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can place n points so that the Delaunay is 
(n= logn) from the optimum. They also showedthat n points can be placed so that the greedy is 
(n1=3) from the optimum. Kirkpatrick[6] strengthened the former bound by exhibiting, for each n, a set of n points for which theDelaunay triangulation has length 
(n) times the optimum. The lower bound for the greedywas improved by Levcopoulos [8] who constructed, for each n, a set of n points for which thegreedy triangulation has length 
(pn) times the optimum.In this paper we prove that the latter bound is tight. That is, for any set S of n points inthe plane, we show that the greedy triangulation of S has length no more than O(pn) timesthe optimum. This also gives an O(pn) upper bound for the heuristic recently proposed byHeath and Pemmaraju [5], because their triangulation is obtained by optimally triangulatinga subgraph of the greedy triangulation. A similar idea was also used earlier by Lingas [14],but with the di�erence that he triangulated a subgraph of the Delaunay triangulation. Itcan be shown, however, that these two heuristics can produce triangulations that are 
(pn),respectively 
(n), times longer than the optimum [10].Although the greedy and the Delaunay can in general yield \bad" approximations, thereare some special cases for which they have been proved to perform well. For example, ifthe points are uniformly distributed, both the Delaunay and the greedy triangulation areexpected to be within a constant factor from the optimum [1, 12]. Also, if the points lie ontheir convex hull, then the greedy triangulation approximates the optimum [11].In this paper we show that there is in fact only one certain con�guration of points forwhich the greedy does not approximate the optimum. This is, loosely speaking, when thepoints form two concave chains facing each other, and the greedy heuristic produces edgesthat connect all points on a long piece of one of the chains with points lying on a short piece ofthe other chain (for a precise description, see the proof of Lemma 3.2). It su�ces therefore toimpose a small modi�cation on the greedy heuristic in order to avoid this worst-case scenario:whenever the greedy heuristic is about to produce a diagonal d, we check whether there is adiagonal d0, crossing d and only slightly longer than d (this is why we call it quasi-greedy),and ful�lling some other local conditions that can be checked in constant time. If so, thenwe produce d0 instead of d. In this way we obtain a fast algorithm that for any set of pointsproduces a triangulation whose length is within a constant factor from the optimum.The heuristic that achieved the best proved worst-case approximation ratio was proposedby Plaisted and Hong [17]. They started by �nding a convex partition that is at most 12 timeslonger than the minimum weight convex partition. Then they triangulated each of the convexpolygons induced by their convex partition using the so-called ring heuristic. In this way theyproduced a triangulation whose length is within a factor O(logn) from the optimum. Theirmethod was implemented by Smith [19] to run in time O(n2 logn). Interestingly, it followsfrom Lemma 4.2 in this paper that any convex partition which is c-sensitive (De�nition 2.3)and approximates the minimum can be used to obtain a constant-factor approximation ofthe minimum weight triangulation by e.g. greedy triangulating each induced convex polygon(assuming c is constant and no three vertices are collinear).The paper is organized as follows. In Section 2 we give some basic de�nitions and prelim-inaries. In particular, we de�ne the so-called greedy convex partition which is a subgraph ofthe greedy triangulation that partitions the convex hull into empty convex polygons. Thenwe prove in Section 3 that the length of the greedy convex partition is no more than O(pn)times the length of the minimum weight convex partition. In Section 4 we show that the2



length of the greedy triangulation is asymptotically no more than the length of the greedyconvex partition plus the length of the minimum weight triangulation. In Section 5 we usethe ideas developed in previous sections to show that a constant-factor approximation of theminimum weight triangulation can be computed in polynomial time (O(n logn) time by therecent results in [9]). Finally we show in Section 6 that a constant-factor approximationof the minimum weight convex partition can be obtained within the same time bounds. Inthat section we also discuss brie
y how we can generalize our results in order to compute aconstant-factor approximation for the minimum weight triangulation of a set of line segments,and how to deal with degenerate cases.2 De�nitions and preliminariesA planar straight-line graph (PSLG) is a graph G which consists of a �nite vertex set S andan edge set L. The vertices in S correspond to distinct points in the plane. The edges in Lcorrespond to straight-line segments with endpoints in S, such that no edge in L properlyincludes any vertex in S nor properly intersects any edge in L. A diagonal of G is a straight-line segment with endpoints in S such that it together with G forms another PSLG. The lengthof a G, which we denote by jGj, is the total edge length in G. To simplify the presentation,we assume that S is in general position in the sense that no three vertices are collinear (wedescribe brie
y in Section 6.3 how our results can be extended to degenerate cases).A triangulation of S is a PSLG with vertex set S and with a maximum number of edges.A minimum weight triangulation of S (in brief, MT(S)) is a triangulation T of S such thatjT j is minimized. The greedy triangulation of S (GT(S) for short) is obtained by repeatedlyproducing a shortest possible edge that does not properly intersect any of the previouslygenerated edges.By a convex polygon we mean a PSLG P such that P is a simple cycle and all vertices of Plie on their convex hull. A convex partition of S is a connected PSLG with vertex set S suchthat its edges partition the interior of the convex hull of S into bounded convex regions. Aminimum weight convex partition of S, which we abbreviate as MC(S), is a convex partitionof S such that its length is minimized. For a vertex v in S, we denote by max(v) the lengthof a longest edge incident to v in MC(S). The following observation is easy to show.Observation 2.1 For any set S of vertices, Pv2S max(v) � 2jMC(S)j:Next we de�ne a subgraph of GT(S) such that it is a convex partition of S. It is obtainedby selecting for each vertex v at most three edges of GT(S), which we call spokes. If v lieson the convex hull of S, then the spokes of v are the two convex hull edges incident to v.Otherwise, let e be a shortest greedy edge incident to v such that there exists greedy edgese0 and e00 incident to v with the following three properties.(i) e0 and e00 are not longer than e,(ii) e; e0 and e00 partition the in�nitesimal vicinity of v into (three) convex regions, and(iii) within the two of these regions bounded by e no greedy edge incident to v is shorterthan e. 3



Then the spokes of v are the edges e; e0 and e00. The union of all spokes which we select inthis way, by considering all vertices in S, form our greedy convex partition, which we shallabbreviate as GC(S). For a vertex v in S, let vG stand for the length of a longest spoke thatwas selected for v. The following observation is straightforward.Observation 2.2 For any set S of vertices, jGC(S)j � 3Pv2S vG.In [13] the following notion was introduced.De�nition 2.3 Let G be a planar straight-line graph with vertex set S and let r be a realnumber greater than zero. An edge e of G is said to be r-sensitive if for any diagonal d of Sthat properly intersects e, the distance from any endpoint of d to the closest endpoint of eis not greater than r times the length of d. We say that G is r-sensitive if and only if all itsedges are r-sensitive.We shall use the following results from [13] and [11], respectively.Fact 2.4 (Theorem 3.1 in [13]) For any vertex set S, the greedy triangulation of S is 4-sensitive.Fact 2.5 (Theorem 2.1 in [11]) For any convex polygon P , jGT(P )j = O(jMT(P )j):3 A tight bound for the greedy convex partitionThis section is entirely devoted to the proof of the following theorem.Theorem 3.1 For any set S of n vertices (in general position),jGC(S)jjMC(S)j = O(pn):To begin the proof, let r be a number such that the following holds.jGC(S)jjMC(S)j = 7r:We assume w.l.o.g. that r > 1000 (this assumption will not be used until the proof ofLemma 3.2 below). Let S 0 be the set of all vertices v in S such that vG > r � max(v). ByObservations 2.1 and 2.2 it follows that S 0 is nonempty. Indeed, if vG would be � r �max(v)for each v 2 S, then jGC(S)j � 3Pv2S vG � 3rPv2S max(v) � 6rjMC(S)j.Let a be a vertex in S 0 such that for any other vertex v in S 0 it holds that vG � aG. Bythe following calculations (using Observations 2.1 and 2.2)jGC(S)j � 3 Xv2S0 vG + 3 Xv2S�S0vG� 3naG + 3r Xv2S�S0max(v)4



� 3naG + 6r jMC(S)j� 3naG + (6=7)jGC(S)jit follows that jGC(S)j � 21naG. Combining this with Lemma 3.2 below we get thatjGC(S)jjMC(S)j = O naGa2G=max(a)! = O�nr� :Hence, 7r = O(n=r), which implies that r = O(pn).Lemma 3.2 jMC(S)j = 
 a2Gmax(a)! :Proof We �rst observe that a does not lie on the convex hull of S, because aG wouldotherwise be the length of a convex hull edge which also belongs to MC(S), and so theproperty aG > r �max(a) > 103max(a) would not hold. Let e be a spoke of a whose lengthequals aG, and let e0 and e00 be the two other spokes that were together with e selected for awhen de�ning GC(S). We assume w.l.o.g. that e0 is horizontal and that a is its right endpoint,and that the endpoint of e00 which is di�erent from a lies lower than a (as depicted in Figure 1).Among those vertices that lie higher than a, let u be the one which is closest to a, and letl be the distance between a and u. From the assumption that aG > 103max(a) it followseasily that aG > 103l (recall that no three vertices are collinear). Further, by the de�nition ofGC(S), the greedy algorithm will not produce a greedy edge which connects a with a vertexlying higher than a until it starts to produce greedy edges of length � aG > 1000l (since aGis the length of a shortest such greedy edge).We shall begin with considering the situation just after having produced all greedy edgesof length � 2l (we now have a PSLG where all diagonals have length > 2l and all (greedy)edges have length � 2l). Let e1 be the �rst greedy edge (among those produced so far)which is crossed by a straight-line walk from a to u (we must cross some edge since we wouldotherwise have produced a greedy edge that connects a and u). Let p be the point in which(a; u) and e1 intersect, and denote the endpoints of e1 by v1 and u1. Clearly ja; pj < l and atleast one endpoint of e1, say u1, lies higher than a.Imagine a straight-line segment h whose one endpoint is anchored at a, and considerthe sweep performed by h as we move its other endpoint along e1 from p towards u1. It iseasy to see that h will not cross any vertex as long as the length of h is � 2l, since thereis no diagonal connecting a and a vertex within distance � 2l from a, and so ja; u1j > 2l.By triangle inequality on the triangle T 0 = (a; p; u1) we thus get that jp; u1j > l, whichimplies that jv1; pj < je1j � l � l. So if we consider the triangle T = (a; p; v1), we see thatjv1; aj < je1j � 2l (again by triangle inequality).Now, if the straight-line segment (v1; a) is not properly intersected by any greedy edge(among those produced so far), then (v1; a) has to coincide with a produced greedy edge.Otherwise, if some greedy edge properly intersects (v1; a), then such an edge has to have(exactly) one endpoint properly in T , because it cannot intersect (v1; p) nor (p; a) (recall thate1 was the �rst edge crossed by a straight-line walk from a to u). In this case we can considerthe convex hull of the vertex set consisting of a; v1, and all vertices properly in T . For each5



u Te1u1 pT 0 v1 ae0 e00Figure 1: The situation just after having produced all greedy edges of length � 2l.edge of this convex hull, except the one that coincides with (v1; a), it holds that the edge haslength < 2l and is not properly intersected by any produced greedy edge, which implies thatthe edge coincides with a produced greedy edge. Thus we can conclude that either (v1; a) isa produced greedy edge, or a and v1 belongs to a concave chain formed by produced greedyedges in T . In the former case we de�ne the hub as the set fv1g, whereas we in the latter caselet the hub be the set of vertices except a on the mentioned concave chain. In the remainderwe shall assume w.l.o.g. that the vertices of the hub lie south-west of a.Observation 3.3 Vertex u1 is visible from a.Proof If we would hypothesize that some greedy edge properly intersects (a; u1), then wecan �rst observe that such an edge must have one endpoint properly inside the triangleT 0 = (a; p; u1) (it cannot intersect the other sides of T 0). See Figure 2. So there would be a
v0 a

u1 e1u v1u0pFigure 2: If u1 was not visible from a (a dotted line illustrates a bisector of an edge).vertex u0 lying properly inside T 0 and on the convex hull of the vertices in T 0. Now, let v0 be6



a vertex of the hub, and suppose that u0 and v0 have been chosen so that they are at leastas close to each other as any other such pair. It is easy to show that no greedy edge (amongthose produced so far) may properly intersect the straight-line segment (v0; u0). But if D isthe disk centered at v1 and of radius je1j, then T 0 is contained in D (recall that jv1; aj < je1j).Thus v1 is closer to any vertex properly inside T 0 than to u1, which implies that u0 and v0 arewithin distance < je1j from each other. Therefore a greedy edge that connects u0 and v0 musthave been produced, and so we would have crossed that edge before e1 by the straight-linewalk from a to u, which is a contradiction. 2By Observation 3.3 it follows that u1 lies to the left of a (u1 would otherwise be closer toa than to v1 and we would thus have produced (a; u1)). We also observe that u1 lies withindistance < 3l from a (triangle inequality on T 0).Let us now consider the situation just after having produced all greedy edges of length� 3l. By the facts that u1 was visible from a and ja; u1j < 3l, it follows that some greedyedge e2 has been produced which blocks the visibility between a and u1 and which has length> 2l but not greater than ja; u1j < 3l. Since e2 properly intersects (a; u1) we get that e2 isincident to a vertex of the hub, because there is no vertex properly in T 0. We can thereforemake calculations for e2 which are analogous to those we did above for e1. In this way weinfer that e2 has an endpoint, say u2, which is visible from a, lying north-west of a, andwithin distance < 4l from a. Consequently, before having produced all greedy edges of length� 4l, the greedy algorithm must produce a greedy edge e3 which blocks the visibility betweena and u2, and so on. Indeed, we can repeat this scenario till the greedy algorithm start toproduce greedy edges of length � aG > 1000l. (This is roughly illustrated in Figure 3). Thuswe realize that the greedy algorithm will for some m � aG=l � 2 > 998 produce a sequencee1; e2; : : : ; em of greedy edges such that each ei, i > 1, has the following properties:(i) ei properly intersects (a; ui�1),(ii) il < jeij < (i+ 1)l, and(iii) ei connects a vertex vi of the hub with a vertex ui that lies north-west of a.emum e1 auu1u2Figure 3: The sequence e1; e2; : : : ; em of greedy edges.For later purpose, we note that the distance between any pair in fa; v1; v2; : : : ; vmg is < 2lby property (iii), since all these vertices are contained in the triangle T with side-lengths < 2l.7



In this paragraph we consider the �nal triangulation, i.e. the situation after having pro-duced all greedy edges in GT(S). If we walk along the straight-line segment (u; a), startingat its intersection with e70 and ending at its intersection with em, we will cross a set ofproduced greedy edges. Let E 0 be a maximal subset of this set of greedy edges such that thefollowing holds: (1) for any two edges in E 0, their endpoints that do not belong to the hubare di�erent, and (2) the greedy edges e70; e71; : : : ; em are included in E 0. Let e01; e02; : : : ; e0m0be an enumeration of E 0 of the same relative order as they were crossed by the walk. Fi-nally, let u01; u02; : : : ; u0m0 be the endpoints of e01; e02; : : : ; e0m0 which do not belong to the hub,respectively.Sublemma 3.4 The sequence u01; u02; : : : ; u0m0 forms one or two concave chains.Proof Let k be any integer in the interval [70; m � 2], and let s0 be the subsequenceof u01; u02; : : : ; u0m0 which starts at uk and ends at uk+2. It su�ces to show that s0 formsone concave chain if the angle � = 6 uk; a; uk+2 is � 45 degrees (recall that each vertexui lies north-west of a). Suppose therefore that � � 45 degrees. We shall �rst show thatjuk; uk+2j < (k � 5)l. (In the continuation it may help to consult Figure 4.) By properties(ii) and (iii) we have that kl < jvk; ukj < (k + 1)l and jvk; aj < 2l, from which it follows that(k � 2)l < ja; ukj < (k + 3)l (using triangle inequality). In an analogous manner it followsthat kl < ja; uk+2j < (k+ 5)l. It is now straightforward to show that juk; uk+2j < (k� 5)l byusing traditional trigonometry on the triangle (uk; a; uk+2) (recall that k � 70 and � � 45degrees).
a�vk+2vkekuk uk+1 �quk+2Figure 4: s0 forms a concave chain in �.Let q be the point on ek+2 such that the distance between vk and q equals kl, and let �be the triangle (uk; q; uk+2). (If such a point q does not exist then we let uk+2 play the rollof q, although it will later turn out that q is properly included in ek+2). By property (iii)we have that jvk; vk+2j < 2l, and so jvk+2; qj > (k � 2)l (by triangle inequality). Thus, sincejek+2j < (k + 3)l by property (ii), it follows that jq; uk+2j < 5l, and we thus infer that eachside in the triangle � has length < kl.In the remainder of the proof, including the observation below, we consider the situationjust after having produced the greedy edge ek .8



Observation 3.5 No greedy edge (among those produced so far) can properly intersect theside (uk; q) of the triangle �.Proof Imagine a straight-line segment h which always has one endpoint on ek and oneendpoint on ek+2 (we refer to ek+2 although it has not yet been produced). If h is collinearwith (a; u) then no greedy edge intersects h, and any point of h is visible from at least onevertex of the hub (recall that ek is the �rst greedy edge crossed by a straight-line walk froma to u). Thus if we start from that position and move h continuously further away from thehub, we realize that h cannot cross any vertex as long as all points of h are within distance< jekj from vk (such a vertex would be visible and within distance < jekj from some vertexon the hub and we would thus have produced a greedy edge connecting these two vertices,which would contradict the fact that ek is the �rst greedy edge crossed by a straight-line walkfrom a to u). This observation tells us that no vertex is properly contained in the regionbounded by ek ; ek+2; (uk; q), and the hub. So it is easy to see that no greedy edge (amongthose produced so far) can properly intersect (uk; q) (such an edge would be incident to avertex of the hub, and so it would be crossed before ek by a straight-line walk from a to u).2We claim that at least one vertex is properly contained in �. Indeed, if this was not thecase then there would be no greedy edge properly intersecting the side (uk; uk+2) of � (suchan edge must leave one endpoint properly inside � since it cannot intersect its other sides byObservation 3.5). Consequently, the side (uk; uk+2) would coincide with a produced greedyedge (it has length < lk < jekj), and so we would not be able to produce the greedy edgeek+1 as the vertex uk+1 is not longer visible from vk+1 (recall that no two ui's are identical byproperty (i)). Thus we can consider the convex hull of the vertex set consisting of uk; uk+2,and all vertices properly inside the triangle �. For each edge of that convex hull, exceptthe one which coincides with (uk; uk+2), it holds that the edge has length < kl < jekj and isnot properly intersected by any produced greedy edge, which implies that the edge coincideswith some produced greedy edge. Hence, uk and uk+2 belongs to a concave chain formed byproduced greedy edges in the triangle �. Moreover, no vertex is properly contained in theregion bounded by this concave chain, ek, ek+2, and the hub. Thus the vertex sequence ofthis concave chain equals the sequence s0. 2By Sublemma 3.4, also the sequence u70; u71; : : : ; um forms one or two concave chains.Let C stand for any of those possible concave chains. Further, let ulow be the endpoint of Cthat is closest to a, and let uupp be the endpoint of C which is farthest from a.Sublemma 3.6 For any vertex ui of the concave chain C, in the minimum weight convexpartition of S, the vertex ui is incident to an edge of length greater than (i� 2)l=4 if (4low+10)=3 � i � (upp� 1)=2.Proof We begin the proof by making the following three observations.Observation 3.7 For any vertex ui of the concave chain C it holds that jui; uuppj > (upp�i� 3)l and julow; uij > (i� low� 3)l.Proof By property (ii) we have that jeij < (i+ 1)l and jeuppj > upp � l. By property (iii)we have that the distance between vi and vupp is < 2l. Thus the distance between ui and9



uupp is > jeuppj � jeij � jvi; vuppj > (upp � i � 3)l. In an analogous manner it follows thatjulow; uij > (i� low � 3)l. 2Observation 3.8 For any vertex ui of the concave chain C, the distance from ui to theclosest endpoint of eupp is greater than (i� 2)l if i � (upp� 1)=2.Proof By properties (ii) and (iii) we have that jeij > il and jvi; vuppj < 2l, from which itfollows that the distance between ui and vupp is > (i� 2)l (by triangle inequality). Further,by Observation 3.7, we have that the distance between ui and uupp is > (upp� i� 3)l. It isnow straightforward to show that (upp� i� 3)l � (i� 2)l for i � (upp� 1)=2. 2Observation 3.9 For any vertex ui of the concave chain C, the distance from ui to anyendpoint of C is greater than (i� 2)l=4 if (4low+ 10)=3 � i � (upp� 1)=2.Proof By Observation 3.8 it follows that the distance between ui and uupp is > (i� 2)l=4for i � (upp � 1)=2. By Observation 3.7 we have that the distance between ulow and uiis > (i � low � 3)l, and it is straightforward to show that (i � low � 3)l � (i � 2)l=4 fori � (4low+ 10)=3. 2Let Di be a disk centered at ui and of radius (i� 2)l=4 (we consider an arbitrary integeri in the interval [(4low + 10)=3; (upp� 1)=2]. Let C 0 be the subsequence of u01; u02; : : : ; u0m0which starts at ulow and ends at uupp. See Figure 5. By Observation 3.9 the concave chainC0 partitions Di into one convex and one concave region, of which the latter is labeled D0i. Itsu�ces to show that D0i can only contain vertices of C 0, because it follows then that ui mustbe incident to an edge of MC(S) which has length > (i � 2)l=4 (otherwise there would bea concave angle at ui in MC(S), and that is only possible if ui lies on the convex hull of S,which it obviously does not).Now, if the greedy edge eupp does not intersect D0i then it follows trivially that D0i mayonly contain vertices of C 0 (consider the simple polygon induced after removing from GT(S)all edges that intersect (u; a) between elow and eupp). We can therefore assume in the con-tinuation that eupp intersects D0i. So the greedy edge eupp partitions D0i into two regions, onecontaining the vertex ui and the other not containing any vertex of C 0. Again it is easy tosee that the former region may only contain vertices of C 0. Thus it remains to show that thelatter region, which we call R, does not contain any vertex. Indeed, if we would hypothesizethat there is a vertex in R, then the straight-line segment, call it b, connecting that vertexwith ui would properly intersect the greedy edge eupp. But by Observation 3.8 the distancebetween ui and the closest endpoint of eupp is > (i � 2)l. Thus it follows from Fact 2.4(the greedy triangulation is 4-sensitive) that b would have length > (i � 2)l=4, which is acontradiction since any point in R is within distance � (i� 2)l=4 from ui. 2Continuation of the proof of Lemma 3.2: It now follows from Sublemma 3.6 that jMC(S)jis greater than b(upp�1)=2cXi=d(4low+10)=3e(i� 2)l=410
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Figure 5: An illustration for the proof of Sublemma 3.6.which is easily shown to be greater than (recall that low � 70)(l=4)upp=2�5low=3Xi=0 i:If u70; u71; : : : ; um form only one concave chain, then low = 70 and upp = m, and sojMC(S)j > (l=4)m=2�5�70=3Xi=0 i = 
(lm2):In case u70; u71; : : : ; um form two concave chains, say u70; : : : ; ux and ux+1; : : : ; um, we con-sider the former chain if x > m=4, otherwise we consider the latter chain. So if x > m=4 wehave that jMC(S)j is greater than (l=4)m=8�5�70=3Xi=0 i = 
(lm2)and for x � m=4 we get jMC(S)j > (l=4)m=2�5(m=4+1)=3Xi=0 i = 
(lm2):Finally we recall thatm � aG=l�2 and l � max(a), and so we have shown that jMC(S)j =
(a2G=max(a)). 211



4 A tight bound for the greedy triangulationThis section is entirely devoted to the proof of the following theorem.Theorem 4.1 For any set S of n vertices (in general position),jGT(S)jjMT(S)j = O(pn):The above theorem is obtained immediately by combining Theorem 3.1, Facts 2.4 and2.5, and the following lemma.Lemma 4.2 For any real number r, r > 0, let CP(S) be an arbitrary r-sensitive con-vex partition of S. Then CP(S) can be triangulated by adding diagonals of total lengthO(rjCP(S)j+ rjMT(S)j).We shall �rst prove another lemma (a proof of this lemma can also be found in [7]) whichis used in the proof of Lemma 4.2. In order to state this lemma we need the followingde�nitions. A polygon P is called q-bent if and only if it has the following three properties:(1) P is convex, (2) P can be drawn within a circle whose diameter equals the length of thelongest side, called the base, of P , and (3) the sum of degrees of the two interior angles of Pat the endpoints of its base is not greater than 2q degrees. A side of a q-bent polygon whichis not the base shall be termed top-side. By p(P ) we denote the length of the perimeter of asimple polygon P .Lemma 4.3 For any real number q, 0 < q � 45, there exists some constant c depending onq, such that for any convex polygon P there are edges in GT(P ) of total length � c � p(P )which partition P into triangles and/or q-bent polygons.Proof Let q be an arbitrary real number, 0 < q � 45. The boundary of P can be partitionedinto � d180=qe q-bent consecutive pieces as follows (we call a piece q-bent if it correspondsto the top-sides of some q-bent polygon). Start with an arbitrary vertex of P and markit. Then traverse the boundary of P in, say, clockwise order and mark the last vertex forwhich it holds that the piece of P 's boundary between this vertex and the previously markedvertex is q-bent. In this way, when the whole boundary of P is traversed, each marked vertexseparates two q-bent pieces, and there are � d180=qe such marked vertices. (To prove thelemma it su�ces to show that there are O(180=q) marked vertices.)Let q1 be any one of these pieces. Let E be a set of edges in GT(P ) with minimumcardinality, such that all polygons in the partition of P induced by E are triangles and/orq-bent polygons. To prove this lemma it su�ces to show that the total length of all edges inE which are incident to q1 is O(p(P )) (because then the same can be proved analogously forthe other q-bent pieces).Let v0; v1; : : : ; vm be the vertices of q1 in clockwise order from one end of q1 to the other.For easier reference, we assume w.l.o.g. that the straight-line passing through v0 and vm isvertical, and that vm lies above v0. From the de�nition of E it follows that if there is an edge(vi; vj) in E, 0 � i � j � m, then for any integer l, i < l < j, no edge in E is incident to vl12



(because if an edge in E, say e, would be incident to vl, then E� feg would also partition Pinto triangles and/or q-bent polygons, and thus E would not be minimal, a contradiction).From this it follows easily that(i) the total length of all edges in E that have both their endpoints in q1 is no more thanlength of q1.To make the proof shorter, we use the following fact.Proposition 4.4 (Corollary 2.1 in [14]) For any vertex v of P , let e be a longest edge inGT(P ) that is incident to v. Then it holds that the total length of all edges in GT(P ) whichare incident to v is O(jej).By Proposition 4.4 we obtain(ii) the total length of all edges in GT(P ) which are incident to v0 or vm is O(p(P )).It remains to show that the total length of those edges in E with only one endpoint inq1, except for v0 and vm, is O(p(P )). Let E1 be the set of these edges. Let V 0 be the set ofvertices in q1 which are endpoints of some edge in E1. Let us call these vertices v01; v02; : : : ; v0k�1in clockwise order. Moreover, let us denote v1 by v00 and vm by v0k. For each vertex v in V 0,denote by E(v) the set of edges in E1 which are incident to v. By len(L) we denote the totalsegment length in a set L of straight-line segments. To show thatPv2V 0 len(E(v)) = O(p(P )),we associate to each vertex v in V 0 a unique part of the boundary of P which has length
(len(E(v))) as follows.Let i be the integer such that v = v0i. Let the root of v be the consecutive piece of q1which includes v, such that the piece of the root of v which is below, respectively above, vhas length equal to one half of the piece of q1 which lies between v0i�1, respectively v0i+1, andv. (The root of v is depicted in Figure 6.) By this de�nition it is clear that roots of verticesdo not overlap. ulv0k fanrootv0i�1 u0v0i+1 vv00Figure 6: The root and the fan of v.If there are at least two edges in E(v), then we associate to v an additional piece of P 'sboundary, which we call the fan of v, as follows. Let u0; u1; : : : ; ul be the vertices of P inclockwise order from v such that (v; ui) is in E(v) for i = 0; 1; : : : ; l. The fan of v is the piece13



of P 's boundary which lies between u0 and ul (see Figure 6). By this de�nition it is also clearthat no fans of vertices overlap.To complete the proof of this lemma, it remains to prove that the length of the root ofv plus the length of the fan of v, if there is any, is 
(len(E(v))). First we observe that thedistance between v0i�1 and v0i+1 is shorter than two times the length of v's root. On the otherhand, from the de�nition of the greedy triangulation it follows that a shortest edge in E(v) isnot longer than the distance between v0i�1 and v0i+1, because otherwise the edge (vi�1; vi+1)would be in GT(P ) instead of that edge in E(v). Hence,(iii) the length of a shortest edge in E(v) is smaller than twice the length of v's root.It remains to consider the case when there is more than one edge in E(v). Let e be ashortest edge and e0 a longest edge of E(v). By Proposition 4.4 the total edge length in E(v)is within a constant factor from the length of e0. Next we observe that the fan of v includesthe endpoints of the edges e and e0, di�erent from v, and thus the length of the fan is greaterthan je0j � jej. Combining these arguments with (iii), we easily get that the total edge lengthin E(v) is within a constant factor of the sum of the lengths of the root and the fan of v. 2Proof of Lemma 4.2 By Lemma 4.3 there exists a set D of diagonals, each diagonal in Dbelonging to the greedy triangulation of some convex polygon bounded by CP(S), such thatthe diagonals in D have total length O(jCP(S)j) and partition CP(S) into triangles and/or1-bent polygons. Let P be the set of all 1-bent polygons induced by adding the diagonals inD. We �rst give the following technical observation.Sublemma 4.5 For any diagonal d in D it holds that d is (9r+ 4)-sensitive.Proof Let P be the convex polygon bounded by CP(S) such that d belongs to GT(P ), andsuppose that there is a diagonal a of S that properly intersects d. We shall �rst consider thecase when none of a's endpoints is a vertex of P , that is when a properly intersects two sidesof P . For an illustration, see Figure 7. dt h v0l ba l0v u
Figure 7: d is (9r + 4)-sensitive.Let v be any endpoint of a, and let l be a shortest straight-line segment connecting vand any endpoint of the side of P which is �rst crossed by a straight-line walk from v to theother end of a. For the other endpoint, call it v0, of a we de�ne in a symmetrical way the14



segment l0. Further, let b be the straight-line segment which connects those endpoints of land l0 that belong to P . Finally, for the endpoint of b which is shared by l, let t be a shorteststraight-line segment connecting this endpoint and any endpoint, say u, of d.Now, since d is 4-sensitive with respect to the vertices of P by Fact 2.4, we have thatjtj � 4jbj. Also, since the sides of P are r-sensitive, we have that jlj � rjaj and jl0j � rjaj. Leth be the distance between v and u. By using triangle-inequality and the above facts, we getthat h � jlj+ jtj � jlj+ 4jbj � jlj+ 4(jl0j+ jaj+ jlj) � rjaj+ 4(rjaj+ jaj+ rjaj) = (9r+ 4)jaj.Thus, if we let d0 be the shortest distance between v and any endpoint of d, since h � d0, itholds that jaj � d0=(9r + 4). We can in a symmetrical manner treat the endpoint v0 of a,thus concluding that d is (9r + 4)-sensitive with respect to those diagonals whose endpointsare not vertices of P .For diagonals that have an endpoint in P , we observe that this is a degenerate case of theone considered above. For example, if v is a vertex of P , the segment l becomes a point ofzero length, and similarly for v0. Thus we obtain that d is (9r + 4)-sensitive with respect toall diagonals of S. 2In the remainder, for any 1-bent polygon in P and any side s of this polygon, we canby Sublemma 4.5 assume that s is r0-sensitive with r0 = 9r + 4 (note that if a diagonal isr-sensitive then it is also r00-sensitive for any r00 � r).Given an edge e in MT(S) and a 1-bent polygon P such that two of its sides, say s ands0, properly intersect e, we de�ne the transposal of e within P as the shortest straight-linesegment connecting an endpoint of s and an endpoint of s0. (Note that any other edge inMT(S) that properly intersects s and s0 induces the same transposal as e.) Let T be the setof all distinct transposals obtained by considering all edges in MT(S) and all 1-bent polygonsin P .Sublemma 4.6 The total segment length in T is no more than O(r0jCP(S)j+ r0jMT(S)j).Proof Consider a transposal t in T . Let e be an edge in MT(S) and P the 1-bent polygonsuch that t is a transposal of e within P . If the following holds:e does not intersect the base of P; (1)then, by the shape of a 1-bent polygon, t is not longer than the piece of e that is whollyinternal to P . Thus the total length of all transposals in T for which (1) holds is no morethan jMT(S)j.Suppose now that (1) does not hold for t. So e properly intersects the base of P andone top-side, say s, of P . Comment: it is easy to show that any other edge in MT(S) thatinduces t must also properly intersect s. If the following holds:jtj < 3r0jsj; (2)then we say that t is top-paid. It is easily seen that the total length of all top-paid transposalsis no more than 3r0jCP(S)j. We say that a transposal is mwt-paid if neither (1) nor (2) holdsfor this transposal. To complete the proof of this sublemma it su�ces now to prove thefollowing claim. 15



Claim. The total length of all mwt-paid transposals induced by any edge e inMT(S) is no more than O(r0jej).Let e be an arbitrary edge in MT(S), and assume w.l.o.g. that e is vertical. We say thata 1-bent polygon P has orientation k, 0 � k < 360, if a clockwise rotation of P by � degrees,k � � < k+1, results in that the base becomes horizontal and below the top-sides of P . Foran arbitrary integer k, 0 � k < 360, let P1; P2; : : : ; Pm be the sequence of 1-bent polygonswhich are crossed by walking along e from its uppermost endpoint to its lowermost endpoint,and such that the following holds for each Pi:(a) e induces an mwt-paid transposal ti within Pi, and(b) Pi has orientation k.To prove the above claim it su�ces to show that the total length of e's transposals withinP1; P2; : : : ; Pm is O(r0jej), since we consider an arbitrary orientation among 360 possible. Wemay also assume w.l.o.g. that the following holds for each Pi:(c) a top-side of Pi, denoted by si, was crossed before the base of Pi by our top-down walk,because we can otherwise consider the sequence in reverse order (i.e. as if we started at thelowermost endpoint of e and walked to its uppermost endpoint). By hi we denote the pieceof e between si and si+1 (by hm we mean the piece of e between sm and the lowermostendpoint of e). Now, let Pa; : : : ; Pb be any maximal subsequence of P1; P2; : : : ; Pm such thatthe following holds for each i, a � i < b:jtij > 3r0jhij (3)Indeed, it su�ces to bound the transposals of e within the Pi's for which (3) holds, becausethe total length of e's transposals within the other Pi's is no more than 3r0jej (since the hi'scorrespond to distinct pieces of e).Observation 4.7 For any integer i, a � i < b, it holds that 2jtij < jti+1j.Proof Let us �rst describe the situation. By our top-down walk, we �rst crossed the top-sidesi of Pi, then the base of Pi, and after that the top-side si+1 of Pi+1 (in a degenerate casethe base of Pi may coincide with si+1). Since (2) does not hold for ti, but (3) does, we havethat jsij � jtij=(3r0) and jhij < jtij=(3r0).Let l be one of the two straight-line segments which connect an endpoint of si with anendpoint of si+1 but do not intersect hi. An illustration is given in Figure 8. If l does notproperly intersect the base of Pi, we realize that l has length � jtij (recall that the slopes ofsi and si+1 di�er by at most 5 degrees). On the other hand, if l properly intersects the baseof Pi, since the base is r0-sensitive, the length of l is � jtij=r0 (ti is a shortest straight-linesegment connecting an endpoint of si with an endpoint of the base). Thus the length of l isalways � jtij=r0 (recall that r0 > 4).Now, if we use triangle-inequality twice on the quadrangle bounded by l; hi; si and si+1, weget that the the piece of si+1 in this quadrangle has length > jtij=r0� 2jtij=(3r0) = jtij=(3r0).In an analogous manner we can show that the remaining piece of si+1 has length > jtij=(3r0),16



tibase of Pisi+1 lesi hiFigure 8: The ti's grow exponentially.and so the length of si+1 is greater than 2jtij=(3r0). Finally, by combining this observationwith the fact that (2) does not hold for ti+1, we conclude that 2jtij < jti+1j. 2By Observation 4.7 it follows that b�1Xi=a jtij < jtbj:If b < m, since (3) does not hold for tb in this case, we get that the above sum is < 3r0jhbj.It remains therefore to show that (3) does not hold for tm when b = m. Indeed, let l be astraight-line segment connecting an endpoint of sm with the lowermost endpoint of e. Asin the proof of Observation 4.7 we can use the r0-sensitivity of Pm's base to conclude thatjlj � jtmj=r0. Thus, since jsmj � jtmj=(3r0), it follows that jtmj � 1:5r0jhmj (triangle inequalityon the triangle bounded by l; sm and hm). 2Continuation of the proof of Lemma 4.2: Next, given an edge e in MT(S) and a 1-bentpolygon P such that e is incident to exactly one vertex of P , we de�ne the end-transposal of ewithin P as follows. First we observe that e properly intersects exactly one side, say s, of P .Let u be the endpoint of e which belongs to P , and let v be an endpoint of s which is closestto u. The end-transposal of e within P is the straight-line segment which connects u and v.Since the side s is r0-sensitive, we immediately get that the length of this end-transposal is� r0jej. Let T 0 be the set of all distinct end-transposals obtained by considering all edges inMT(S) and all 1-bent polygons in P .Observation 4.8 The total segment length in T 0 is no more than 2r0jMT(S)j.Proof Each edge, say e, in MT(S) contributes with at most two end-transposals, bothhaving length � r0jej. 2Finally, given an edge e in MT(S) and a 1-bent polygon P such that e is incident toexactly two vertices of P , we say that e is stationary within P . Let T 00 be the set of allstationary edges obtained by considering all edges in MT(S) and all 1-bent polygons in P .Clearly the total segment length in T 00 is no more than jMT(S)j. The following observationis straightforward to show by using the convexity of 1-bent polygons and the planarity ofMT(S).Observation 4.9 No two segments in T [ T 0 [ T 00 can properly intersect each other.17



Thus the segments in T [T 0[T 00 partition the 1-bent polygons in P into triangles and/or1-bent polygons. Let P be an arbitrary 1-bent polygon which remain after this partitioning.If P has a constant number of vertices, then P can clearly be triangulated by adding diagonalsof total length O(p(P )). Therefore, to complete the proof of this lemma, it su�ces to provethe following claim.Claim. P is a k-gon for some k, 3 � k � 6.Assume contrary that P has more than 6 vertices. We may also assume w.l.o.g. that thebase, call it b, of P is horizontal, and that b lies below the top-sides of P . First we considerthe case when b coincides with an edge in MT(S) (this case is depicted in Figure 9). Let e ande0 be the two edges in MT(S) that form together with b a triangle, such that the endpoint,call it v, that e and e0 have in common lies higher than b. If v is a vertex of P , then we seethat both e and e0 are stationary within P , and so P is a triangle in this case. On the otherhand, if v is not a vertex of P , e and e0 properly intersect the same top-side of P (becausethe triangle they form with b may not have any vertex properly inside). Hence, in this case,the end-transposals of e and e0 within P force P to be either a triangle or quadrangle. Inany case we obtain a contradiction. Thus we can assume in the continuation that b does notcoincide with an edge in MT(S). be e0 bv vFigure 9: v is a vertex of P and not.Now, since b is not in MT(S), there must be an edge e in MT(S) that properly intersectsb. Clearly e partitions P into two regions. If each of these two regions has more than twovertices of P on its boundary, we see that the transposal of e within P , or the end-transposalin case e is incident to a vertex of P , is properly inside P , which is a contradiction. Thusamong the regions in the partition of P induced by all edges in MT(S) that properly intersectb, there is one region, call it R, which has all vertices of P on its boundary, except for maybethe four endpoints of the two top-sides incident to b. Let u be an endpoint of b which is notin R (u must exist because of e), and let u0 be the other endpoint of b. We assume w.l.o.g.that u lies to the left of u0.Let d be the edge in MT(S) that bounds the leftmost side of R. Now, since the in�nites-imal vicinity to the right of d at its intersection with b lies in a triangle � of MT(S), and u0may not be properly inside this triangle, we realize that either (1) u0 is an endpoint of �, or(2) there is an edge d0 properly intersecting b such that d0 also bounds � (and the rightmostside of R). These two cases are illustrated in Figure 10.In case (1) we see that there is a side d00 of � such that d00 connects u0 and the endpointof d that lies higher than b. By the 1-bent shape of P , it is easy to see that the segment inT[T 0[T 00 which is induced within P by d00 lies on or above d00 (above if it is an end-transposaland on if d00 is stationary). Hence, since there are at least three vertices of P on the boundaryof R, we infer that this segment is properly inside P , which is a contradiction. So it remains18



u u0sd d0�Rd � Rd00u u0Figure 10: The two possibilities for �.only to show that case (2) also yields a contradiction. We �rst observe that, in case (2), dand d0 may not have an endpoint in common that lies higher than b, because the region Rwould then have at most one vertex of P on its boundary. Thus there is a side s of � suchthat s connects the endpoints of d and d0 that lie higher than b. Again, by the 1-bent shapeof P and because of the at least three vertices on R's boundary, we realize that s induces asegment in T [ T 0 [ T 00 that is properly inside P , a contradiction which completes the proofof Lemma 4.2. 25 A new heuristic for the minimum weight triangulationIn this section we give a triangulation algorithm, which is a small modi�cation of the greedyone, and show that it produces a triangulation whose length is within a constant factor fromthe optimum. The algorithm is as follows (using an ALGOL-like language).Algorithm: Quasi-Greedy(S)G fS; ;gwhile G is not a triangulation dolet (v1; u1) be a shortest diagonal of Gif all the following 6 conditions hold1. the diagonal (v1; u1) forms an empty triangle (v1; u0; u1) with two edges in G,2. there is a diagonal (v0; u0) properly intersecting (v1; u1) and forming an emptytriangle (v0; v1; u0) with two edges in G,3. the angle 6 v1; u0; u1 is > 135 degrees in triangle (v1; u0; u1),4. jv0; u0j < 1:1jv1; u1j,5. jv0; pj < 0:5ju0; pj, where p is the intersection of the straight-line extensions of(v0; v1) and (u0; u1), and6. there is an edge (u1; u2) in G such that (v1; u0; u1; u2) forms an empty quadrangleand the angle 6 u0; u1; u2 in that quadrangle is > 180 degrees.then add the edge (v0; u0) to G 19



elseadd the edge (v1; u1) to Gend ifend whilereturn the triangulation Gend Quasi-Greedy pu0u1u2 v1 v0Figure 11: An example of con�guration for which all 6 conditions hold.We call the triangulation of S produced by the above algorithm for the quasi greedytriangulation (because of the 4th condition), and we shall abbreviate it as QGT(S). Thequasi greedy convex partition of S, abbreviated QGC(S), is de�ned in the same way as thegreedy convex partition, but for each vertex we select its spokes from QGT(S) instead ofGT(S). For a vertex v in S, let vQ stand for the length of a longest spoke in QGC(S) thatwas selected for v. The following is the analogy of Observation 2.2.Observation 5.1 For any set S of vertices, jQGC(S)j � 3Pv2S vQ.Lemma 5.2 Let S be any set of vertices (in general position) and let a be an arbitraryvertex in S. Then aQ = O(max(a)).Proof To obtain a contradiction we hypothesize that aQ > c � max(a), where c is somesu�ciently large constant. Let e be a spoke of a whose length equals aQ, and let e0 and e00be the two other spokes that were selected for a when de�ning QGC(S) (a cannot lie on theconvex hull of S because of the above hypothesis). We assume w.l.o.g. that e0 is horizontaland that a is its right endpoint, and the endpoint of e00 which is di�erent from a lies lowerthan a. Among those vertices that lie higher than a, let u be the one which is closest toa, and let l be the distance between a and u. We observe that the quasi-greedy algorithmwill not produce an edge that connects a with a vertex lying higher than a until it starts toproduce edges of length � aQ > c �max(a) � c � l (by our initial hypothesis and because aQis the length of a shortest such edge).Let us denote by G(t) the PSLG whose vertex set equals S and whose edge set consistsof all quasi-greedy edges of length � t. Now, let e1 be the �rst edge crossed in G(100l)by a straight-line walk from a to u. Similarly, let em be the �rst edge crossed in G(c � l)by a straight-line walk from a to u. Let e1; e2; : : : ; em be the sequence of edges crossed inQGT(S) by walking from e1 to em along the line passing through u and a. As in the proofof Lemma 3.2 we can show that each ei has an endpoint ui lying, say, north-west of a, andan endpoint vi lying south-west of a and within distance, say, < 3l from a. We can also show20



that there is a concave chain between v1 and a, the so-called hub, such that all the vi's belongto the hub.Now, following the proof of Lemma 3.2, we obtain in the same way that u1; u2; : : : ; umforms c0 concave chains in G(100l), where c0 is some constant independent of c.It is not hard to to show that em has length greater than c � l=1:1� l (the divisor 1.1comes from condition (4) in the quasi-greedy algorithm). Thus we realize that there aretwo integers r and t, 1 � r < t � m, such that ur; ur+1; : : : ; ut forms a concave chain andjetj=jerj = 
(c1=c0).Let us denote by N(ui) the �rst vertex in ui; ui+1; : : : ; um which is not identical to ui (i.e.the next vertex from ui on the concave chain). Similarly, de�ne N(vi) as the �rst vertex invi; : : : ; vm which is not identical to vi. Further, denote by pi the intersection point betweenthe two lines that are collinear with (ui; N(ui)) and (vi; N(vi)), respectively.
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usN(us)
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aFigure 12: The angle a; ui; N (ui) is > 135 degrees for s � i < t.Next we observe that, for some su�ciently large constant s, r � s < t, it holds that theangle a; us; N(us) is greater than 135 degrees (we choose the smallest possible s with thisproperty, and get in this way that jetj=jesj = 
(c1=c0)). Thus the point ps must be withindistance, say, < 2jesj from N(vs) (see Figure 12). Moreover, since us; : : : ; ut is concave, itfollows that pi is within distance < 2jesj from N(vi) and the angle a; ui; N(ui) is > 135degrees for all i, s � i < t. We further observe that there is some edge ek , s � k < t, suchthat ek+1 connects vertex vk with vertex N(uk), because an edge connecting uk and a wouldotherwise have been produced (see also Figure 13). If we choose ek so that it is, say, at least10 times longer than es, then we have that jui; pij < 0:5jN(vi); pij for all i, k � i < t (such anedge ek clearly exists if the ratio between jetj and jesj is su�ciently large, i.e. if the constantc is su�ciently large). 21



a
vkN(vk) ek espsFigure 13: It holds that jui; pij is less than 0:5jN (vi); pij for k � i < t.Let us now consider the situation when the quasi-greedy algorithm is just about to pro-duce the edge ek+1, that is when ek+1 is a shortest diagonal and the quasi-greedy algorithmchecks the six conditions for ek+1. If we let N(vk); vk; uk; uk+1; N(uk+1) play the role ofv0; v1; u0; u1; u2 in the quasi-greedy algorithm, then we see that it only remains to show thatthe fourth condition holds, because the other conditions are already ful�lled by the way wehave chosen ek. Indeed, if we show this, we arrive at the contradiction that the quasi-greedyalgorithm will produce (N(vk); uk) instead of ek+1.Let d be the diagonal that connects N(vk) and uk. First we note that d has length< jekj+ l (recall that both d and ek are within distance < l from a). It su�ces therefore toshow that jekj+ l < 1:1jekj (since ek is shorter than ek+1). But this is easily seen to be truefrom the fact that ek has length greater than 100l. 2Combining the above lemma with Observations 5.1 and 2.1 we obtainCorollary 5.3 For any set S of vertices (in general position), jQGC(S)j = O(jMC(S)j).By condition (6) in the quasi-greedy algorithm we see that it will for convex polygonsproduce the same triangulation as the ordinary greedy algorithm. Hence, by Fact 2.5, weobtainObservation 5.4 For any convex polygon P , jQGT(P )j = O(jMT(P )j).In [13] it was shown that the greedy triangulation is 4-sensitive. A similar result wasalso obtained in [7] and [3]. We shall next generalize this result so that it can be adapted toquasi-greedy triangulations. First we need the following de�nition. Given a real number r,we say that a triangulation is r-greedy if it can be produced by repeatedly adding a diagonal,such that its length is not greater than r times the length of a shortest diagonal in the partial22



triangulation. Notice that the quasi greedy triangulation is 1.1-greedy, whereas the ordinarygreedy triangulation is 1-greedy.Lemma 5.5 Let S be any set of vertices and let � be any real number such that 0 < � � 1.Then any (2� �)-greedy triangulation T of S is (4=�)-sensitive.Proof We consider an arbitrary edge (v01; v02) of T , and an arbitrary diagonal (v1; v2) of Swhich properly intersects (v01; v02). It su�ces to show that min(jv1; v01j; jv1; v02j) � (4=�)jv1; v2j.Let l0 be the straight-line segment connecting v01 and v02. For easier reference, we assumew.l.o.g. that l0 is vertical, that v1 lies to the left of l0, and that v01 lies higher than v02. SeeFigure 14. Let d be the distance between v1 and v2. To prove the theorem, we hypothe-size throughout the proof that both jv1; v01j and jv1; v02j are greater than 4d=�, and derive acontradiction from this hypothesis. pe2q0h
v02
v01 vpe1 h0 v2l0vlv1q vqFigure 14: An example of con�guration.Let us denote by G the PSLG whose vertex set equals S and whose edge set consists ofall edges in T of length � 4d=� � 2d. By the de�nition of (2 � �)-greedy triangulations, itfollows that all diagonals of G have length > 2d=�.To go on we need the following de�nition. A path in the plane is called free if it doesnot include any vertex nor any edge of G. A path P is called collision-free if for each realr greater than zero there exists a free path P 0 whose length is not greater than r plus thelength of P , and every point in P is within distance r from some point in P 0.Sublemma 5.6 Let u and v be any two vertices on either side of l0, and let P be anycollision-free path connecting u and v. If all points on P have greater y-coordinate than thatof v02 but smaller than that of v01, then P has length > 2d=�.Proof Let P 0 be the shortest collision-free path connecting u and v such that no vertices ofS lie in any open region bounded by P and P 0 (if there is any such region).23



A way to imagine P and P 0 is to think about the vertices and edges in G as being obstacles(\pins and walls") and about P as being a wire. Then P 0 has the shape of the wire whichwould be obtained if it would be \stretched" between u and v (without being able to crossany obstacles).Now, if all points on P would lie higher than v02 and lower than v01, since the endpointsof P lie on either side of l0, it is easy to see that P 0 would properly intersect l0. Thus therewould be two vertices u0 and v0 on P 0 such that no edge of G properly intersects (u0; v0) and(u0; v0) properly intersects l0. So (u0; v0) would be a diagonal of G and thus of length > 2d=�(recall that l0 coincides with an edge in T , so (u0; v0) cannot be an edge). 2Let I be the intersection point of l0 with (v1; v2). Notice that the distance between I andany endpoint of l0 is > 4d=� � d (by triangle inequality and our initial hypothesis). Hence,since the edges in G have length � 4d=�� 2d and jv1; v2j = d, we obtainObservation 5.7 If e is an edge of G that intersects (v1; v2), then all points on e lie higherthan v02, lower than v01, and on the same side of l0.Sublemma 5.8 In G there is an edge properly intersecting (v1; I) and an edge properlyintersecting (v2; I).Proof We prove the statement for (v2; I). The proof for (v1; I) is symmetrical. Let ushypothesize that there is no edge in G that properly intersects (v2; I). Thus there must bean edge in G which properly intersects (v1; I) (since (v1; v2) is too short to be a diagonal ofG). Let e1 be the edge in G with the rightmost intersection with (v1; I), and let I1 be thatintersection. Next, let ve1 be an endpoint of e1 which is closest to I1. By Observation 5.7,both endpoints of e1 lie to the left of l0. Thus there is a collision-free path from ve1 to v2 oflength < 2d=� consisting of the segment (ve1; I1), of length � 2d=�� d, and (I1; v2), of length< d. By Observation 5.7 all points on this path lie higher than v02 and lower than v01, and sowe obtain a contradiction to Sublemma 5.6. 2De�ne e1 as in the proof of Sublemma 5.8, and let e2 be the edge in G with the leftmostintersection with (I; v2). Let vl and vr be the uppermost endpoint of e1 and e2, respectively.We assume w.l.o.g. that the straight-line extensions of e1 and e2 are parallel or intersect eachother above (v1; v2).Now, let h be the (unique) straight-line segment parallel with (v1; v2), such that h connectsvl or vr with some point p on e1 or e2 (p may possibly coincide with either vl or vr). Finallylet Q be the quadrangle bounded by h; (v1; v2); e1 and e2.Sublemma 5.9 There is a vertex of S properly in Q.Proof Indeed, if we assume that there is no vertex properly in Q, then there is no edge of Gproperly intersecting h (such an edge would leave an endpoint properly in Q since it cannotintersect the other sides of Q). Thus if vp is an endpoint closest to p of the edge (either e1or e2) that p lies on, then there is a collision-free path of length � 2d=� consisting of thesegment h, of length � d, and (p; vp), of length � 2d=� � d. Hence, by Observation 5.7, weobtain a contradiction to Sublemma 5.6. 224



Among the vertices in Q (at least one must exist by Sublemma 5.9), let q0 be a vertexwhich is closest to the line (v1; v2). Further, let h0 be the straight-line segment parallel with(v1; v2) and crossing l0, such that h0 connects q0 with some point q on either e1 or e2. Finally,let vq be an endpoint closest to q of the edge (either e1 or e2) that q lies on. Consider nowthe collision-free path of length � 2d=� consisting of the segments h0 (of length � d) and(q; vq) (of length � 2d=�� d). By using Observation 5.7, it is straightforward to realize thatall points on this path lie higher than v01 and lower than v02. Moreover, since q0 and vq lie oneither side of l0, we obtain, again, a contradiction to Sublemma 5.6. 2Finally, combining Corollary 5.3, Lemmata 5.5 and 4.2, and Observation 5.4, we obtainTheorem 5.10 For any set S of vertices (in general position), jQGT(S)j = O(jMT(S)j).6 Generalizations and extensions6.1 Constrained casesConsider the following problem. Given a PSLG G with vertex set S and edge set E, �nda triangulation T of S whose edge set contains E and such that jT j is minimized. Thetriangulation T is called the constrained minimum weight triangulation of G. The quasi-greedy algorithm can also be used in order to approximate T , by adding the edges in E tothe partial triangulation before the while-loop is executed.To show that the quasi-greedy algorithm gives a constant-factor approximation also inthe constrained case, we can prove the analogy of Lemma 5.2 roughly as follows. Again weconsider a half-plane H bounded by a line passing through a vertex a, and we hypothesizethat there is a vertex u lying in H , visible from a (i.e. no edge in E intersects (a; u)), andwithin distance l from a, although the quasi-greedy algorithm connects a with vertices in Honly by edges much longer than l.As in the proof of Lemma 3.2 we can show that the quasi-greedy algorithm has to producean edge e1 which blocks the visibility between a and u, and that e1 has an endpoint u1 lyingin H and an endpoint v1 lying in the complement of H . To see that u1 is visible from a, let pbe the intersection point between e1 and (a; u). If we choose e1 su�ciently long we get thatthe angle p; u1; a is quite small, and so u1 is the point in the triangle (p; u1; a) farthest fromv1. Now, if any edge (either in E or produced by the algorithm) would properly intersect(a; u1), then it would leave an endpoint in the above mentioned triangle, which cannot bethe case since the quasi-greedy algorithm would connect v1 with that endpoint rather thanwith u1. Thus u1 is visible from a, which means that its visibility from a has to be blockedby an edge e2 which is only slightly longer than e1, and so on. Proceeding in this way, wearrive at edges ei and ei+1 of fairly great length, such that ei and ei+1 are almost parallel,very close to each other, and having non-identical endpoints ui and ui+1 lying in H . We cannow show that ei+1 ful�lls the six conditions in the quasi-greedy algorithm, and so we obtainthe contradiction that we will produce an edge that properly intersects ei+1.A problem that still remains is to adapt Lemma 4.2 to the constrained case (since theredoes not necessarily exist a constant c such that the edges of G are c-sensitive with respectto diagonals of S, we also have that the constrained quasi greedy convex partition mightnot be c-sensitive in this sense). This can be done roughly as follows. First we observe that25



we can, for some constant c, still prove that all edges in our triangulation are c-sensitivewith respect to diagonals of G (i.e. diagonals of S that do not properly intersect any edgein E) by following the lines of proof of Lemma 5.5 (this was shown for the ordinary greedytriangulation in [13]). Let CP(G) be the (constrained) quasi greedy convex partition of G. IfCP(G) is r-sensitive with respect to diagonals of S, we have by Lemma 4.2 that CP(G) canbe triangulated by adding diagonals of total length O(rjCP(G)j + rjMT(S)j). However, inthe proof of Lemma 4.2, the r-sensitivity was used on an edge of CP(G) only with respect tominimum weight edges properly intersecting it. Therefore, since the edges of the constrainedminimum weight triangulation cannot properly intersect edges of G, it follows that whenwe use the r-sensitivity of an edge with respect to some diagonal, we have that this edgeis c-sensitive with respect to that diagonal. Thus we can still show that CP(G) can betriangulated by adding diagonals whose total length is proportional to jCP(G)j plus thelength of the constrained minimum weigh triangulation.6.2 Approximating the minimum weight convex partitionThe quasi-greedy algorithm can also be used in order to compute the quasi greedy convexpartition, thus obtaining a constant-factor approximation of the minimum weight convexpartition. Indeed, it su�ces to �nd for each vertex v in our input vertex set S the spokes ofv in QGT(S).Let m be the number of quasi-greedy edges that are incident to v, and let L be a listconsisting of these edges. To simplify the exposition, we �rst show that the spokes of vcan be found in O(m) time under the assumption that the edges in L are sorted accordingto their lengths. In addition, we assume throughout this subsection that all diagonals of Shave distinct lengths. We will use the following observation, which follows directly from thede�nition of spokes.Observation 6.1 Let e and e0 be any two edges incident to v, and let R be the convex regionwhich is bounded by e; e0 and an in�nitesimal circle centered at v. Then any edge intersectingR cannot be a spoke of v if it is longer than both e and e0.For any set Y consisting of three edges incident to v, the edges in Y partition the in-�nitesimal vicinity of v into three open regions, of which we denote by max(Y ) one whoseinterior angle at v is largest. The initial step is to remove the �rst (shortest) three edgesfrom L. Let Y be a set consisting of these three edges. If max(Y ) is a convex region, then itis not hard to see that the edges in Y constitute the spokes of v. Otherwise, it follows fromObservation 6.1 that any spoke of v has to intersect or bound max(Y ). Thus we can �nd thespokes of v by executing the following two steps as long as max(Y ) is not convex.1. Remove from Y the edge that does not bound max(Y ).2. Remove the shortest edge from L and insert it into Y .Instead of using the sorted list L (which can be constructed in O(m logm) time) we canuse any sorted list L0 with the property that it contains the spokes of v. Such a list L0 canbe constructed in O(m) time as follows. Let e1 be the shortest edge incident to v, and let26



e2; e3; : : : ; ek be the maximal sequence of edges encountered (in this order) by scanning theedges around v in clockwise direction from e1, such that the clockwise angle from e1 to ek is< 180 degrees. Given any two edges ei and ej , 1 � i < j � k, it follows from Observation 6.1that any edge et, i < t < j, which is longer than both ei and ej cannot possibly be a spokeof v. By scanning e1; e2; : : : ; ek we can remove all such edges, thus creating a list such thatthe edges in this list are sorted with respect to their lengths. In an analogous manner we cancreate a sorted list for the counter clockwise case. Then, by merging these two lists we obtainone sorted list L0 containing all spokes of v. The total time for constructing L0 in this way isclearly O(m) (we assume that QGT(S) is represented as a doubly connected edge list). Wesummarize this subsection in the following theorem.Theorem 6.2 Let S be any set of n vertices (in general position). Given QGT(S), we cancompute QGC(S) in O(n) time.6.3 Degenerate casesThroughout the paper we have assumed that no three vertices in S are collinear. In orderto remove this assumption we have to add some details, of which the main one concerns theconvex partitions that we use. In a degenerate case, we can de�ne GC(S) and QGC(S) insuch a way that the angle between two spokes of any vertex, say v, that lie next to eachother around v is < 180 degrees (thus it may happen that we for some vertices have to selectfour spokes). In this way, the statement in Lemma 4.2 still holds for GC(S) and QGC(S).Similarly we can require that all angles in MC(S) are strictly less than 180 degrees. Rede�ningMC(S), GC(S) and QGC(S) in this way, the proofs of Theorems 4.1 and 5.10 can be adaptedto degenerate cases by adding some non-di�cult details.However, if the purpose is to approximate the minimum weight convex partition by usingthe quasi greedy convex partition, then we must allow angles in QGC(S) to be exactly 180degrees in order to obtain a constant approximation ratio (for example, in the case whenMC(S) forms one triangle with n� 1 vertices on a side which is quite short compared to theother sides). For this reason, we select for each vertex v the spokes as described in Section 2unless the following holds: There exist two edges e and e0 incident to v, collinear with eachother, such that in one of the half-planes bounded by them, no edge incident to v is shorterthan both e and e0. In this case we select only two spokes for v, namely e and e0. De�ningQGC(S) in this way, the statement in Lemma 5.2 still holds. Indeed, under the assumptionthat aQ is greater than max(a), it still holds that one of a's spokes (partially) bounds anopen half-plane H such that no edge in H that is incident to a has length < aQ, althoughthere is a vertex in H which is within distance max(a) from a.7 ConclusionMost greedy algorithms can be modi�ed so that they compute QGT(S), since the six con-ditions can be checked locally and in constant time. The best worst-case time would beattained by modifying the algorithm in [9]. In this way we would obtain an algorithm thatcomputes the quasi greedy triangulation in O(n logn) time (or in O(n) time if the Delaunaytriangulation is given). 27
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