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ABSTRACT
In this paper, we consider the problem of computing a max-
imum inscribed sphere inside a high dimensional polytope
formed by a set of halfspaces (or linear constraints) and
with bounded aspect ratio, and present an efficient algo-
rithm for computing a (1 − ε)-approximation of the sphere.
More specifically, given any aspect-ratio-bounded polytope
P defined by n d-dimensional halfspaces, an interior point
O of P , and a constant ε > 0, our algorithm computes in
O(nd/ε3) time a sphere inside P with a radius no less than
(1−ε)Ropt, where Ropt is the radius of a maximum inscribed
sphere of P . Our algorithm is based on the core-set concept
and a number of interesting geometric observations. Our
result solves a special case of an open problem posted by
Khachiyan and Todd [13].

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems ]: Com-
putations on discrete structures; Geometrical problems and
computations
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1. INTRODUCTION
In this paper, we consider the following problem of ap-

proximating maximum inscribed sphere (MaxIS): Given a
set H = {H1, H2, · · · , Hn} of halfspace in d-dimensional
Euclidean space Ed, a point O in the common intersection
P of H, and a small constant ε > 0, compute a sphere B
inside P (assume that P is bounded) with a radius no less
than (1− ε)Ropt, where Ropt is the radius of a maximum in-
scribed sphere of P whose center is also called a Chebyshev
center of P .

Efficiently computing the maximum inscribed sphere or
ellipsoid in high dimensional polytope formed by a set of
halfspaces (or linear constraints) is a challenging problem in
theoretical computer science and operations research. It is
closely related to the interior-point method for linear pro-
gramming (LP) [17]. One commonly used approach [6] for
solving the MaxIS problem is to reduce it to a linear pro-
gramming (LP) problem with one more dimension and then
use existing LP algorithms to solve it. Thus optimally solv-
ing the MaxIS problem could be rather costly (i.e., with
the same complexity as an LP problem). With the power
of core-sets [1, 5], it has been shown that many problems
(such as the clustering problems and shape fitting problems
[1, 10, 9]) in high dimensional space which originally have
high time complexities can now be efficiently approximated.
For instance, using core-sets, a (1 + ε)-approximation of the
minimum enclosing sphere (MinES) of a set of n points in d-
dimensional space can be computed in linear time [1, 5, 4, 16,
12]. Thus it would be very interesting to know whether the
core-set concept can be used to speed up the computation
of the MaxIS problem. Note that when the dimensionality
is a constant, the ε-kernel result in [1] implies a linear time
approximation algorithm for the MaxIS problem.

A problem closely related to the MaxIS is that of com-
puting the maximum inscribed ellipsoid (MaxIE) (also called
maximum volume ellipsoid (MaxVE)). The MaxIE of a poly-
tope is, in general, quite different from its MaxIS, but in
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some special cases, such as the traveling salesman polytope
[3], the two objects are actually the same. The MaxIE has
direct applications in the interior-point method and is fre-
quently used to round convex bodies in Rd space. Due to its
importance, the MaxIE has received a great deal of atten-
tion. Khachiyan and Todd [13] built a polynomial bound
for computing an approximate point of the center of the
maximal inscribed ellipsoid in the polytope defined by lin-
ear constraints. Most recently, Anstreicher [2] showed that
a (1− ε)-approximation of the maximum inscribed ellipsoid
of the polytope can be computed in O(n3.5 log(nR

ε
)) time,

where R is a priori known ratio between the radii of a sphere
enclosing P and its co-centered sphere inscribed in P . This
is the best complexity to our knowledge. For the special case
of n � d2, Zhang and Gao [18] recently obtained a more
practical algorithm with roughly the same time bound.

A dual problem of MaxIE is that of computing a minimal
enclosing ellipsoid (MinEE) for the convex hull of n points
in Ed. Khachiyan [11] showed that a (1 + ε)-approximation
of the MinEE can be computed in O(n3.5 log(n

ε
)) time. Re-

cently, Kumar and Yildirim designed an efficient approxima-
tion algorithm by using core-sets and showed the existence
of a core-set of size α = O(d(log d + 1

ε
)). The complexity of

their algorithm is O(nd2α + α4.5 log(α
ε
)).

Khachiyan and Todd [13] observed that the MaxIE and
MinEE problems are equivalent if they are appropriately
represented, and conjectured that there exist “linear-time”
reductions among the following 4 ellipsoids: C : (1 − ε)-
approximation of the MinEE � CO : (1− ε)-approximation
of the MinEE centered at an arbitrary point O � IO : (1−ε)-
approximation of the MaxIE centered at an arbitrary inte-
rior point O ⇒ I : (1−ε)-approximation of the MaxIE. They
posted as an open problem for searching for the reduction
from IO to I.

In this paper we present an efficient algorithm for comput-
ing a (1− ε)-approximation of the MaxIS of an aspect-ratio-
bounded P . The running time of our algorithm is O(nd

ε3
),

which is linear in terms of the size of the input (i.e., nd).
(The running time includes a constant factor of α3, where
α is the aspect ratio.) For simplicity of our analysis, we
assume in our current version that n ≥ O(1/ε2) and ε is rea-
sonably small, e.g., 0 < ε ≤ 0.1. Our algorithm first moves
the origin of the coordinate system to the interior point O
and then applies the dual transform to reduce the MaxIS
problem to a sequence of the MinES problems. Based on a
number of interesting observations and the core-set concept,
we prove that at each iteration, significant progress can be
achieved. Particularly, we show that only O(1/ε2) iterations
are needed when aspect ratio is a constant, no matter where
the interior point lies inside the polytope, and each iteration
takes no more than O(nd/ε) time.

Our algorithm can be easily implemented and converges
very quickly for randomly generated polytopes. It takes only
a small constant number of steps to converge to the (1− ε)-
approximation of the MaxIS even for dimensions as high as
1000 and with very large aspect ratio. Detailed experimental
results are left for the full paper. Our algorithm settles a
special case of the open problem of Khachiyan and Todd
[13].

2. FROM MAXIS TO MINES
To compute the (1− ε)-approximation of the MaxIS of P ,

our main idea is to reduce the computation of the MaxIS

problem to that of a sequence of MinES’s. Without loss of
generality, we assume that the origin O of the coordinate
system is an interior point of P . Then we use the following
dual transform to convert the bounding hyperplane of each
halfspace Hi into a point for 1 ≤ i ≤ n. For simplicity, we
also use Hi to denote the hyperplane of the corresponding
halfspace and H∗

i to denote its dual.
Let H be an arbitrary hyperplane p1x1 + p2x2 + · · · +

pdxd = 1 in Ed not containing the origin O. The dual H∗

of H is the point (p1, p2, · · · , pd) ∈ Ed. The dual transform
has several nice properties which can be summarized by the
following lemma.

Lemma 1. If the dual space is superimposed on the primal
space so that they share the same coordinate system, then the
dual transform maps a hyperplane H at distance h from the
origin O to a point H∗ at distance 1/h from the origin and

the ray �OH∗ is orthogonal to H.

Corollary 1. Let Hi and Hj be two hyperplanes in the
primal space, and H∗

i and H∗
j be their corresponding dual

points. If dist(Hi, O) > dist(Hj , O), then in the dual space
dist(H∗

i , O) = ‖H∗
i ‖ < dist(Hj , O) = ‖H∗

j ‖.
With the above dual transform, each halfspace Hi in H

can be mapped to a point H∗
i . Let H∗ be the set of dual

points of H. Since for the set of dual points, we can effi-
ciently compute a good approximation of the minimum en-
closing sphere, thus a natural question is “How do we make
use of the MinES of H∗ for the computation of the MaxIS
of H?” To answer this question, we first let the two spheres
share the same space, that is, superimpose the dual space
on the primal space so that they share the same coordinate
system. (Hereafter, unless we specify otherwise, we always
assume that the two spaces share the same coordinate sys-
tem.) Then, we study how the two spheres change when the
origin O moves around in P .

Let O and O′ be the old and new origin and C be the
center of the MinES Bmin of H∗. Let δ = ‖CO‖ and s =
�OO′. We use r and r′ to denote the radii of the MinES of

H∗ and H∗′ respectively, where H∗′ is the set of new dual
points (defined by Lemma 2) after moving O to O′. For
any point H∗ in the dual space, we use f(H∗) to denote the
new dual point of the hyperplane corresponding to H∗. The
following lemma shows how f(H∗) changes when moving O
to O′.

Lemma 2. Let H be an arbitrary hyperplane and H∗ be
its dual point. If the origin O is moved to a new location O′

by a vector s = �OO′ and H remains at its original position
(hence the distance between O and H changes), then after

this movement, H∗ moves accordingly to a new point H∗′

H∗′ = f(H∗) =
H∗

1 − H∗ · s ,

where H∗ · s is the inner product of H∗ and s.

Proof. Let the equation of H be p1x1 + p2x2 + · · · +
pdxd = 1. Then H∗ is the point (p1, p2, · · · , pd). Let s be
(s1, s2, · · · , sd). When O is moved to O′, the new equation
of H is �

i pixi

1 −�i pisi
= 1,

which means H∗′ is at H∗
1−H∗·s .
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The following lemma shows an interesting relation be-
tween the centers of MaxIS and MinES.

Lemma 3. If the center C of the MinES of H∗ coincides
with the origin O, or say C and O overlap, then there exists
a MaxIS of H co-centered with the MinES at O.

To prove this lemma, we need the following lemmas.

Lemma 4. Let P be any bounded polytope defined by lin-
ear constraints, and Oopt be the center of a MaxIS of P . Let
O be any interior point but not the center of any MaxIS of
P , q be any point on the segment OoptO, and R(q) be the
minimum distance from q to the boundary of P (i.e., R(q) is
the radius of the maximum inscribed sphere centered at q).
Then R(q) is monotonically decreasing when q moves from
Oopt to O.

Proof. Suppose this is not true. Then there must exist
two points q1 and q2, other than Oopt, on the segment OoptO
with q2 further away from Oopt than q1 but R(q1) ≤ R(q2) <
R(Oopt). Let H be the closest hyperplane to q1, and b1,
b2, and b3 be the closest points of q1, q2, and Oopt on H.
Clearly, b1, b2, b3, q1, q2 and Oopt are all on the same 2-D
plane, say B, and b1, b2, b3 are in the common intersection
(i.e., a straight line l) of B and H. By the definition of R(),
we known that

|q2b2| ≥ R(q2) ≥ R(q1) = |q1b1|.
Also since Oopt is the center of the MaxIS of P ,

|Ooptb3| ≥ R(Oopt) > R(q1) = |q1b1|.
This means that b1, b2 and b3 cannot be on the same straight
line, a contradiction.

The following lemma has been proved in [5].

Lemma 5. If B(T ) is the MinES of a set T of points
in Ed, then any closed halfspace that contains the center
CB(T ) also contains a point of T that is at distance rB(T )

from CB(T ). It follows that for any point z at distance
K from CB(T ), there is a point t ∈ T at distance at least�

r2
B(T ) + K2 from z.

From this lemma, we know that the farthest point in H∗

to O has a distance at least
√

r2 + δ2 to O. Thus we have
the following corollary.

Corollary 2. The distance from O to the closest hyper-
plane H ∈ H is no more than h = 1√

r2+δ2
.

With the above two lemmas, we can now prove Lemma 3.

Proof. Suppose C and O overlap but the maximum in-
scribed sphere centered at O is not the MaxIS of P . Then
let Oopt be the closest point (to O) which is the center of
a MaxIS of P . Consider the hyperplane V crossing O and
orthogonal to the segment OOopt. By Lemma 5, we know
that on the side of V containing Oopt, there exists at least
one point H∗ ∈ H∗ on the boundary of the MinES. When
O moves towards Oopt, by Lemma 2 we know that the dis-
tance between H∗ and O will be non-decreasing and the dis-
tance between O and H will be non-increasing. This means
that the distance from O to the boundary of P will be non-
increasing. This contradicts Lemma 4.

C O

V
Left−O Right−O

δ

Bmin

Figure 1: Partition Bmin into Left-O and Right-O.

From Lemma 3, we know that to find the MaxIS of H, it
is sufficient to make the origin O and the center C of the
MinES coincide. To reach this goal, our main idea is to move
the origin O within the polytope P and force the center C
to move accordingly so that their distance become smaller
and smaller.

Before we further discuss how to move O, we first intro-
duce some notations. Without loss of generality, we assume
that the segment OO′ is horizontal, and O is to the left of
O′ (see Figure 1). Let V be the hyperplane crossing O and
orthogonal to OO′. V partitions Bmin into two parts. We
denote the left part of Bmin as Left − O sphere and the
right part as Right-O sphere. Clearly,

Left-O sphere = {x | ‖f(x)‖ < ‖x‖, x ∈ Bmin}, and

Right-O sphere = {x | ‖f(x)‖ > ‖x‖, x ∈ Bmin}.
From Lemma 2 and the dual transform, it is easy to see

that in order to make C and O coincide (i.e., δ = 0), O has to
move in certain direction. Since when C overlaps O, MinES
has the smallest radius, this means that forcing C to over-
lap O is equivalent to minimize the radius of MinES or the
longest distance from O to a point in H∗. Since the farthest
point (to O) can only appear in the Left-O sphere, to ensure
that the movement of O always reduces the longest distance
to O, O has to move away from C, ideally in the direction
of CO. The following lemmas show some nice properties of
such a movement.

Lemma 6. If O, x, y are collinear, and both x and y are in
Left-O (or Right-O) sphere, then ‖x‖ ≤ ‖y‖ implies ‖f(x)‖ <
‖f(y)‖.

Lemma 6 shows that to estimate how the MinES changes
after moving O to O′, it is sufficient to consider only the
points on the boundary of the MinES.

Lemma 7. Let x be any point in V , then ‖f(x)‖ = ‖x‖.

Lemma 8. Let ropt be the radius of the MinES when C
overlaps O, and Ropt be the radius of the MaxIS of H. Let
r be the radius of the MinES Bmin (whose center C may
not overlap O), and R be the shortest distance from O to
the hyperplanes in P . If r ≤ (1 + ε)ropt and δ ≤ εropt, then
Ropt ≥ R ≥ (1 − 2ε)Ropt.

Proof. When r ≤ (1 + ε)ropt and δ ≤ εropt, the furthest
point in H∗ to O is no more than (1 + 2ε)ropt. Thus,

R ≥ 1

(1 + 2ε)ropt
≥ (1 − 2ε)Ropt.
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Lemma 8 suggests that to compute a (1−ε)-approximation
of the MaxIS, it is sufficient to reduce the radius r of the
MinES so that r ≤ (1 + ε/2)ropt and δ ≤ εropt/2. Also
note that, for any ε0 > 0 we can always choose ε = ε0/2
and compute a (1 + ε)-approximation of the ropt and make
δ ≤ εropt. This will ensure that the obtained solution is
a (1 − ε0)-approximation of Ropt. Hence, hereafter we will
focus on computing a (1 + ε)-approximation of ropt and on
reducing δ.

3. ALGORITHM
As shown in last section, the MaxIS problem can be re-

duced to solving the MinES problem. Thus our main focus
in this section is on how to move O so that the radius r of
the MinES can be quickly reduced to the level of (1 + ε)ropt

and δ be reduced to εropt.
From Lemma 5, we know that the farthest point of O

lies in the half-sphere which is to the left of the hyperplane
crossing C and orthogonal to CO. Since the farthest point
could be in any place of the boundary of this half-sphere, to
ensure that the longest distance to O will always be reduced,
we move O in the direction of CO.

Once determined the motion direction, we immediately
face two more questions: (1) How much should O move in
the direction of CO (i.e., what is the value of ‖s‖)? (2) How
much is the radius r of the MinES reduced (i.e., what is
the value of r/r′)? Clearly, exact answers to the two ques-
tions depend on the distribution of H∗ inside the MinES.
To simplify our task, instead of giving an exact answer to
each question, we estimate the values of ‖s‖ and r/r′. More
specifically, our idea is to ignore the exact distribution of the
points of H∗ inside MinES and consider only the boundary
∂Bmin of the MinES Bmin. By Lemma 6, we know that af-

ter moving O to O′, all points in H∗′ will still be inside the
region bounded by f(∂Bmin). (Note that f(∂Bmin) is no
longer a sphere.) Thus, by estimating the radius of the min-

imum sphere Bf
min enclosing f(∂Bmin), we can obtain the

upper bound of the radius r′. The following lemma shows
some property of Bf

min.

Lemma 9. Both f(∂Bmin) and Bf
min are symmetric about

CO and the center Cf of Bf
min is on the segment of CO.

Clearly, to get the maximum reduction on r, O should be
moved as much as possible so that the farthest point to O′

in f(∂Bmin) is minimized. However, by Lemma 7, we know
that points in V ∩∂Bmin are fixed points (i.e., their distances
to the origin do not change). Thus our main idea is to see
if we can move O so that points in V ∩ ∂Bmin, which are√

r2 − δ2 distance away from O, become the farthest points
to O′. The following lemma shows that such a movement
exist and the function ‖f(x)‖ has some monotonicity on the
boundary of Bmin.

Lemma 10. If ‖s‖ = δ
r2−δ2 , then for any point x on the

boundary ∂Bmin of the MinES, ‖f(x)‖ <
√

r2 − δ2. Fur-
ther, (1) for any pair of points x and y on the boundary of
Left-O sphere, ‖x‖ > ‖y‖ implies ‖f(x)‖ < ‖f(y)‖; and (2)
for any pair of points x and y on the boundary of Right-O
sphere, ‖x‖ > ‖y‖ implies ‖f(x)‖ > ‖f(y)‖.

Proof. We prove only for the boundary of Right-O sphere.
The proof for the boundary of Left-O sphere is easier and
omitted.

V V

C O O

(a) (b)

Figure 2: Illustration of a primitive move.

Let x and y be any pair of points on the boundary of
Right-O sphere. Since f(x) = x

1−x·s ,

‖f(x)‖ =
‖x‖

1 − ‖x‖ δ
r2−δ2 cos θ

, (1)

where θ is the angle between Ox and OO′. By the definition
of θ, we have

cos θ =
r2 − δ2 − ‖x‖2

2δ‖x‖ .

Plugging cos θ into (1), we get

‖f(x)‖ =
2‖x‖(r2 − δ2)

r2 − δ2 + ‖x‖2
.

Similarly, we have

‖f(y)‖ =
2‖y‖(r2 − δ2)

r2 − δ2 + ‖y‖2
.

Since ‖x‖ > ‖y‖, we have

‖x‖(r2 − δ2) + ‖x‖‖y2‖ − ‖y‖(r2 − δ2) − ‖y‖‖x2‖

= (‖x‖ − ‖y‖)(r2 − δ2) + ‖x‖‖y‖(‖y‖ − ‖x‖)

= (‖x‖ − ‖y‖)(r2 − δ2 − ‖x‖‖y‖).
Since ‖x‖, ‖y‖ ∈ (r − δ,

√
r2 − δ2), the above equation is

positive. This implies ‖f(x)‖ > ‖f(y)‖.
Also since the point p in V ∩ ∂Bmin is farther away from

O than any other point in the boundary of Right-O sphere
and ‖f(p)‖ =

√
r2 − δ2, thus ‖f(x)‖ ≤ √

r2 − δ2.

Lemma 10 suggests that to have the maximum reduction
on r, O should move in the direction of �CO by a distance of

‖s‖ = δ
r2−δ2 , and the new radius r′ of the MinES of H∗′ is

no more than
√

r2 − δ2. We call such a move as a primitive
move (see Figure 2).

Once determined how to move O in one step, a naive idea
is just to repeatedly perform the primitive moves on O and
reduce r so that r will eventually be smaller than (1+ε)ropt.
In this way, we only need to bound the total number of steps.
Unfortunately, since the interior point O could be in any
place of the polytope P and P could be of arbitrary (convex)
shape, the total number of primitive moves is not always a
constant. To overcome this difficulty, we first partition the
problem into two cases: (A) the starting point of O is in a
“good” position; (B) the starting point of O is in arbitrary
position. Below we first consider case (A).

We say O is in a “good” position if the initial radius r0

of the MinES Bmin is at most constant times of ropt, i.e.,
r0 ≤ k ·ropt for some constant k. To bound the total number
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of steps needed for this case, we first assume we can compute
in each step the exact MinES of H∗, and then show how to
use core-sets to speed up the computation.

Lemma 11. If r ≤ (1 + ε)ropt, then either (1) δ ≤ εropt

or (2) if δ > εropt, then after at most 1/ε primitive moves,
δ can be reduced to εropt.

Proof. Since the first case is trivial, we focus on the
second case.

Assume that δ > εropt. By the above discussion about
the primitive move, we know that if we perform a primitive
move on O, the new radius r′ of the MinES is

r′ =
�

r2 − δ2 <
�

r2 − (εropt)2.

Using Taylor’s expansion, we have

r′ < r − (εropt)
2

2r
≤ r − (εropt)

2

(1 + ε)ropt

< r − ε2ropt.

By the assumption, we know that r − ropt ≤ εropt and each
primitive move reduces r by at least ε2ropt. If δ is always
larger than εropt, in 1/ε steps r will be reduced to ropt. By
Lemma 3, we know that at that time δ = 0. Thus the lemma
follows.

Combining Lemmas 8 and 11, we know that to obtain a
(1 − ε)-approximation of Ropt, it is sufficient to focusing on
reducing r.

Let α be the aspect ratio of P (i.e., the ratio of the radii
of the minimum enclosing sphere of P and the MaxIS of P ).
In this paper we consider the case that α is a constant.

Lemma 12. For a given ε0 > 0, let ε = ε0
4
3 α

. Then, if

δ < roptε, r < (1 + 3ε0)ropt.

To prove this lemma, we need the following lemma.

Lemma 13. Let O and C be respectively the origin and
the center of the MinES with δ < roptε and r > (1+3ε)ropt.
Let Oopt be the closest optimal (i.e., Chebyshev) center and
Vopt be the hyperplane with O ∈ Vopt and Vopt ⊥ OOopt.
Then, no point x is on the boundary of the MinES with
x · OOopt > 0.

Proof. Suppose there is such an x on the boundary of
the MinES with x · OOopt > 0. Below we show that this
would lead to a contradiction. Our main idea is to demon-
strate that if there is such an x, then after moving O to Oopt,
the distance from Oopt to the corresponding hyperplane of
x would be smaller than Ropt, thus a contradiction.

First we know that in this case, ropt < r ≤ kropt. Let
r = k′ropt for some k′ ∈ (1 + λε, k] and λ ≥ 3. Then,

x > r − roptε = (k′ − ε)ropt > ropt, when k′ > 1 + λε.

Next we show that when λ ≥ 3, a contradiction can be
derived. Let H be the corresponding hyperplane of x, then
the distance from O to H is

‖H‖ =
1

‖x‖ <
1

r − roptε
=

1

k′ − ε
· Ropt

=
1

k′
1

1 − ε
k′

Ropt <
1

k′ (1 +
2ε

k′ )Ropt.

h

x

H

W

C

V

O

O

θ

opt

opt

optδ<ε ropt

δ

Figure 3: Illustration of Lemma 12.

To ensure a contradiction, λ has to satify the following
inequality.

1

k′ (1 +
2ε

k′ ) < 1 − ε. (2)

This means

1 +
2ε

k′ < k′(1 − ε),

1 +
2ε

k′ < (1 + λε)(1 − ε) = 1 − ε + λε − λε2,

2

k′ < λ − 1 − λε,

2/k′ + 1

1 − ε
< λ.

Notice that from k′ > 1 + λε, we have

2/k′ ≤ 2/(1 + λε). (3)

Thus,

2
1+λε

+ 1

1 − ε
< λ. (4)

This implies

2

1 + λε
+ 1 < λ(1 − ε),

2 + 1 + λε < λ(1 − ε)(1 + λε),

3 + λε < λ(1 + λε − ε − λε2). (5)

It is easy to see that when λ ≥ 3, (5) holds.
This means that when k′ > 1 + 3ε,

1

k′ (1 +
2ε

k′ )Ropt < (1 − ε)Ropt. (6)

Now we have ‖H‖ < (1 − ε)Ropt. Thus if moving O to
Oopt, the distance from O to H will be shorter than the
current ‖H‖, which contradicts to the fact that Ropt is the
radius of the MaxIS.

Now we prove Lemma 12.

Proof. We prove this lemma by contradiction. First,
from Lemma 13, we know that there is no point x on the
boundary of the MinES with x · OOopt > 0. Suppose the
lemma is not true. Then, we assume r > (1 + 3ε0)ropt.
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By Lemma 5, we know that there is at least one boundary
point, say x, between Vopt and Wopt, where Vopt and Oopt

are defined as in Lemma 13 and Wopt is the hyperplane
containing C and orthogonal to OOopt.

Next we lower bound the distance ‖OOopt‖ between O
and Oopt. Let H be the corresponding hyperplane of x, and
h be the distance from Oopt to H after moving O to Oopt.
Then we have

h>Ropt (7)

From Figure 3, it is easy to see that

‖OOopt‖ ≥
h − 1

‖x‖
sin θ

. (8)

Since δ < εropt, we can upper bound sin θ as follows.

max sin θ ≤ roptε

min ‖x‖ ≤ roptε

r − εropt

<
roptε

(1 + 3ε0)ropt − εropt
≤ ε

1 + 2ε

Thus ‖OOopt‖ can be lower bounded by

‖OOopt‖ ≥
h − 1

r−roptε0

sin θ
(9)

By assumption, we have

r − roptε0 > ropt + 2roptε0. (10)

Thus,

1

ropt + 2ε0ropt
< Ropt(1 − 3

2
ε0), when ε0 <

1

6
.

Plugging the above inequality into (9), we have

‖OO‖ >
Ropt(1 − 1 + 3

2
ε0)(1 + 2ε)

ε
, and

‖OOopt‖ > Ropt
3

2

4

3
α(1 + 2ε) > 2Roptα.

But we know that ‖OOopt‖ < 2Roptα (from the definition
of aspect ratio). A contradiction. This means that when
δ < εropt, r < (1 + 3ε0)ropt.

The above lemma suggests that given an ε0, by using a
smaller ε, we can ensure that when r ≥ (1 + 3ε0)ropt, δ >
ropt · ε. Thus in each step, the converging ratio of r is

(r −√
r2 − δ2)

r
= 1 −

�
1 − (

δ

r
)2

≥ 1 −
�

1 − (
ropt · ε

r
)2

≥ 1 −
�

1 − (
ropt · ε
k · ropt

)2

= 1 − 1

k
·
�

k2 − ε2

=
k −√

k2 − ε2

k
.

The total number of steps is no more than

r

ropt
k−

√
k2−ε2

k

=
k

1 −�1 − ( ε
k
)2

<
k

1 − (1 − 1
2
( ε

k
)2)

= 2
k3

ε2
.

Since k is a constant, the total number of steps is O(1/ε2).

Lemma 14. If MinES is exactly computed in each step,
then the total number of primitive moves for case (a) is
O(1/ε2) (i.e., when k is a constant).

Now we consider using core-sets to compute the MinES.
Let r be the radius of the exact MinES in each step, and
ra be the radius of an approximation of the MinES (using
algorithm in [4, 16]) in the same step.

Lemma 15. If a (1+ ε/k)-approximation of the MinES is
computed in each step, then the total number of primitive
moves needed for case (A) is bounded by O(1/ε2), where k
is the constant in the definition of case (A).

Proof. Observe the above proof for bounding the total
number of primitive moves for case (A). The proof does not
require r be the radius of the exact MinES of H∗. It is
actually sufficient to bound the total number of primitive
moves by O(1/ε2), as long as the reduction on the radius r
at each step is no less than r −√

r2 − δ2.
Consider the case of using a (1 + ε/k)-approximation al-

gorithm to compute the MinES at each step. By the above
discussion, we know that the total number of steps will still
be O(1/ε2) if at each step the radius r′a returned by the ap-
proximation algorithm after a primitive move is no larger
than

√
r2

a − δ2, where ra is the radius of the approximate
MinES computed at the previous step.

From the discussion about the primitive move, we know
that for any dual point H∗, ‖H∗‖ ≤ √

r2
a − δ2. This means

that a ball B centered at O and with radius
√

r2
a − δ2 con-

tains all points in H∗′ , and the radius r′ of the exact MinES
is no more than

√
r2

a − δ2. Thus, the only chance for the
approximation algorithm to generate a ball Ba with radius

r′a >
√

r2
a − δ2 is when r′ >

√
r2

a−δ2

1+ε/k
. But in this case, the

distance between the center Ca of Ba and O will be less than
ε
√

r2
a−δ2

k
, and δ will be less than εropt. This means that the

algorithm can stop.

Lemmas 14 and 15 indicate that if O is in a good position,
then the total number of steps needed to reduce r0 to (1 +
ε)ropt is no more than O(1/ε2), and each step takes O(nd/ε)
time.

Next we consider case (B) (i.e., O is initially in an ar-
bitrary position). From Lemma 1, we know that given an
arbitrary polytope P and an arbitrary interior point O, since
O could be very close to a boundary of P , the initial value
of r0 could be arbitrarily larger than ropt. Thus if we just
perform the above procedure on O, the number of steps will
depend on the initial position of the origin. Next we show
how to remove this dependency.

Let hi be the distance from O to the hyperplane Hi ∈
H, i = 1, · · · , n.

Lemma 16. In dual space, the radius r of the MinES is a
constant times of ropt if and only if hmin = minn

i=1{hi} is a
constant times of Ropt.
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Figure 4: Illustration of Pd+1.

We first use affine scaling to make Ropt ≤ ε. Let hmax =
maxn

i=1{hi} and u = hmax
ε

. Then the coordinate system is
scaled in the following way

xi =
xi

u
, i = 1, · · · , d.

It is easy to prove that after this scaling, Ropt ≤ ε, and the
cost of the scaling is O(nd). From now on, we assume that
Ropt ≤ ε.

To move O away from the boundary of P , we first intro-
duce a new dimension xd+1 orthogonal to all other dimen-
sions xi, 1 ≤ i ≤ d, and then build a new polytope Pd+1

in (d + 1)-dimensional space Ed+1. The polytope Pd+1 is
defined by 2n + 2 hyperplanes (see Figure 4(a)).

Pd+1 = {((H1, ε), ε + h1), ((H1,−ε),−ε − h1)), · · · ,

((Hn, ε), ε + hn)), ((Hn,−ε),−ε − hn)), Φ1, Φ2},
where Φ1 = {x ∈ Ed+1|xd+1 = ε}, Φ2 = {x ∈ Ed+1|xd+1 =
−ε}, and ((Hi, ε), ε+hi)) represents a (d+1)-dimensional hy-
perplane which contains a point (0, ..., 0, ε + hi) on the xd+1

axis and intersects with Φ1 at the d-dimensional hyperplane
Hi.

Let Od be any interior point of P ∩ Φ1, and Od+1 by its
projection (along xd+1 axis) on the hyperplane xd+1 = 0.
Without loss of generality, we assume that Od+1 is the origin
of Ed+1. Let Od+1

opt and Oopt be the optimal points of Pd+1

and P respectively, Rd+1
opt and Ropt be the respective radii of

the MaxIS’s of Pd+1 and P . By the symmetry of Pd+1, it
is easy to see that Od+1

opt is on the hyperplane of xd+1 = 0.
The following lemmas shows some interesting properties of
Pd+1.

Lemma 17. Let H be any hyperplane in P and Hd+1 be
one of its corresponding hyperplane ((Hi, ε), ε+hi)) ∈ Pd+1.

Then dist(Od+1, Hd+1) =
√

2
2

(ε + dist(Od, H)), where dist()
is the Euclidean distance from one point to a hyperplane.

Proof. Assume that the hyperplane H is of the form

a1x1 + a2x2 + ... + adxd = 1. (11)

In Ed+1, the corresponding hyperplane Hd+1 has the form

a′
1x1 + ... + a′

dxd + a′
d+1xd+1 = 1. (12)

Let T =
�

a2
1 + a2

2 + ... + a2
d. Then the distance dist(Od, H)

between Od and H is 1/T . From the construction of Pd+1,
we have

a′
d+1 =

1
1
T

+ ε
=

T

1 + T · ε . (13)

When restricting xd+1 = ε, H and Hd+1 are the same, i.e.,
(12) = (11). Thus, we have

a′
1x1 + ... + a′

dxd = 1 − Tε

1 + Tε
, and

ai = a′
i(1 + Tε), for i = 1, · · · , d. (14)

The distance from Od+1 to Hd+1 is

dist(Od+1, Hd+1) =
1�

a′
1
2 + ... + a′

d
2 + a′

d+1
2

=
1�

T 2( 1
1+Tε

)2 + ( T
1+Tε

)2

=
1�

2( T
1+Tε

)2
=

√
2

2
(ε + (

1

T
)) (15)

=

√
2

2
(ε + dist(Od, H)).

Lemma 18.
√

2ε
2

≤ Rd+1
opt ≤ ε.

Proof. The first inequality follows from Lemma 17, since
the closest distance from the (d+1)-dimensional origin Od+1

to any hyperplane is at least
√

2
2

× ε. The second inequality
follows from the fact that the distance between Φ1 and Φ2

is exact 2ε.

Lemma 19. For any Od in P ∩ Φ1, the projection of Od

to the hyperplane xd+1 = 0 is a good starting point for Pd+1.

Proof. From Lemma 18, we know that Rd+1
opt ≤ ε. From

Lemma 17, we know that for any interior point Od, the

projection Od+1 to the hyperplane xd+1 = 0 is at least
√

2ε
2

away from any hyperplane in Pd+1. Thus the radius of the
maximum inscribed sphere centered at Od+1 is a constant
times of Rd+1

opt . This implies that Od+1 is a good starting
point for Pd+1.

Lemma 20. The projection point Od
opt,d+1 of Od+1

opt on Φ1

is an interior point of P , i.e. Od
opt,d+1 ∈ P (see Figure

4(b)).

Proof. We consider two cases, (a) ε <
√

2
2

(ε + Ropt) and

(b) ε ≥
√

2
2

(ε+Ropt). Case (a) follows trivially from Lemma
17. Thus we only need to focus on case (b). We prove this
case by contradiction.

Suppose Od
opt,d+1 �∈ P , then by Lemma 17, it is easy to

see that

Rd+1
opt ≤

√
2

2
ε <

√
2

2
(ε + Rd

opt).

Let Od+1
opt,d be the projection of Oopt (i.e., the optimal point

of P ) on the hyperplane xd+1 = 0, then using Od+1
opt,d as the

center and
√

2
2

(ε + Ropt) as the radius, we can construct a

ball B. By Lemma 17, we know B ⊂ Pd+1. Thus, Rd+1
opt ≥√

2
2

(ε + Ropt), a contradiction.
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Lemma 21. Let Od
opt,d+1 be the projection of Od+1

opt on Φ1.

Then, the minimum distance hmin from Od
opt,d+1 to any hy-

perplane in P is at least 1
3
Ropt (i.e., Od

opt,d+1 is a good start-
ing point for P ).

Proof. Let Bopt be the MaxIS of P centered at Oopt

and SP (Oopt) = {H| H ∈ P is tangent to Bopt}. SP (Oopt)
is called the solution set of Oopt.

Next we consider two cases, (a) ε <
√

2
2

(ε + Ropt) and (b)

ε ≥
√

2
2

(ε + Ropt). We first consider case (b).
For case (b), it is easy to see that if we choose the solution

set SP (Oopt) of Oopt ∈ P , then we can construct a ball B
centered at the projection point of Oopt on the hyperplane

xd+1 = 0 and with radius R =
√

2
2

(ε + Ropt). Clearly, B ⊂
Pd+1. B might be tangent to any hyperplane in Pd+1 except
Φ1 and Φ2. Thus Rd+1

opt ≥ R.

Let SPd+1(O
d+1
opt ) be the solution set of Od+1

opt . From Lemma

20, we know that Od
opt,d+1 ∈ P . From Lemma 17, we know

that the closest hyperplanes to Od
opt,d+1 in P are those cor-

responding to the hyperplanes in SPd+1(O
d+1
opt ). Let hmin be

the closest distance between Od
opt,d+1 and the hyperplanes

in P . By Lemma 17, we have

Rd+1
opt =

√
2

2
(ε + hmin).

Thus,

Rd+1
opt =

√
2

2
(ε + hmin) ≥

√
2

2
(ε + Ropt),

hmin ≥ Ropt.

Since Ropt is the radius of the MaxIS of P , Ropt can only be
equal to hmin. This means that Od

opt,d+1 = Oopt, i.e., the

projection Od
opt,d+1 of Od+1

opt on Φ1 is an optimal point of P ,

and Od
opt,d+1 is trivially a good starting point of P .

For case (a) (i.e., ε <
√

2
2

(ε + Ropt)), from Lemma 17 we

know that the hyperplanes in P d+1 corresponding to the
solution set of Oopt are the closest hyperplanes to Od+1

opt,d

(except Φ1 and Φ2), where Od+1
opt,d is the projection of Oopt

on the hyperplane xd+1 = 0. Since we already know that

these hyperplanes have a distance
√

2
2

(ε + Ropt) to Od+1
opt,d, it

is easy to construct a ball B with radius R = ε, centered at
Od+1

opt,d, and inside Pd+1. So Rd+1
opt ≥ ε. By Lemma 18, we

also know that Rd+1
opt ≤ ε, thus Rd+1

opt = ε.
Note that in this case, the MaxIS of Pd+1 may not be

unique. We can compute Od+1
opt first and then consider the

location of Od
opt,d+1. Below we prove that Od

opt,d+1 is very
close to some Oopt.

Let t be the distance from Od
opt,d+1 to the closest hyper-

plane H in P , and Hd+1 be the corresponding hyperplane of
H in Pd+1. Then the MaxIS of Pd+1 could be either tangent
to Hd+1 or not. In either case, we have

√
2

2
(ε + t) ≥ ε.

Thus,

t ≥ (
√

2 − 1)ε. (16)

This means that Od
opt,d+1 is a good starting point as Ropt ≤

ε. Here,

k =
1√

2 − 1
< 3.

The above lemmas suggest that when the starting point
Od is not good, we can first project Od to the hyperplane
xd+1 = 0 to obtain Od+1, perform the algorithm for case
(A) in Pd+1 to obtain the optimal (or near optimal) point
of Pd+1, and then project the optimal point of Pd+1 back
to P . The point we obtained is either an optimal point of
P or a good starting point of P . Below we show that if
an approximation algorithm is used to compute the MaxIS
of Pd+1, it is possible to obtain a good starting point in
P by performing a constant number of iterations in d + 1-
dimensional space, each with a slightly different Pd+1.

The main difficulty of using an approximation algorithm is
that when Ropt � ε, a (1 − ε)-approximation of the MaxIS
of Pd+1 may not be a good starting point of P . To over-
come this difficulty, our main idea is to use the following
observation: When 2Ropt is roughly equal to the height of
Pd+1 (along the xd+1-axis), the projection of the center of a
(1− ε)-approximation of Pd+1 is a good starting point of P .
Thus our idea is to guess Ropt and construct a Pd+1 poly-
tope with xd+1-height equal to twice of the guessed value
of Ropt. Since ε (equal to the distance from O to the far-
thest hyperplane in P after the affine scaling) can only be
2α times of Ropt, by performing a binary search (with at
most log α steps which is a constant when α is bounded)
in the interval [ ε

2α
, ε], we can find a good starting point for

P . The following lemma summarizes the above discussion.
(Detailed proof is left for the full paper.)

Lemma 22. Within log α iterations, a good starting point
of P can be founded by using the approximation algorithm
for case (A) in Pd+1.

With the above lemmas, we can put all the pieces to-
gether and have the following main steps for our algorithm
for computing a (1 − ε0)-approximation of the MaxIS of P .

1. Set ε = ε0/(8α).

2. Translate the origin of the coordinate system to the
interior point O.

3. Scale the coordinate system so that Ropt ≤ ε.

4. Perform a dual transform for each halfspace in H to
obtain H∗.

5. Build the d + 1 dimensional polytope Pd+1.

6. Perform the (1− ε)-approximation for the (good) case
(A) log(α) iterations on Pd+1’s, and project the ob-
tained center back to P .

7. Using the projection as the starting point, run the (1−
ε)-approximation for case (A) on P and return the
obtained solution.

Theorem 1. Given any polytope defined by n d-dimensional
halfspaces (or linear constraints) and with bounded aspect ra-
tio α, an interior point, and a small constant 0 < ε < 0.1,
there exists an approximation algorithm which computes a
(1 − ε)-approximation of the maximum inscribed sphere of
the polytope in O(nd/ε3) time.
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