
COSC 6114 Computational Geometry

Convex Hull of a Simple Polygon in Linear Time

This note concerns the computation of the convex hull of a given simple polygon. Sup-
pose the sequence of vertices of the given polygon P is p1 , p2 , . . . , pn. One way to
solve the problem is to ignore the fact that the sequence forms a simple polygon and just
find the convex hull of the vertices ofP. This would take O(nlgn) time, say by the Gra-
ham scan method. Section 4.1.4 of Preparata-Shamos [PrS85] describes anO(n) time
algorithm to computeconv(P). Below, we will discribe a simpler linear time algorithm
due to Melkman [1987]:

A. Melkman,‘‘On-line construction of the convex hull of a simple polyline’’, Information
Processing Letters, vol. 25, pp. 11-12, 1987.

This algorithm is also capable of finding the convex hull of a simple polyline (an open
nonself-intersecting chain of line segments).

We will consider the vertices in the given order and use an incremental approach very
similar to the second phase of the Graham scan algorithm to construct the convex hull.
Suppose we already have the convex hull of { p1 , p2 , . . . , pi−1 }. How should we
update it to get the convex hull of { p1 , p2 , . . . , pi−1 , pi }? We will use adeque (dou-
ble ended queue)D to represent the sequence of vertices on the convex hull of
{ p1 , . . . , pi }. The deque can be implemented by a sequential list (e.g. a circular array
or a circular linked list). Furthermore, assumeb andt point to the bottom and the top of
D, respectively. We shall denote the sequence of vertices inD from bottom to top as
vb , vb+1 , . . . , vt−1 , vt . We use the 4 primitive deque operationsPopBottom(D), Pop-
Top(D), PushBottom(p , D), and PushTop(p , D) with the obvious meanings.For
instancePushBottom(p , D) means add pointp to the bottom of dequeD and appropri-
ately update its bottom pointer. We will make the convention that the deque sequence
gives the closed boundary of the convex hull of the points considered so far. That is,
vb = vt . Now the algorithm is as follows:

Algorithm Convex − Hull (P);
D ← (p2 , p1 , p2) ; /* i .e., convex-hull of { p1 , p2 } * /
for i ← 3 to n do

if pi is outside the anglevt−1vt vb+1 then do

while pi is left of
→

vbvb+1 do PopBottom(D);

while pi is right of
→

vt vt−1 do PopTop(D);
PushBottom(pi , D); PushTop(pi , D)

end
outputD /* vertices ofconv(P) in order around the convex hull boundary */

end

We now sketch a proof of correctness. We first consider the case in whichpi is discarded.
This happens whenpi is inside the angle vt−1vt vb+1. (See Figure 1(a).)We know that
vb+1 is connected tovt−1 by a polygonal path, and thatpi is connected tovb by a

-2-

v = v

v

v

p

t b

t-1

b+1

i

(a)

p v = v

v

v

t b

b+1

t-1

i

(b)

Figure 1. The two cases for the position ofpi.

polygonal path. The two paths do not intersect, sopi must lie inside the current convex-
hull. When pi is not discarded, it lies outside the current hull, and the algorithm pops
hull vertices until it gets to the endpoints of the tangents frompi to the current hull. (See
Figure 1(b).) The algorithm is linear: if it operates on ann −vertex polygon, it does at
most 2n pushes and 2n − 3 pops.

