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Abstract

This paper settles the following two longstanding open problems:

1. What is the worst-case approximation ratio between the greedy and the minimum
weight triangulation?

2. Is there a polynomial time algorithm that always produces a triangulation whose
length is within a constant factor from the minimum?

The answer to the first question is that the known €(+/n) lower bound is tight. The second
question is answered in the affirmative by using a slight modification of an O(nlogn)
algorithm for the greedy triangulation. We also derive some other interesting results. For
example, we show that a constant-factor approximation of the minimum weight convex
partition can be obtained within the same time bounds.

1 Introduction

Let S be any set of n points in the plane. A triangulation of S is a maximal straight-line
graph whose vertices are the points in 5. Any triangulation of 5 partitions the convex hull
of 5 into empty triangles.

A triangulation that has received special attention is the minimum weight triangulation,
in which the optimization criteria is to minimize the total edge length. This triangulation
has some good properties [2] and is e.g. useful for numerical approximation of bivariate data
[20].

Gilbert [4] showed that it can be computed for simple polygons in time O(n?) by dynamic
programming. For general point sets, however, it is not known whether a minimum weight
triangulation can be found in polynomial time, nor is it known whether this is an NP-hard
problem. In consequence of this, heuristics for approximating it have been considered. There
are two well-known heuristics: the greedy triangulation and the Delaunay triangulation, both
being computable in O(nlogn) time [9, 18].

Lloyd [15] showed that, in general, none of these two heuristics produce a minimum
weight triangulation. For an arbitrary large n, Manacher and Zobrist [16] showed that one
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can place n points so that the Delaunay is ©(n/logn) from the optimum. They also showed
that n points can be placed so that the greedy is Q(n1/3) from the optimum. Kirkpatrick
[6] strengthened the former bound by exhibiting, for each n, a set of n points for which the
Delaunay triangulation has length ©(n) times the optimum. The lower bound for the greedy
was improved by Levcopoulos [8] who constructed, for each n, a set of n points for which the
greedy triangulation has length Q(y/n) times the optimum.

In this paper we prove that the latter bound is tight. That is, for any set S of n points in
the plane, we show that the greedy triangulation of S has length no more than O(y/n) times
the optimum. This also gives an O(y/n) upper bound for the heuristic recently proposed by
Heath and Pemmaraju [5], because their triangulation is obtained by optimally triangulating
a subgraph of the greedy triangulation. A similar idea was also used earlier by Lingas [14],
but with the difference that he triangulated a subgraph of the Delaunay triangulation. It
can be shown, however, that these two heuristics can produce triangulations that are Q(y/n),
respectively Q(n), times longer than the optimum [10].

Although the greedy and the Delaunay can in general yield “bad” approximations, there
are some special cases for which they have been proved to perform well. For example, if
the points are uniformly distributed, both the Delaunay and the greedy triangulation are
expected to be within a constant factor from the optimum [1, 12]. Also, if the points lie on
their convex hull, then the greedy triangulation approximates the optimum [11].

In this paper we show that there is in fact only one certain configuration of points for
which the greedy does not approximate the optimum. This is, loosely speaking, when the
points form two concave chains facing each other, and the greedy heuristic produces edges
that connect all points on a long piece of one of the chains with points lying on a short piece of
the other chain (for a precise description, see the proof of Lemma 3.2). It suffices therefore to
impose a small modification on the greedy heuristic in order to avoid this worst-case scenario:
whenever the greedy heuristic is about to produce a diagonal d, we check whether there is a
diagonal d’, crossing d and only slightly longer than d (this is why we call it quasi-greedy),
and fulfilling some other local conditions that can be checked in constant time. If so, then
we produce d’ instead of d. In this way we obtain a fast algorithm that for any set of points
produces a triangulation whose length is within a constant factor from the optimum.

The heuristic that achieved the best proved worst-case approximation ratio was proposed
by Plaisted and Hong [17]. They started by finding a convex partition that is at most 12 times
longer than the minimum weight convex partition. Then they triangulated each of the convex
polygons induced by their convex partition using the so-called ring heuristic. In this way they
produced a triangulation whose length is within a factor O(logn) from the optimum. Their
method was implemented by Smith [19] to run in time O(n%logn). Interestingly, it follows
from Lemma 4.2 in this paper that any convex partition which is ¢-sensitive (Definition 2.3)
and approximates the minimum can be used to obtain a constant-factor approximation of
the minimum weight triangulation by e.g. greedy triangulating each induced convex polygon
(assuming ¢ is constant and no three vertices are collinear).

The paper is organized as follows. In Section 2 we give some basic definitions and prelim-
inaries. In particular, we define the so-called greedy convez partition which is a subgraph of
the greedy triangulation that partitions the convex hull into empty convex polygons. Then
we prove in Section 3 that the length of the greedy convex partition is no more than O(y/n)
times the length of the minimum weight convex partition. In Section 4 we show that the



length of the greedy triangulation is asymptotically no more than the length of the greedy
convex partition plus the length of the minimum weight triangulation. In Section 5 we use
the ideas developed in previous sections to show that a constant-factor approximation of the
minimum weight triangulation can be computed in polynomial time (O(nlogn) time by the
recent results in [9]). Finally we show in Section 6 that a constant-factor approximation
of the minimum weight convex partition can be obtained within the same time bounds. In
that section we also discuss briefly how we can generalize our results in order to compute a
constant-factor approximation for the minimum weight triangulation of a set of line segments,
and how to deal with degenerate cases.

2 Definitions and preliminaries

A planar straight-line graph (PSLG) is a graph G which consists of a finite vertex set S and
an edge set . The vertices in 5 correspond to distinct points in the plane. The edges in I
correspond to straight-line segments with endpoints in 5, such that no edge in L properly
includes any vertex in 5 nor properly intersects any edge in L. A diagonal of GG is a straight-
line segment with endpoints in .S such that it together with (G forms another PSLG. The length
of a G, which we denote by |G|, is the total edge length in G. To simplify the presentation,
we assume that 9 is in general position in the sense that no three vertices are collinear (we
describe briefly in Section 6.3 how our results can be extended to degenerate cases).

A triangulation of S is a PSLG with vertex set S and with a maximum number of edges.
A minimum weight triangulation of S (in brief, MT(5)) is a triangulation 7" of 5 such that
|T| is minimized. The greedy triangulation of S (GT(S) for short) is obtained by repeatedly
producing a shortest possible edge that does not properly intersect any of the previously
generated edges.

By a convex polygon we mean a PSLG P such that P is a simple cycle and all vertices of P
lie on their convex hull. A convex partition of 5 is a connected PSLG with vertex set 5 such
that its edges partition the interior of the convex hull of S into bounded convex regions. A
minimum weight convex partition of S, which we abbreviate as MC(9), is a convex partition
of 5 such that its length is minimized. For a vertex v in 5, we denote by max(v) the length
of a longest edge incident to v in MC(.5). The following observation is easy to show.

Observation 2.1 For any set S of vertices, 3, cqmax(v) < 2|MC(S5)].

Next we define a subgraph of GT(.5) such that it is a convex partition of 5. It is obtained
by selecting for each vertex v at most three edges of GT(.9), which we call spokes. If v lies
on the convex hull of 5, then the spokes of v are the two convex hull edges incident to wv.
Otherwise, let e be a shortest greedy edge incident to v such that there exists greedy edges
¢’ and €” incident to v with the following three properties.

(i) € and €” are not longer than e,
(ii) e,e’ and €” partition the infinitesimal vicinity of v into (three) convex regions, and

(iii) within the two of these regions bounded by e no greedy edge incident to v is shorter
than e.



Then the spokes of v are the edges e, e’ and €”’. The union of all spokes which we select in
this way, by considering all vertices in 5, form our greedy convex partition, which we shall
abbreviate as GC(9). For a vertex v in 5, let v stand for the length of a longest spoke that
was selected for v. The following observation is straightforward.

Observation 2.2 For any set S of vertices, |GC(9)| < 33,5 va.
In [13] the following notion was introduced.

Definition 2.3 Let G be a planar straight-line graph with vertex set S and let r be a real
number greater than zero. An edge e of G is said to be r-sensitive if for any diagonal d of S
that properly intersects e, the distance from any endpoint of d to the closest endpoint of e
is not greater than r times the length of d. We say that (¢ is r-sensitive if and only if all its
edges are r-sensitive.

We shall use the following results from [13] and [11], respectively.

Fact 2.4 (Theorem 3.1 in [13]) For any vertex set S, the greedy triangulation of S is 4-
sensitive.

Fact 2.5 (Theorem 2.1in [11]) For any convex polygon P, |GT(P)| = O(|MT(P)|).

3 A tight bound for the greedy convex partition
This section is entirely devoted to the proof of the following theorem.

Theorem 3.1 For any set S of n vertices (in general position),
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To begin the proof, let r be a number such that the following holds.
[GCS)]

ices) ~ "

We assume w.l.o.g. that » > 1000 (this assumption will not be used until the proof of
Lemma 3.2 below). Let 5’ be the set of all vertices v in $ such that vg > r - max(v). By
Observations 2.1 and 2.2 it follows that S is nonempty. Indeed, if v would be < r-max(v)
for each v € 5, then |GC(S5)| <33 ,csva < 31 ,egmax(v) < 67|MC(S)|.

Let a be a vertex in 5’ such that for any other vertex v in S’ it holds that v¢ < ag. By
the following calculations (using Observations 2.1 and 2.2)

IGC(S) <3 v + 3> g

veSs! veES-S!

<3nag + 3r Z max(v)
veES—-S5'



< 3nag + 67 |MC(9)|
< 3nag + (6/7)|GC(S)
it follows that |GC(.9)| < 21nag. Combining this with Lemma 3.2 below we get that

[GCWI _ nag _()<z)
IMC(S)| aZ/max(a) ) r)’
Hence, 7r = O(n/r), which implies that r = O(y/n).

Lemma 3.2

_ aty
|MC@N_Q(mMMJ.

Proof We first observe that ¢ does not lie on the convex hull of 5, because ag would
otherwise be the length of a convex hull edge which also belongs to MC(S), and so the
property ag > r-max(a) > 10°max(a) would not hold. Let e be a spoke of @ whose length
equals ag, and let €’ and €” be the two other spokes that were together with e selected for
when defining GC(.5). We assume w.l.o.g. that ¢’ is horizontal and that « is its right endpoint,
and that the endpoint of ¢” which is different from « lies lower than a (as depicted in Figure 1).
Among those vertices that lie higher than «a, let « be the one which is closest to a, and let
[ be the distance between a and u. From the assumption that ag > 10°max(a) it follows
easily that ag > 10%[ (recall that no three vertices are collinear). Further, by the definition of
GC(9), the greedy algorithm will not produce a greedy edge which connects ¢ with a vertex
lying higher than a until it starts to produce greedy edges of length > a¢ > 1000/ (since ag
is the length of a shortest such greedy edge).

We shall begin with considering the situation just after having produced all greedy edges
of length < 2! (we now have a PSLG where all diagonals have length > 2/ and all (greedy)
edges have length < 2[). Let ey be the first greedy edge (among those produced so far)
which is crossed by a straight-line walk from a to u (we must cross some edge since we would
otherwise have produced a greedy edge that connects a and ). Let p be the point in which
(a,u) and ey intersect, and denote the endpoints of e; by v1 and u;y. Clearly |a,p| < [ and at
least one endpoint of e1, say uy, lies higher than a.

Imagine a straight-line segment h whose one endpoint is anchored at a, and consider
the sweep performed by h as we move its other endpoint along e; from p towards wy. It is
easy to see that h will not cross any vertex as long as the length of h is < 2[, since there
is no diagonal connecting a and a vertex within distance < 2[ from «a, and so |a, uq| > 21.
By triangle inequality on the triangle 7" = (a,p,u1) we thus get that |p,uq| > [, which
implies that |vy,p| < |e1] =1 < I. So if we consider the triangle 7' = (a,p,v1), we see that
|v1,a| < |e1| < 21 (again by triangle inequality).

Now, if the straight-line segment (vy,a) is not properly intersected by any greedy edge
(among those produced so far), then (v1,a) has to coincide with a produced greedy edge.
Otherwise, if some greedy edge properly intersects (v1,a), then such an edge has to have
(exactly) one endpoint properly in 7', because it cannot intersect (v, p) nor (p, a) (recall that
e1 was the first edge crossed by a straight-line walk from @ to u). In this case we can consider
the convex hull of the vertex set consisting of a, vy, and all vertices properly in T. For each



Figure 1: The situation just after having produced all greedy edges of length < 2.

edge of this convex hull, except the one that coincides with (v, a), it holds that the edge has
length < 2l and is not properly intersected by any produced greedy edge, which implies that
the edge coincides with a produced greedy edge. Thus we can conclude that either (vq,a) is
a produced greedy edge, or @ and v belongs to a concave chain formed by produced greedy
edges in T'. In the former case we define the hub as the set {v;}, whereas we in the latter case
let the hub be the set of vertices except @ on the mentioned concave chain. In the remainder
we shall assume w.l.o.g. that the vertices of the hub lie south-west of a.

Observation 3.3 Vertex wuy is visible from a.

Proof If we would hypothesize that some greedy edge properly intersects (a,uy), then we
can first observe that such an edge must have one endpoint properly inside the triangle
T' = (a,p,uq) (it cannot intersect the other sides of T'). See Figure 2. So there would be a

Figure 2: If uy was not visible from a (a dotted line illustrates a bisector of an edge).

vertex u’ lying properly inside 77 and on the convex hull of the vertices in 77. Now, let v’ be



a vertex of the hub, and suppose that v’ and v’ have been chosen so that they are at least
as close to each other as any other such pair. It is easy to show that no greedy edge (among
those produced so far) may properly intersect the straight-line segment (v, u’). But if D is
the disk centered at v; and of radius |e1|, then 7" is contained in D (recall that |vy,a| < |eq]).
Thus vy is closer to any vertex properly inside 7’ than to uq, which implies that u’ and v" are
within distance < |ey| from each other. Therefore a greedy edge that connects «’ and v" must
have been produced, and so we would have crossed that edge before e; by the straight-line
walk from a to w, which is a contradiction. a

By Observation 3.3 it follows that u; lies to the left of @ (u; would otherwise be closer to
a than to v; and we would thus have produced (a,uq)). We also observe that u; lies within
distance < 3/ from a (triangle inequality on 7).

Let us now consider the situation just after having produced all greedy edges of length
< 3l. By the facts that uy; was visible from a and |a,u;| < 3[, it follows that some greedy
edge e; has been produced which blocks the visibility between a and uy and which has length
> 2[ but not greater than |a,u;| < 3[. Since ey properly intersects (a,uq) we get that ey is
incident to a vertex of the hub, because there is no vertex properly in 7’. We can therefore
make calculations for e; which are analogous to those we did above for e;. In this way we
infer that e, has an endpoint, say us, which is visible from a, lying north-west of a, and
within distance < 4l from a. Consequently, before having produced all greedy edges of length
< 41, the greedy algorithm must produce a greedy edge e3 which blocks the visibility between
a and uy, and so on. Indeed, we can repeat this scenario till the greedy algorithm start to
produce greedy edges of length > a¢ > 1000/. (This is roughly illustrated in Figure 3). Thus
we realize that the greedy algorithm will for some m > ag/l — 2 > 998 produce a sequence
€1,€2,...,6, of greedy edges such that each e;, ¢ > 1, has the following properties:

(i) e; properly intersects (a,u;_1),
(ii) il < |e;| < (i +1)I, and

(iii) e; connects a vertex v; of the hub with a vertex u; that lies north-west of a.
Um

€m

Figure 3: The sequence eq, e, ..., e, of greedy edges.

For later purpose, we note that the distance between any pair in {a, vy, ve, ..., v, }is < 2{
by property (iii), since all these vertices are contained in the triangle 7" with side-lengths < 21.



In this paragraph we consider the final triangulation, i.e. the situation after having pro-
duced all greedy edges in GT(9). If we walk along the straight-line segment (u,a), starting
at its intersection with e;g and ending at its intersection with e,,, we will cross a set of
produced greedy edges. Let E’ be a maximal subset of this set of greedy edges such that the
following holds: (1) for any two edges in E’, their endpoints that do not belong to the hub

are different, and (2) the greedy edges ez, er1, ..., e, are included in E'. Let €},¢€},... ¢,
be an enumeration of £’ of the same relative order as they were crossed by the walk. Fi-
nally, let wf,ub,...,ul , be the endpoints of €],¢5,..., e/, which do not belong to the hub,
respectively.

Sublemma 3.4 The sequence uy,u,...,u , forms one or two concave chains.

Proof Let k be any integer in the interval [70,m — 2], and let s’ be the subsequence
of wj,u),...,u, which starts at uy and ends at wugpz. It suffices to show that s’ forms
one concave chain if the angle a = Zug,a,upq2 is < 45 degrees (recall that each vertex
u; lies north-west of a). Suppose therefore that a < 45 degrees. We shall first show that
|k, ugt+2| < (k= 5)l. (In the continuation it may help to consult Figure 4.) By properties
(ii) and (iii) we have that kl < |vg, ug| < (k + 1)l and |vg, a| < 2I, from which it follows that
(k= 2)l < |a,ug| < (k+ 3)! (using triangle inequality). In an analogous manner it follows
that kl < |a,ugs2| < (k+5)I. It is now straightforward to show that |ug, ugs2| < (k—5)I by
using traditional trigonometry on the triangle (ug,a,ug42) (recall that & > 70 and a < 45
degrees).

Uk42

Figure 4: s’ forms a concave chain in A.

Let ¢ be the point on egy9 such that the distance between v, and ¢ equals &/, and let A
be the triangle (ug, ¢, ug+2). (If such a point ¢ does not exist then we let ugo play the roll
of g, although it will later turn out that ¢ is properly included in egt3). By property (iii)
we have that |vg, viyo| < 20, and so |vgya,q| > (k — 2){ (by triangle inequality). Thus, since
lertz2] < (k4 3)I by property (ii), it follows that |¢, ux+2| < 51, and we thus infer that each
side in the triangle A has length < kl.

In the remainder of the proof, including the observation below, we consider the situation
just after having produced the greedy edge ey.



Observation 3.5 No greedy edge (among those produced so far) can properly intersect the
side (ug,q) of the triangle A.

Proof Imagine a straight-line segment h which always has one endpoint on e; and one
endpoint on egg (we refer to exo although it has not yet been produced). If A is collinear
with (a,u) then no greedy edge intersects h, and any point of h is visible from at least one
vertex of the hub (recall that ey is the first greedy edge crossed by a straight-line walk from
a to u). Thus if we start from that position and move h continuously further away from the
hub, we realize that h cannot cross any vertex as long as all points of h are within distance
< leg| from vy (such a vertex would be visible and within distance < |eg| from some vertex
on the hub and we would thus have produced a greedy edge connecting these two vertices,
which would contradict the fact that ey is the first greedy edge crossed by a straight-line walk
from @ to u). This observation tells us that no vertex is properly contained in the region
bounded by e, €xt2, (uk, ), and the hub. So it is easy to see that no greedy edge (among
those produced so far) can properly intersect (ug,q) (such an edge would be incident to a
vertex of the hub, and so it would be crossed before e; by a straight-line walk from « to u).

O

We claim that at least one vertex is properly contained in A. Indeed, if this was not the
case then there would be no greedy edge properly intersecting the side (ug, ury2) of A (such
an edge must leave one endpoint properly inside A since it cannot intersect its other sides by
Observation 3.5). Consequently, the side (ug, ug42) would coincide with a produced greedy
edge (it has length < [k < |eg|), and so we would not be able to produce the greedy edge
er+1 as the vertex uyyq is not longer visible from vi1; (recall that no two u;’s are identical by
property (i)). Thus we can consider the convex hull of the vertex set consisting of u, uk42,
and all vertices properly inside the triangle A. For each edge of that convex hull, except
the one which coincides with (ug, ug42), it holds that the edge has length < kI < |eg| and is
not properly intersected by any produced greedy edge, which implies that the edge coincides
with some produced greedy edge. Hence, uj and up4o belongs to a concave chain formed by
produced greedy edges in the triangle A. Moreover, no vertex is properly contained in the
region bounded by this concave chain, e, exy2, and the hub. Thus the vertex sequence of
this concave chain equals the sequence s'. a

By Sublemma 3.4, also the sequence wrg, urq,...,u, forms one or two concave chains.
Let C' stand for any of those possible concave chains. Further, let wu;,,, be the endpoint of C'
that is closest to a, and let u,,, be the endpoint of C' which is farthest from a.

Sublemma 3.6 For any vertex u; of the concave chain C', in the minimum weight convex
partition of S, the vertex w; is incident to an edge of length greater than (i —2)l/4 if (4low +
10)/3 <4 < (upp —1)/2.

Proof We begin the proof by making the following three observations.

Observation 3.7 For any vertex u; of the concave chain C' it holds that |u;, typ,| > (upp —
i — 3) and |wjow, u;| > (i — low — 3)L.

Proof By property (ii) we have that |e;| < (¢ + 1){ and |eyp,| > upp - I. By property (iii)
we have that the distance between v; and v,,, is < 2[. Thus the distance between u; and



Uypp 18 > |ewpp| — |€i] — |V, vupp| > (upp — 7 — 3)[. In an analogous manner it follows that
|Uiow, wi] > (¢ — low — 3)L. a

Observation 3.8 For any vertex u; of the concave chain C, the distance from u; to the
closest endpoint of ey, is greater than (i — 2)l if i < (upp — 1)/2.

Proof By properties (i) and (iii) we have that |e;| > il and |v;, vyy,| < 20, from which it
follows that the distance between u; and vy, is > (i — 2)l (by triangle inequality). Further,
by Observation 3.7, we have that the distance between u; and wyp, is > (upp — ¢ — 3)1. It is
now straightforward to show that (upp — ¢ — 3){ > (¢ — 2)l for ¢ < (upp —1)/2. o

Observation 3.9 For any vertex u; of the concave chain C, the distance from w; to any
endpoint of C' is greater than (¢ — 2)l/4 if (4low +10)/3 < ¢ < (upp — 1)/2.

Proof By Observation 3.8 it follows that the distance between w; and wyp, is > (i — 2){/4
for i < (upp — 1)/2. By Observation 3.7 we have that the distance between u,, and wu;
is > (¢ — low — 3)l, and it is straightforward to show that (¢ — low — 3){ > (¢ — 2)l/4 for
i > (4dlow + 10)/3. ]

Let D; be a disk centered at u; and of radius (7 — 2)[/4 (we consider an arbitrary integer
i in the interval [(4low + 10)/3, (upp — 1)/2]. Let C’ be the subsequence of u},u), ..., ul
which starts at ., and ends at wu,p,. See Figure 5. By Observation 3.9 the concave chain
C’ partitions D; into one convex and one concave region, of which the latter is labeled D!. Tt
suffices to show that D! can only contain vertices of C’, because it follows then that u; must
be incident to an edge of MC(S) which has length > (¢ — 2){/4 (otherwise there would be
a concave angle at u; in MC(), and that is only possible if u; lies on the convex hull of 5,
which it obviously does not).

Now, if the greedy edge e,,, does not intersect D! then it follows trivially that D! may
only contain vertices of C’ (consider the simple polygon induced after removing from GT(5)
all edges that intersect (u,a) between ey, and e,,,). We can therefore assume in the con-
tinuation that e, intersects D!. So the greedy edge e, partitions D! into two regions, one
containing the vertex w; and the other not containing any vertex of C’. Again it is easy to
see that the former region may only contain vertices of C’. Thus it remains to show that the
latter region, which we call R, does not contain any vertex. Indeed, if we would hypothesize
that there is a vertex in R, then the straight-line segment, call it b, connecting that vertex
with u; would properly intersect the greedy edge ep,. But by Observation 3.8 the distance
between u; and the closest endpoint of ey, is > (¢ — 2)l. Thus it follows from Fact 2.4
(the greedy triangulation is 4-sensitive) that b would have length > (¢ — 2){/4, which is a
contradiction since any point in R is within distance < (7 — 2)[/4 from u;. o

Continuation of the proof of Lemma 3.2: It now follows from Sublemma 3.6 that |[MC(59)]
is greater than

[(upp—1)/2]
> (i-2)i/4

1=[(4low+10)/3]

10



Figure 5: An illustration for the proof of Sublemma 3.6.

which is easily shown to be greater than (recall that low > 70)

upp/2—5low/3

(1/4) Y i

If wrg, 71, ..., Uy form only one concave chain, then low = 70 and upp = m, and so

m/2-5-70/3

IMC(S)] > (1/4) Z i = Q(Im?).

In case urg, ur1,. .., Uy form two concave chains, say wrq, ..., u; and ugyq,. .., Uy, We con-
sider the former chain if > m/4, otherwise we consider the latter chain. So if # > m/4 we
have that |[MC(5)]| is greater than

m/8-5-70/3
(1/4) Z i = Q(Im?)
=0
and for @ < m/4 we get
m/2—5(m/441)/3

IMC(S)] > (1/4) Z i = Qm?).

Finally we recall that m > ag/l—2 and [ < max(a), and so we have shown that [MC(5)| =
Q(a?/ max(a)). o

11



4 A tight bound for the greedy triangulation

This section is entirely devoted to the proof of the following theorem.

Theorem 4.1 For any set S of n vertices (in general position),

T,
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The above theorem is obtained immediately by combining Theorem 3.1, Facts 2.4 and
2.5, and the following lemma.

Lemma 4.2 For any real number r, r > 0, let CP(S) be an arbitrary r-sensitive con-
vex partition of S. Then CP(S) can be triangulated by adding diagonals of total length
O(r|CP(S)| + r|MT(5)]).

We shall first prove another lemma (a proof of this lemma can also be found in [7]) which
is used in the proof of Lemma 4.2. In order to state this lemma we need the following
definitions. A polygon P is called g-bent if and only if it has the following three properties:
(1) P is convex, (2) P can be drawn within a circle whose diameter equals the length of the
longest side, called the base, of P, and (3) the sum of degrees of the two interior angles of P
at the endpoints of its base is not greater than 2¢ degrees. A side of a g-bent polygon which
is not the base shall be termed top-side. By p(P) we denote the length of the perimeter of a
simple polygon P.

Lemma 4.3 For any real number q, 0 < q < 45, there exists some constant ¢ depending on
q, such that for any convex polygon P there are edges in GT(P) of total length < ¢ - p(P)
which partition P into triangles and/or q-bent polygons.

Proof Let ¢ be an arbitrary real number, 0 < ¢ < 45. The boundary of P can be partitioned
into < [180/¢] g-bent consecutive pieces as follows (we call a piece g-bent if it corresponds
to the top-sides of some ¢-bent polygon). Start with an arbitrary vertex of P and mark
it. Then traverse the boundary of P in, say, clockwise order and mark the last vertex for
which it holds that the piece of P’s boundary between this vertex and the previously marked
vertex is ¢-bent. In this way, when the whole boundary of P is traversed, each marked vertex
separates two g-bent pieces, and there are < [180/¢]| such marked vertices. (To prove the
lemma it suffices to show that there are O(180/¢) marked vertices.)

Let ¢ be any one of these pieces. Let E be a set of edges in GT(P) with minimum
cardinality, such that all polygons in the partition of P induced by E are triangles and/or
g-bent polygons. To prove this lemma it suffices to show that the total length of all edges in
I which are incident to ¢; is O(p(P)) (because then the same can be proved analogously for
the other g-bent pieces).

Let vg, v1,..., v, be the vertices of ¢; in clockwise order from one end of ¢; to the other.
For easier reference, we assume w.l.o.g. that the straight-line passing through vy and v, is
vertical, and that v, lies above vg. From the definition of F it follows that if there is an edge
(v;,v7) in E,0 <17 < j < m, then for any integer [, i < I < j, no edge in F is incident to v
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(because if an edge in V, say e, would be incident to v, then ' — {e} would also partition P
into triangles and/or ¢-bent polygons, and thus £ would not be minimal, a contradiction).
From this it follows easily that

(i) the total length of all edges in £ that have both their endpoints in ¢; is no more than
length of ¢;.

To make the proof shorter, we use the following fact.

Proposition 4.4 (Corollary 2.1 in [14]) For any vertex v of P, let e be a longest edge in
GT(P) that is incident to v. Then it holds that the total length of all edges in GT(P) which
are incident to v is O(|e]).

By Proposition 4.4 we obtain
(ii) the total length of all edges in GT(P) which are incident to vy or v, is O(p(P)).

It remains to show that the total length of those edges in F with only one endpoint in
q1, except for vy and v,,, is O(p(P)). Let E; be the set of these edges. Let V'’ be the set of
vertices in ¢; which are endpoints of some edge in E;. Let us call these vertices v}, v5,...,v._4
in clockwise order. Moreover, let us denote vy by v and v,, by v}. For each vertex v in V’,
denote by F(v) the set of edges in F; which are incident to v. By len( L) we denote the total
segment length in a set L of straight-line segments. To show that )~ .y len(E(v)) = O(p(P)),
we associate to each vertex v in V' a unique part of the boundary of P which has length
Qlen(F(v))) as follows.

Let 7 be the integer such that v = v!. Let the root of v be the consecutive piece of ¢
which includes v, such that the piece of the root of » which is below, respectively above, v
has length equal to one half of the piece of ¢; which lies between v;_,, respectively v/, and
v. (The root of v is depicted in Figure 6.) By this definition it is clear that roots of vertices
do not overlap.

U]

Figure 6: The root and the fan of v.

If there are at least two edges in E(v), then we associate to v an additional piece of P’s
boundary, which we call the fan of v, as follows. Let wug,uq,...,u; be the vertices of P in
clockwise order from v such that (v,w;) is in E(v)for i =0,1,...,l. The fan of v is the piece
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of P’s boundary which lies between ug and u; (see Figure 6). By this definition it is also clear
that no fans of vertices overlap.

To complete the proof of this lemma, it remains to prove that the length of the root of
v plus the length of the fan of v, if there is any, is Q(len(F(v))). First we observe that the
distance between v{_; and v, is shorter than two times the length of v’s root. On the other
hand, from the definition of the greedy triangulation it follows that a shortest edge in E(v) is
not longer than the distance between v!_; and v, because otherwise the edge (v;_1,vit1)
would be in GT(P) instead of that edge in £(v). Hence,

(iii) the length of a shortest edge in F/(v) is smaller than twice the length of v’s root.

It remains to consider the case when there is more than one edge in F(v). Let e be a
shortest edge and €’ a longest edge of E(v). By Proposition 4.4 the total edge length in F(v)
is within a constant factor from the length of ¢’. Next we observe that the fan of v includes
the endpoints of the edges e and ¢’, different from v, and thus the length of the fan is greater
than |¢’| — |e|. Combining these arguments with (iii), we easily get that the total edge length
in £(v)is within a constant factor of the sum of the lengths of the root and the fan of v. O

Proof of Lemma 4.2 By Lemma 4.3 there exists a set D of diagonals, each diagonal in D
belonging to the greedy triangulation of some convex polygon bounded by CP(5), such that
the diagonals in D have total length O(]CP(5)|) and partition CP(.9) into triangles and/or
1-bent polygons. Let P be the set of all 1-bent polygons induced by adding the diagonals in
D. We first give the following technical observation.

Sublemma 4.5 For any diagonal d in D it holds that d is (97 + 4)-sensitive.

Proof Let P be the convex polygon bounded by CP(5) such that d belongs to GT(P), and
suppose that there is a diagonal a of 5 that properly intersects d. We shall first consider the
case when none of a’s endpoints is a vertex of P, that is when a properly intersects two sides
of P. For an illustration, see Figure 7.

Figure 7: d is (97 + 4)-sensitive.

Let v be any endpoint of a, and let [ be a shortest straight-line segment connecting »
and any endpoint of the side of P which is first crossed by a straight-line walk from v to the
other end of a. For the other endpoint, call it v’, of @ we define in a symmetrical way the
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segment [. Further, let b be the straight-line segment which connects those endpoints of [
and !’ that belong to P. Finally, for the endpoint of b which is shared by [, let ¢ be a shortest
straight-line segment connecting this endpoint and any endpoint, say u, of d.

Now, since d is 4-sensitive with respect to the vertices of P by Fact 2.4, we have that
|t] < 4]b|. Also, since the sides of P are r-sensitive, we have that || < r|a| and [I'| < r|a|. Let
h be the distance between v and w. By using triangle-inequality and the above facts, we get
that & < [1]+ [t] < [+ 416] < |1+ 42| + a] + 1)) < rlal + 4(rla] + [a] + rla]) = (97 + D)]al.
Thus, if we let d’ be the shortest distance between v and any endpoint of d, since h > d', it
holds that |a| > d'/(97 + 4). We can in a symmetrical manner treat the endpoint v’ of a,
thus concluding that d is (97 4+ 4)-sensitive with respect to those diagonals whose endpoints
are not vertices of P.

For diagonals that have an endpoint in P, we observe that this is a degenerate case of the
one considered above. For example, if v is a vertex of P, the segment [ becomes a point of
zero length, and similarly for »’. Thus we obtain that d is (97 + 4)-sensitive with respect to
all diagonals of §. O

In the remainder, for any 1-bent polygon in P and any side s of this polygon, we can
by Sublemma 4.5 assume that s is r’-sensitive with ' = 97 + 4 (note that if a diagonal is
r-sensitive then it is also r”-sensitive for any r” > r).

Given an edge e in MT(5) and a 1-bent polygon P such that two of its sides, say s and
s', properly intersect e, we define the transposal of e within P as the shortest straight-line
segment connecting an endpoint of s and an endpoint of s’. (Note that any other edge in
MT(S) that properly intersects s and s’ induces the same transposal as e.) Let T" be the set
of all distinct transposals obtained by considering all edges in MT(.9) and all 1-bent polygons
in P.

Sublemma 4.6 The total segment length in T is no more than O(r'|CP(S)| 4+ »'|MT(5)|).

Proof Consider a transposal ¢ in T'. Let e be an edge in MT(5) and P the 1-bent polygon
such that ¢ is a transposal of e within P. If the following holds:

e does not intersect the base of P, (1)

then, by the shape of a 1-bent polygon, ¢ is not longer than the piece of e that is wholly
internal to P. Thus the total length of all transposals in 7' for which (1) holds is no more
than [MT(5)|.

Suppose now that (1) does not hold for ¢. So e properly intersects the base of P and
one top-side, say s, of P. Comment: it is easy to show that any other edge in MT(5) that
induces t must also properly intersect s. If the following holds:

|t < 3r'|s], (2)

then we say that ¢ is top-paid. 1t is easily seen that the total length of all top-paid transposals
is no more than 3r'|CP(5)|. We say that a transposal is mwt-paid if neither (1) nor (2) holds
for this transposal. To complete the proof of this sublemma it suffices now to prove the
following claim.
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Claim. The total length of all mwt-paid transposals induced by any edge e in
MT(S) is no more than O(r'|e]).

Let e be an arbitrary edge in MT(5), and assume w.l.o.g. that e is vertical. We say that
a 1-bent polygon P has orientation k, 0 < k < 360, if a clockwise rotation of P by « degrees,
k< a < k41, results in that the base becomes horizontal and below the top-sides of P. For
an arbitrary integer k, 0 < k < 360, let Py, P, ..., P, be the sequence of 1-bent polygons
which are crossed by walking along e from its uppermost endpoint to its lowermost endpoint,
and such that the following holds for each P;:

(a) e induces an mwt-paid transposal ¢; within P;, and

(b) P; has orientation k.

To prove the above claim it suffices to show that the total length of €’s transposals within
Py, Py, ..., P, is O(r']e]), since we consider an arbitrary orientation among 360 possible. We
may also assume w.l.o.g. that the following holds for each P;:

(c¢) atop-side of P;, denoted by s;, was crossed before the base of P; by our top-down walk,

because we can otherwise consider the sequence in reverse order (i.e. as if we started at the
lowermost endpoint of e and walked to its uppermost endpoint). By h; we denote the piece
of e between s; and s;41 (by h,, we mean the piece of e between s,, and the lowermost
endpoint of €). Now, let P,,..., P, be any maximal subsequence of Py, Py, ..., P,, such that
the following holds for each ¢, a <17 < b:

[t;| > 37| h] (3)

Indeed, it suffices to bound the transposals of e within the P;’s for which (3) holds, because
the total length of e’s transposals within the other P;’s is no more than 3r'|e| (since the h;’s
correspond to distinct pieces of e).

Observation 4.7 For any integer ¢, a <1 < b, it holds that 2|t;| < |t;41].

Proof Let us first describe the situation. By our top-down walk, we first crossed the top-side
s; of P;, then the base of P;, and after that the top-side s;41 of Pi41 (in a degenerate case
the base of P; may coincide with s;41). Since (2) does not hold for ¢;, but (3) does, we have
that |s;| <|¢|/(37") and |hs| < |t;|/(37").

Let [ be one of the two straight-line segments which connect an endpoint of s; with an
endpoint of s;41 but do not intersect h;. An illustration is given in Figure 8. If [ does not
properly intersect the base of P;, we realize that [ has length > |¢;]| (recall that the slopes of
s; and s;4q differ by at most 5 degrees). On the other hand, if [ properly intersects the base
of P;, since the base is r'-sensitive, the length of [ is > |¢t;|/r' (¢; is a shortest straight-line
segment connecting an endpoint of s; with an endpoint of the base). Thus the length of [ is
always > |t;|/r’ (recall that ' > 4).

Now, if we use triangle-inequality twice on the quadrangle bounded by [, h;, s; and s;41, we
get that the the piece of 5,171 in this quadrangle has length > |t;| /7" — 2|t;|/(37') = |t:]/(37").
In an analogous manner we can show that the remaining piece of s;41 has length > |t;|/(377),
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Figure 8: The ;s grow exponentially.

and so the length of s;1 is greater than 2|t;|/(3r'). Finally, by combining this observation
with the fact that (2) does not hold for ¢;41, we conclude that 2|t;| < |t;41]. O

By Observation 4.7 it follows that

b—1
> lti] < [ts].
i=a

If b < m, since (3) does not hold for ¢, in this case, we get that the above sum is < 3r/|hy|.
It remains therefore to show that (3) does not hold for ¢,, when b = m. Indeed, let [ be a
straight-line segment connecting an endpoint of s, with the lowermost endpoint of e. As
in the proof of Observation 4.7 we can use the r’-sensitivity of P,,’s base to conclude that
[{| > |tm|/7". Thus, since |s,,| < |t.|/(37"), it follows that |t,,| < 1.57|h,,| (triangle inequality
on the triangle bounded by I, s,,, and h,,). a

Continuation of the proof of Lemma 4.2: Next, given an edge e in MT(5) and a 1-bent
polygon P such that e is incident to exactly one vertex of P, we define the end-transposal of e
within P as follows. First we observe that e properly intersects exactly one side, say s, of P.
Let u be the endpoint of e which belongs to P, and let v be an endpoint of s which is closest
to u. The end-transposal of e within P is the straight-line segment which connects « and wv.
Since the side s is r’-sensitive, we immediately get that the length of this end-transposal is
< r'|e|. Let T' be the set of all distinct end-transposals obtained by considering all edges in
MT(S) and all 1-bent polygons in P.

Observation 4.8 The total segment length in T' is no more than 2r'|MT(5)|.

Proof Each edge, say e, in MT(S) contributes with at most two end-transposals, both
having length < r'|e]. 0

Finally, given an edge e in MT(S) and a 1-bent polygon P such that e is incident to
exactly two vertices of P, we say that e is stationary within P. Let T” be the set of all
stationary edges obtained by considering all edges in MT(5) and all 1-bent polygons in P.
Clearly the total segment length in 7" is no more than |[MT(5)|. The following observation
is straightforward to show by using the convexity of 1-bent polygons and the planarity of
MT(S9).

Observation 4.9 No two segments in T UT' UT" can properly intersect each other.
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Thus the segments in T'UT’"UT" partition the 1-bent polygons in P into triangles and/or
1-bent polygons. Let P be an arbitrary 1-bent polygon which remain after this partitioning.
If P has a constant number of vertices, then P can clearly be triangulated by adding diagonals
of total length O(p(P)). Therefore, to complete the proof of this lemma, it suffices to prove
the following claim.

Claim. P is a k-gon for some k, 3 < k < 6.

Assume contrary that P has more than 6 vertices. We may also assume w.l.o.g. that the
base, call it b, of P is horizontal, and that b lies below the top-sides of P. First we consider
the case when b coincides with an edge in MT(.9) (this case is depicted in Figure 9). Let e and
¢’ be the two edges in MT()9) that form together with b a triangle, such that the endpoint,
call it v, that e and €’ have in common lies higher than b. If v is a vertex of P, then we see
that both e and €’ are stationary within P, and so P is a triangle in this case. On the other
hand, if v is not a vertex of P, e and ¢’ properly intersect the same top-side of P (because
the triangle they form with b may not have any vertex properly inside). Hence, in this case,
the end-transposals of e and ¢ within P force P to be either a triangle or quadrangle. In
any case we obtain a contradiction. Thus we can assume in the continuation that & does not
coincide with an edge in MT(S).

v v

€ e /A\

b b

Figure 9: v is a vertex of P and not.

Now, since b is not in MT(9), there must be an edge e in MT(9) that properly intersects
b. Clearly e partitions P into two regions. If each of these two regions has more than two
vertices of P on its boundary, we see that the transposal of e within P, or the end-transposal
in case e is incident to a vertex of P, is properly inside P, which is a contradiction. Thus
among the regions in the partition of P induced by all edges in MT(.9) that properly intersect
b, there is one region, call it R, which has all vertices of P on its boundary, except for maybe
the four endpoints of the two top-sides incident to b. Let u be an endpoint of b which is not
in R (u must exist because of €), and let v’ be the other endpoint of b. We assume w.l.o.g.
that u lies to the left of u'.

Let d be the edge in MT(5) that bounds the leftmost side of R. Now, since the infinites-
imal vicinity to the right of d at its intersection with b lies in a triangle A of MT(5), and u’
may not be properly inside this triangle, we realize that either (1) ' is an endpoint of A, or
(2) there is an edge d’ properly intersecting b such that d’ also bounds A (and the rightmost
side of R). These two cases are illustrated in Figure 10.

In case (1) we see that there is a side d” of A such that d” connects «’ and the endpoint
of d that lies higher than . By the 1-bent shape of P, it is easy to see that the segment in
TUT'UT” which is induced within P by d" lies on or above d” (above if it is an end-transposal
and on if d” is stationary). Hence, since there are at least three vertices of P on the boundary
of R, we infer that this segment is properly inside P, which is a contradiction. So it remains
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Figure 10: The two possibilities for A.

only to show that case (2) also yields a contradiction. We first observe that, in case (2), d
and d’ may not have an endpoint in common that lies higher than b, because the region R
would then have at most one vertex of P on its boundary. Thus there is a side s of A such
that s connects the endpoints of d and d’ that lie higher than b. Again, by the 1-bent shape
of P and because of the at least three vertices on R’s boundary, we realize that s induces a
segment in T"U T’ U T” that is properly inside P, a contradiction which completes the proof
of Lemma 4.2. a

5 A new heuristic for the minimum weight triangulation

In this section we give a triangulation algorithm, which is a small modification of the greedy
one, and show that it produces a triangulation whose length is within a constant factor from
the optimum. The algorithm is as follows (using an ALGOL-like language).

Algorithm: Quasi-Greedy(5)

G —{5,0}

while G is not a triangulation do
let (v1,uq) be a shortest diagonal of G
if all the following 6 conditions hold

1. the diagonal (v1,uq) forms an empty triangle (v, ug, u1) with two edges in G,

2. there is a diagonal (vg,ug) properly intersecting (v, u1) and forming an empty
triangle (vg, v1, ug) with two edges in G,

3. the angle Zvq,ug, uy is > 135 degrees in triangle (v, ug, u1),
4. |vo, uo| < 1.1]v1,uq],

5. |vo, p| < 0.5|ug, p|, where p is the intersection of the straight-line extensions of
(vg,v1) and (ug,uq ), and

6. thereis an edge (u1,uz) in G such that (vq, ug, u1, ug) forms an empty quadrangle
and the angle Zug,u1,us in that quadrangle is > 180 degrees.

then add the edge (vg, ug) to G
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else
add the edge (v1,u1) to G
end if
end while
return the triangulation &
end Quasi-Greedy

Figure 11: An example of configuration for which all 6 conditions hold.

We call the triangulation of 5 produced by the above algorithm for the quasi greedy
triangulation (because of the 4th condition), and we shall abbreviate it as QGT(S5). The
quasi greedy convex partition of S, abbreviated QGC(S5), is defined in the same way as the
greedy convex partition, but for each vertex we select its spokes from QGT(S9) instead of
GT(S). For a vertex v in 5, let vg stand for the length of a longest spoke in QGC(.5) that
was selected for v. The following is the analogy of Observation 2.2.

Observation 5.1 For any set S of vertices, |[QGC(5)| <33 ,c5v9g.

Lemma 5.2 Let S be any set of vertices (in general position) and let a be an arbitrary
vertex in S. Then ag = O(max(a)).

Proof To obtain a contradiction we hypothesize that ag > ¢ - max(a), where ¢ is some
sufficiently large constant. Let e be a spoke of a whose length equals ag, and let ¢’ and €”
be the two other spokes that were selected for ¢ when defining QGC(S) (a cannot lie on the
convex hull of S because of the above hypothesis). We assume w.l.o.g. that €’ is horizontal
and that a is its right endpoint, and the endpoint of ¢” which is different from a lies lower
than a. Among those vertices that lie higher than a, let u be the one which is closest to
a, and let [ be the distance between a and u. We observe that the quasi-greedy algorithm
will not produce an edge that connects a with a vertex lying higher than a until it starts to
produce edges of length > ag > ¢ - max(a) > ¢ - (by our initial hypothesis and because ag
is the length of a shortest such edge).

Let us denote by G(¢) the PSLG whose vertex set equals $ and whose edge set consists
of all quasi-greedy edges of length < ¢. Now, let e; be the first edge crossed in G/(100/)
by a straight-line walk from @ to w. Similarly, let e,, be the first edge crossed in G(c-1)
by a straight-line walk from a to u. Let e1,es,...,€e, be the sequence of edges crossed in
QGT(S) by walking from ey to e,, along the line passing through w and a. As in the proof
of Lemma 3.2 we can show that each e; has an endpoint u; lying, say, north-west of a, and
an endpoint v; lying south-west of ¢ and within distance, say, < 3/ from a. We can also show
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that there is a concave chain between vy and a, the so-called hub, such that all the v;’s belong
to the hub.

Now, following the proof of Lemma 3.2, we obtain in the same way that wy,ug, ..., us
forms ¢’ concave chains in G/(1007), where ¢’ is some constant independent of c.

It is not hard to to show that e, has length greater than ¢ -1/1.1 — [ (the divisor 1.1
comes from condition (4) in the quasi-greedy algorithm). Thus we realize that there are
two integers r and ¢, 1 < r < ¢t < m, such that u,,u,41,...,u; forms a concave chain and
il /les] = Q7).

Let us denote by N(u;) the first vertex in u;, u;41, ..., %, which is not identical to u; (i.e.
the next vertex from w; on the concave chain). Similarly, define N(v;) as the first vertex in
Vi, ...,y which is not identical to v;. Further, denote by p; the intersection point between
the two lines that are collinear with (u;, N(u;)) and (v;, N(v;)), respectively.

Figure 12: The angle a, u;, N(u;) is > 135 degrees for s < ¢ < ¢.

Next we observe that, for some sufficiently large constant s, r < s < ¢, it holds that the
angle a,us, N(uy) is greater than 135 degrees (we choose the smallest possible s with this
property, and get in this way that |e;|/|es| = Q(Cl/cl)). Thus the point p; must be within
distance, say, < 2|es| from N(v;) (see Figure 12). Moreover, since us,...,u is concave, it
follows that p; is within distance < 2|es| from N(v;) and the angle a,u;, N(u;) is > 135
degrees for all i, s < ¢ < t. We further observe that there is some edge e}, s < k < ¢, such
that ex41 connects vertex vy, with vertex N(uy), because an edge connecting uy and @ would
otherwise have been produced (see also Figure 13). If we choose e, so that it is, say, at least
10 times longer than ey, then we have that |u;, p;| < 0.5|N(v;),p;| for all ¢, k <4 < ¢ (such an
edge ¢}, clearly exists if the ratio between |e;| and |e| is sufficiently large, i.e. if the constant
c is sufficiently large).
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Figure 13: Tt holds that |u;, p;| is less than 0.5|N(v;), p;| for k < i < ¢.

Let us now consider the situation when the quasi-greedy algorithm is just about to pro-
duce the edge er41, that is when eg4q is a shortest diagonal and the quasi-greedy algorithm
checks the six conditions for egy1. If we let N(wvg), vk, uk, ukt1, N(urs1) play the role of
Vg, V1, Up, U1, U in the quasi-greedy algorithm, then we see that it only remains to show that
the fourth condition holds, because the other conditions are already fulfilled by the way we
have chosen eg. Indeed, if we show this, we arrive at the contradiction that the quasi-greedy
algorithm will produce (N (vg), uy) instead of ejy1.

Let d be the diagonal that connects N(v;) and wug. First we note that d has length
< |ex| + 1 (recall that both d and ej are within distance < [ from ). It suffices therefore to
show that |ex| + 1 < 1.1|eg| (since ey is shorter than egyq1). But this is easily seen to be true
from the fact that e has length greater than 100/. O

Combining the above lemma with Observations 5.1 and 2.1 we obtain
Corollary 5.3 For any set S of vertices (in general position), |QGC(5)| = O(IMC(5))|).

By condition (6) in the quasi-greedy algorithm we see that it will for convex polygons
produce the same triangulation as the ordinary greedy algorithm. Hence, by Fact 2.5, we
obtain

Observation 5.4 For any convex polygon P, |QGT(P)| = O(|MT(P)|).

In [13] it was shown that the greedy triangulation is 4-sensitive. A similar result was
also obtained in [7] and [3]. We shall next generalize this result so that it can be adapted to
quasi-greedy triangulations. First we need the following definition. Given a real number r,
we say that a triangulation is r-greedy if it can be produced by repeatedly adding a diagonal,
such that its length is not greater than r times the length of a shortest diagonal in the partial
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triangulation. Notice that the quasi greedy triangulation is 1.1-greedy, whereas the ordinary
greedy triangulation is 1-greedy.

Lemma 5.5 Let S be any set of vertices and let € be any real number such that 0 < ¢ < 1.
Then any (2 — ¢)-greedy triangulation T of S is (4/¢)-sensitive.

Proof We consider an arbitrary edge (v{,v}) of 7', and an arbitrary diagonal (vq,v3) of
which properly intersects (v], v%). It suffices to show that min(|vy, v1], |v1, v5]) < (4/€)]v1, val.

Let " be the straight-line segment connecting v{ and v}. For easier reference, we assume
w.l.o.g. that I’ is vertical, that vy lies to the left of ', and that ] lies higher than v}. See
Figure 14. Let d be the distance between vy and vy. To prove the theorem, we hypothe-
size throughout the proof that both |vy,v]| and |v1, v}| are greater than 4d/e¢, and derive a
contradiction from this hypothesis.

'
[ X351

Figure 14: An example of configuration.

Let us denote by GG the PSL.G whose vertex set equals S and whose edge set consists of
all edges in T of length < 4d/e — 2d. By the definition of (2 — €)-greedy triangulations, it
follows that all diagonals of G' have length > 2d/e.

To go on we need the following definition. A path in the plane is called free if it does
not include any vertex nor any edge of GG. A path P is called collision-free if for each real
r greater than zero there exists a free path P’ whose length is not greater than r plus the
length of P, and every point in P is within distance r from some point in P’.

Sublemma 5.6 Let v and v be any two vertices on either side of I', and let P be any
collision-free path connecting u and v. If all points on P have greater y-coordinate than that

of v}, but smaller than that of v{, then P has length > 2d/e.

Proof Let P’ be the shortest collision-free path connecting u and v such that no vertices of
S lie in any open region bounded by P and P’ (if there is any such region).
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A way to imagine P and P’ is to think about the vertices and edges in G as being obstacles
(“pins and walls”) and about P as being a wire. Then P’ has the shape of the wire which
would be obtained if it would be “stretched” between u and v (without being able to cross
any obstacles).

Now, if all points on P would lie higher than v} and lower than v{, since the endpoints
of P lie on either side of I/, it is easy to see that P’ would properly intersect ’. Thus there
would be two vertices «’ and v" on P’ such that no edge of G properly intersects (u’,v") and
(u',v") properly intersects I’. So (u’,v’) would be a diagonal of G and thus of length > 2d/e¢
(recall that I coincides with an edge in T', so (u’,v") cannot be an edge). a

Let I be the intersection point of I’ with (v1,v2). Notice that the distance between [ and
any endpoint of I" is > 4d/e — d (by triangle inequality and our initial hypothesis). Hence,
since the edges in G have length < 4d/e — 2d and |v1, v2| = d, we obtain

Observation 5.7 If e is an edge of G that intersects (v1,v2), then all points on e lie higher
than vl, lower than v{, and on the same side of I'.

Sublemma 5.8 In G there is an edge properly intersecting (v1,1) and an edge properly
intersecting (va, I).

Proof We prove the statement for (vg,I). The proof for (vy,[) is symmetrical. Let us
hypothesize that there is no edge in G that properly intersects (vq,I). Thus there must be
an edge in GG which properly intersects (v, /) (since (v, v2) is too short to be a diagonal of
(). Let ey be the edge in G with the rightmost intersection with (vy,/), and let Iy be that
intersection. Next, let v.; be an endpoint of e; which is closest to I;. By Observation 5.7,
both endpoints of e; lie to the left of I’. Thus there is a collision-free path from v.; to vy of
length < 2d/e€ consisting of the segment (v.1, [1), of length < 2d/e—d, and (I1,v3), of length
< d. By Observation 5.7 all points on this path lie higher than v} and lower than v{, and so
we obtain a contradiction to Sublemma 5.6. a

Define €1 as in the proof of Sublemma 5.8, and let e; be the edge in GG with the leftmost
intersection with (I, vz). Let v; and v, be the uppermost endpoint of e; and ez, respectively.
We assume w.l.o.g. that the straight-line extensions of e; and ey are parallel or intersect each
other above (v1,v2).

Now, let h be the (unique) straight-line segment parallel with (vy, v2), such that h connects
v; or v, with some point p on e; or e3 (p may possibly coincide with either v; or v,). Finally
let () be the quadrangle bounded by h, (v1,v2), €1 and es.

Sublemma 5.9 There is a vertex of S properly in ().

Proof Indeed, if we assume that there is no vertex properly in ¢, then there is no edge of G
properly intersecting h (such an edge would leave an endpoint properly in @) since it cannot
intersect the other sides of )). Thus if v, is an endpoint closest to p of the edge (either eq
or ez) that p lies on, then there is a collision-free path of length < 2d/e consisting of the
segment h, of length < d, and (p,v,), of length < 2d/c — d. Hence, by Observation 5.7, we
obtain a contradiction to Sublemma 5.6. a
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Among the vertices in @ (at least one must exist by Sublemma 5.9), let ¢’ be a vertex
which is closest to the line (vy,v2). Further, let A’ be the straight-line segment parallel with
(v1,v2) and crossing !’, such that b’ connects ¢’ with some point ¢ on either ¢; or e3. Finally,
let v, be an endpoint closest to ¢ of the edge (either e; or eg) that ¢ lies on. Consider now
the collision-free path of length < 2d/e consisting of the segments b’ (of length < d) and
(¢, vy) (of length < 2d/e — d). By using Observation 5.7, it is straightforward to realize that
all points on this path lie higher than »{ and lower than v5. Moreover, since ¢’ and v, lie on
either side of I’, we obtain, again, a contradiction to Sublemma 5.6. a

Finally, combining Corollary 5.3, Lemmata 5.5 and 4.2, and Observation 5.4, we obtain

Theorem 5.10 For any set S of vertices (in general position), |QGT(S)| = O(|MT(9)]).

6 Generalizations and extensions

6.1 Constrained cases

Consider the following problem. Given a PSLG G with vertex set 5 and edge set I/, find
a triangulation 7" of S whose edge set contains F and such that |T'| is minimized. The
triangulation T is called the constrained minimum weight triangulation of G. The quasi-
greedy algorithm can also be used in order to approximate T, by adding the edges in F to
the partial triangulation before the while-loop is executed.

To show that the quasi-greedy algorithm gives a constant-factor approximation also in
the constrained case, we can prove the analogy of Lemma 5.2 roughly as follows. Again we
consider a half-plane H bounded by a line passing through a vertex a, and we hypothesize
that there is a vertex u lying in H, visible from a (i.e. no edge in £ intersects (a,u)), and
within distance [ from «a, although the quasi-greedy algorithm connects ¢ with vertices in H
only by edges much longer than .

As in the proof of Lemma 3.2 we can show that the quasi-greedy algorithm has to produce
an edge e; which blocks the visibility between a and w, and that e; has an endpoint u; lying
in H and an endpoint vy lying in the complement of H. To see that uq is visible from a, let p
be the intersection point between e; and (a,u). If we choose ey sufficiently long we get that
the angle p,u1,a is quite small, and so uy is the point in the triangle (p,u1,a) farthest from
v1. Now, if any edge (either in E or produced by the algorithm) would properly intersect
(a,u1), then it would leave an endpoint in the above mentioned triangle, which cannot be
the case since the quasi-greedy algorithm would connect v; with that endpoint rather than
with wy. Thus uq is visible from a, which means that its visibility from a has to be blocked
by an edge e; which is only slightly longer than e;, and so on. Proceeding in this way, we
arrive at edges e; and e;y1 of fairly great length, such that e; and e;y; are almost parallel,
very close to each other, and having non-identical endpoints w; and u;4q lying in . We can
now show that e; 1 fulfills the six conditions in the quasi-greedy algorithm, and so we obtain
the contradiction that we will produce an edge that properly intersects e;41.

A problem that still remains is to adapt Lemma 4.2 to the constrained case (since there
does not necessarily exist a constant ¢ such that the edges of GG are c-sensitive with respect
to diagonals of §, we also have that the constrained quasi greedy convex partition might
not be c-sensitive in this sense). This can be done roughly as follows. First we observe that
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we can, for some constant ¢, still prove that all edges in our triangulation are c-sensitive
with respect to diagonals of G (i.e. diagonals of S that do not properly intersect any edge
in £) by following the lines of proof of Lemma 5.5 (this was shown for the ordinary greedy
triangulation in [13]). Let CP(G) be the (constrained) quasi greedy convex partition of G If
CP(G) is r-sensitive with respect to diagonals of S, we have by Lemma 4.2 that CP(G) can
be triangulated by adding diagonals of total length O(r|CP(G)| + r|MT(S5)|). However, in
the proof of Lemma 4.2, the r-sensitivity was used on an edge of CP(G) only with respect to
minimum weight edges properly intersecting it. Therefore, since the edges of the constrained
minimum weight triangulation cannot properly intersect edges of GG, it follows that when
we use the r-sensitivity of an edge with respect to some diagonal, we have that this edge
is c-sensitive with respect to that diagonal. Thus we can still show that CP(G) can be
triangulated by adding diagonals whose total length is proportional to |[CP(G)| plus the
length of the constrained minimum weigh triangulation.

6.2 Approximating the minimum weight convex partition

The quasi-greedy algorithm can also be used in order to compute the quasi greedy convex
partition, thus obtaining a constant-factor approximation of the minimum weight convex
partition. Indeed, it suffices to find for each vertex v in our input vertex set S the spokes of
v in QGT(S).

Let m be the number of quasi-greedy edges that are incident to v, and let L be a list
consisting of these edges. To simplify the exposition, we first show that the spokes of v
can be found in O(m) time under the assumption that the edges in L are sorted according
to their lengths. In addition, we assume throughout this subsection that all diagonals of S
have distinct lengths. We will use the following observation, which follows directly from the
definition of spokes.

Observation 6.1 Let e and ¢’ be any two edges incident to v, and let R be the convex region
which is bounded by e, e’ and an infinitesimal circle centered at v. Then any edge intersecting
R cannot be a spoke of v if it is longer than both e and ¢€’.

For any set Y consisting of three edges incident to v, the edges in Y partition the in-
finitesimal vicinity of v into three open regions, of which we denote by max(Y') one whose
interior angle at v is largest. The initial step is to remove the first (shortest) three edges
from L. Let Y be a set consisting of these three edges. If max(Y') is a convex region, then it
is not hard to see that the edges in Y constitute the spokes of v. Otherwise, it follows from
Observation 6.1 that any spoke of v has to intersect or bound max(Y'). Thus we can find the
spokes of v by executing the following two steps as long as max(Y') is not convex.

1. Remove from Y the edge that does not bound max(Y").

2. Remove the shortest edge from L and insert it into Y.
Instead of using the sorted list L (which can be constructed in O(mlogm) time) we can

use any sorted list I/ with the property that it contains the spokes of v. Such a list L/ can
be constructed in O(m) time as follows. Let e; be the shortest edge incident to v, and let
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€2,€3,...,€; be the maximal sequence of edges encountered (in this order) by scanning the
edges around v in clockwise direction from ey, such that the clockwise angle from e; to ey is
< 180 degrees. Given any two edges e; and e;, 1 <17 < j <k, it follows from Observation 6.1
that any edge e, ¢ <t < j, which is longer than both e; and e; cannot possibly be a spoke
of v. By scanning eq,eg,...,e; we can remove all such edges, thus creating a list such that
the edges in this list are sorted with respect to their lengths. In an analogous manner we can
create a sorted list for the counter clockwise case. Then, by merging these two lists we obtain
one sorted list I’ containing all spokes of v. The total time for constructing L’ in this way is
clearly O(m) (we assume that QGT(9) is represented as a doubly connected edge list). We
summarize this subsection in the following theorem.

Theorem 6.2 Let S be any set of n vertices (in general position). Given QGT(S), we can
compute QGC(S) in O(n) time.

6.3 Degenerate cases

Throughout the paper we have assumed that no three vertices in 5 are collinear. In order
to remove this assumption we have to add some details, of which the main one concerns the
convex partitions that we use. In a degenerate case, we can define GC(5) and QGC(S) in
such a way that the angle between two spokes of any vertex, say v, that lie next to each
other around v is < 180 degrees (thus it may happen that we for some vertices have to select
four spokes). In this way, the statement in Lemma 4.2 still holds for GC(5) and QGC(S).
Similarly we can require that all angles in MC(.5') are strictly less than 180 degrees. Redefining
MC(S), GC(S5) and QGC(5) in this way, the proofs of Theorems 4.1 and 5.10 can be adapted
to degenerate cases by adding some non-difficult details.

However, if the purpose is to approximate the minimum weight convex partition by using
the quasi greedy convex partition, then we must allow angles in QGC(5) to be exactly 180
degrees in order to obtain a constant approximation ratio (for example, in the case when
MC(S) forms one triangle with n — 1 vertices on a side which is quite short compared to the
other sides). For this reason, we select for each vertex v the spokes as described in Section 2
unless the following holds: There exist two edges e and €’ incident to v, collinear with each
other, such that in one of the half-planes bounded by them, no edge incident to v is shorter
than both e and €’. In this case we select only two spokes for v, namely e and €’. Defining
QGC(S5) in this way, the statement in Lemma 5.2 still holds. Indeed, under the assumption
that ag is greater than max(a), it still holds that one of a’s spokes (partially) bounds an
open half-plane H such that no edge in H that is incident to a has length < ag, although
there is a vertex in H which is within distance max(a) from a.

7 Conclusion

Most greedy algorithms can be modified so that they compute QGT(S), since the six con-
ditions can be checked locally and in constant time. The best worst-case time would be
attained by modifying the algorithm in [9]. In this way we would obtain an algorithm that
computes the quasi greedy triangulation in O(nlogn) time (or in O(n) time if the Delaunay
triangulation is given).

27



Acknowledgment We are grateful to Prof. David Eppstein for pointing out an error in
an earlier draft.

References

[1] R. C. Chang and R. C. T. Lee. On the average length of Delaunay triangulations. BIT,
24(3):269-273, 1984.

[2] G. Das and D. Joseph. Which triangulations approximate the complete graph. In Pro-
ceedings of the International Symposium on Optimal Algorithms, volume 401 of Lecture
Notes in Computer Science, pages 168—183. Springer—Verlag, 1989.

[3] M. T. Dickerson, R. L. S. Drysdale, S. A. McElfresh, and E. Welzl. Fast greedy triangula-
tion algorithms. In Proceedings of the Tenth Annual ACM Symposium on Computational
Geomeltry, pages 211-220, 1994.

[4] P. D. Gilbert. New results in planar triangulations. Master’s thesis, University of Illinois,
Urbana, Illinois, 1979.

[6] L. Heath and S. Pemmaraju. New results for the minimum weight triangulation problem.
Algorithmica, 12(6):533-552, 1994.

[6] D. G. Kirkpatrick. A note on Delaunay and optimal triangulations. Information Pro-
cessing Letters, 10(3):127-128, 1980.

[7] C. Levcopoulos. Heuristics for Minimum Decomposition of Polygons. PhD thesis,
Linképing University, Link6ping, Sweden, 1987.

[8] C. Levcopoulos. An Q(+/n) lower bound for the nonoptimality of the greedy triangula-
tion. Information Processing Letters, 25(4):247-251, 1987.

[9] C. Levcopoulos and D. Krznaric. The greedy triangulation can be computed from the
Delaunay in linear time. Technical Report LU-CS-TR:94-136, Department of Computer
Science, Lund University, Lund, Sweden, 1994.

[10] C. Levcopoulos and D. Krznaric. Tight lower bounds for minimum weight triangulation
heuristics. Technical Report LU-CS-TR:95-157, Department of Computer Science, Lund
University, Lund, Sweden, 1995.

[11] C. Levcopoulos and A. Lingas. On approximating behavior of the greedy triangulation
for convex polygons. Algorithmica, 2(2):175-193, 1987.

[12] C. Levcopoulos and A. Lingas. The greedy triangulation approximates the minimum
weight triangulation and can be computed in linear time in the average case. Technical
Report LU-CS-TR:92-105, Department of Computer Science, Lund University, Lund,
Sweden, 1992. A preliminary version appeared in Proc. ICCI 91, LNCS 497.

28



[13] C. Levcopoulos and A. Lingas. C-sensitive triangulations approximate the minmax
length triangulation. Technical Report LU-CS-TR:93-118, Department of Computer
Science, Lund University, Lund, Sweden, 1993. A preliminary version appeared in Proc.

FST-TCS 92, LNCS 652.

[14] A. Lingas. A new heuristic for the minimum weight triangulation. SIAM Journal on
Algebraic and Discrete Methods, 8:646-658, 1987.

[15] E. L. Lloyd. On triangulations of a set of points in the plane. In Proceedings of the 18th
Annual IEEE Symposium on Foundations of Computer Science, pages 228-240, 1977.

[16] G. K. Manacher and A. L. Zobrist. Neither the greedy nor the Delaunay triangulation
of a planar point set approximates the optimal triangulation. Information Processing
Letters, 9(1):31-34, 1979.

[17] D. A. Plaisted and J. Hong. A heuristic triangulation algorithm. Journal of Algorithms,
8(3):405-437, 1987.

[18] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, 1985.

[19] W. D. Smith. Studies in Computational Geometry Motivated by Mesh Generation. PhD
thesis, Princeton University, 1989.

[20] P. Yoeli. Compilation of data for computer-assisted relief cartography. In J. C. Davis
and M. J. McCullagh, editors, Display and Analysis of Spatial Data. Wiley, 1975.

29



