 1/d = 1 + 1/ b1/εc ≥ 1 + ε,

with equality only if 1/ε is an integer. The theorem follows.

3 Optimal Core-Sets

In this section, we show that there are ε-core-sets of size at most d1/εe. The basic idea is to show
that the pointset for the lower bound, the set of vertices of a regular simplex, is the worst case for
core-set construction.

We will need the following lemma, proven in [GIV].

Lemma 3.1 Any closed half-space that contains the center cP of the minimal enclosing ball of P
also contains a point of P that is at distance rP from cP . It follows that for any point q at distance

K from cP , there is a point q′ of P at distance at least
√

r2
P

+ K2 from q.

Lemma 3.2 Let B′ be the largest ball contained in a simplex T , such that B ′ has the same center

as the minimum enclosing ball B(T ). Then

rB′ ≤ rT /d.
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Proof: We want an upper bound on the ratio rB′/rT ; consider a similar problem related to
ellipsoids: let e(T ) be the maximum volume ellipsoid inside T , and E(T ) be the minimum volume
ellipsoid containing T . Then plainly

rd

B′

rd

T

≤ Vol(e(T ))

Vol(E(T ))
,

since the volume of a ball B is proportional to rd

B
, and Vol(e(T )) ≥ Vol(B′), while Vol(E(T )) ≤

Vol(B(T )). Since affine mappings preserve volume ratios, we can assume that T is a regular simplex
when bounding Vol(e(T ))/ Vol(E(T )). When T is a regular simplex, the maximum enclosed ellipsoid
and minimum enclosing ellipsoid are both balls, and the ratio of the radii of those balls is 1/d [H].
(In other words, any simplex shows that the well-known bound for Löwner-John ellipsoid pairs is
tight[J].) Thus,

rd

B′

rd

T

≤ Vol(e(T ))

Vol(E(T ))
≤ 1

dd
,

and so
rB′

rT

≤ 1

d
,

as stated.

Lemma 3.3 Any d-simplex T has a facet F such that r2
F
≥ (1− 1/d2)r2

T
.

Proof: Consider the ball B′ of the previous lemma. Let F be a facet of T such that B′ touches
F . Then that point of contact p is the center of B(F ), since p is the intersection of F with the line
through cT that is perpendicular to F . Therefore

r2
B = r2

B′ + r2
F ,

and the result follows using the previous lemma.
Next we describe a procedure for constructing a core-set of size d1/εe.
Algorithm. Pick an arbitrary subset S ⊂ P of size d1/εe. (We might also run the algorithm

of [BC] until a set of size d1/εe has been picked, but such a step would only provide a heuristic
speedup.) Repeat the following until done:

• Find the point a of P farthest from cS ; let Sa := S ∪ {a};

• Find the facet F of conv Sa with the largest circumscribed ball, and let Sa\b denote the vertex
set of F ;

• If rSa\b
≤ rS , return S as an ε-core-set; otherwise set S := Sa\b, and repeat these steps.

The step yielding Sa generally increases the radius, while the step yielding Sa\b makes a set that is
more “efficient”.

Lemma 3.4 In the above algorithm, letting K := ‖cSa
− cS‖,

rSa
≥ ‖a− cS‖ −K
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and

rSa
≥

√

r2
S

+ K2,

or equivalently, letting D be a value with D ≤ ‖a− cS‖,
rSa

rS

≥ max{‖a− cS‖/rS −K/rS,
√

1 + (K/rS)2} ≥ (D/rS + rS/D)/2.

Proof: This is a restatement of part of the proof of Theorem 2.2 of an earlier paper[BC]. For
completeness, here is the proof. The first inequality follows from rSa

≥ ‖a− cSa
‖ and the triangle

inequality. For the second inequality, by Lemma 3.1, there is a point q′ ∈ S such that

rSa
≥ ||cSa

− q′|| ≥
√

r2
S

+ K2.

The last statement of the lemma follows by picking K/rS = (β2 − 1)/2β, where β := D/rS ; this
choice makes the two terms in the maximum equal, minimizing the lower bound expression. The
minimum value is then (β + 1/β)/2, as given.

Theorem 3.5 Any point set P ⊂ R
d has an ε-core-set of size at most d1/εe.

Proof: Let R̂ := rP (1 + ε).
We will show that when the a ∈ P in the first step is farther than R̂ from cS , it must hold that

rS < rSa\b
, so that the algorithm will not stop at the current iteration.

Suppose
||a− cS || > R̂. (1)

We will first use this assumption to show (2) below.
By the triangle inequality,

||cS − cP || ≥ ||a− cS || − ||a− cP || > rP (1 + ε)− rP = εrP ,

so
||cS − cP ||2 > ε2r2

P .

Using this bound, and applying Lemma 3.1 to cS and cP (with the latter in the role of “q”), we
obtain that there is a point q′ ∈ S such that

r2
P ≥ ||cP − q′||2 ≥ r2

S + ||cS − cP ||2 > r2
S + ε2r2

P ,

and so

r2
S < r2

P (1− ε2) = R̂2 1− ε2

(1 + ε)2
= R̂2 1− ε

1 + ε
.

That is, assuming (1),

rS < R̂

√

1− ε

1 + ε
. (2)

The assumption (1) and Lemma 3.4 imply

rSa

rS

≥ R̂/rS + rS/R̂

2
, (3)
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by picking D = R̂.
Using (3) and the lower bound of Lemma 3.3 on the size of B(F ), we obtain

rSa\b

rS

≥ rSa

rS

√

1− 1

d1/εe2
≥ R̂/rS + rS/R̂

2

√

1− ε2.

The last expression is decreasing in rS/R̂, and so from (2), we have

rSa\b

rS

>

√

1−ε

1+ε
+

√

1+ε

1−ε

2

√

1− ε2 = 1.

Therefore rSa\b
> rS when ||a− cS || > R̂, and so termination of the algorithm implies ||a− cS || ≤

R̂ := rP (1 + ε), for all a ∈ P . Since there are only finitely many possible values for rS , we conclude
that the algorithm successfully terminates with an ε-core-set of size d1/εe.

4 Alternate Definition

An alternate definition for an ε-core-set S bases the size of the ball to contain P not on rP , but
rather on rS . The following result shows that the above algorithm gives a core-set, in this alternate
sense, whose size is best possible for the worst case, as provided by the lower-bound example above.

Theorem 4.1 Any set P of points has a subset S of size at most d1/εe such that every point of P
is within rS/(1− ε) of cS. There are sets P for which no smaller subset S has this property.

Proof: The example of Section 2 implies that there are ε > 0 so that ε-core-sets in this sense
must have size at least 1/ε.

The algorithm yielding the upper bound also yields a core-set in this sense, which can be seen
as follows. In the proof of the upper bound, Theorem 3.5, the condition that S should satisfy for
this alternate definition is that every point a ∈ P is within distance rS∗/(1 − ε) of cS∗ . So (1) is
replaced by the assumption that

‖a− cS‖ > rS/(1− ε).

Lemma 3.4 and this assumption imply

rSa

rS

≥ (1/(1− ε) + (1− ε))/2 = 1 + ε2/2(1− ε),

where D in the lemma takes the value rS/(1− ε). Thus

r2
Sa\b

r2
S

>

(

rSa

rS

)2
√

1− ε2
2

≥
(

1 +
ε2

2(1− ε)

)2

(1− ε2)

= (1− ε2)(1 + ε2/(1− ε) + ε4/4(1− ε)2)

= 1− ε2 + ε2(1 + ε) + (1− ε2)ε4/4(1− ε)2

= 1 + ε3 + ε4(1 + ε)/4(1− ε)

> 1 + ε3
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and so the assumption ||a− cS|| > rS/(1− ε) also implies that the algorithm will not exit after this
iteration. Therefore, when the algorithm exits, ‖a− cS‖ ≤ rS/(1− ε), and as above, the rS values
increase from iteration to iteration, and have only finitely many possible values.

The proof implies that the value of rS increases by a factor of at least
√

1 + ε3 at each iteration.
Since we can assume that rS ≥ rP /2 initially, the algorithm requires at most 2 log1+ε3 2 = O(1/ε3)
iterations to obtain an ε-core-set in this alternate sense.

5 Experimental Results

Some experimental results on the approximation ratios are shown in Figures 1 through 8, each for
different dimensional random data and distributions. The ordinates are the sizes of the core-sets
considered, and the abscissas are the percentage increase in radius needed to enclose the whole set,
relative to the smallest enclosing sphere.

In the plots,

• (hot start) a plain line shows results for the algorithm given here, starting from the output of
the previous algorithm guaranteeing a 2/k-core-set;

• (old) a dashed line is for the previous algorithm guaranteeing a 2/k-core-set;

• (random start) a bullet (•) is for the algorithm given here, starting from a random subset;

• (1-swap) a dot (.) is for an algorithm that is like the one given here, but that works a little
harder: it attempts local improvement by swapping a point into the core-set, and another
point out of the core-set. The possible points considered for swapping in are the three farthest
from the circumcenter of the current core-set, while the points considered for swapping out
are those three whose individual deletion leaves the circumradius as large as possible.

Figures 9 through 16 show the number of iterations needed for the algorithms, using the same
graphing scheme.

Note that the random-start algorithm often does as well or better as hot-start algorithm, al-
though a small but non-trivial number of iterations are required, while often the hot-start algorithm
needs few or no iterations: the optimal algorithm serves as a confirmation that the “old” algorithm
returns a better result than guaranteed.

We also performed tests of the gradient-descent method described in [BC]. The algorithm is
quite simple: start with an arbitrary point c1 ∈ p. Repeat the following step K times: at step
i find the point p ∈ P farthest away from the current center ci and move towards p as follows:
ci+1 ← ci +(p− ci)

1

i+1
. For K = 1/ε2, this algorithm produces a point which is at distance at most

ε away from the true center. For this requirement, it can be shown that this algorithm is tight on
the worst case for the case of a simplex. However, if we require that the farthest away point from
the point produced is at distance at most (1 + ε)rP , it is not clear if the analysis of the algorithm
is tight. In fact, to our surprise, in our experiments the distance between the point produced and
the farthest away point is 99.999% of the time under (1+1/K)rP and always under (1+1.1/K)rP .
We tested the algorithm under normal and uniform distributions. An empiric argument to try to
explain this unexpected behaviour is the following: it has been noted that the algorithm picks most
(but not all) of the points from a small subset in a repetitive way, i.e., for example one point can
appear every 5 − 10 iterations. Now, if you only pick 2 points A and B in an alternate way (A,
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Figure 1: d = 3, normal
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Figure 2: d = 3, uniform
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Figure 3: d = 10, normal
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Figure 4: d = 10, uniform
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Figure 5: d = 100, normal
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Figure 6: d = 100, uniform
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Figure 7: d = 200, normal

•

•
• •
•

•

•

•

•
•
• •
•
•
• •

•

.

.

.
. .

.

.

.

.

.

.

. .

.

5 10 15 20

50

55

60

65

core-set size k

% error
times
k

Figure 8: d = 200, uniform
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B, A, B, ...), (i.e., subcase of the case when the solution is given by 2 points), the solution will
converge quickly to the subspace spanned by A and B and it’s easy to see that the error within the
subspace will be at most 1/K after K steps. This empiric argument seems to give some intuition
on why the algorithm give so much better error in practice. It may also be possible to prove this
algorithm converges much faster theoretically.

Figures 17 through 19 show convergence results for the “gradient descent” algorithm. They
show the percentage overestimate of the radius of the minimum enclosing ball, as a function of the
number of iterations i. The first two figures show results for d = 2, 3, 10, 100, and 200, and the
final figure shows the results for point distributed in an annulus with d = 10. Note that the error
is often less than 1/i and never more than a small multiple of it.

6 Conclusions

In this paper we have proven the existence of optimal-sized core-sets for k-center clustering. We have
also performed experimental tests and observed that in practice the error is much lower than the
error that is guaranteed for a variety of core-set construction algorithms and the gradient-descent
algorithm explained in [BC].
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Figure 11: d = 10, normal
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Figure 12: d = 10, uniform
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Figure 13: d = 100, normal
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Figure 14: d = 100, uniform
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Figure 15: d = 200, normal
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Figure 16: d = 200, uniform
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