
A Quasi-Polynomial Time Approximation Scheme for
Minimum Weight Triangulation

[Extended Abstract]

Jan Remy
Institut für Theoretische Informatik

ETH Zürich
CH-8092 Zürich

jremy@inf.ethz.ch

Angelika Steger
Institut für Theoretische Informatik

ETH Zürich
CH-8092 Zürich

steger@inf.ethz.ch

ABSTRACT
The Minimum Weight Triangulation problem is to find a
triangulation T ∗ of minimum length for a given set of points
P in the Euclidean plane. It was one of the few longstanding
open problems from the famous list of twelve problems with
unknown complexity status, published by Garey and John-
son [8] in 1979. Very recently the problem was shown to be
NP-hard by Mulzer and Rote. In this paper, we present a
quasi-polynomial time approximation scheme for Minimum

Weight Triangulation.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Graph algorithms

General Terms
Algorithms, Theory

Keywords
Minimum weight triangulation, approximation algorithms

1. INTRODUCTION
Let P ⊂ R2 denote a set of points in the Euclidean

plane of cardinality n. A triangulation T of P is a col-
lection of non-intersecting edges or straight-line segments,
dividing the interior of the convex hull of P into triangu-
lar regions. The length of a triangulation T is defined as
�(T) =

P
{u,v}∈T d(u, v), i.e., the total length of the trian-

gulation in the L2-metric. The Minimum Weight Trian-

gulation problem is to find a triangulation T ∗ of minimum
length for P . Note that T ∗ is not necessarily unique.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

The problem appeared in the famous list of 12 problems
with unknown complexity which was published by Garey
and Johnson in 1979 [8]. Although the problem has received
much attention, only comparably little progress was made
for many years. For a long time neither a polynomial time
algorithm nor a proof of NP-hardness was known. Very re-
cently, Mulzer and Rote [16] proved that Minimum Weight

Triangulation is NP-hard. Polynomial time algorithms
are known for special cases, like for instance triangulating
polygonal domains [9, 11].

The approximability of the problem was also subject of
previous research. Unfortunately, natural triangulations like
the Delauny or the greedy triangulation can be worse then
the optimum by a factor of Ω(n). The excellent survey of
Bern and Eppstein [6] contains several such examples. In
1987 Plaisted and Hong [17] proposed an algorithm which
produces triangulations within a factor of O (log n) of an
optimum triangulation. Roughly a decade later Levcopoulos
and Krznaric [12, 14] proved that a suitable variant of the
greedy algorithm constructs triangulations that exceed the
weight of an optimum triangulation by a factor of at most
c for some (rather large) constant c. Therefore Minimum

Weight Triangulation is in the class APX .
However, it remained open whether there is a (1 + ε)-

approximation algorithm for every ε > 0. Recall that one
classifies such (1 + ε)-approximation algorithms according
to their time complexity. If the complexity is poly(n, 1/ε)
then the problem has a fully-polynomial time approximation
scheme (FPTAS). If the complexity is just poly(n) for each
fixed ε > 0 (but potentially exponential in 1/ε), then the
problem is said to have a polynomial time approximation
scheme (PTAS). Finally, if the algorithm has time complex-

ity npolylog(n) for each fixed ε > 0 we have a quasi-polynomial
time approximation scheme (QPTAS).

A decade ago Arora [1, 2] and independently Mitchell [15]
introduced approximation schemes for several NP-hard ge-
ometric optimization problems. This had risen the hope for
the existence of a PTAS or a QPTAS for Minimum Weight

Triangulation. Indeed, Arora conjectured several times
[2, 5, 3, 4] that his technique may also apply to the related
Minimum Weight Steiner Triangulation problem. In
this variant, the triangulation may include additional points
at arbitrary locations - the Steiner points. For various tech-
nical reasons this problem seemed to be more amenable
to Arora’s techniques than Minimum Weight Triangu-

316

lation. However, no such algorithm has been found till
today. Our contribution is the following.

Theorem 1. Minimum Weight Triangulation admits
a QPTAS. The algorithm computes for every ε > 0 a (1+ε)-

approximation in nO(log8 n) time.

The existence of a QPTAS implies that the Minimum

Weight Triangulation problem is not APX -hard, un-
less SAT ∈ DTIME[npolylog(n)]. This seems to be widely
disbelieved. Therefore, the existence of a QPTAS can be
seen as a strong indication for the existence of a PTAS. On
the other hand, Mulzer and Rote [16] also show that it is
NP-hard to approximate Minimum Weight Triangula-

tion within a relative error of O
`
1/n2

´
. This excludes the

existence of an FPTAS, unless P = NP .

Further Related Work. If the input points are in convex
position a (1 + ε)-approximation can be computed in time
O (n log n) [13]. By allowing Steiner points, the weight of
the triangulation can decrease. In particular, there exist
instances for which the weight decreases by a factor of Ω(n)
if one allows Steiner points [7]. It is not known whether
this problem is NP-complete or not. Eppstein [7] presented
an algorithm for Minimum Steiner Triangulation which
computes a 316-approximation in O (n log n) time.

Another related problem is Minimum Weight Pseudo-

Triangulation which asks for a pseudo-triangulation of
minimum weight. A pseudo-triangulation is a planar graph
on the given point set such that each face is a pseudo-
triangle, that is a planar polygon that has exactly three con-
vex vertices with internal angle less than π. Like the preced-
ing problems, the complexity status of this problem is still
open. Recently, Gudmundsson and Levcopoulos gave a poly-
nomial time 4(1+4

√
2)-approximation algorithm [10]. They

also proved that the minimum weight pseudo-triangulation
of the interior of a simple polygon can be computed in time
O

`
n3

´
.

2. ALGORITHMIC STRATEGY
In this section we give a high-level overview on our general

approach and the necessary concepts and tools. Assume for
the moment that we have chosen an appropriate square Q◦
which contains all points from P . We construct a subdivi-
sion of Q◦, by first cutting Q◦ vertically, then cutting the
two resulting rectangles horizontally, then cutting each of
the four resulting squares again vertically, and so on until
we obtain squares of side length at most one. This subdi-
vision can be seen as a tree with rectangles as nodes (from
now on we will use the term ’rectangle’ to denote a rect-
angle or a square). Given a rectangle R encountered in
this subdivision and a triangulation T for the point set P ,
there is a natural way to define the restriction of T to R.
Namely, this restriction contains exactly those edges from T
for which both of its endpoints are contained in R.

From a very high level, the general approach of our al-
gorithm can then be described as follows. We compute a
triangulation T by dynamic programming in a bottom-up
fashion (note that what we outline now is not yet a quasi-
polynomial time algorithm).

– First, for all leafs of the subdivision of Q◦ we enu-
merate all restrictions of triangulations of P to these
leafs.

– Then we recursively compute all restrictions of trian-
gulations of a rectangle R by considering all pairs of
restrictions to its two children R′ and R′′ and combin-
ing them optimally.

The main drawback of this approach is that there are far
too many different restrictions of triangulations of P to a
rectangle R. A first important observation is that within
the above approach we actually do not really need to store
all restrictions. Within this bottom-up approach all we need
to know is how such a restriction looks from “outside”, that
is which edges of the restriction can still be connected by
straight lines to points outside of R. This is what we will
call the local hull of a restriction. A precise definition is
deferred to Section 3.3. There we will also show properties
of local hulls that will allow us to efficiently implement the
recursion step. More precisely, we will show that given a
rectangle R, its two children R′ and R′′, a local hull H for
R and local hulls H′ and H′′ for R′ and R′′ together with
triangulations of the interiors of the hulls H′ and H′′, we
can check in polynomial time whether the hulls H′ and H′′

are ’consistent’ with H and, if so, compute a triangulation
of the interior of H that is an optimum continuation of the
given triangulations for H′ and H′′.

Note that, using these ideas the time complexity of the
above approach is reduced polynomially to (a) the number
of different local hulls we have to consider per rectangle and
(b) the computation of triangulations of the interior of the
local hulls of the leafs of the subdivision of Q◦. Let us first
consider issue (b). Computing such triangulations optimally
seems difficult, as it is essentially equivalent to the origi-
nal problem of computing an optimum triangulation for P .
However, as we will see in Section 4, the sizes of leaf rectan-
gles can be made sufficiently small so that any triangulation
of the interior of a given local hull for a leaf rectangle will
suffice to get a (1 + ε)-approximation of the optimum tri-
angulation for the point set P . It thus remains to consider
issue (a). This is more difficult, as it is easy to construct
examples for which there exist exponentially many different
local hulls. Our approach will therefore be as follows. We
define a polynomial time algorithm L(Q◦, P) that, given a
square Q◦ and a point set P of size |P | = n, constructs for
each rectangle R of the subdivision of Q◦ a set HL(R) of

different local hulls such that |HL(R)| = 2polylog(n) for all
rectangles R. Then the scheme which we outlined above
will allow us to compute in time 2polylog(n) a triangulation
TL such that

� (TL) ≤ (1 + ε) · min
T ∈TL(Q◦,P)

� (T),

where TL(Q◦, P) denotes the set of all triangulations T such
that for all rectangles R the local hull of the restriction of
T to R is contained in HL(R). It remains to be shown that
we can define a set of polynomially many different squares
Qi such that for at least one Qi we have

min
T ∈TL(Qi,P)

� (T) ≤ (1 + ε) · � (T ∗),

where T ∗ denotes an optimum triangulation for the given
point set P . As (1 + ε)2 ≤ 1 + 3ε for all 0 < ε ≤ 1 this
algorithm therefore produces a (1 + 3ε)-approximation to
T ∗.

317

Outline. This paper is organized as follows. In Section 3 we
explain the subdivision of Q◦ in more detail. Moreover, we
study fundamental properties of triangulations with respect
to this subdivision. Among others we give a precise defini-
tion of the local hull. In Section 4 we introduce our QPTAS
which is based on the concepts of Section 3. The remain-
der of the paper outlines the analysis of the algorithm. In
Section 5 we define the algorithm L that computes the set
of local hulls (HL(R))R . Due to space restrictions we only
explain the main ideas behind the analysis. This is done in
Section 6 and Section 7.

3. PRELIMINARIES

3.1 Notation and Conventions
A planar straight-line graph (PSLG) G on a point set P

is a set of pairwise non-intersecting straight-line segments
or edges with endpoints in P . For instance, a triangulation
and all its subgraphs are PSLGs. For an edge {u, v} ∈
G we sometimes denote the corresponding line segment by
uv. More precisely, uv denotes the set of points on the line
segment connecting u and v. Our convention is that a PSLG
is a set of edges. Only if the context is not clear, we use the
notation E(G) to refer to the edge set of G. Similarly, P (G)
denotes the points of P that are incident to at least one edge
in E(G).

As usual, �xyz denotes the triangle with vertices x, y,
and z. Therefore triangles induce a PSLG and we use the
notations E(�) and P (�) to refer to �’s sides and vertices,
respectively. Above we mentioned that a triangulation T
can be seen as PSLG. For the sake of brevity we write e ∈ T
instead of e ∈ E(T) unless the context is unclear. Through-
out, Δ(T) denotes the set of triangles (or triangular regions)
induced by T .

The halfspaces of a line H are denoted by H+ and H−,
respectively. Our convention is that halfspaces are always
open. We will not use any kind of global orientation, but
instead we will define H+ and H− locally by specifying spe-
cific points that they contain. For any region R ⊂ R2, ∂R
and R denotes its boundary and closure, respectively. Un-
less stated otherwise, log n denotes the logarithm of n to
base 2.

3.2 Rectangles and their Generators
In the following we denote by Q◦ a square that contains

all points from a given point set P . We recursively construct
a subdivision of Q◦ that is similar to an ordinary quad tree
as follows. A given rectangle R is subdivided into two (!)
children R′ and R′′ by a separator C through the barycenter
of R. The separator is vertical if R is a square and horizontal
otherwise. We stop the subdivision if R is a square of side
length at most 1. For definiteness let us note here, that we
will later ensure that we only consider such squares Q◦ for
which no point from P is contained on the boundary of a
rectangle R.

A rectangle R is obtained from Q◦ by a sequence of sep-
arators, say C0, . . . , Cl. We call l the level of R, denoted by
lev(R). A separator C has level l if it subdivides a rectangle
at level l− 1 into two rectangles at level l. By definition Q◦
has level −1. One easily checks inductively that a rectangle
at level l has maximum side length at most |Q◦|/2�l/2�. Ob-
serve that, by construction, the height of this subdivision is

thus

t := 2�log2 |Q◦|�,
where |Q◦| denotes the side length of the square Q◦.

3.3 Local Hulls
We now study the so-called local hull, one of the key con-

cepts of our paper. Local hulls are defined for a rectangle R
with respect to a triangulation T .

Definition 1. Let R be a rectangle and let T be a trian-
gulation for a point set P . The local hull H(R, T) of R with
respect to T is defined as the set of edges in T for which
both endpoints belong to R and that satisfy in addition at
least one of the following two properties: (i) the edge be-
longs to the convex hull conv(P) of the given point set, or
(ii) the edge is a side of a triangle in T that has its third
vertex outside of R.

In other words the local hull consists of all edges that lay
entirely in R and that either belong to conv(P) or are sides
of triangles that cross the boundary of R. An example is
given in Figure 1. As a local hull is defined as a set of edges,
we can view it as a planar straight-line graph. The following
lemma shows that, viewed as a planar graph, local hulls are
quite simple objects in which all cycles correspond to faces.

Figure 1: The local hull consists of the bold drawn
edges.

Lemma 1. For all triangulations T and rectangles R, the
local hull H(R, T) has the following property. If C is a cycle
in H(R, T), then C induces a face in H(R, T).

The interior of H(R, T) is defined as the union of the
interior regions of all cycles contained in H(R, T) and is
denoted by int(H(R, T)). Note that by the previous lemma,
two cycles of H(R, T) may overlap in a point, but not in an
edge (as this would result in a cycle that contains this edge
in its interior region). Hence we know that int(H(R, T)) can
be written as the union of simple polygons, such that any
two of them overlap in at most one point. Throughout we
use

area(H(R, T)) = int(H(R, T)) ∪ H(R, T).

Note that area(H(R, T)) contains all triangles of T that are
entirely contained in R. Moreover, the local hull is in gen-
eral not connected. Observe also that we have H(Q◦, T) =
conv(P).

318

3.4 Border Triangulations
Within the recursive scheme outlined in Section 2 it is es-

sential to understand how local hulls are related to the local
hulls of their descendants. In this section we develop the nec-
essary background. So let R be a rectangle that is divided
by a separator C into two rectangles R′ and R′′. Further-
more, let T denote a triangulation for the point set P . We
consider three different sets. Namely, the set of triangles
within R, that cross the cut, that is,

ΔB(R, T) := {� ∈ Δ(T) : (P (�) ⊂ R) ∧ (P (�) ∩ R′ �= ∅)
∧ (P (�) ∩ R′′ �= ∅)}

and the set of edges in triangles from ΔB(R, T) that cross
the cut and those that are contained within one of the
smaller rectangles. That is

C(R, T) :=
[

�∈ΔB(R,T)

{e ∈ E(�) : e ∩ R′ �= ∅

∧ e ∩ R′′ �= ∅}

and

B(R, T) :=
[

�∈ΔB(R,T)

˘
e ∈ E(�) : e ⊂ R′ ∨ e ⊂ R′′¯ .

We call B(R, T) the border of R with respect to its separator
C and the triangulation T . Similarly, we call C(R, T) the
cut edges of T in R. Figure 2 illustrates these definitions.
The following lemma is an immediate consequence of the
definition of the local hulls and the set of border edges.

Lemma 2. For all rectangles R = R′ ∪ R′′, and triangu-
lations T we have

H(R′, T) =
˘
e ∈ H(R, T) ∪ B(R, T) : e ⊆ R′¯

and similarly for H(R′′, T).

C

Figure 2: The border triangulation at a separator
C, that subdivides R. The triangles belonging to
ΔB(R, T) are drawn shaded; the edges in B(R, T) are
drawn by bold lines, while those in C(R, T) are drawn
by dashed bold lines.

Lemma 3. Let R = R′ ∪ R′′ and T a triangulation of P
and let R1, . . . , Rk denote the regions given by

int(H(R, T)) \
ˆ
area(H(R′, T)) ∪ area(H(R′′, T))

˜
. (1)

For all i = 1, . . . , k it holds that int(Ri) ∩ P = ∅ and that
Ri is bounded by a connected subgraph Wi of T .

In order to better understand the meaning of Lemma 3
have another look at Figure 2. In this example we have
just two regions R1 and R2, namely the two regions which
are shaded in gray. Note that the interior of both of these
two gray regions does not contain any point from P . Note
also that even though the upper of the two regions seems to
contain a region from int(R′′) in its interior (i.e., the small
white triangle), this is actually not true, as this triangle is
connected by a bold line, i.e., an edge from B(R, T), to the
boundary of Ri. Lemma 3 says that this is always the case.

The importance of Lemma 3 stems from the fact that a
minimum weight triangulation of the interior of a simple
polygon is known to be computable in cubic time [9, 11] if
it contains no points. The algorithm is a straight-forward
dynamic program and it is well-known that it can also be
used to triangulate a face of a PSLG. That is, we have

Lemma 4. Let Ri denote a region induced by (1) bounded
by Wi. The interior of Wi can be triangulated optimally in
time O

`
|Wi|3

´
.

Coming back to the situation of Lemma 3 we thus see that
if we denote by n(R) = |R ∩ P | the number of points in R
then we can find in time O(n(R)3) a minimum triangulation
for all regions R1, . . . , Rk. This fact is one of the key features
of local hulls that we will use in the next section.

4. THE APPROXIMATION SCHEME
In the previous section we defined the local hull of a rect-

angle with respect to a fixed triangulation T . The aim of this
section is to show that vice-versa we are also able to compute
an (almost) optimal triangulation based on the knowledge of
all local-hulls. For the remainder of this section we consider
an arbitrary but fixed point set P such that |P | = n. We
assume that the maximum distance between two points of
P is at least sn for some s ∈ N. That is, we have

max
p,q∈P

d(p, q) ≥ s · n.

Note that this can always be achieved by scaling the point
set appropriately. Later we choose s = O (1/ε). Let Q◦
denote an arbitrary square of side length at most 6sn that
contains all points of P . For definiteness, we assume that
no point from P is contained on the boundary of any rect-
angle of the subdivision of Q◦ We show in Section 7 how to
construct such a Q◦ appropriately. Let HR denote the set
of all possible local hulls of R, that is

H[R] = {H(R, T) : T is a triangulation of P} . (2)

The idea behind our algorithm is to compute a triangula-
tion T recursively in a bottom-up fashion. More precisely,
we will recursively compute for each rectangle R and each
local hull H ∈ H[R] a triangulation of area(H) which we
store in an array T [R,H]. Our convention is that these tri-
angulations contain all edges of H. Recall that for R = Q◦
there exists only one local hull, namely H = conv(P) and
T [Q◦, conv(P)] will therefore contain a proper triangulation

319

of the whole point set P . It remains to specify how we com-
pute the triangulations T [R,H]. If R is a leaf, we triangulate
the interior of H arbitrarily, e.g. using a greedy algorithm
and store the triangulation in T [R,H].

Next assume that R is a rectangle that contains a sep-
arator C that divides R into two rectangles R′ and R′′.
The idea is to compute T [R,H] by considering all pairs of
local hulls (H′,H′′) in H[R′] × H[R′′]. For a given pair
(H′,H′′) we first check whether H′ and H′′ are consistent
with H. Firstly, we check whether the edges of (H′∪H′′)\H
are contained in area(H). In other words, we require that
H ∪ H′ ∪ H′′ looks from ”outside” as H. Secondly, we re-
quire that the regions obtained by (1) satisfy the properties
stated in Lemma 3.

Finally, we use Lemma 4 in order to compute minimum
triangulations for the regions R1, . . . , Rk in polynomial time.
Combined with the triangulations T [R,H′] and T [R,H′′]
this yields a triangulation of the interior of H. Let T (H′,H′′)
denote this triangulation. From all triangulations T (H′,H′′)
such that (H′,H′′) ∈ H[R′] × H[R′′], we choose one with
minimum length and store it in T [R,H]. We claim that by
construction the triangulations stored in T [R,H] satisfy the
following property.

Lemma 5. For all rectangles R we have

� (T [R,H]) ≤
X

e∈T ∗(H)∩R

�(e) + 6n(R),

where n(R) denotes the number of points of P in R and
T ∗(H) denotes a minimum triangulation for P that contains
H.

For R = Q◦ there exists only one local hull, namely
H = conv(P). That is, we have H[Q◦] = {conv(P)}, and
every triangulation of area(conv(P)) corresponds thus to a
triangulation of P . Lemma 5 thus implies

� (T [Q◦, conv(P)]) ≤ �(T ∗) + 6n.

As we did assume that there are points in P which have
distance at least s · n, we know that �(T ∗) ≥ s · n and we
hence have

� (T [Q◦, conv(P)]) ≤ (1 + 6/s) · �(T ∗).

That is, T [Q◦, conv(P)] is a (1 + ε)-approximation, if we
choose s ≥ 6/ε.

Of course, the time complexity of this algorithm will in
general not be very good, as firstly we have to compute the
sets of local hulls H[R] (and it is a priori not clear how we
can do that efficiently) and secondly the time complexity
of the recursion can only be bounded by a polynomial in
maxR |H[R]| (which might be exponential in n). The key
observation now is the following. We observe that the only
point where we used that the sets H[R] were defined as in
equation (2) was within the proof of Lemma 5. If we allow
H[R] to denote arbitrary sets of local hulls, i.e. if we replace
the ”=” sign in equation (2) by a ”⊆” sign everything goes
through as before, except that we have to replace T ∗(H) in
the statement of Lemma 5 by T ∗

H(H) where T ∗
H(H) denotes

a minimum triangulation of P such that

i) H ⊆ T ∗
H(H) and,

ii) H(R, T ∗
H(H)) ∈ H[R] for all rectangles R.

In other words: A family of local hulls (H[R])R induces a set
of triangulations such that each element of this set has the
property that the local hull of every rectangle R is contained
in H[R]. Then T ∗

H(H) denotes the best such triangulation
containing H. Clearly, T ∗

H(conv(P)) is a minimum amongst
all triangulations in this set. We thus obtain the following
theorem.

Theorem 2. Let P be a point set and Q◦ be given as
stated in the beginning of this section. Assume furthermore
that L is an algorithm that computes for P and Q◦ a family
of local hulls (HL[R])R such that

max
R

|HL[R]| = f(n)

for some function f(n) ≥ 1. Then we can compute in time
O

`
poly(n) · f(n)2

´
a triangulation T such that

�(T) ≤ (1 + 6/s) · � (T ∗
L),

where T ∗
L is a minimum triangulation such that H(R, T ∗

L) ∈
HL[R] for all R.

In essence, this theorem says that it suffices to choose the
family (HL[R])R such that firstly f(n) is quasi-polynomial
and secondly T ∗

L is nearly optimal. This intuition is reflected
in the organization of the paper. In Section 5 we will de-
scribe how one can define an appropriate algorithm L for
computing HL[R]. One can show that

|HL[R]| = nO(log8 n).

Therefore, the running time of our algorithm is quasi-poly-
nomial in n. In Section 7 we explain how to choose Q◦ such
that

�(T ∗
L) ≤ (1 + O (1/s)) · �(T ∗).

Combining both results and choosing s = O (1/ε) we obtain
an (1 + ε)-approximation algorithm with time complexity

nO(log8 n).

Remark 1. If one can show that there exists a family
(HL[R])R with the aforesaid properties such that f(n) =
poly(n), then Theorem 2 implies the existence of a PTAS.

5. SMOOTH HULLS
In this section we construct the algorithm L and show

that L computes HL[R] in quasi-polynomial time. This re-
quires some preliminary work. Our strategy is the follow-
ing. We consider a fixed triangulation T and rectangle R.
The idea is to extract several features from T which can be
used to describe the local hull of R up to some level of de-
tail. Based on these features we construct the local hulls in
HL[R]. Therefore the set of features should be comparably
small.

First, we define a small sample of the border triangulation.
However, this sample turns out to be dense enough such that
we only miss very small triangles. So, this sample provides
portions of the local hull with the exception of small ”gaps”.
Therefore, our next goal is to derive several properties of
those gaps. We then show that it is possible to roughly
reconstruct the local hulls within the gaps based only on a
small amount of additional information. This finally yields
a set of local hulls for R which we call smooth hulls.

320

5.1 Characteristic Triangles
Let s = O (1/ε) as defined in the previous section and let t

denote the depth of the subdivision of a square Q◦. We also
still assume that |Q◦| ≤ 6sn and thus t = O (log n). Our
first step is to define a suitable small sample of the border

triangulation. We consider a rectangle bR that is subdivided
by C into its children R and R′. Note that in comparison to
the previous sections we slightly changed the notation. As
we will mostly work with one of the children, it makes the
notation more concise if we call this rectangle R. Fix any

triangulation T and let bH denote the local hull of bR with
respect to T .

Let m = 2�log(st)�. We partition both R and R′ into at
most m2 cells using a regular grid of granularity r/m, where
r denotes the maximum side length of R. Let M[R] and
M[R′] denote the set of cells in R and R′, respectively. We
assume that Q◦ is chosen such that no point of P falls on
the boundary of such a cell. Throughout cl denotes the side
length of cells at level l. One can easily see that cl decreases
exponentially with l.

Now, consider a tuple (C, C′) with C ∈ M[R] and C′ ∈
M[R′] and let

T (C, C′) := {� ∈ ΔB(bR, T) : P (�) ∩ C �= ∅
∧ P (�) ∩ C′ �= ∅}.

That is, T (C, C′) is the set of triangles in ΔB(bR, T) that
have at least one vertex in each of C and C′. We walk along
the line through C from left to right if C is horizontal and
from top to bottom if C is vertical. From now on we al-
ways assume that a separator is oriented in this way. By
�first(C, C′) we denote the first triangle of T (C,C′) we trans-
verse on this walk. Similarly, �last(C, C′) denotes the last
triangle, we transverse.

Proceeding similarly for all tuples (C, C′), we obtain a set
of triangles

Tchar(C,T) := {�first(C, C′),�last(C, C′) :

C ∈ M[R], C′ ∈ M[R′]}

which we call the characteristic triangles of ΔB(C,T). By
the definition of m we immediately obtain

Lemma 6. |Tchar(C, T)| = O
`
log4 n

´
.

5.2 Gaps
Using the same notation as above, we next study fun-

damental properties of Tchar = Tchar(C, T). As mentioned
above Tchar is in general just some sparse sample of the cor-
responding border triangulation. So, we first discuss which
portions of the border triangulation are not contained in
Tchar. Let Ecut denote the set of edges that are cut by C

and are either sides of triangles in Tchar or edges of bH. Along
C we index the edges in Ecut in the order in which we trans-
verse them according to the orientation of C defined above.
Let e = ej and ẽ = ej+1 denote two subsequent edges in
Ecut. If both belong to the same triangle in Tchar, then the
border triangulation between e and ẽ is completely described
by Tchar as it just consists of this triangle. Otherwise, the
line segment of C bounded by its intersection points with e

and ẽ is either inside int(bH) or outside. We only miss trian-
gles of the border triangulation if the line segment is inside

of int(bH). In this case we say that e and ẽ defines a gap

along C which we denote by Γ = Γ(e, ẽ). The line segment
of C which is bounded by e and ẽ is called the window of Γ
and denoted by W (Γ).

Between e and ẽ triangles of ΔB(bR, T) \ Tchar cross the
separator C. Those triangles induce portions S = S(Γ, T)

and S ′ = S ′(Γ, T) of B(bR, T)∩R and B(bR, T)∩R′, respec-
tively. Although Tchar provides no edges of S or S ′, we will
derive several properties of both. For the sake of simplicity
we only consider S . Due to symmetry, similar definitions
and statements are straightforward for S ′.

Note that there is a region Ri of (1) such that S ⊆ Wi

and that S is connected. The next lemma states one of the
key properties of gaps that will subsequently be used to con-
struct the algorithm L that computes our desired restricted
class of local hulls. The lemma essentially says that while we
cannot say anything specific about the location of gaps (e.g.
we cannot guarantee any bound on the number of points
on the missing portions S and S ′ nor can we bound their
lengths), we nevertheless know that S and S ′ are contained
within a strip of width at most 4cl, where cl denotes the side
length of a cell C ∈ M[R].

Lemma 7. Let Γ = Γ(e, ẽ) denote a gap along C and
let S = S(Γ). There exists a line H with the following
properties. Either H is orthogonal to C and contains the
barycenter of W (Γ) or there are 2 points of P such that H
contains those points and crosses W (Γ). Moreover, for all
u ∈ P (S)∪ {y, ỹ} we have d(u, H) ≤ 2cl. Here, y and ỹ de-
note the intersections points of C with e and ẽ, respectively.

We now choose a line B orthogonal to H that contains
y or ỹ (or both, in case H and C are orthogonal) in such
a way that (if H is not orthogonal to C) the halfspace B−

that contains H ∩R′ also contains the other point of y resp.
ỹ. If H is orthogonal to C we have R ⊂ B ∪ B+. Note that
W (Γ) is contained in B− if H and C are not orthogonal.
Note also that we cannot exclude that B− contains points
from P (S). The next lemma, however, states that if such
points exist then they are all contained in a small strip along
the line B.

Lemma 8. For all u ∈ P (S)∩ B− we have d(u, B) ≤ cl.

5.3 The Skeleton
So far we have studied properties of a gap with respect

to a given triangulation. Within our algorithmic framework
we need to proceed in the opposite way: given Γ we need to
construct a “good” S . In order to do this in an efficient way
we will provide a set of points K, which we call a skeleton,
that has at most logarithmic size and is dense enough to
describe S reasonably precisely.

By Lemma 7 we know that there exists a line H such
that the points on S are enclosed within a very narrow strip
around H . However, we have no information about the be-
havior of S “along” H . Our approach is to sample K from
S along H in steps of roughly size cl. This is explained
in detail in Section 6. In this section we first collect some
properties that a skeleton should have. Note that our aim
is to define a skeleton with respect to a given gap Γ and the
point set P ∩ R, but not with respect to a triangulation.

Let Γ = Γ(e, ẽ) denote a gap and let x, x̃, y, and ỹ be
defined as above. Moreover, let H denote an arbitrarily
chosen line such that H is either the line orthogonal to C
through the barycenter of W (Γ) or some line through two

321

points of P that intersects with W (Γ) in exactly one point.
We construct the line B as above, that is, B is orthogonal
to H and contains y or ỹ. The halfspaces B− and B+ are
oriented as usual. Throughout this section Bp denotes the
line parallel to B such that p ∈ Bp if p ∈ B+ and Bp = B
otherwise. The halfspace of Bp containing B− is denoted by
B−

p .
A skeleton is a subset K of P ∩ R that satisfies certain

properties. In fact, we will usually view K as a disjoint
union of three sets

K = {p̂} � K+ � K−,

where p̂ is a sort of extreme point and K+ and K− define
the two flanks of the skeleton, cf. Figure 3. A set K =
{p̂}�K+�K− is called a skeleton, if it satisfies the following
four properties:

(P1) If there are points of K in B− then p̂ ∈ K is the point
in B− which has maximum distance to B. Otherwise
p̂ has minimum distance to B.

(P2) x ∈ K+, x̃ ∈ K−, B+
x ∩ K+ = ∅ and B+

x̃ ∩ K− = ∅.

(P3)
˛̨
K+ ∩ B− ˛̨

≤ 1 and
˛̨
K− ∩ B− ˛̨

≤ 1.

(P4) d(Bp, Bq) > cl for all p, q ∈ K+ (p, q ∈ K−), p �= q.

The intuition behind those properties is quite simple. (P1)
basically states that p̂ is that point in K that is “closest”
to W (Γ), where closeness is measured with respect to the
hyperplane B. Property (P2) says that the two endpoints
of the edges which define the gap Γ have to belong to K+

respectively K− and that all other points have to be closer to
W (Γ), where closeness is again measured with respect to B.
In the sections to come the points in B−∩R will always play
some special role. Property (P3) simply says that K+ and
K− both contain at most one such special point. Finally,
property (P4) says that the points in K+ and K− should be
reasonably scattered along H .

Our next step is to define the notion of a feasible skeleton,
which has the property that it uniquely defines as “stan-
dardized” hull segment. In order to characterize a feasible
skeleton we first define a polyline S∼ = S∼(Γ,K) that con-
nects x with x̃ via the points in K. As we will define S∼

as a union of piecewise convex segments we refer to S∼ as a
convex continuation (of the points in K). Assume that the
points in K+ ∪ {p̂} and K− ∪ {p̂} are ordered by increasing
distance to Bx and Bx̃, respectively. Henceforth we write
p�q if p, q ∈ K+ ∪ {p̂} (p, q ∈ K+ ∪ {p̂}) are subsequent (!)
in this order.

We construct S∼ piecewise as follows. For p, q ∈ K+,
p� q, consider the (open) region Dpq that is bounded by e,
the line segment pq, Bp and Bq . We let

S∼[p, q] = E(conv((P ∩ Dpq) ∪ {p, q})) \ {p, q}.

In other words S∼[p, q] is the convex polyline that separates
all points of P that lie in the region Dpq from e. Observe
that we add the two points p and q to the points in the open
region Dpq in order to guarantee that the edge {p, q} will be
one side of the constructed convex hull.

If p, q ∈ K−, then S∼[p, q] is defined similarly; we just
replace the edge e by the edge ẽ in the above definitions.
Finally, consider the case p � q where p ∈ K+ ∪ K− and
q = p̂. Assume that p ∈ K+; the case p ∈ K− is again

symmetric. This time we let Dpq denote the open region
bounded by e, pq, Bp, the shortest line segment connecting
p̂ to W (Γ) and (if p ∈ B−) by S∼[p′, p], where p′ ∈ K+ such
that p′

� p. (Recall that if p ∈ B− then p �∈ Bp. We thus
need the segment S∼[p′, p] in order to guarantee that Dpq is
a finite region.) As before we let

S∼[p, q] = E(conv((P ∩ Dpq) ∪ {p, q})) \ {p, q}.

The convex continuation S∼ is defined as the union of
these pieces, that is

S∼ =
[

p,q∈K:p�q

S∼[p, q].

This definition is illustrated in Figure 3. Intuitively, S∼

consists of convex segments that connect two subsequent
points in K such that p̂ can be seen as the “peak” of S∼.
Let p0 ∈ K+ and q0 ∈ K− such that p0 � p̂ and q0 � p̂.
Observe that

bS∼ := S∼[p0, q0] = S∼[p0, p̂] ∪ S∼[p̂, q0]

is a convex polyline, since p̂ is an extreme point.

W (Γ)

x

x̃

y

p1
p2 p3

p4
p̂

Bx

Bp1

Bp2

Bp3

Bp4 = B

e

Figure 3: S∼ restricted to the portion defined by K+

(solid lines). The polygonal region D(S∼) is shaded.

Throughout D(S∼) denotes the region bounded by S∼,
e, ẽ and W (Γ). For a feasible skeleton we require that this
region exists (cf. property (P5) below). Note that we view
D(S∼) as an open region. In particular it therefore contains
no points from P (S∼). A skeleton K is said to be feasible if
it satisfies the following properties:

(P5) S∼ is neither self-intersecting nor intersects with e or
ẽ.

(P6) The polygonal region D(S∼) does not contain points of
P . (Note that by definition of the convex continuation
this is equivalent to saying that the line segments Bp∩
D(S∼) contain no point.)

(P7) Let p, q ∈ K \ {p̂} such that p � q. Let Xq and Yq

denote the lines through q that are parallel to C and
orthogonal, respectively. Let X−

q denote the halfspace
of Xq containing W (Γ) and let v ∈ X−

q ∩ P (S∼[p, q])
such that d(v, Xq) is maximum. If v �∈ {p, q} then
d(Bv, Bq) > cl. Similarly, if W (Γ)∩Yq = ∅ the follow-
ing is true. Let Y −

q denote the halfspace containing
W (Γ) and let v ∈ Y −

q ∩ P (S∼[p, q]) such that d(v, Yq)
is maximum. If v �∈ {p, q} then d(Bv, Bq) > cl.

322

(P8) For all u ∈ P (S∼) there is an edge {u, w} connecting
u and some w ∈ W (Γ) such that uw ⊂ D(S∼). In
specific {u, w} crosses neither S∼ nor e and ẽ.

Too get some intuition for the last condition observe that
whenever we consider the segment S = S(Γ) defined by an
underlying triangulation, then every edge of S is contained
in a triangle that crosses W (Γ). In particular, S satisfies
property (P8) and we require that S∼ does so, too. We
close this subsection with the observation that any skeleton
contains at most logarithmically many points.

Lemma 9. For fixed s ∈ N we have |K| = O (log n) for
every skeleton K.

5.4 Smooth Hulls and Triangulations
For fixed Q◦ we have the following definitions. A trian-

gulation T patches Γ smoothly, if and only if there exist
hyperplanes H and H ′ through W (Γ) and feasible skeletons
K = K(Γ, H) and K′ = K′(Γ, H ′) such that

S(Γ,T) = S∼(K) and S ′(Γ, T) = S∼′(K′).

Similarly, a local hull of R is called smooth, if all gaps are

patched smoothly and if the hull of its parent bR is either
smooth or identical to conv(P). Finally, T is said to be
smooth with respect to Q◦ if and only if every rectangle has
a smooth local hull.

5.5 The Algorithm L
Our next goal is to construct a quasi-polynomial time al-

gorithm L that generates for all R a set of hulls HL[R] such
that HL[R] contains all smooth hulls of R.

We initialize HL[Q◦] = {conv(P)} and proceed top-down
in the sense of Lemma 2. So assume we already have com-

puted HL[bR] and that C subdivides bR into R and R′. We
compute HL[R] as follows.

1. For each bH ∈ HL[bR] enumerate all feasible sets Tchar

of characteristic triangles.

2. For all such choices of bH and Tchar, compute all gaps,
say Γ1, . . . , Γr. For each gap Γi, choose a line Hi and
a feasible skeleton Ki. Enumerate all such choices.

3. For each such choice [(H1, K1), . . . , (Hr,Kr)] we com-
pute H as follows. Check whether the convex contin-
uations S∼(Ki) are pairwise disjoint. If yes, combine

them with bH ∩ R and the sides of triangles in Tchar

that are contained in R. This yields H which we add
to HL[R].

One easily checks that HL[R] contains all smooth hulls of
R. So it remains to bound |HL[R]| and the time complexity
of L. This however, is far beyond the scope of this extended
abstract. The hard part is to show that only O

`
log6 n

´
gaps

occur in step (2) of the algorithm. Once this is achieved, we
obtain using basic counting arguments

Lemma 10. HL[R] contains all smooth hulls of R and

for fixed s ∈ N, |HL[R]| ≤ nO(log8 n). Moreover, the family

(HL[R])R can be computed in time nO(log8 n).

6. THE SMOOTHING LEMMA
Our QPTAS computes an almost optimal smooth trian-

gulation. In order to show that this also approximates an
optimum triangulation, we will show in the next section how
to change a general triangulation into a smooth triangula-
tion without much increase in length. In this section we
introduce a technical statement needed for this transforma-
tion, the so-called Smoothing Lemma. Consider a separator
C and a gap Γ = Γ(e, ẽ) on C. Let

W(T , e, ẽ) = S ∪ S ′ ∪ {e, ẽ} .

We call W(T , e, ẽ) the enclosing walk of Γ(e, ẽ) (cf. Figure 4).

Lemma 11 (Smoothing Lemma). Let T denote a tri-
angulation and let C denote a separator at level l subdividingbR into R and R′. Furthermore, let Γ(e, ẽ) be a gap on C.
Then there exist feasible skeletons K and K′ as well as a
triangulation T ∼ such that

1. The edges in the symmetric difference T ∼ΔT are con-
tained in the interior of W = W(T , e, ẽ). In other
words, T and T ∼ are identical outside W.

2. T ∼ patches Γ(e, ẽ) smoothly with respect to K and K′.

3. � (T ∼) − � (T) ≤ 18cl · h, where h denotes the number
of edges of T in the interior of W.

In the remainder of this section we outline the proof of this
statement. We start by fixing some notation. As usual we
use x = e∩R and x̃ = ẽ∩R to denote the endpoints of e and ẽ
that lie in R. Similarly, x′ and x̃′ denote the endpoints in R′.
Recall that Lemma 7 guarantees the existence of lines H and
H ′ such that S and S ′ are enclosed within a strip of width
4cl around H and H ′, respectively. The lines B and B′

denote appropriate hyperplanes orthogonal to H . Moreover,
Bp denotes the line parallel to B through p if p ∈ B+, and
Bp = B otherwise. The halfspace of Bp containing B− is
denoted by B−

p (this is unique as Bp ⊂ B+∪B). Throughout
d⊥(u, v) and d‖(u, v) denote the distance between u and v
measured orthogonal to H and parallel, respectively. We
have

d(u, v) ≤ d⊥(u, v) + d‖(u, v)

due to the triangle inequality.

x x̃

e ẽ

W (Γ)

Figure 4: The walk S traverses the edges in the
same order as we traverse the corresponding trian-
gles along C.

Recall that every edge in S is a side of at most two trian-
gles of T that lie within W and that every edge that crosses

323

a
c

a′

c′

b

v′

C

a
c

a′

c′

b

v′

C

(a) (b)

Figure 5: We identify Wabc (bold) and modify the triangulation in its interior.

W (Γ) belongs to such a triangle. We thus get a natural
walk along the edges of S , if we traverse the edges of S in
the order in which the corresponding triangles are encoun-
tered if we walk along W (Γ) from e to ẽ. This is illustrated
in Figure 4. Observe, this walk can be written as a set of di-
rected edges (arcs). Henceforth, we slightly abuse notation
by assuming that S is indeed a set of such arcs rather then
a PSLG.

Note that in general S will be a walk (and not a path).
That is, some points can be visited several times. With
S [x, p] we always denote the walk on S from x until the
first occurrence of p on S . Similarly, S [x̃, p] denotes the
walk which we obtain by traversing S in opposite direction,
starting in x̃, until the first occurrence of p.

Lemma 12. Let L denote a line parallel to B such that
L ⊂ B+ and z := e ∩ L exists. Let X = S ∩ L denote
the intersection points of S with L and let z0 denote the
first intersection of S with L if we traverse S starting in x.
Then the line segment zz0 contains no other point from X.

A similar statement holds for z := ẽ ∩ L and the last
intersection point of L and S , as everything is symmetric if
we walk backwards starting at x̃.

6.1 Sampling the Skeleton
One can show that it is possible to sample a feasible skele-

ton K from S which satisfies in addition the following prop-
erties:

(A1) K ⊆ P (S).

(A2) If p ∈ K+ then P (S [x, p]) \ {p} ⊂ B+
p and similarly if

p ∈ K− then P (S [x̃, p]) \ {p} ⊂ B+
p .

(A3) For all p, q ∈ K+ s.t. p�q, all points in P (S [x, q])\{q}
are either contained in B+

p or satisfy d(u, Bp) ≤ 4cl.
For p, q ∈ K− a similar statement holds with respect
to S [x̃, q].

As K is feasible, S∼ = S∼(K) exists. Due to symmetry,
we can clearly sample a feasible skeleton K′ with similar
properties from S ′.

6.2 Smoothable Detours
Let X denote the set of edges of the triangulation that

cross C within the enclosing walk W(T , e, ẽ) of Γ, that is,

X = (E(T) \ {e, ẽ}) ∩
`
P (S)× P (S ′)

´
. (3)

Note that X includes neither e nor ẽ. For the sake of expo-
sition, we consider only S in the sequel. Throughout it can
be easily checked that similar definitions and statements can
be derived for S ′. Observe that every arc of S is contained
in exactly one of the following subwalks.

– bS. The subwalk of S from the first occurrence of p ∈
K+ and the last one of q ∈ K−, where p� p̂ and q� p̂.

– S [p, q]. Defined for p, q ∈ K+, p�q as the subwalk of S
from the first occurrence of p to the first occurrence of
q. For p, q ∈ K− by considering S in reverse direction.

In other words, we decompose S into bS and a family of sets
S [p, q]. Lemma 12 and (A2) imply that S [p, q] = S∼[p, q]
if S [p, q] is convex. Intuitively, this says that there is no
substantial structural difference between S∼[p, q] and S [p, q]
and it suffices to make the latter convex without increasing
the length of the triangulation too much. This is achieved
by iteratively “shortcutting” S [p, q]. Similarly, we proceed

for bS which we aim to transform into bS∼. This motivates
the following definition.

Let a, b, and c denote three subsequent points on S , i.e.,
{(a, b), (b, c)} ⊆ S . We say that (a, b, c) is a detour, if there
is at least one edge in X incident to b that intersects with
the line segment ac that connects a and c. Let Xb ⊆ X
denote the set of all edges in X that are incident to b. We
call (a, b, c) simple if |Xb| = 1. Moreover, (a, b, c) is called

smoothable if either {(a, b), (b, c)} ⊂ bS or {(a, b), (b, c)} ⊂
S [p, q] for an appropriate choice of p and q.

6.3 The Smoothing Action
A smoothing action is a single step of the process that it-

eratively “shortcuts” S such that we obtain S∼. We choose
a smoothable detour (a, b, c) on S or S ′ according to a care-
fully chosen order of preference (this requires more technical
background then this extended abstract can provide). We
assume that

{(a, b), (b, c)} ⊆ S

as the case {(a, b), (b, c)} ⊆ S ′ is just symmetric. Once the
detour is chosen, we locally modify T such that we obtain a
triangulation T< with

S< = (S ∪ {(a, c)}) \ {(a, b), (b, c)} .

This is achieved as follows. Let a′, c′ ∈ P (S ′) such that
�aba′ and �cbc′ are the triangles corresponding to (a, b)
and (b, c). The edges {a, a′} and {c, c′} so to say enclose

324

Xb. Note that a′ = c′ is possible. Let Wabc denote the walk
that encloses all triangles in T that are traversed along C
between �aba′ and �cbc′ . In Figure 5 this walk Wabc is
indicated by a bold polygon. All the modifications take
place within the area enclosed by Wabc.

We triangulate the interior of Wabc with a triangulation
that contains {a, c}. Clearly, S ′

abc = S ′ ∩Wabc is a subwalk
of S ′. Observe furthermore that S ′

abc visits each of its points
exactly once, since every point is connected to b. Thus the
subwalk S ′

abc[u
′
1, u

′
2] from u′

1 to u′
2 is well-defined.

We choose a point v′ as follows. If there are points in B∪
B− we choose v′ such that the distance to C is minimized.
Otherwise, we choose v′ among all points (in B+) having
minimum distance to B. The new triangulation of Wabc

contains the triangle �av′c and has the property that all
triangles but �abc cross C. This is illustrated in Figure 5 b).
Our order of preference guarantees that this triangulation
always exists.

It remains to bound the increase of length due to this
sequence of smoothing actions. This is quite elaborate, so we
just outline the main ideas. Observe that every smoothing
action replaces one edge crossing C by one that lies inside
R or R′ (namely the edge {a, c}). As d⊥(a, c) ≤ 4cl it
remains to show that d‖(a, c) is bounded by the length of
the replaced edges plus 14cl. We roughly argue as follows.
The smoothing actions’ order of preference guarantees that
we first consider detours with a, c ∈ Bb ∪B−

b (the bound on
d‖(a, c) is quite obvious for this type of detours). If no such

detour is left then (A2) and Lemma 12 assure that a, c ∈ B+
p ,

where p ∈ K is chosen such that b is on the subwalk between
p and p̂ and this subwalk is shortest possible (very roughly
speaking). In this case, the bound on d‖(a, c) follows by
(A3). On the other hand, a smoothing action “redirects”
some of the remaining edges in X. The order of preference
guarantees that the endpoints of those edges “tend” to B
over the sequence of smoothing actions. This allows us to
apply (A3) similarly as above.

7. ON THE CHOICE OF Q◦
It remains to be shown that T ∗

L is a good approximation
to T ∗, that is, �(T ∗

L) ≤ (1 + ε)�(T ∗). This is in general not
the case for arbitrary fixed Q◦. However, we can show that
there exists

Q = {Q1, Q2, . . . , Qk}
such that T ∗

L ≤ (1+ ε)�(T ∗) for at least one Q◦ ∈ Q, where
k = poly(n). Due to space restrictions, we just sketch the
main ideas of our proofs.

In order to comply with the assumptions of the previous
sections we require that Q◦ (and thus every Qi ∈ Q) has to
satisfy the following properties.

– P ⊂ Q◦.

– maxp,q∈P d(p, q) ≥ s · n.

– |Q◦| = 2α, for some α ∈ N s.t. 2α ∈ [3sn, 6sn].

– For all rectangles R in the subdivision, neither the
boundary of R nor in the boundary of any cell C ∈
M[R] contains a point in P .

Indeed the properties listed here are somewhat stronger than
actually required. By scaling and slightly shifting the point
set one can check that those assumptions do not mean loss

of generality. It remains to show that there exists a “good”
Q◦ ∈ R. For a fixed square Q◦ we proceed in top-down
fashion through the dissection tree and use Lemma 11 to
modify the triangulation appropriately, that is, we assure
iteratively that all gaps are patched smoothly. Using an av-
eraging argument similar to that of Arora [2] we can indeed
show that there exists a “good” Q◦ ∈ R for which the in-
crease of length of the triangulation in the aforesaid process
is at most ε� (T ∗) for this choice of Q◦. As Q has polyno-
mial size, this (or a better) Q◦ can be identified by running
our approximation algorithm for each square in Q.

8. CONCLUDING REMARKS
In this paper we introduced a quasi-polynomial time ap-

proximation scheme for Minimum Weight Triangulation.
Due to the recent result of Mulzer and Rote [16], the most
natural aim of future research is to prove the existence of a
PTAS. This seems to be promising, as in fact our result can
be seen as an indication that such an algorithm exists.

9. REFERENCES
[1] S. Arora. Polynomial time approximation schemes for

Euclidean TSP and other geometric problems. In 37th Annual
Symposium on Foundations of Computer Science, pages
2–11, 1996.

[2] S. Arora. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems.
Journal of the ACM, 45(5):753–782, 1998.

[3] S. Arora. Approximation schemes for NP-hard geometric
optimization problems: A survey. Mathematical Programming,
Series B, 97:43–69, 2003.

[4] S. Arora and K. Chang. Approximation schemes for
degree-restricted MST and red-blue separation problems.
Algorithmica, 40(3):189–210, 2004.

[5] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for
Euclidean k-medians and related problems. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing,
pages 106–113, 1998.

[6] M. Bern and D. Eppstein. Approximation algorithms for
geometric problems. In D. Hochbaum, editor, Approximation
Algorithms for NP-hard Problems. PWS Publishing, 1997.

[7] D. Eppstein. Approximating the minimum weight Steiner
triangulation. Discrete & Computational Geometry,
11:163–191, 1994.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability
- A Guide to the Theory of NP-Completness. 1979.

[9] P. Gilbert. New results on planar triangulations. Master’s
thesis, University of Illinois, 1979.

[10] J. Gudmundsson and C. Levcopoulos. Minimum weight
pseudo-triangulations. In Proceedings of the 20th European
Workshop on Computational Geometry, 2004.

[11] G. Klincsek. Minimal triangulations of polygonal domains.
Annals of Discrete Mathemathics, 9:121–123, 1980.

[12] C. Levcopoulos and D. Krznaric. Quasi-greedy triangulations
approximating the minimum weight triangulation. In
Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 392–401, 1996.

[13] C. Levcopoulos and D. Krznaric. A near-optimal heuristic for
minimum weight triangulation of convex polytops. In
Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 519–527, 1997.

[14] C. Levcopoulos and D. Krznaric. Quasi-greedy triangulations
approximating the minimum weight triangulation. Journal of
Algorithms, 27:303–338, 1998.

[15] J. S. B. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: A simple new method for the
geometric k-MST problem. In Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
402–408, 1996.

[16] W. Mulzer and G. Rote. Minimum weight triangulation is
NP-hard. In Proceedings of the 22nd Annual ACM
Symposium on Computational Geometry, 2006 (to appear).

[17] D. A. Plaisted and J. Hong. A heuristic triangulation
algorithm. Journal of Algorithms, 8:465–437, 1987.

325

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

