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Abstract. A triangulation of a planar point set S is a maximal plane straight-line graph with vertex
set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a
given point set that minimizes the sum of the edge lengths. We prove that the decision version of this
problem is NP-hard, using a reduction from PLANAR 1-IN-3-SAT. The correct working of the gadgets
is established with computer assistance, using dynamic programming on polygonal faces, as well as
the β-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.
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1. Introduction

Given a set S of points in the Euclidean plane, a triangulation T of S is a maximal
plane straight-line graph with vertex set S. The weight of T is defined as the total
Euclidean length of all edges in T . A triangulation that achieves the minimum
weight is called a minimum-weight triangulation (MWT) of S.
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FIG. 1. A planar point set and different ways to triangulate it. The greedy triangulation (a) is con-
structed incrementally, always adding the shortest possible edge. In this example, it is shorter than
the Delaunay triangulation (b), which avoids skinny triangles. A minimum weight triangulation for
the point set is shown in (c). The length L of the MWT can decrease when additional Steiner points
are allowed (d).

The problem of computing a triangulation for a given planar point set arises
naturally in many applications such as stock cutting, finite element analysis, terrain
modeling, and numerical approximation. The minimum-weight triangulation has
attracted the attention of many researchers, mainly due to its natural definition of
optimality, and not so much because it would be important for the mentioned ap-
plications. We show that computing a minimum-weight triangulation is NP-hard.
Note that it is not known whether the MWT problem is in NP, because it is an open
problem whether sums of radicals (namely, Euclidean distances) can be compared
in polynomial time [Blömer 1991]. This problem is common to many geomet-
ric optimization problems, like, perhaps most famously, the Euclidean Traveling
Salesperson Problem. To get a variant of the problem that is in NP, one can take
the weight of an edge e as the rounded value �‖e‖2�. Our proof also shows that this
variant is NP-complete.

Our proof uses a polynomial time reduction from POSITIVE PLANAR 1-IN-3-
SAT, a variant of the well-known PLANAR 3-SAT problem, which is a standard
tool for showing NP-hardness of geometric problems.

1.1. OPTIMAL TRIANGULATIONS. Usually, a planar point set has (exponentially)
many different triangulations, and many applications call for triangulations with
certain good properties (see Figure 1). Optimal triangulations under various opti-
mality criteria were extensively surveyed by Bern and Eppstein [1992].

The Delaunay triangulation is perhaps the best known triangulation. It arises
as the dual of the Voronoi diagram and can be computed optimally in O(n log n)
time, using classical techniques [de Berg et al. 2000]. Since it simultaneously
optimizes many objective functions (it maximizes the smallest angle, it minimizes
the maximum circumcircle, as well as the maximum smallest enclosing circle of
all triangles), it is often the triangulation of choice.

Certain other criteria, such as the minimum maximum angle, the maximum
minimum height, or the minimum maximum distance of a triangle from its cir-
cumcenter, can be optimized in polynomial time using the edge insertion technique
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[Bern et al. 1993; Edelsbrunner et al. 1992], a sophisticated application of dynamic
programming.

It makes a difference whether it is allowed to add new points, so-called Steiner
points, to the planar point set. As Figure 1 shows, this can sometimes help to im-
prove the objective function. Bern and Eppstein [1992] give many similar examples.
Here we only mention one result by Eppstein [1994], who showed that the mini-
mum weight Steiner triangulation can be approximated up to a constant factor in
O(n log n) time, using quadtrees.

1.2. HISTORY OF THE MWT PROBLEM. The minimum-weight triangulation
problem dates back to the 1970s and has been called “perhaps the most long-
standing open problem in computational geometry” [Bern and Eppstein 1992], At
the end of the classical book of Garey and Johnson [1979] on NP-completeness,
there is a list of 12 major problems whose complexity status was open at the time of
writing. With the present article, ten problems from this list have been resolved by
proving NP-hardness or by exhibiting a polynomial-time algorithm (see Johnson
[2005] for a recent status update on the list). As of now, only two problems from the
original list remain open, namely Precedence-Constrained 3-Processor Scheduling
and the notorious Graph Isomorphism problem.

1.2.1. Early Attempts. It seems that the MWT problem was first considered by
Düppe and Gottschalk [1970] who proposed a greedy algorithm which always adds
the shortest possible edge to the triangulation. Later, Shamos and Hoey [1975]
suggested using the Delaunay triangulation as a minimum-weight triangulation.
Lloyd [1977] provided examples which show that both proposed algorithms usually
do not compute the MWT (Figure 1). He also shows that it is NP-complete to
decide whether the edge set of a given planar straight-line graph (with crossing
edges) contains a triangulation. After this, countless researchers attacked the MWT
problem from many different angles. In one line of attack, researchers used classical
optimization techniques such as dynamic programming or branch and bound, but
this soon became infeasible. In other lines of research, people looked at relaxed
variants of the problem: Maybe there exist reasonable restrictions of the problem
for which efficient algorithms can be found, and if the problem cannot be solved
exactly, maybe good approximations can be computed efficiently. Finally, there was
an attempt to gain a better understanding of the geometric properties of the MWT in
order to find footholds for effective heuristics. We now describe these approaches
in more detail.

1.2.2. Dynamic Programming. Gilbert [1979] and Klincsek [1980] indepen-
dently showed how to compute a minimum-weight triangulation of a simple poly-
gon in O(n3) time by dynamic programming. In fact, this problem has become
one of the standard textbook examples (or exercises) for illustrating the dynamic
programming paradigm. There have also been attempts to attack the general prob-
lem with dynamic programming techniques. For example, Cheng et al. [1995] used
dynamic programming in order to compute a minimum-weight triangulation of a
given point set S in O(nk+2) time if a subgraph of a MWT of S with k connected
components is known. Using branch and cut, Kyoda et al. [1997] managed to com-
pute MWTs of 100 points, but for large point sets mere dynamic programming
becomes absolutely infeasible.
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1.2.3. Restricted Instances. For restricted classes of point sets, it is possible
to compute the MWT in polynomial time. For example, Anagnostou and Corneil
[1993] gave an algorithm to compute the MWT of the vertex set of k nested convex
polygons in O(n3k+1) time. More recently, Hoffmann and Okamoto [2006] showed
how to obtain the MWT of a point set with k inner points in O(6kn5 log n) time.

1.2.4. Approximations. In another line of attack, researchers were looking for
triangulations that approximate the MWT. The Delaunay triangulation is not a good
candidate, since it may be longer by a factor of �(n) [Kirkpatrick 1980; Manacher
and Zobrist 1979]. The greedy triangulation approximates the MWT by a factor of
�(

√
n) [Manacher and Zobrist 1979; Levcopoulos 1987; Levcopoulos and Krznaric

1996]. Plaisted and Hong [1987] showed how to approximate the MWT up to a
factor of O(log n) in O(n2 log n) time. Levcopoulos and Krznaric [1996] introduced
quasi-greedy triangulations, which approximate the MWT within a constant factor.
Remy and Steger [2006] discovered an approximation scheme for MWT that runs
in quasi-polynomial time: for every fixed ε, it finds a (1 + ε)-approximation in
nO(log8 n) time.

1.2.5. Subgraphs and Supergraphs. A different line of research tried to identify
criteria to include or exclude certain edges of the MWT. Gilbert [1979] showed that
the MWT always contains the shortest edge. Yang et al. [1994] extended this result
by proving that edges which join mutual nearest neighbors are in the MWT. A larger
subgraph of the MWT, the β-skeleton, was discovered by Keil [1994]. We describe
it in Section 4.1. In practice, the β-skeleton has many connected components, and
thus does not help much in computing a MWT. Often, the LMT-skeleton heuristic
described by Dickerson et al. [1997] yields much better results. It uses the simple
fact that a MWT is locally optimal in the sense that it cannot be improved by flipping
the diagonals of a convex empty quadrilateral in the point set. The LMT-skeleton
made it feasible to compute the MWT for larger, well-behaved point sets, and it has
been the subject of numerous further investigations [Beirouti and Snoeyink 1998;
Cheng et al. 1996; Aichholzer et al. 1999; Belleville et al. 1996; Bose et al. 2002].

Approaching the problem from the other direction, Das and Joseph [1989] defined
the diamond test, which yields a supergraph of the MWT: An edge e can only be
contained in the MWT if at least one of the two isosceles triangles with base e and
base angles π/8 is empty. This constant was improved to π/4.6 [Drysdale et al.
2001] (see Figure 9 below). The diamond test gives an easy criterion to exclude
impossible edges from the MWT. Usually, this eliminates all edges except a set
of O(n) remaining candidate edges. (This statement is true for random point sets,
with high probability. With bucketing techniques, such a set of O(n) edges can be
found in linear expected time [Drysdale et al. 1995].)

1.3. OUR METHODS AND RESULTS.

1.3.1. Historical Perspective. The crucial necessary condition for a geometric
optimization problem to be NP-hard is that the solution depends nonlocally on the
data.

With the LMT-skeleton heuristic, it became feasible to compute minimum-weight
triangulations fast enough that one could carry out experiments and play with
various point sets. An instance of a nonlocal effect was hence discovered by Jack
Snoeyink [Beirouti and Snoeyink 1998]: the so-called wire is a symmetric polygon
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L R
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FIG. 2. A wire-piece and its two optimal triangulations. The two optimal triangulations are labeled
as L and R, depending on whether the left (L) or right (R) arms of the isosceles terminal triangles,
as shown dotted in the right part, belong to the triangulation. This convention is used throughout the
paper.

L

R

FIG. 3. A longer wire with several optimal triangulations. Besides the two triangulations of type L
and R, there are mixed forms where the transition between L and R can occur in intermediate positions,
as marked by an arrow in the lower example. If the wire is regarded as a point set, the shaded pockets
outside the wire also have to be triangulated. For each pocket, there are four optimal triangulations.
However, the pockets are independent of each other, and do not affect the properties of the wire.

that does not have a symmetric minimum-weight triangulation, and hence it has (at
least) two different minimum-weight triangulations, see Figure 2.

Wires can be extended to any length, see Figure 3. A small change in the point
set at one end of the wire will cause the optimum triangulation to topple globally
throughout the whole wire. Wires can thus be used to “transmit information” from
one area of the plane to a remote area (hence, the name “wire”). We use various
forms of wires as building blocks for constructing gadgets in our NP-hardness
reduction.

Such a nonlocal effect is usually a strong indication that the problem is NP-hard.
Still, it took almost a decade until another crucial building block was designed:
a gadget that allows several wires to meet and that carries out “logic” with the
information that is transmitted by them (the so-called C-connection, see Figure 14).
The design of this gadget heavily depended on computer assistance. We used an
implementation of the LMT-skeleton heuristic using Otfried Cheong’s program IPE
[Schwarzkopf 1995] as a graphical user-interface.

1.3.2. Computer Assistance. It seems inevitable that a NP-hardness proof for
the MWT problem requires some amount of computer calculation, since computing
the weight of a triangulation involves Euclidean distances, and thus square roots.
Therefore, when comparing two triangulations that differ in more than a pair of
edges, it is hard to compare their weight by just looking at them.
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However, since the conference version of this article [Mulzer and Rote 2006],
we have made an effort to reduce the part of the proof that depends on computer
assistance for verification. We have also made other simplifications of the proof
and made it more accessible. (a) We have tried to simplify and specialize the
problem as much as possible already at the logical (discrete) level. In particular,
the PLANAR 1-IN-3-SAT problem is more specialized than in Mulzer and Rote
[2006] and does not need negations. (b) We designed the gadgets in such a way that
the β-skeleton edges already form large connected components. This part of the
construction is trivial to check by computer, and is open even to visual inspection.
(c) In the proof, the gadgets split into modules (“pieces”) that can be analyzed
separately. (d) The analysis of each module boils down to checking a small number
of possibilities, each amounting to computing the minimum-weight triangulation of
a simple polygon. This can be programmed from scratch in less than an hour’s work
by an experienced programmer. (e) To make the computer-assisted part even safer,
we have rerun the final calculations with interval arithmetic, using the open-source
high-level programming language PYTHON, which automatically supports integer
arithmetic of unbounded length.

The final computer runs to verify our gadgets took about 10 hours on a rela-
tively slow computer. The code amounts to approximately 1000 lines. The more
essential parts of the code are given in the technical report [Mulzer and Rote 2007,
Appendix B].

2. Overview of the Reduction

We begin with a high-level overview of the geometric construction. We build our
point set from a small number of tube-like pieces that fit together at the openings,
where they share terminal triangles, see Figure 4. The boundary edges of the
pieces must belong to every optimal triangulation, regardless of how we put the
pieces together (Proposition 6.4 below). If we draw these edges we get a system
of tubes, separated by polygonal holes. The holes can be triangulated in polynomial
time by dynamic programming; The tubes will form the essential part of the gadgets
that model the logical structure of a POSITIVE PLANAR 1-IN-3-SAT formula,
whose satisfiability is NP-complete to decide, see Section 3.

For the analysis, we will show that at each terminal triangle, we have a choice
of two edges to insert (Lemma 5.1). When one of the edges is inserted for every
terminal triangle, the edges enclose a simple polygon, whose optimum solution can
be computed by dynamic programming. Every piece can therefore be analyzed in
isolation, by considering a small number of possibilities.

3. POSITIVE PLANAR 1-IN-3-SAT

In this section, we describe the POSITIVE PLANAR 1-IN-3-SAT problem, which
we will use for our reduction.

Definition 3.1. Let � be a Boolean formula in 3-CNF. The associated graph
of �, G(�), has one vertex vx for each variable x in � and one vertex vC for each
clause C in �. There is an edge between a variable-vertex vx and a clause-vertex
vC if and only if x or ¬x appears in C .

The Boolean formula � is called planar if its associated graph G(�) is planar.
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FIG. 4. A schematic view of the construction: From the five types of building blocks shown at the
top, one can build a network of tubes like in the lower part. The area within this network is the
interesting part where the simulation of the logic takes place. The holes inside the structure and the
pockets between the structure and the convex hull (drawn shaded) form simple polygons that can be
optimally triangulated in polynomial time.

x1 x3 x4 x5x2

C2

C1

C3

FIG. 5. A rectilinear embedding of graph that is associated with the Boolean formula
(x1 ∨ ¬x3 ∨ x5) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ ¬x5).

Lichtenstein [1982] showed that 3-SAT remains NP-complete if the input is
restricted to a planar formula (the PLANAR 3-SAT problem). As Knuth and
Raghunathan [1992] observed, Lichtenstein’s proof implies that it suffices to con-
sider formulae whose associated graph can be embedded such that the variables are
arranged on a straight line, with three-legged clauses above and below them. The
edges between the variables and the clauses are embedded in a rectilinear fashion
(see Figure 5).
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FIG. 6. The gadgets to enforce inequality (a) and equality (b) between two variables.

In our reduction, we will use a variant of PLANAR 3-SAT in which there are
only positive variables and we ask for an assignment to the variables such that in
each clause exactly one variable is set to true.

Definition 3.2. In the POSITIVE PLANAR 1-IN-3-SAT problem, we are given
a collection � of clauses containing exactly three variables together with a planar
embedding of the associated graph G(�) as described above.

The problem is to decide whether there exists an assignment of truth values to
the variables of � such that exactly one variable in each clause is true.

The POSITIVE 1-IN-3-SAT problem without the planarity restriction was shown
to be NP-complete by Schaefer [1978]. This problem can also be interpreted as a
SET PARTITIONING problem, where every element of the ground set has precisely
three sets by which it can be covered. For completeness, we include a proof that
the planar version of the problem is NP-complete.

PROPOSITION 3.3. POSITIVE PLANAR 1-IN-3-SAT is NP-complete.

PROOF. It is easy to verify in polynomial time that a given embedding of a
formula is rectilinear (the validity of an instance) and that a given assignment has
the 1-IN-3 property (the validity of a certificate). Hence, the problem is in NP. To
show completeness, we describe a reduction from PLANAR 3-SAT. Let I be an
instance of PLANAR 3-SAT, that is, a 3-CNF formula � and a planar, rectilinear
embedding of the associated graph. We describe how to transform I into an instance
of POSITIVE PLANAR 1-IN-3-SAT while maintaining the rectilinear embedding.
We consider the clauses of � one by one.

If clause C contains only one literal, it can easily be eliminated. If clause C
contains two literals, say x and y, we can replace it by two three-variable clauses
(x ∨ y ∨ z) and (x ∨ y ∨ ¬z), where z is a new variable.

Before we consider clauses with three variables, we first discuss two useful
gadgets that enforce equality and inequality between variables in terms of 1-IN-3
clauses.

The inequality gadget. The inequality gadget serves to enforce the constraint
x ⇔ ¬y for two variables x and y. We abbreviate it as (x 
= y). It is implemented
as

x 
= y ≡ (x, a, y) ∧ (a, b, c) ∧ (a, c, d) ∧ (b, c, d), (1)

where a, b, c, d are new variables used only inside the gadget (see Figure 6(a)).
Here, as always, we denote a 1-IN-3 clause by a triple (v1, v2, v3). The clause
(v1, v2, v3) is satisfied if exactly one of the variables v1, v2, v3 is true.
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x x1 x2 x3 x4

= = =

FIG. 7. Eliminating negations. The variable x in this example has eight connections, some of which
are negated, as indicated by crosses. We replace x by a chain of variables x1, x2, . . . with alternating
truth values and place the connections to the clauses containing x correspondingly.

x · · · y · · · z x u q a b x · · · y · · · z c r d z
=

=

=

=

FIG. 8. The modification for a clause x ∨ y ∨ z with three literals.

LEMMA 3.4. Given x and y, the expression (1) is satisfiable iff exactly one of
x and y is true.

PROOF. The last three clauses enforce that a = 0, because otherwise we get
b = c = d = 0, and the last clause is not satisfied. The first clause now ensures
that exactly one of x and y is true.

3.1. THE EQUALITY GADGET. Using two copies of the inequality gadget and
an extra variable a, we can build a gadget to enforce the constraint x ⇔ y (see
Figure 6(b)). We abbreviate it as (x = y).

3.2. ELIMINATION OF NEGATED VARIABLES. To eliminate the negated variables
in the original 3-SAT clauses, we replace a variable x by a chain of variables
x1, x2, . . . and use the negation gadget to enforce the appropriate relations between
them (see Figure 7).

3.3. TRANSFORMATION OF DISJUNCTIONS. It remains to handle a disjunctive
clause C = (x ∨ y ∨ z) with three literals x , y, and z. C can be replaced by

(x, u, a) ∧ (y, u, b) ∧ (a, b, q) ∧ (u = c) ∧ (d 
= z) ∧ (c, d, r ) . (2)

See Figure 8. Note that there is space to accommodate the middle legs of the equality
and inequality gadgets.

LEMMA 3.5. Given x, y, and z, the expression (2) is satisfiable iff x ∨ y ∨ z
holds.

PROOF. The clause (c, d, r ) is equivalent to ¬c ∨ ¬d, since the variable r
appears nowhere else. Hence, c → ¬d ⇐⇒ u → z by the third and fourth
constraint. Thus, satisfiability of the last three constraints is equivalent to u → z.

Now, if u = 1, the first three clauses can be satisfied only by x = y = 0, and we
must have z = 1. The third clause is satisfied by setting a = b = 0 and q = 1. For
u = 0, the first two clauses reduce to x 
= a and y 
= b. Since q appears nowhere
else, the clause (a, b, q) is equivalent to ¬a ∨ ¬b ⇐⇒ x ∨ y. The value of z can
be arbitrary in this case.
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p

q

β |pq|

a

b

π/ 4.6

·

FIG. 9. An edge pq of the β-skeleton. The edge ab does not belong the MWT since the diamond
test is violated.

To make sure that x and z remain reachable from other clauses, we also add two
additional variables x ′ and z′ and equality constraints. Clauses that were above the
variables and nested between x and y can now connect to x ′ instead of x , and those
nested between y and z can connect to z′ instead of z.

This transformation can be carried out in polynomial time, and by construction,
the transformed positive formula has a rectilinear embedding, and it has a 1-IN-3
assignment if and only if the original formula is satisfiable.

4. Geometric Validation Tools

We summarize the geometric and computational tools we need for establishing
properties of the gadgets and their minimum-weight triangulations.

4.1. THE β-SKELETON. The β-skeleton of a point set S is defined as the set of
all edges pq between two points of S such that the two circles of diameter β · |pq|
passing through p and q are empty, see Figure 9. It provides a sufficient condition
for including edges in the minimum-weight triangulation:

THEOREM 4.1. The β-skeleton is a subgraph of the MWT for

β =
√

1 +
√

4/27 ≤ 1.17682.

Theorem 4.1 was first proven by Keil [1994] for β ≤ √
2 and was later improved

by Cheng and Xu [1996]. The value for β is nearly optimal, since there is a lower
bound of

√
5/4 + √

1/108 ≈ 1.16027 [Wang and Yang 2001]. In Proposition 6.4,
we will use the β-skeleton to identify the boundary edges of our gadgets, which
must belong to every optimal triangulation. Since the β-skeleton is defined by a
local condition, it is very easy to verify that a certain edge is a boundary edge.
Our gadgets have many points, hence we used a computer to check the β-skeleton
property of our boundary edges.

4.2. TRIANGULATING A POLYGON BY DYNAMIC PROGRAMMING. As we ex-
plained above, the analysis of our reduction essentially boils down to computing
the minimum-weight triangulation of a small number of simple polygons. Gilbert
[1979] and Klincsek [1980] independently showed how to do this:
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TABLE I. TERMINAL TRIANGLES. THE “DIFFERENCE TERMS” δ WILL DESCRIBED

BELOW IN SECTION 5.1

x y z δ

small (0.00, 0.00) (−2.7, 11.2) (2.7, 11.2) δsmall = 5.655172
large (0.00, 0.00) (−11.61, 48.16) (11.61, 48.16) δlarge = 24.06

(−27.4, 0) (0, 0)

(3.3, −4.9)

(6.2, −8.2)

(11, −11.3)

(27.4, 0)

(13.7, −0.1)

(10.4, 4.8)

(7.5, 8.1)

(2.7, 11.2)

(−13.7, −0.1)

x

y z

u u
v0

v1

v2

v3 v4

v5

v6

v0

v1

v2

v3v4

v5

v6

Wleft
Wright

FIG. 10. The point set W in Lemma 5.1.

PROPOSITION 4.2. The minimum-weight triangulation of a simple polygon can
be computed in O(n3) time.

Proposition 4.2 is proved by a straight-forward application of dynamic program-
ming, and we implemented a variant of the algorithm in PYTHON. (The source code
of our implementation is given in the technical report [Mulzer and Rote 2007, Ap-
pendix B.2].) The dynamic programming algorithm assumes an idealized model in
which arithmetic with edge lengths can be done exactly. This means that sums of
radicals (i.e., Euclidean distances) need to be compared in constant time. However,
it is not known how to do this even in polynomial time [Blömer 1991]. Therefore,
our program uses interval arithmetic to compare sums of distances, and for all our
gadgets it computes an unambiguous answer.

Our program identifies the edges in a minimum-weight triangulation T inside a
given simple polygon P . We call the total weight of these edges the internal cost
of P and denote it by c(T ). The internal costs computed by our program will be
discussed extensively in Section 6.1. It is easy to modify the program so that it
computes the optimum under the restriction that certain edges are forbidden. This
is needed for the proof of Lemma 5.1.

5. Terminal Triangles

The point set is constructed from small elementary pieces that fit together at terminal
triangles. These terminal triangles are isosceles triangles xyz with base yz, that lie
symmetrically with respect to a coordinate axis, and they come in two sizes (small
and large). The coordinates of vertical terminal triangles are given in Table I. See
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Figure 10 or 16 for an illustration. These triangles can be rotated by multiples of
90◦, and translated by multiples of 0.01 in each coordinate. The large triangle is a
scaled copy of the small triangle, by a factor of 4.3.

The basic pieces that we construct are point sets with two or three terminal
triangles. The β-skeleton edges will form a simple polygon through these points,
with a missing edge at each terminal triangle. We will show that in each terminal
triangle, the edge xy or the edge xz must be present in every minimum-weight
triangulation (Lemma 5.1). Thus, in order to determine how a piece with k terminals
can be triangulated in a minimum-weight triangulation, it suffices to consider 2k

possibilities for the positions of each terminal edge. For each possibility, we find
the optimum solution by dynamic programming.

Let W be the point set given in Figure 10, which forms part of the wire mentioned
in the introduction (see Section 1.3.1). It is symmetric about the y-axis. The points
v0, x , and v ′

0 lie on the x-axis, and the points u and u′ lie 0.1 units below this line.
The left and right halves of the lower boundary are equal, and they are equal to the
upper boundary (turned by 180◦). We denote by Wleft and Wright the left half and
the right half of the set W , up to and including the points x , y, and z.

LEMMA 5.1. Let P be a point set that contains a (translated, scaled, rotated)
copy of the point set W , but no other points in the shaded polygon of Figure 10. Any
minimum-weight triangulation T of P that contains all edges shown in Figure 10
must contain at least one of the edges xy or xz.

PROOF. The proof distinguishes 21 cases and deals with each case by a small
calculation.

Since in any triangulation, the point u must be incident to some edge that emanates
into the lower half-plane, T must contain at least one of the edges uv1, uv2, . . . , uv6.
Similarly, T must contain at least one of the edges u′v ′

1, u′v ′
2, . . . , u′v ′

6. Now, for each
i, j = 1, . . . , 6, the edges uvi and u′v ′

j enclose a simple polygon. For each polygon,
we calculated, by dynamic programming, the optimum triangulation as well as the
optimum triangulation that uses none of the edges xy and xz. By symmetry, we
have to consider only 1 ≤ i ≤ j ≤ 6. A few representative cases are shown in
Table II. (The full table with all cases is given in the technical report [Mulzer and
Rote 2007].)

We remark that the lemma is somewhat robust against perturbations and remains
true even if all points of W are moved by a small distance. Figure 11 shows that small
perturbations do not make triangulations feasible or infeasible. The triangulations
in Table II contain at most 18 internal edges. If each point is moved by at most
σ := 0.04, the length of each edge changes by at most 2σ , and the weight of any
triangulation changes by at most 36σ = 1.44.

Since the difference between the optimal triangulation and the best triangulation
without the edges xy and xz is bigger than 3.83677 > 2 · 1.44, the claim of the
lemma is not invalidated if each point is moved by at most 0.04 in any direction.
In previous versions of the proof, we used this flexibility to build wires of arbitrary
length. In the present version, we accomplish this by using just two explicit types
of pieces: The wire piece and the extended wire piece (see Lemma 6.1).

5.1. PUTTING PIECES TOGETHER. When putting pieces together, we make sure
that Lemma 5.1 can be applied at the junction: at every terminal triangle, the piece
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TABLE II. THE OPTIMUM TRIANGULATIONS

Note: The optimum triangulations with and without the edges xy and xz, for a selection of polygons
bounded by edges uvi and u′v ′

j , as indicated in the left column. The second column shows an optimal
triangulation without the edges xy and xz, together with the interval for its internal cost, calculated to
5 digits after the decimal point. (There are always at least two optimal triangulations, since the upper
diagonal in the middle can be flipped. The program has picked one solution whose lower interval
bound is smallest.) The remaining columns list all candidates for optimal solutions. One can check
that all these solutions contain the edges xy and xz. (In fact, one can see that, if there are two optimal
solutions in a row, they must have exactly the same weight since they contain parts which can be
replaced by symmetric parts.) The lower bound on the difference between the optimum in the third
column and the optimum in the second column is given in the first column. The smallest difference
(3.83677) occurs for the case v5, v ′

5. The numbers in this table were computed with a PYTHON program
written the authors. (The code is given in the technical report [Mulzer and Rote 2007, Appendix B.4].)

x

y z

u u
v0

v1

v2

v3 v4

v5

v6

v0

v1

v2

v3v4

v5

v6

FIG. 11. The point set W in Lemma 5.1 is in sufficiently general position.

contains a copy of half of the point set W (possibly rotated, and possibly scaled
by 4.3). This allows us to split the input set into components at the terminal triangles.
For each terminal triangle xyz, we need to consider just the two choices xy and yz
for the terminal edges. We denote these choices by L and R, depending on whether
we use the left or right arms, as viewed from the tip of the terminal triangle.
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When determining the behavior of a piece with k terminals in a minimum-weight
triangulation, we have to compare the optimal triangulations for the 2k choices for
the positions of the k terminal edges. However, these triangulations cover different
areas and cannot be compared directly. Depending on whether the terminal edge
xy or the terminal edge xz is chosen at some given boundary, the triangulated
area excludes or includes the area of the terminal triangle itself, and the optimal
triangulation can thus be expected to be cheaper or more expensive. To offset
this effect, we define the reduced weight of a triangulation T , c̄(T ), by adding a
penalty or subtracting a bonus term from the actual weight. This will allow us to see
directly which configurations of terminal edges are better than others, and which
configurations cannot possibly be part of an optimal triangulation.

More precisely, we define a difference term δ that depends on the size of the
triangle (large or small), see Table I. When comparing the costs of different trian-
gulations of a piece or of different pieces, we only look at the internal cost, the
cost of the internal edges, since the boundary edges are fixed. When the triangu-
lated area of a piece includes the terminal triangle, we subtract δ from the actual
weight; otherwise we add δ. The precise values of δsmall and δlarge are not important
and have been chosen to make the proofs convenient. The following lemma holds
irrespective of the values of δsmall and δlarge.

LEMMA 5.2. Consider a layout of pieces S where every terminal triangle is
shared by two pieces. For each terminal triangle, fix one of its two long sides.
Consider the minimum-weight triangulation T of S that is restricted to contain
those fixed edges as well as all piece boundaries. For each piece, calculate the
reduced internal weight of the minimum-weight triangulation of the piece bounded
by the given fixed edges.

Then the overall reduced internal weight of all pieces differs from the total weight
of the triangulation T by a constant that is independent of the choice of the fixed
edges.

PROOF. In total, the effect of adding and subtracting δ cancels on the two sides
of each terminal triangle. The cost of the terminal edge (xy or xz) itself is not
accounted for in the sum of internal costs, but since xy and xz have the same
length, this amounts to a constant difference. The boundaries are also fixed, and so
is the cost of triangulating the pockets and the holes.

We will see below (Proposition 6.4) that all boundary edges are part of the MWT,
since they belong to the β-skeleton. We know from Lemma 5.1 that, by choosing a
terminal edge from each terminal triangle in all possible ways, we are guaranteed
to find the optimal triangulation. The consequence of Lemma 5.2 is that we need
only look at the reduced (internal) cost when comparing these choices.

6. Elementary Pieces

We have 10 elementary pieces, shown in Figures 12–14: The (i) wire-piece
(Figure 16) is the main tool achieving a nonlocality for conveying information over
long distance. As mentioned in the introduction, such wire-pieces were originally
conceived by Jack Snoeyink [Beirouti and Snoeyink 1998]. In order to construct
wires of arbitrary length, we also have (ii) an extended wire-piece. (Figure 16). The
horizontal offset between the two terminal triangles of a wire-piece is 27.4, that is,
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500

C0

C

C

thick left bend

left bend

right bend

thickening and thinning adapters

wire-piece

extended wire-piece

FIG. 12. All elementary pieces.

with these wire-pieces alone, one can bridge distances which are multiples of 27.4.
The offset for the extended wire-piece is 82.21 = 3 · 27.4 + 0.01. Thus, with the
right combination of wire-pieces and extended wire-pieces, one can form a straight
connection of arbitrary length, provided it is long enough:

LEMMA 6.1. Consider two small vertical terminal triangles at the same height
with a horizontal distance d > 230 000 that is a multiple of 0.01. Then the two
triangles can be connected by a sequence of wire-pieces and extended wire-pieces.

An analogous statement holds for vertical connections.

PROOF. If the distance between two terminal triangles is d = 0.01 · z for some
integer z ≥ 3 · 2740 · 2739 = 22 514 580, they can be connected by concatenating
y := z mod 2740 extended wire-pieces with �z/2740� − 3y wire-pieces.

The work-horse of our gadgets is (iii) the C-connection and its mirror image,
(iv) the C ′-connection. These are the only pieces with three terminal triangles, two
large ones and a small one. They serve two purposes: they allow us to introduce
branches into the network of wires, and they effect “negation” of the information
that is transmitted through the wires. We also have a (v) C0-connection with only
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thickening adapter

C0

C

C

500

wire-piece

extended wire-piece

left bend

right bend

FIG. 13. Enlarged view of the small elementary pieces.

two terminals. It serves as a placeholder for the C or C ′ connection when the third
terminal is not needed.

The remaining pieces are variations of the wire-piece for building more flexible
wire shapes: The (vi) left bend and the (vii) right bend allow us to introduce arbitrary
turns into wires. The vertical part of the left bend corresponds to a wire-piece that is
rotated 90◦ counter-clockwise, whereas the vertical part of a right bend corresponds
to a wire-piece that is rotated 90◦ clockwise. We need both a left and a right bend,
because each piece fits to a given terminal triangle of another piece only at one end.

With these pieces, we can arrange wires to follow any rectangular layout, pro-
vided we blow the layout up sufficiently, see Figure 15:

LEMMA 6.2. Given a C-connection piece and a C ′-connection piece and a
rectangular path between them, the small triangles of the two pieces can be con-
nected by a sequence of wire-pieces, extended wire pieces, left and right bends,
within the corridor of width 2000 around the path, provided that the path contains
a straight portion of length at least 250 000, both in the horizontal and in the ver-
tical direction, and the corridor does not interfere with other pieces or intersect
itself.
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C C0

FIG. 14. Enlarged view of the central part of the C and C0 connections.

C

C

FIG. 15. Tracing a wire through a rectangular corridor, forming a so-called C-C ′-link (see Sec-
tion 7.2.) The dotted parts are long enough to allow connections of any length (Lemma 6.1).

PROOF. The left and right bend both fit into a box of size 700 × 700, and
by Lemma 6.1, we can bridge any distance larger than 230 000 in the horizontal
and vertical direction. The wires can be positioned sufficiently far away from the
boundary of the rectangular strip to make sure that the boundaries of different
connections do not interfere with each other.

We also have (viii) a thick left bend, which is just a scaled copy of the left bend.
Finally, we have two resizing wire-pieces: the (ix) thickening adapter and its

mirror image, the (x) thinning adapter. They are used to interpolate between small
and large terminal triangles in the clause gadgets.

Figure 16 shows the coordinates of the wire-piece. The complete data for the
pieces are available on the Internet.1

PROPOSITION 6.3. The elementary pieces have the following properties:
All coordinates are multiples of 0.0001. Each piece contains two or three copies

of a terminal triangle, together with a copy of Wleft or Wright (Figure 10), possibly
rotated by 90◦, and possibly scaled by 4.3. The coordinates of the terminal triangles
are multiples of 0.01.

1 http://www.inf.fu-berlin.de/inst/ag-ti/people/rote/Software/MWT/all-coordinates.txt
The directory http://www.inf.fu-berlin.de/inst/ag-ti/people/rote/Software/MWT/ also contains the full
version of the technical report, with more illustrations, and the computer programs.
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(−13.7, 0)

(−10.4, −4.9)

(−7.5, −8.2)

(−2.7, −11.3) (2.7, −11.3)

(7.5, −8.2)

(10.4, −4.9)

(13.7, 0)

(16.4, 11.2)(11, 11.2)

(6.2, 8.1)

(3.3, 4.8)

(0, −0.1)

(−3.3, 4.8)

(−6.2, 8.1)

(−11, 11.2)(−16.4, 11.2)

FIG. 16. The coordinates of a wire-piece.

Each piece has two terminal triangles, with the exception of the connection pieces,
which have three terminal triangles, as shown in the figures. The edges shown in
the figure, with the exception of the two equal sides of each terminal triangle, form
the boundary of the pieces.

PROPOSITION 6.4. The boundary edges of all elementary pieces are contained
in the β-skeleton, for β = 1.1806. This remains true when the pieces are connected
using their terminal triangles, as long as the boundary part of different pieces are
sufficiently far apart. Hence, all boundary edges belong to the MWT.

PROOF. The lemma can be verified manually by inspecting the relevant regions
for the boundary edges. Since the number of boundary edges is very large, we have
implemented a computer program which computes the β-skeleton. The source code
can be found in the technical report [Mulzer and Rote 2007, Appendix B.3].

The boundary decomposes into two or three connected boundary pieces. As can
be seen in Figure 14, some boundary pieces are not just paths, but they form trees.

6.1. ANALYSIS OF THE PIECES. In this section, we discuss the exact properties
of our gadgets as they were computed by our computer program. We present tables
which show the internal cost, the reduced internal cost c̄ (see Section 5.1) and the
relative reduced internal cost c̃ (i.e., the difference between the reduced cost of a
certain configuration and the minimum reduced cost incurred by any configuration
of a gadget).

For example, let us look at the extended wire-piece. It has two terminal triangles.
For each of the four combinations of states, LL, LR, RL, and RR, the right part
of Figure 17 shows an optimal solution, together with the internal cost. Table III
summarizes this information. The second column lists the number of optimal so-
lutions (or potential optimal solutions, i.e., all solutions which the program could
not exclude from being an optimal solution, with the given precision of the calcu-
lation). Indeed, looking back at Figure 17, one can see that the solution for case
LR has a symmetric copy with the same cost. The astute reader may wonder why
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LL: 144.135078832

LR: 155.655929495

RL: 132.950328078

RR: 144.135078832

LL: 455.471523435

LR: 466.990265006

RL: 444.283180745

RR: 455.471523435

FIG. 17. Optimal solutions for all cases for the wire-piece and the extended wire-piece.

TABLE III. ANALYSIS OF THE EXTENDED WIRE-PIECE

Pattern Multiplicity Internal Cost c Reduced Internal Cost c̄ Relative Reduced Cost c̃
LL 1 455.471 523 435 455.471 523 435 0.000 000 000
LR 2 466.990 265 006 455.679 921 006 0.208 397 570
RL 1 444.283 180 745 455.593 524 745 0.122 001 310
RR 1 455.471 523 435 455.471 523 435 0.000 000 000

the multiplicities for cases LR and RL are not larger. For example, it looks as if
the isosceles “xyz” triangle for case LR could be placed also at the very left end
or at the very right end. However, this is not the case, since the three repetitions
of the wire-piece that constitute the extended wire-piece are not exact repetitions:
the ends have been moved apart, stretching the middle piece and thus causing a
deviation from the regular periodical pattern. The third column of Table III lists the
internal cost, repeating the information from Figure 17.

The fourth column is the reduced internal cost ĉ, obtained by adding or subtracting
δsmall, as appropriate. For example, for case LR, we have to subtract 2δsmall =
11.310 344, since this triangulation covers the larger area on both the left and the
right end. For cases LL and RR, addition and subtraction of δsmall cancel, and the
reduced cost remains unchanged.

The rightmost column reduces all numbers by subtracting the column minimum,
to make the differences more visible. It is now plain to see that LL and RR have the
same cost, which is also obvious by symmetry. We denote these relative reduced
costs by c̃, and we think of them as penalties for deviating from the “ground state”
where the smallest reduced cost is achieved. They are non-negative by definition.

The corresponding table for all pieces, together with pictures of the optimal trian-
gulations, are given in the full technical report [Mulzer and Rote 2007, Appendix A].
Table IV condenses the information for all pieces with two terminals.

Since the pieces are symmetric, LL and RR always have the same cost. The only
exceptions are the resizing pieces. Let ε1 ≈ 0.000 051 be the relative reduced cost
of the thickening adapter in state LL.

The C-connection (and its mirror image, C ′) is the only piece with three terminals.
The results for this piece is shown in Table V. We encode the states by three letters
ABc, where the capital letters A and B refer to the left and right large terminal
triangles (L or R), as usual, and c refers to the small terminal triangle (l or r).

All tables were computed using fixed-precision interval arithmetic with 15 dec-
imal digits after the decimal point (i.e., multiples of 10−15). The resulting intervals
were rounded to 9 digits for displaying. It turned out that the intervals were small
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TABLE IV. THE RELATIVE REDUCED COSTS c̃ FOR THE PIECES WITH TWO TERMINALS

Wire-Piece Extended Wire-Piece Thickening Adapter Thinning Sdapter
LL 0.000 000 000 0.000 000 000 0.000 051 402 . . . = ε1 0.000 000 000
LR 0.210 506 663 0.208 397 570 0.018 887 246 0.018 887 246
RL 0.125 593 246 0.122 001 310 0.014 627 250 0.014 627 250
RR 0.000 000 000 0.000 000 000 0.000 000 000 0.000 051 402 . . . = ε1

C0 Connection Left Bend Right Bend Thick Left Bend
LL 0.000 000 000 0.000 000 000 0.000 000 000 0.000 000 000
LR 0.044 001 701 0.086 460 895 0.210 506 663 0.891 261 046
RL 0.020 571 757 0.125 593 246 0.125 593 246 0.020 571 757
RR 0.000 000 000 0.000 000 000 0.000 000 000 0.000 000 000

TABLE V. ALL CASES FOR THE ANALYSIS OF THE PIECES C AND C ′

Note: Since C ′ is the mirror image of C , it is represented in the same table.

enough so that they could be rounded to unique 9-digit numbers. Thus, for ex-
ample, 0.000 051 402 denotes a number that is guaranteed to lie strictly between
0.000 051 401 5 and 0.000 051 402 5.

By inspecting Tables IV and V, one can see that there is a penalty for having two
triangles of different states. If both terminal triangles of a piece with two terminal
triangles, or the two large terminal triangles of C or C ′, are in a different state, we
call this a breach. A breach is so expensive that it will never occur in an optimal
solution. We summarize this information for later use.

PROPOSITION 6.5. In every piece, a breach has relative reduced cost at least
δ3 := 0.01. If there is no breach, the relative reduced cost is zero, except for C, and
C ′, and the resizing wire-pieces. For the resizing wire-pieces, the relative reduced
cost is at most ε1 < 0.000 051.
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It follows that long wires have a preference to be triangulated uniformly:

LEMMA 6.6 (THE WIRE LEMMA). Let T1, T2 be two small terminal triangles
connected by an arbitrary sequence of wire-pieces, extended wire-pieces, and left
and right bends. If T1 and T2 are in the same state, all the connecting pieces are in
that state and the relative reduced cost is 0. If T1 and T2 are in different states, the
relative reduced cost is at least δ3 = 0.01.

The states of C and C ′ without a breach are LLl, LLr, RRl, and RRr. From Table V,
one sees that the preferred states are LLr, and RRl, where the small triangle has
the opposite state from the large triangles. We call these two states the consistent
states, and the states LLl and RRr inconsistent. We define

ε2 := c̃(C, LLr) = c̄(C, LLr) − c̄(C, RRl) = c(C, LLr) − c(C, RRl) − 2δsmall

δ1 := c̃(C, LLl) = c̄(C, LLl) − c̄(C, RRl) = c(C, LLl) − c(C, RRl)
δ2 := c̃(C, RRr) = c̄(C, RRr) − c̄(C, RRl) = c(C, RRr) − c(C, RRl) − 2δsmall,

where c(C, LLr), c̄(C, LLr), etc. denote the cost of the C-connection in the respec-
tive configuration, see Table V.

PROPOSITION 6.7. In C or C ′, every consistent state has relative reduced cost
at most ε2 < 0.000 002. The two inconsistent states have cost δ1 ≈ 0.003 861 and
δ2 ≈ 0.004 631. Thus, if there is no breach in C or C ′, the relative reduced cost is
at most δ2.

In general, we denote by ε1, ε2, “small” quantities that we would like to neglect,
and which can be made arbitrarily small by refining the coordinates of the pieces or
the digits of δsmall and δlarge. On the other hand, δ1, δ2, . . . , denote “large” quantities
whose difference will be made productive for the proof.

7. Larger Gadgets

We now describe how to assemble the elementary pieces from the last section to
obtain larger gadgets which model the logical structure of a PLANAR 1-IN-3-SAT
formula. We need variables, clauses, and the connections between them. The main
building block for the variables and clauses is the bit loop (Section 7.1). Each bit
loop stores a logical state (L or R). To ensure consistency between different bit
loops, we use C-C ′-links (Section 7.2). By connecting several bit loops, we build
clauses (Section 7.3) and variables (Section 7.4). The optimal triangulation of a
clause is obtained if and only if exactly one of its inputs is in state L (the 1-IN-3
property). A variable is modeled as a chain of bit loops connected by C-C ′-links
so that all loops are in the same state. Variables can be connected to clauses using
the wire-pieces from the last section.

7.1. THE BIT LOOP. The bit loop is used to represent a logical state (L or R). It
if formed by connecting any selection of four connection pieces (C , C ′ or C0) into
a loop, using four thick bends, as shown schematically in Figure 18.

LEMMA 7.1. In an optimal triangulation, the 8 large terminal triangles of a bit
loop are in the same state (L or R).
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C

C C0

C

FIG. 18. An instance of a bit loop with two C-connections and one C ′-connection. At the left C-
connection, a right bend is attached, as the beginning of a wire joining it to another C ′-connection.
The drawing is to scale, but the shapes are simplified,

PROOF. The only interaction with other pieces is through the at most four
small “exit” triangles. Let us keep the states of these triangles fixed. If we set all 8
large terminal triangles to L or to R, the maximum relative reduced cost is at most
4 · δ2 < 0.02 = 2δ3, see Proposition 6.7.

On the other hand, if the eight large terminal triangles are not all equal, there
are at least two breaches. Hence, by Proposition 6.5, the relative reduced cost is at
least 2δ3, and such a triangulation cannot be optimal.

We can therefore simply refer to the state of the bit loop as the common state of
its large terminal triangles. Generally, when it is clear that there is no breach, the
state of a C , C ′ or C0-connection refers to the state of its large terminal triangles.

7.2. THE C-C ′-LINK. A C-connection can be joined to a C ′-connection by an
arbitrary sequence of wire-pieces, extended wire-pieces, and left and right bends
(Lemma 6.2), see Figure 15. We call the two connections at the end together with
their joining wire a C-C ′-link.

C-C ′-links are used in two contexts: The most common case is when the C-
connection of the C-C ′-link belongs to a bit loop V1 and the C ′-connection belongs
to another bit loop V2. In the clause gadget (Section 7.3), we also have C-C ′-links
where the C-connection is connected to a thickening adapter and a thinning adapter,
while the C ′ connection is part of a bit loop. By Lemma 7.1, we know that in each
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TABLE VI. THE BEST STATE OF THE WIRE FOR A C-C ′-LINK

V1 V2 Wire State of C State of C ′ Optimum Relative Reduced Cost
L L r LLr LLr c̃(C, LLr) + c̃(C ′, LLr) = ε2

L R l (or r) LLl RRl c̃(C, LLr) + c̃(C ′, RRr) = ε2 + δ1

R L l (or r) RRl LLl c̃(C, RRr) + c̃(C ′, LLl) = δ2

R R l RRl RRl c̃(C, RRl) + c̃(C ′, RRl) = ε2

Note: For each given combination of states (first two columns), the last column gives
the resulting cost.

of V1 and V2, the large triangles are in a uniform state (L or R), and, in Section 7.3
we will see that an analogous statement holds for the large terminal triangles of the
thickening and the thinning adapter. We thus have to consider four cases for these
states, as shown in Table VI. For each combination, we can work out the optimum
state of the small terminal triangles by considering Table V. (The first two and last
two rows of Table V are sufficient.) The optimal choice for the thin wire is shown
in the third column.

LEMMA 7.2. Each C-C ′-link incurs a relative reduced cost of at least ε2. The
cost reaches this minimum if and only if the large terminal triangles in the two pieces
have the same state. Otherwise, the cost increases to δ1 + ε2 or δ2, respectively, see
Table VI.

PROOF. We need only exclude the possibility that the two small terminal trian-
gles are in different states. By the Wire Lemma (Lemma 6.6), this would cause a
relative reduced cost of at least δ3 = 0.01, which is larger than any of the costs in
Table VI.

We call the C-C ′-link inconsistent if the large triangles in the two connection
pieces have different states. An inconsistent C-C ′-link incurs a relative reduced
cost bigger than δ1.

7.3. THE CLAUSE GADGET. The clause gadget is formed by three pairs of bit
loops, α and α̂, β and β̂, γ and γ̂ , see Figure 19. The two loops of each pair
are connected by a C-C ′-link in which a thickening adapter, a C-connection piece
labeled DOWN, and a thinning adapter is interspersed, and another similar C-C ′-
link with a C0-connection piece in the middle. The α-α̂ group has three external
connections: DOWN, UP, and ENTRY.

The DOWN C-connection piece of the pair α-α̂ is connected to the UP C ′

connection of β̂, and so on in a circular way. Finally, each of α, β, and γ , has a
C-connection piece, labeled ENTRY, which will be connected to one of the “input”
variables of the clause by a C-C ′-link.

LEMMA 7.3. In an optimal triangulation, α and α̂ are in the same state (L or
R), and the two large terminal triangles in the DOWN C-connection are in the
opposite state.

Analogous statements hold for β, β̂ and γ, γ̂ .

PROOF. By symmetry, it suffices to consider α and α̂. The α-α̂ group has three
external triangles UP, DOWN, and ENTRY which connect it to the outside world.

There are two “ground states” with no internal breaches or inconsistencies. In
these states, α and α̂ (including UP and ENTRY) have the same state and DOWN
and the upper C0-connection piece in the middle are in the opposite state.
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α̂

β̂

γ̂

C

C

C

C

C0

α

γ

β

C

C

C
UP

DOWN

ENTRY

FIG. 19. Schematic view of the clause gadget. The dashed parts of the wires are long enough for
sufficiently many copies of the wire-piece and the extended wire-piece to ensure that the wire can
reach from the lowest C connection to the left C ′ connection of α̂ (Lemma 6.1).

If we ignore the three external connections, the relative reduced cost of these
two states is 2ε1 + 2ε2: The contribution from the two C-C ′-links is 2ε2. The
contribution from the four resizing wire-pieces is 2ε1 since we have two thickening
and two thinning adapters: the “penalty state” for the thickening adapter (LL) is the
optimal state for the thinning adapter, and vice-versa.

Now, fix a setting for the three small external triangles. If we select the ground
state, which is consistent with the majority of the three exit triangles, we have at most
one inconsistent exit connection, causing an additional penalty of at most δ2 + 2ε2
(two consistent connections with at most ε2, and one inconsistent connection with
at most δ2).

Thus, there is always a ground state solution with cost at most δ2 + 2ε1 + 4ε2 <
0.005. If α and α̂ are not in the same state, or if DOWN is in the same state as α and
α̂, there must be at least two inconsistencies (or even breaches) in the connections
between α, α̂, and DOWN, causing a cost of at least 2δ1 > 0.007, which is bigger
than for the ground state solution.
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FIG. 20. Schematic view of a variable gadget with three upper and three lower exits. The pattern can
be repeated arbitrarily.

Since DOWN is always in a different state from UP, ideally two successive loops
in the cyclic sequence αβγ should be in a different state. However, since there
are three loops, there has to be at least one inconsistency, which provides us the
asymmetry necessary for a 1-IN-3-clause.

Thus, we obtain:

LEMMA 7.4. The reduced cost of the clause gadget (excluding the three ENTRY
C-connections) achieves its minimum if and only if exactly one of α, β, and γ is in
state L. Any other triangulation incurs a cost that is at least δ4 := 0.0007 larger.

PROOF. By Lemma 7.3, it suffices to analyze the eight possible configurations
of the pairs α-α̂, β-β̂, and γ -γ̂ (ignoring the contribution of the ENTRY connections
to the clause).

The “internal” contribution or each pair of 2ε2 + 2ε1 from its resizing pieces and
its two internal C-C ′-links is constant, and thus we can ignore this amount when
comparing the various possibilities.

Let us look at the C-C ′-link between two successive pairs, say α-α̂ and β-β̂. If
they are equal, they cause an inconsistency, and the relative reduced cost is δ2 if
α = β = L and δ1 + ε2 if α = β = R, according to Table VI. If α and β are in
different states, the link is consistent, and the cost is ε2.

Since the situation is unchanged under cyclic shifts of the sequence αβγ , it is
enough to consider four cases:

—αβγ = LLL or αβγ = RRR: In these cases, we have three inconsistencies, and
the relative reduced cost is bigger than 3δ1 > 0.01.

—αβγ = LLR: the relative reduced cost is δ2 + 2ε2 > 0.0046.
—αβγ = RRL: the relative reduced cost is δ1 + 3ε2 < 0.0039.

In the previous lemma, we have ignored the relative reduced cost of the ENTRY
C-connections. They will be accounted for as part of the C-C ′-links that they form
with the variables, to be described next.

7.4. THE VARIABLE GADGET. The gadget that represents a variable of the 1-IN-
3 instance is formed by chaining together sufficiently many bit loops and connecting
them in a row using C-C ′-links, as shown in Figure 20. The dotted arrows denote
potential exit wires that establish C-C ′-links with the corresponding clause gadgets
of the previous section. Unused exits can be replaced by C0 connections.

LEMMA 7.5. Consider a variable chain V together with the C-C ′-links that
connect it to the clauses, including the ENTRY C-connections in the clauses. The
reduced cost of this point set achieves its minimum if and only if all the bit loops
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and the C-connections in the clauses are in the same state. Any other triangulation
incurs a cost that is at least δ1 larger.

PROOF. This follows directly from Lemmas 7.1 and 7.2.

8. The Reduction

THEOREM 8.1. Minimum-weight triangulation is strongly NP-hard.

PROOF. A rectilinear embedding of the given PLANAR 1-IN-3-SAT formula
can be constructed on a grid of size O(n) × O(n). The reduction procedure then
simply replaces the edges, variables and clauses of the PLANAR 1-IN-3-SAT for-
mula by the appropriate gadgets, taking care to leave enough space between the
individual wires.

This procedure yields a point set S. By construction, the boundaries of all the
gadgets are part of the β-skeleton of S (Proposition 6.4), and therefore they belong to
the minimum-weight triangulation. The faces outside the wires are simple polygons
and can be optimally triangulated using dynamic programming. For each gadget, we
know the desired “ideal triangulation” (Lemmas 6.6 and 7.1–7.5) and can calculate
its weight. Adding up these weights and the weights of the faces outside the wires
yields a target weight w . By construction, the input instance is 1-IN-3 satisfiable if
and only if the minimum weight of a triangulation of S is w . Otherwise, the weight
of the shortest triangulation is at least w + 0.0007 (Lemmas 7.4 and 7.5).

The set S is a subset of an O(n)× O(n) grid, but it does not fill the whole area: it
follows the linear structure of the edges of the rectilinear embedding. Therefore, S
has O(n) points. Hence, the triangulation has O(n) edges of length O(n). By calcu-
lating all edge lengths with an absolute error of O(1/n2), the reduction algorithm
can thus calculate, in polynomial time, a threshold ŵ such that the input formula is
satisfiable iff there is a triangulation of length at most ŵ .

9. Conclusion

9.1. RUNNING TIMES FOR COMPUTER VERIFICATION OF THE PROOF. In design-
ing our gadgets and our proof, we have tried to achieve a balance between the
number of different pieces, which affects the complexity of the human-readable
part of the proof and the number of case distinctions, and the size of the pieces,
which affects the complexity (running time) for the mechanical part of the proof
that has to be checked by computer (or accepted by faith).

The running time is dominated by the O(n3) dynamic programming algorithm
for triangulating simple polygons. The largest point sets that we handle have 493
points (the left bends). To total time to run all verifications (with exact integer
interval arithmetic) was about 10 hours on a four-year-old moderate PC.

9.2. DIMENSIONS. Our gadgets have constant size, but they consist of several
thousands of points and are quite enormous. For example, the clause gadget (see
Figure 19) has dimensions on the order of 250 000 × 250 000, with coordinates
that are specified as multiples of 10−4. On the other hand, the difference between a
satisfiable and an unsatisfiable SAT instance is reflected in a minute difference of
0.0007 in the MWT cost.

With some work, it would be possible to reduce this to some more “reasonable”
figures or to amplify the difference between satisfiable and unsatisfiable instances,
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but we did not find it worth the effort to do so. First of all, the current gadgets are
already a result of tedious experiments, pushing points into various directions and
trying to understand what happens. Some parts of the design, in particular the C-
connections, are very delicate. Secondly, the dimensions would still be very large.
One can certainly reduce the constant 230 000 of Lemma 6.1 by providing a greater
variety of extended wire-pieces, but the bit loop, for example, (Figure 18) already
has size approximately 7000 × 7000, and it does not seem easy to push the size
very much below these limits, unless one comes up with a completely different
design.

9.3. OPEN PROBLEMS. Several interesting problems remain open. First of all,
it is not known whether the MWT problem is in NP, since it is not known how
to compare sums of Euclidean lengths in polynomial time [Blömer 1991], but this
difficulty is more of an algebraic nature. To define a variant of MWT that is in NP,
one can take the weight of an edge e as the rounded value �‖e‖2�. With appropriate
scaling, our proof also establishes NP-completeness for this variant.

Our reduction shows that it is NP-hard to approximate the MWT with a relative
approximation error which is better than O(1/n2): The difference between a satisfi-
able instance of PLANAR 1-IN-3-SAT and an unsatisfiable instance is reflected in a
constant increase of the MWT cost, and, as mentioned in the proof of Theorem 8.1,
the total cost of the MWT is O(n2).

One can probably reduce this bound to O(n log n), and thus establish that it is
NP-hard to achieve a relative approximation error better than O(1/(n log n)), by
using the fact that the interior of a convex k-gon of perimeter p can be triangulated
with weight O(p log k). First, the wires and all gadgets form linear structures of
total length O(n); thus, the length of the gadget boundaries, and the MWT inside
the gadgets is only O(n). This leaves the holes to be triangulated. It should be quite
straightforward to extend our construction in such a way that, apart from O(n)
constant-size holes, only O(n) convex holes with a total of O(n) vertices remain:
one would insert paths of additional points whose β-skeleton separates the big holes
from the jagged wire boundaries and cuts the holes into convex pieces, apart from
“linear” structures that cover only O(n) area.

These nonapproximability results do not rule out the existence of a polynomial-
time approximation scheme. For a long time, attempts to extend techniques from
geometric approximation algorithms to the MWT problem have only led to con-
stant factor approximations (see Bern and Eppstein [1996] for a survey). Remy
and Steger [2006] showed that it is possible to compute a (1 + ε)-approximation
of the MWT in time nO(log8 n), providing strong evidence that a PTAS might
exist.

In practice, the LMT-skeleton heuristic is extremely fast in computing LMTs.
Combined with with bucketing techniques and fast preprocessing techniques [Drys-
dale et al. 1995], one empirically achieves almost linear running times. Thus, in this
respect the MWT problem seems to be similar to the Knapsack Problem, which
is also NP-hard but easy to solve in practice [Kellerer et al. 2007]. It would be
interesting to analyze the LMT-skeleton heuristic for random point sets. The good
practical performance indicates that the expected running time for random inputs
might be polynomial, or even close to linear. On the other hand, as point sets get
huge, they will contain, with non-negligible probability, some larger and larger
point configurations that are hard to triangulate.
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