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Abstract

We describe a randomized algorithm for computing

the trapezoidal decomposition of a simple polygon.

Its expected running time is linear in the size of the

polygon. By a well-known and simple linear time re-

duction, this implies a linear time algorithm for trian-

gulating a simple polygon. Our algorithm is consid-

erably simpler than Chazelle's (1991) celebrated op-

timal deterministic algorithm and, hence, positively

answers his question of whether a simpler random-

ized algorithm for the problem exists. The new algo-

rithm can be viewed as a combination of Chazelle's

algorithm and of non-optimal randomized algorithms

due to Clarkson et al. (1991) and to Seidel (1991),

with the essential innovation that sampling is per-

formed on subchains of the initial polygonal chain,

rather than on its edges. It is also essential, as in

Chazelle's algorithm, to include a bottom-up prepro-

cessing phase previous to the top-down construction

phase.

1 Introduction

Polygon triangulation is a classic problem in compu-

tational geometry, as it was one of the �rst problems

studied in the �eld [15]. Furthermore, there are sev-
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Figure 1: A triangulated simple polygon

eral other problems in computational geometry deal-

ing with polygons that have eÆcient solutions that

begin with polygon triangulation as a preprocessing

step (e.g., see [18, 20]). Thus, there has been consid-

erable interest in �nding eÆcient algorithms for this

problem.

1.1 Related Prior Work

Garey et al. [15] were the �rst to provide a non-

trivial algorithm for the polygon triangulation prob-

lem. Their algorithm runs in O(n logn) time and is

based on an elegant plane-sweeping paradigm. Asano

et al. [2] show that this bound is in fact optimal for

polygons that may contain holes. For simple poly-

gons without holes, the lower bound of Asano et al.

does not hold, however. This fact, and the impor-

tance of the polygon triangulation problem, in turn

prompted several researchers to work on methods for

beating O(n logn) time for this problem.

Fournier and Montuno [14] and Chazelle and In-

cerpi [6] showed, even prior to the Asano et al. lower

bound result, that to triangulate a simple polygon in

linear time it is suÆcient to produce a trapezoidal de-

composition (trapezoidation) of a simple polygon. In

addition, Yap [31] showed that a similar result holds

in a parallel computing model. A trapezoidation is

formed by shooting a vertical ray through each vertex

of the polygon, stopping each ray as soon as it hits an-

other segment on the polygon. Since this early work
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showing the importance of trapezoidation for trian-

gulation, every published triangulation algorithm has

concentrated on improving the running time of pro-

ducing a trapezoidation of a simple polygon. For ex-

ample, Tarjan and Van Wyk [30] and Kirkpatrick et

al. [21] showed that the trapezoidation step can be

performed inO(n log logn) time, resulting in a similar

running time for the polygon triangulation problem.

Using randomization, Clarkson et al. [10], Clarkson

et al. [8, 7], and Seidel [28] gave simple randomized

algorithms that run in O(n log� n) expected time. Fi-

nally, in a much celebrated and anticipated result,

Chazelle [4] showed that one could, in fact, triangu-

late a polygon in linear time. Goodrich [16] subse-

quently showed that a similar result can be proven

for a parallel computation model. Unfortunately, the

trapezoidation methods utilized by these optimal de-

terministic algorithms are quite complex. Indeed,

this conceptual complexity has led many researchers,

including Chazelle [4] himself, to ask whether there

is a simple randomized algorithm for triangulating a

polygon in linear time. To our knowledge, no simple

linear-time randomized algorithm has been presented

previously.

1.2 Our Results

We describe a randomized algorithm for computing

the trapezoidation of a simple polygon. The ex-

pected running time of our algorithm is linear in the

size of the polygon. As already mentioned, from the

trapezoidation, a triangulation of the polygon can

be obtained in linear time using well-known meth-

ods [6, 14]. Thus, our algorithm provides a random-

ized algorithm for polygon triangulation that runs in

linear expected time. In addition, our algorithm is

considerably simpler than Chazelle's celebrated opti-

mal deterministic algorithm; hence, it addresses the

open problem posed by Chazelle and others as to the

existence of a simple randomized triangulation algo-

rithm that runs in linear expected time.

The general approach of our algorithm for comput-

ing a trapezoidation of a simple polygon P follows

that of the non-optimal randomized algorithms by

Clarkson et al. [8, 7] and Seidel [28]. That is, we com-

pute the trapezoidation of a successively �ner sample

from P , using an algorithm for arbitrary edges (thus

with nonlinear running time), in O(log� n) rounds.

The fact that the edges come from a simple polygo-

nal chain is used to eÆciently perform the compu-

tation of the conict lists of the trapezoidation of

the sample, once in each round, by walking along the

original polygonal chain in the trapezoidation. Un-

fortunately, an approach that maintains the lists of

edge conicts for the trapezoidation of the sample is

doomed to spend at least linear time per round. To

avoid this, we decompose the original polygonal chain

into smaller subchains, sample from the resulting set

of subchains and, taking advantage of the coherence

between edges in the polygonal chain, maintain lists

of subchain conicts for the resulting subproblems,

rather than edge conicts.

A technical diÆculty in this approach is the de�ni-

tion of the subproblems de�ned by a set of subchains.

For the approach to work, one needs a decomposi-

tion with a size that is proportional to the number

of subchains involved, and with faces (subproblems)

of bounded complexity. The later requirement is orig-

inated in the need to be able to derive appropriate

bounds for the sizes of the conict lists, and in the

need to have a decomposition that can be traversed ef-

�ciently as one walks along the polygonal chain. This

concept also appears in Chazelle's algorithm; follow-

ing him, we call this bounded-complexity property

conformality. Fortunately, our problem is simpler;

we describe a simple procedure that computes a con-

formal decomposition in time linear in the number of

edges in the set of subchains. This is actually sub-

linear in the size of the input chain because it is per-

formed for a small sample. In order to traverse the

decomposition eÆciently, we need a data structure

for each subchain that answers intersection queries

between a vertical edge, called a portal, and the sub-

chain. Thus, as in Chazelle's algorithm, we need a

preprocessing phase that constructs these data struc-

tures prior to the actual construction phase. These

phases proceed bottom-up and top-down respectively.

Randomization also plays an important role in the

preprocessing phase. Chazelle has argued that such a

combination of bottom-up and top-down approaches

is indispensable.

A �nal technicality is the proof of appropriate sam-

pling bounds for the sizes of the chain-conict lists of

our conformal decomposition: such bounds are known

under locality or monotonicity properties that our de-

composition does not satisfy [1, 9, 11, 22, 24]. For-

tunately, we can prove appropriate bounds using the

fact that, although the faces in the decomposition do

not satisfy a locality property, they are chosen from

a relatively small \pool" of candidates that satisfy a

locality property.

This paper is organized as follows. First, for com-

parison purposes, we present a detailed outline of a

non-optimal randomized algorithm (Sec. 2). We then

describe our procedure to compute a conformal de-

composition for a set of chains (Sec. 3) and our linear

time algorithm (Sec. 4). Finally, we obtain appropri-

ate sampling bounds (Sec. 5) for analyzing our algo-
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rithm (Sec. 6). We conclude with some remarks and

state some open problems (Sec. 7).

2 A Non-optimal Algorithm

For the purpose of comparison with our algorithm,

and as a warm-up, we outline a non-optimal random-

ized algorithm which is an adaptation from those in

[8, 7] and [28]. Let `0 be a simple polygonal chain,

S be the corresponding set of polygon edges, and let

n = jSj. We make the nondegeneracy assumption

that no two vertices have the same horizontal coordi-

nate; this can be simulated symbolically [13, 32, 33],

e.g., through lexicographic ordering. For R � S, let
T (R) denote the usual (vertical) trapezoidal decom-

position or trapezoidation of the plane induced by R
(obtained by introducing vertical visibility rays from

the endpoints of edges in R).

Figure 2: The trapezoidation of a simple polygon.

For � 2 T (R), let Sj� denote the conict list of

�, that is, the set of those edges in S that intersect

(the interior of) �, and let n� = jSj�j. We adopt the

following sampling model: For p with 0 � p � 1, a

p-sample R from S is obtained by taking each s 2 S
into R with probability p independently.

2.1 Algorithm Outline

The algorithm constructs the trapezoidation of a suc-

cessively �ner random sample in O(log� n) rounds.

Formally, let us de�ne a global probability pi =

1= log(i) n for round i in the computation, and let Ri

be a pi-sample from S chosen in this round (so each

s 2 S is taken with probability pi independently).
Furthermore, let R+

i =
S
j�i Rj . Note that R+

i is a

p+i -sample from S where p+i �
P

j�i pj = �(pi). In

the i-th round, given T (R+

i�1) and its conicts with

respect to S (that is, Sj� for � 2 T (R+

i�1)) the algo-

rithm constructs T (R+

i ) and its conicts with respect

to S as summarized in Fig. 3.

Step 1.a, for a � 2 T (R+

i�1), involves a simple scan

Non-Optimal-Trapezoidation (i-th round)

Input: T (R+

i�1) and its conicts w.r.t. S

Output: T (R+

i ) and its conicts w.r.t. S

1. For each � 2 T (R+

i�1)

a. Determine Rij�

b. T�  

(
T (Rij�[fe1; e2g) restricted to �,

where e1; e2 are the edges that

bound �

2. Merge all the T�, � 2 T (R
+

i�1), into T (R
+

i )

3. Compute Sj� for all � 2 T (R+

i ), by \walking"

along `0 in Ti

Figure 3: Non-optimal trapezoidation procedure.

(a) (b)

Figure 4: The three dotted edges are added to the

trapezoidation determined by the two other edges:

(a) Local trapezoidations after Step 1, and (b) trape-

zoidation after merging in Step 2.

of the conict list and hence takes time O(n�).
1 Step

1.b computes T (Rij�[fe1; e2g) restricted to �, where
e1; e2 are the (non-vertical) edges bounding �. This

takes timeO(r� log r�), where r� = jRij�j, using one

of several algorithms for computing a trapezoidation

with this complexity, e.g., either the randomized algo-

rithm by Clarkson and Shor [9] or the one by Mulmu-

ley [23]. Step 2 involves \stitching" together pieces of

trapezoids in T (R+

i ) that are \chopped" by vertical-

rays in T (R+

i�1). In other words, vertical-rays that

are no longer necessary are removed. See Fig. 4. It

takes total time linear in the sizes of the T�'s, and
hence, the time required is dominated by that of Step

1. Since each trapezoid in T (R+

i ) has at most four

neighbors, then, assuming that an appropriate data

structure is used, Step 3 can be performed in time

proportional to the size of `0, which is n, plus the
total number of segment-trapezoid conicts found.

1Alternatively, one can maintain for each s 2 S the list of

trapezoids it intersects, and then the scan is not necessary.
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2.2 Sampling Bound and Analysis

The algorithm can be analyzed with the use of the fol-

lowing sampling bound. Let R be a p-sample from S.
Then, for any function f such that f(x) = O(ex=2),

E

2
4 X
�2T (R)

f(pn�)

3
5 = O(r); (1)

where r = pn is the expected size of R (see [9, 24] or

Section 5). Using f(x) = x in Eqn. (1), the expected

total size of the conict lists is O(n). This implies

a bound of O(n) for the expected time required by

all steps in a round, except Step 1.b. Denoting the

expectation with respect to the �rst i samples by E�i,

the total expected time required by Step 1.b is

E�i

2
64 X
�2T (R+

i�1)

O(r� log r�)

3
75

= E�i�1

2
64 X
�2T (R+

i�1)

O ((pin�) log(pin�))

3
75

=

�
pi

pi�1

�
log

�
pi

pi�1

�
�O(pi�1n)

=
1

log
(i) n

log

 
log

(i�1) n

log
(i) n

!
�O(n) = O(n);

where we have used both f(x) = x logx and f(x) = x
in Eqn. (1). Thus, since the number of rounds is

O(log� n), the total expected time required by the

algorithm is O(n log� n).

3 Conformal Decomposition

Our algorithm considers subchains of the original

polygonal chain, rather than individual edges, and

applies sampling to subchains. In order to e�ectively

deal with such samples, we need a method for de�n-

ing subproblems of constant descriptive complexity.

Consider a set L of en chains with a corresponding set

S of n edges. Let K � L be a subset of chains of L
and let R � S be the corresponding set of edges. For

convenience, we write T (K) to denote the trapezoi-

dation T (R). We suppose that we are given a pla-

nar subdivision representation (e.g., see [3, 19, 26]) of

T (K). This planar subdivision has O(jRj) faces and
each face has at most 2 edges and 4 vertical rays on

its boundary. For our application, we need a planar

subdivision with O(jKj) faces, each of which is con-

formal [4], that is, bounded by portions of at most

(a) (b)

Figure 5: (a) Subdivision after Step 2, and (b) sub-

division after Step 3.

O(1) chains inK and at mostO(1) vertical rays deter-
mined by their vertices. We obtain this subdivision

retraction by selecting certain rays of T (K). More

precisely, our candidate rays are those ray-pairs (one

ray upward and one ray downward) incident to a lo-

cally extreme vertex of a chain (a vertex without in-

cident polygonal edges either on its left or on its right

side).

If we start with the set of chains K and intro-

duce all of these ray-pairs, the plane is divided into

faces bounded by at most two chains and at most

two ray-pairs which we call chain-trapezoids; how-

ever, the number of faces may be more than the de-

sired bound O(jKj). Let us therefore consider the

augmented adjacency graph eG(K) of this decomposi-

tion de�ned as follows: the nodes correspond to both

chain-trapezoids and (locally extreme) ray-pairs, and

there is an arc between a chain-trapezoid and a ray-

pair if they are incident (Fig. 5(a) illustrates a portion

of this graph). Note that the degree of a trapezoid

node is two and the degree of a ray-pair node is three.

This graph can be easily obtained from the usual

adjacency graph G(K) of T (K).2 The procedure

conformal, in Fig. 7, selects O(jKj) ray-pairs which

induce a conformal decomposition of size O(jKj).

The procedure selects �rst all the extreme ray-

pairs, that is, those originating from the leftmost

and righmost vertices of each chain. The faces of

the resulting subdivision T are simply connected (see

Fig. 5(a)). Step 3 selects other ray-pairs in a \non-

local" manner, so as to obtain a subdivision whose

faces are conformal (see Fig. 5(b)). More precisely,

each face is bounded by at most two chains and at

most two ray-pairs. Note that the portion of a chain

bounding one of these faces does not need to be mono-

tone, and also that one of the bounding chains itself

can also determine one or both bounding ray-pairs.

2It is not really necessary to determine eG(K) explicitly, it

is suÆcient to use G(K). However, the introduction of eG(K)

simpli�es the description of the algorithm.
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Figure 6: Some examples of chain-trapezoids. A

chain-trapezoid is determined by up to four distinct

chains, but can be determined by a single one as in the

bottom-left example. Also, becuase ray-pairs from

endpoints are not necessarily selected, the situation

in the bottom-right example can happen.

See Fig. 6.

This algorithm clearly runs in O(jRj) time: given

input T (K), all steps can be performed by simple

traversals of G(K), eG(K), and the �f 's. Moreover,

the number of selected ray-pairs is O(jKj). It is clear

that T has O(jKj) selected ray-pairs; furthermore,

since we select only ray-pairs with real-degree 3 in

each tree �f , this in turn implies that at most O(jKj)

additional rays are selected in Step 3.

Let eT (K) be the collection of all the conformal

faces. Therefore, we have the following:

Lemma 3.1 Let K be a set of chains and let R � S
be the corresponding set of edges, and suppose that

we are given a planar subdivision representation of

the trapezoidation T (R) of the edges in R. Then we

can construct in O(jRj) time a conformal subdivisioneT (K) containing O(jKj) faces.

We refer to the selected (single) rays as portals,

to the conformal faces as chain-trapezoids (as they

are de�ned by chains rather than by edges), and

to the conformal decomposition eT (K) as the chain-

trapezoidal decomposition or chain-trapezoidation.

4 The Linear-Time Algorithm

Our new algorithm can be viewed as a re�nement of

the non-optimal algorithm of the previous section, in

which sampling is applied to subchains of the orig-

inal chain `0 rather than to edges. More precisely,

the chain `0 is divided into a set L of subchains of

length �, and then a p-sample K � L is obtained by

taking each ` 2 L into K with probability p inde-

pendently. For each chain-trapezoid e� in the chain-

conformal(K; T (K))

Input: A set of chains K and the trapezoidation

T (K) of its edges.

Output: Conformal decomposition eT (K), and its

adjacency graph.

1. Obtain the augmented adjacency graph eG(K)

from T (K).

2. Select the extreme ray-pairs of each chain. Let T

be the planar subdivision (which is simply con-

nected) induced by the chains in K and these

selected ray-pairs. (See Fig. 5(a).)

3. For each face f of T , do the following:

(a) Let the tree �f be the subgraph of eG(K)

corresponding to f (it includes leaves corre-

sponding to ray-pairs that bound f). (See

Fig. 8.)

(b) Let the real-degree of a vertex in �f be the

number of incident edges corresponding to

branches that contain already selected ray-

pairs as leaves.

(c) Select any ray-pair with real-degree 3.

4. Construct eT (K), the decomposition induced by

all the selected ray-pairs, and its adjacency

graph. (See Fig. 5(b).)

Figure 7: Conformal decomposition procedure.

Figure 8: The tree �f for the upper middle face in

Fig. 5. The nodes corresponding to chain-trapezoids

are represented by small thick circles, and the nodes

corresponding to ray-pairs are represented by black

circles at the corresponding locally extreme vertices.
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trapezoidation eT (K), let Lje� denote the set of sub-

chains in L that intersect (the interior of) e�. Let

n = jLj, en
e�
= jL

je�
j. In analogy with Eqn. (1), one

would conjecture a bound

E

2
4 X
e�2eT (K)

f(pen
e�
)

3
5 = O(pen): (2)

In particular, the expected total chain-conict size

would be O(en) = O(n=�); thus, it can be made ap-

propriately sublinear by choosing � suÆciently large.

This is a �rst step in obtaining a linear time algo-

rithm. Unfortunately, we cannot proof such a bound;

however, in Sect. 5, we proof a bound that is suÆcient

for our purpose.

At the same time, our algorithm can also be

viewed as a simpli�cation of Chazelle's algorithm,

as it considers a subdivision of the input chain into

successively �ner subchains, which we call a grada-

tion. However, while Chazelle's algorithm computes

the chain-trapezoidation of all the subchains in each

level starting with the coarser level, our algorithm

does the same but for a random sample of the sub-

chains at each level. As the subchains become �ner,

the random sample also becomes �ner (the proba-

bility approaches 1). At the last level, the chain-

trapezoidation of the sample coincides with the trape-

zoidation of the complete chain, the desired result. In

this section, we �rst de�ne precisely the gradation of

subchains and its corresponding probabilities, then

we give an outline of the two phases of the algorithm,

and �nally describe the top-down construction phase

and the bottom-up preprocessing phase.

4.1 Gradation of Subchains

The sampling in our algorithm is performed on a gra-

dation of subchains with O(log� n) levels de�ned as

follows (Chazelle uses O(logn) levels). Let `0 be the
initial simple polygonal chain of size n. We decom-

pose `0 into collections Li of subchains of length �i,
i = 0; : : : ; k, starting with L0 = f`0g and �0 = n,
and with Li i > 1, obtained by decomposing each

chain ` 2 Li�1 into a set L
`
i of subchains each of size

�i = log
2 �i�1, and ending with k = O(log� n) so that

�k = O(1). Thus, the subchains in the i-th gradation

are Li =
S
`2Li�1

L`
i . We denote the total number of

subchains in Li by eni = jLij = n=�i.

Instead of attempting to compute eT (Li) directly

(the analog of what Chazelle's algorithm does), our

algorithm further simpli�es the problem by taking a

random sampleKi of subchains from Li of a size such

that one can a�ord to compute the trapezoidation of

L0

L1

L2

L3

Figure 9: Gradation of subchains.

Ki using an ineÆcient algorithm [9, 15, 23]. Specif-

ically, for each i � 1, we choose a global probability

pi = 1= log3 �i�1, and let Ki be a pi-sample from Li.

In the i-th round, it is more convenient to deal with

the set of subchainsK+

i that consists of the subchains

inKi and the subchains in Li contained in all the pre-

vious samplesKj , j < i. That is,K+

i = Ki[f`j` 2 Li

and ` � `0 where `0 2 Kj ; j < ig. Note that the ex-

pected number of the later subchains is

X
j<i

enj � pj � �j
�i

= eni �X
j<i

pj = eni � o(pi):
That is, the expected size of K+

i is dominated by the

expected size of Ki. As a result, from the analysis

in Section 5, it will follow that adding the subchains

of previous samples does not a�ect substantially the

randomness of the sample Ki.

4.2 Overview of the Algorithm

As mentioned previously, our polygon trapezoida-

tion algorithm consists of two phases. The main

phase proceeds top-down constructing the decom-

positions eT (K+

i ) iteratively. For each chain trape-

zoid e� 2 eT (K+

i ), the algorithm maintains its chain-

conict list L
ije� � Li, that is, the set of subchains

in Li that intersect (the interior of) e�. Maintaining

chain-conict lists, rather than edge-conict lists, is

essential to the eÆciency of our algorithm. At the

beginning of the i-th round, we have eT (K+

i�1) and

the chain-conict lists L
i�1je� for each e� 2 eT (K+

i�1),

then the algorithm adds Ki to eT (K+

i�1) to obtaineT (K+

i ), and computes the new chain-conict lists by

following the chain `0 without actually scanning every
edge. In a preprocessing bottom-up phase, the algo-

rithm constructs for each chain ` 2 Li, i = 1; : : : ; k, a
data structure D(`) that supports portal-chain inter-
section queries: given a portal �, determine whether

the chain ` intersects �. These queries are needed for

the eÆcient computation of chain-conict lists during

the construction phase. These data structures also

support ray-shooting queries (given a point x, deter-
mine the lowest point in ` hit by a vertical ray upward
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Top-Down (i-th round)

Input: eT (K+

i�1) and its conicts w.r.t. Li�1

Output: eT (K+

i ) and its conicts w.r.t. Li

1. For each e� 2 eT (K+

i�1)

a. Determine K
ije�

b. T
e�  

(
T (K

ije�[f`1; `2g) restricted to e�,

where `1; `2 are the chains that

bound e�
2. Merge all the T

e�,
e� 2 eT (K+

i�1), into T (K
+

i )

3. Obtain eT (K+

i ) using conformal(K+

i ; T (K
+

i ))

4. Compute L
ij e� for all e� 2 eT (K+

i ), by \hopping"

along Li in eT (K+

i )

Figure 10: Top-down phase procedure.

from x) which can then be used for testing whether a

query point is contained in a chain-trapezoid (perform

ray-shooting queries on the two bounding chains and

determine if the result corresponds to hitting them

from inside the chain-trapezoid).

4.3 Top-Down Construction Phase

Let us now formally describe how our algorithm per-

forms the top-down construction phase. In the i-th
round, given the decomposition eT (K+

i ) and its con-

ict lists with respect to Li�1, the algorithm adds

the subchains in K+

i to eT (K+

i�1) as summarized. in

Fig. 10.

Step 1.a determines the conict list K
ije� by check-

ing for each ` 2 L
i�1je� and `0 2 L`

i \ Ki, whether

`0 intersects e�: if so either `0 intersects one of the

portals of e�, or its endpoints are inside e�. Both

queries are solved by the same data structures D

constructed during the preprocessing phase. How-

ever, note that the point location query is on chains

in Li�1 and, consequently, it is more expensive (we

could a�ord to construct a faster standard point lo-

cation data structure for e�, but it is not necessary).
Let er

i;e�
= jK

ije�j. Step 1.b computes the trapezoi-

dation T (K
ije� [ f`1; `2g) restricted to e�, where `1

and `2 are the two chains bounding e�. This uses a

simple algorithm with running time O(r
i;e�

log r
i;e�

)

[9, 15, 23], where r
i;e�

= O((er
i;e�

+ 1)�i) is the num-

ber of edges involved in all these chains (the plus 1

accounts for `1 and `2. Step 2, with a simple traver-

sal of all the T
e�
's, \stitches" together trapezoids of

T (K+

i ) \chopped" by the portals of eT (K+

i�1); this

takes time linear in the total size of the T
e�
. The

procedure conformal in Step 3 was described in Sec-

tion 3; it takes time linear in the size of T (K+

i ) and

returns the (conformal) chain-trapezoidation eT (K+

i )

(including its adjacency graph). In Step 4, the con-

ict lists L
ije� for e� 2 eT (K+

i ) are found chain by

chain, using the adjacency graph of eT (K+

i ) and the

data structures D(`) to \hop" along Li in eT (K+

i ), as

described next.

Hopping. If a chain is already in K+

i , then it is

part of the boundary for some chain-trapezoids and

it can automatically be recorded as part of their con-

ict lists. So, consider some ` 2 Li n K
+

i and sup-

pose that we know a chain trapezoid e�0 2 eT (K+

i )

that contains the �rst endpoint e of `. Note that

the chain-trapezoids in eTi that conict with ` are

connected. Thus, we perform a breadth-�rst-search

traversal of the adjacency graph of eT (K+

i ), starting

with e�0. When a chain-trapezoid e� 2 eT (K+

i ) is vis-

ited, it is labeled as a conict and each of the portals

that separates e� from an unvisited chain-trapezoide�0 2 eT (K+

i ) is tested for conict with ` using D(`).

If ` conicts with the portal, the traversal visits e�0.

Note that ` can zig-zag arbitrarily within the set of

chain-trapezoids that it intersects. See Fig. 11.

1

2

3

4

5

6

7

8

9 10

11

12

Figure 11: Computing the chain-conicts for a chain.

Note that only one conict per portal is found, and

that the order the conicts are discovered (indicated

by numbers) does not necessarily reect their occur-

rences on the chain. The portals not queried are

shown lighter.

This procedure performs O(1) portal-chain conict
queries per conict actually found. The location of

the �rst endpoint e is given by the location of the

second endpoint of the preceding chain `0 (known al-
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ready if `0 2 K+

i ). The location of `'s second endpoint
e0 can be determined by performing a point location

query for each chain-trapezoid found to be in con-

ict with `. This is necessary since the conicts were
computed not by a linear scan of `, but rather by

\hopping" between portals.

Running Time. In Sec. 6, using the sampling

bounds obtained in the next section, we show that

given the data structures D(`) with query time

O(log3+� �i), for ` 2 Li, the top-down construction

phase is completed in expected time O(n).

4.4 Bottom-Up Preprocessing Phase

In the preprocessing phase, the algorithm constructs

data structures for portal-chain conict queries, to be

used to hop along the chains in the top-down phase.

Recall the gradation of subchains Li, i = 0; : : : ; k,
de�ned above and that for ` 2 Li�1, L

`
i is the set

of subchains of ` in Li. Let K`
i = L`

i \ Ki. Note

that since Ki is a pi-sample from Li, then K`
i is a

pi-sample from L`
i .
3

For each ` in Li�1, i = 1; : : : ; k, we construct a

data structure D(`) that consists of:

(i) eT (K`
i ) and a corresponding point location struc-

ture with query time O(log�i�1);

(ii) for each e� 2 eT (K`
i ), the chain-conict list L

`

ije�
.

We can use for the construction of eT (K`
i ) either

the randomized algorithm by Clarkson and Shor [9]

or the one by Mulmuley [23], which also result in point

location data structures with logarithmic query time

as needed in (i). Alternatively, other planar point

location data structures can be used [12, 17, 25, 27,

29].

A portal-chain conict query for an arbitrary por-

tal � and chain ` 2 Li�1 �rst uses D(`)'s point loca-

tion data structure eT (K`
i ) to locate the endpoints of

�. If �'s endpoints are contained in di�erent chain-

trapezoids in eT (K`
i ), then � must intersect `, and

a conict if reported. Otherwise, � is entirely con-

tained in some e� 2 eT (K`
i ), and the query continues

recursively in the data structures D(`0), for each and

every subchain `0 that bounds e� or in e�'s conict

list L`

ije�
, which includes the subchains that bound e�.

See Fig. 13. This query procedure is summarized in

Fig. 12. The query procedure for ray-shooting, which

determines the lowest intersection point, is similar

and we omit it.

conflict?(�; `; i� 1)

Input: A portal � and a chain ` in Li�1.

Output: Yes or No

1. Determine e�; e�0 2 eT `
i which contain the end-

points of �

2. If e� and e�0
are di�erent then return Yes

3. For each `0 that bounds e� or in L`
ij e�

do

if conflict?(�; `0; i) = Yes then return Yes

4. Return No

Figure 12: Portal-chain query procedure.

Figure 13: Two cases in the portal-chain conict

query: The portal endpoints are in di�erent or in

the same chain-trapezoid.

The computation of conict lists for eT (K`
i ) dur-

ing the construction of D(`) also uses \hopping" and,
hence, conflict? inductively. The bottom-up pre-

processing phase is summarized in Fig. 14.

Running Time. In Sec. 6, using the sampling

bounds obtained in the next section, we show that

the construction of the data structures D(`) is com-

pleted in expected O(n) time. Moreover, we show

that, even though we recurse on each subchain in

a conict list, the expected query time for a chain

` 2 Li is O(log
3+� �i), where � > 0 is an arbitrary

small fraction. Thus, we can summarize our results

in the following.

Theorem 4.1 Our randomized two-phase algorithm

constructs the trapezoidation of a simple polygon of

size n in expected O(n) time.

5 Sampling Bounds

To analyze the running time of our algorithm, we need

bounds on the sizes of the subproblems resulting by

taking a random sample from a set of chains and then

3This phase could use a sampling independent of that in

the construction phase, but this is not necessary.
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Bottom-Up (i-th round)

Input: D(`) for each ` 2 Lj�1, j > i

Output: D(`) for each ` 2 Li�1

For each ` 2 Li�1 do

1. Compute T (K`
i ) and a corresponding point loca-

tion structure

2. Compute eT (K`
i ) using conformal(K`

i ; T (K
`
i ))

3. Compute L
ije� for all e� 2 eT (K`

i ) by \hopping"

along L`i in eT (K`
i )

Figure 14: Bottom-up phase procedure.

constructing its chain-trapezoidation. Let K be a p-
sample from L, and recall that for a chain-trapezoide� 2 eT (K), Lje� denotes the list of conicts of e� in L,

and that en
e�
= jL

je�
j. Unfortunately, we cannot prove

the bound in Eqn. (2). Such a bound can be proved in

the framework of con�guration spaces, when certain

locality [9, 24] or monotonicity [11, 1] properties hold

for the decomposition induced by the sample (see [22]

for a survey), but neither of these properties hold for

our chain-trapezoidation. Fortunately, we can prove a

weaker bound that is only a factor O(f(log�)) larger,
and that suÆces to verify that our algorithm has ex-

pected linear running time. The proof of the bound

uses a standard trick [9, 5]: one obtains a nontrivial

bound for a p-sample in terms of a trivial bound for a

(p=2)-sample. First, we need a fact about the chain-

trapezoidation that limits the amount of non-locality

in the de�nition of the chain-trapezoidation.

Recall that a chain-trapezoid is bounded by at most

two chains and at most two ray-pairs, each one orig-

inating from another chain (but possibly a bounding

chain). We say that these at most four chains deter-

mine the chain-trapezoid. Let eT �(L) be the set of

all chain-trapezoids determined by L, that is, those
chain-trapezoids determined by a subset of at most

four chains in L (but note that some other chains in

L can conict with such trapezoids). Let eT c(K) be

the set of all candidate chain-trapezoids determined

by K and with empty conict list with respect to

K. Note that eT c(K) is bigger than eT (K) as there

are candidate chain-trapezoids determined by K that

were not chosen in our construction of eT (K). Fore� 2 eT �(L), let Æ(e�) � L denote the set of those up

to four chains that determine e�. For e� 2 eT �(L), we
have the locality property:

e� 2 eT c(K) i� Æ(e�) � K and Lje� \K = ;: (3)

Though our chain-trapezoidation lacks locality, or

even monotonicity, the following lemma states that

we choose it out of a relatively small \pool" of can-

didates that satisfy the locality property.

Lemma 5.1 Let K be a set of chains each of length

at most �. Then, jeT c(K)j = O(jKj�2).

Proof. In T (K), let a region be the union of the

trapezoids corresponding to a connected subgraph of

G(K). For each e� 2 eT (K) consider the maximum

region R
e�
of T (K) that contains e� and is bounded

by the same one or two chains that bound e�. Note

that R
e�
may not be conformal. Any candidate chain-

trapezoid is a subregion of R
e�
for some e�. Since

clearly the number of subregions of any R
e�
is O(�2),

and the size of eT (K) is O(jKj), then it follows that

the size of eT c(K) is O(jKj�2).

We use this result now to prove bounds for the

chain-conict list sizes in the chain-trapezoidal de-

composition of a random sample of chains.

Lemma 5.2 Let L be a set of en chains of length �,
and let n = �en be the total number of edges. Let

K � L be a p-sample, er = pen its expected size, and

let eT (K) be its chain-trapezoidal decomposition. Fore� 2 eT (K), we write en
e�
= jLje�j. Let f be a positive

nondecreasing function such that f(O(x)) = O(f(x)).
Then

E

2
4 X
e�2eT (K)

f(pen
e�
)

3
5 = O(er � f(log�)) (4)

Proof. Let K 0 � L be a (p=2)-sample. Recall thateT c(K) is the set of candidate chain-trapezoids for K,

and that for these chain-trapezoids the locality prop-

erty in Eqn. (3) holds. Thus,

Probfe� 2 eT c
(K)g

= pÆ(
e�)
(1� p)en e�

= 2Æ(�) �

�
1� p

1� p=2

�
en
e�

� (p=2)Æ(
e�)(1� p=2)en e�

� 16 � e�pen e�
=2 � Probfe� 2 eT c(K 0)g;

using Æ(e�) � 4 and (1 � p)=(1 � p=2) � 1 � p=2 �
e�p=2. Using this upper bound, we obtain

E

2
4 X
e�2eT c(K)

f(pen
e�
)

3
5

9



=
X

e�2eT �(L)

f(pen
e�
) � Probfe� 2 eT c(K)g

= O

0
@ X

e�2eT �(L)

Probfe� 2 eT c
(K 0

)g

1
A

= O(E[jeT c
(K 0

)j])

= O(er�2);
using Lemma 5.1. Let � > 0 be a parameter. Then,

using again the upper bound above,

E

2
6664

X
e�2 eT c(K)

en
e�
>

2(log �)

p

f(pen
e�
)

3
7775

=
X

e�2 eT �(L)

en
e�
>2(log �)=p

f(pen
e�
) � Probfe� 2 eT c(K)g

� 16 �
X

e�2 eT �(L)

en
e�
>

2(log �)

p

f(pen
e�
) � e�pen e�

=2 � Probfe� 2 eT c(K 0)g

�
16

�
�
X

e�2eT �(L)

f(pen
e�
) � Probfe� 2 eT c

(K 0
)g

=
16

�
�E

2
4 X
e�2eT c(K0)

f(pen
e�
)

3
5

=
O(1)

�
� E[jeT c(K 00)j] = O

�er � �2
�

�
;

where K 00 is a (p=4)-sample. Finally, using � = �2,

E

2
4 X
e�2eT (K)

f(pen
e�)

3
5

= E

2
66664

X
e�2 eT (K)

en
e�
>
2(log �)

p

f(pen
e�)

3
77775+E

2
66664

X
e�2 eT (K)

en
e�
�
2(log �)

p

f(pen
e�)

3
77775

� E

2
66664

X
e�2 eT c(K)

en
e�
>
2(log �)

p

f(pen
e�)

3
77775+ f(2 log �) �E[jeT (K)j]

= O

�er � �2
�

�
+O(f(2 log �) � er) = O(f(log �) � er):

For the analysis of the query time of the ray-

shooting data structure, we also need a bound for

the expectation of the conict list size of the chain-

trapezoid that contains a �xed point x.

Lemma 5.3 Let K � L be a p-sample, and for a

�xed point x, let e�x be the chain-trapezoid in eT (K)

that contains x. Then

E
h
jLje�x

j
i
= O

�
1

p
� log�

�
= O

�ener � log�
�
:

Proof. A similar proof as for the previous lemma ap-

plies. Only note that the number of candidate chain-

trapezoids in eT c(K) that contain x is O(�2), and soX
e�2 eT �(L)

x2e�

Probfe� 2 eT c(K)g

= E
h
jfe� 2 eT c(K) : x 2 e�gji = O(�2):

6 Running Time Analysis

First, we note that the sampling bound of Lemma

5.2 holds for K+

i even though it contains, in addition

to the true random pi-sample Ki, all the subchains

of previous samples Kj , j < i. This is because, as

noted in Section 4, the size is dominated by Ki and

so, from the proof of the lemma, the right hand side

of Eqn. (4) is not a�ected.

In the analysis below, two speci�c sums appear that

can be bounded using Eqn. (4):

E

2
4 X
e�2eT (K)

en
e�

3
5 = O(en � log�); (5)

and for any � > 0,

E

2
4 X
e�2eT (K)

en
e�
log(�en

e�
)

3
5

= O

�en � log� � �log��
p
log�

���
: (6)

6.1 Preprocessing Phase

First, we verify the query time. The expected query

time Q(�i) is the sum of the time needed for a point

location query, plus the expected time needed for all

the recursive queries. Thus, we have

Q(�i�1) = O(log�i�1) +O((1=pi) log�i) �Q(�i)

= O(log�i�1) +O((log�i�1)
3
log�i) �Q(�i)

= O(log3+� �i�1);
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where � is any positive fraction. We have used Lemma

5.3 to bound the expected number of chain-conicts

as O((1=pi) log�i). Note that it is valid to use the

bound for a �xed point, as the random choices in the

i-th and later rounds are independent of the random

choices in earlier rounds. Next, we estimate the ex-

pected construction time for ` 2 Li. From the pre-

vious description, using Eqn. (5), the expected time

is

O

�
(pi�i�1) log(pi�i�1) +

�
�i�1

�i
log�i

�
�Q(�i)

�

= O

�
�i�1

log
3 �i�1

log

�
�i�1

log
3 �i�1

�
+

�i�1

log
2 �i�1

� log(log2 �i�1) � log
3+�

(log
2 �i�1)

�

= O

�
�i�1

log�i�1

�
;

where the �rst term accounts for the construction ofeT (K`
i ), and the second term accounts for O(1) portal-

chain intersection queries per chain-conict. Adding

over all ` 2 Li�1, the construction time in the (i�1)-

st level is O(n= log�i�1), and adding over all i, the
total construction time is O(n).

6.2 Construction Phase

Consider the i-th round, and let e� 2 eT (K+

i ). For

the purpose of analysis, let us write en
i;e�

= jL
ije�j

and er
i;e�

= jK
ije�j. Recall that eni = jLij = n=�i.

Note that the expected value of er
i;e�

is bounded by

pi � eni�1;e�
�
�i�1

�i
. In Step 1.a, for each ` 2 L

i�1je�,

checking whether `0 2 L`
i \Ki intersects e� takes ex-

pected time is O(log3+� �i�1), using the data struc-

ture D for the chains bounding e�. Thus, using

Eqn. (5), the total expected time for this step is big-O

of

E�i�1

2
64 X
e�2eT (K+

i�1)

pi � eni�1;e�
�
�i�1

�i
� log3+� �i�1

3
75

= O

�
pi � (eni�1 log�i�1) �

�i�1

�i
� log3+� �i�1

�

= O

�
n

log
1�� �i�1

�
:

(Here, the term log
3+� �i�1 could be reduced to

log�i�1 + log
3+� �i, if we construct a point location

data structure for each e� 2 eT (K+

i�1).) In Step 1.b,

T
e�
is computed using an algorithmwith running time

O(r
i;e�

log r
i;e�

) where r
i;e�

= O((er
i;e�

+ 1)�i). Using

Eqn. (6), the total expected time is big-O of (to ab-

breviate, we are dropping the 1 in the bound for r
i;e�

;

a more complete calculation leads to the same result)

E�i

2
64 X
e�2eT (K+

i�1)

r
i;e�

log r
i;e�

3
75 = O (pi � �i�1) �

E�i�1

2
64 X
e�2eT (K+

i�1)

en
i�1;e�

� log
�
pi � �i�1 � eni�1;e�

�375
= O

�
pi � �i�1 � eni�1 � log�i�1 �

log

�
pi�i�1

pi�1

log�i�1

��

= O
�
n � pi � log

2 �i�1

�
= O

�
n

log�i�1

�
:

The conformal decomposition in Step 3 is constructed

as described in Section 3 and requires expected time

big-O of

E�i[jT (K
+

i )j] = O(pi � eni � �i) = O

�
n

log
3 �i�1

�
:

In Step 4, the conict lists for regions e� 2 eT (K+

i )

with subchains in Li are found using the data struc-

tures D, O(1) queries per conict determined, so the

expected time is

O(eni � log�i �Q(�i)) = O

�
n

�i
� log�i � log

3+� �i

�

= O

�
n �

log
4+� �i

�i

�
= O

�
n

log�i�1

�
:

The sum of all these contributions over all the rounds

is O(n).

7 Concluding Remarks

We have presented a randomized algorithm for com-

puting the trapezoidation of a simple polygon, and

hence a triangulation, that runs in expected time

that is linear with the number of edges. The algo-

rithm is considerably simpler than Chazelle's algo-

rithm. On the other hand, it is comparatively more

complicated than the non-optimal randomized algo-

rithm and, since for any practical value of n, log� n is

a small constant, our algorithm is not likely to be of

practical value.

We conclude by mentioning some questions that

remain open. Is the conjectured tighter sampling

bound for our conformal decomposition true? Is it
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possible to combine our polygon trapezoidation algo-

rithm with a segment intersections algorithm to ob-

tain an algorithm that can report the k intersections

of a chain of n segments in time O(n + k)? Can

our linear time algorithm be parallelized? Can the

approach of sampling on subchains lead to eÆcient

algorithms for other problems on simple polygons ?

Finally, does a deterministic algorithm simpler than

Chazelle's exist?
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