COSC 6114 Computational Geometry

Kirkpatrick-Seidel’s Prune-and-Search Convex Hull Algorithm

I ntroduction

This note concerns the computation of the vean hull of a gven et
P={p1, P2, Pot Of n points in the planeLet h denote the size of the cax hull, ie
the number of its ertices. Thevalue h is not known beforehand, and it can rangg-an
where from a small constant to We havealready seen that arcorvex hull algorithm
requires at leasR(n Ig n) time in the worst case, andveagdudied a number of algo-
rithms, such as Grahasrcan algorithm, whose worst case time complexit(s Ig n).

If nwas the only measure of problem size, then these algorithms are optioakver,
we also knw that the Jarvis march algorithm requi@@h) time. Thelatter can range
arywhere fromO(n) to O(n?) depending on thealue ofh. Is there an algorithm which is
asymptotically superior to both Graham scan and Jarvis march, for all posdi#s of
h? Below, we will describe Kirkpatrick and Seidsl'[KiS86] algorithm that requires
O(n Ig h) time.

Kirkpatrick-Seidels dgorithm applies a design technique known asphme-and-
seach method oMegiddos technique Nimrod Megiddo showed, eg, Wahis technique
can be used to saVixed dmensional linear programs in linear time [Meg83,0%4],
and hav to compute the smallest circle that encloses a finite numbevef goints in the
plane in linear time [Mg89]. Dyer[Dye84] independently diseered the same tech-
nigue. Mauy other applications of this powerful algorithm design technique appear in the
literature. Edelsbrunnexr’book [Ede87] also ges a lbrief description of the method in
section 15.6 and shows its applications, eg, to linear programming in chapter 10, and to
ham-sandwich cuts in section 14.1. Frances Yao in section 6, chapteary lcfeuwers
book [vanL90] also discusses this techniqU#e prune-and-search technique can be
traced back to the first linear time median finding algorithm of Blume-Rratt-Rvest-
Tarjan [BFP73]. The latter algorithm finds the median (and in generak-thesmallest
element) of a finite set of \@n numbers in linear time and is also described in section
10.3 of Cormen-Leiserson-ist [CLRI1].

Kirkpatrick-Seidel’s Algorithm

Consider the minimum and maximum x-coordinates of point®,idenotedX,
and X, Corvex Hull of P can be be viewed as a pair of gex chains called thepper
hull and thelower hull of P (excluding the possible vertical edgesxat, or X, (See
Fig. 1(a).) The algorithm that computes the upper-hullPois given below. The lover-
hull can be computed in a similar manner and is omitted from further discussion.
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Fig. 1 (a) The upper andver hulls, (b) The upper bridgan.

Algorithm UpperHull(P)

0.if |P| < 2 then return the obvious answer

1. else begin

Computeghe median X,q4 Of X-coordinates of points iR.

Rartition P into two setsL andR each of size about/2 around the mediaxqg.
Findtheupper bridge g of L andR, pUL, andqUR

L'« {rOL | x(r)<x(p)}

R « {rOR | xr)=x(q)}

LUH — UpperHall(L")

RUH ~ UpperHall(R)

return the concatenated lis&tUH, pg, RUH as the upper hull d?.
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Analysis

This is a divide-&-conquer algorithm. Theykdep is the computation of theper
bridgein step 4 which is based on the prune-&-search techni(iee Fig. 1(b).) In the
next section we will she that this step can be doneGxin) time. We dso knav that step
2 can be done i©(n) time by the linear time median finding algorithm. Hence, steps 3-6
can be done i®(n) time. For the purposes of analyzing algorittupperHall(P), let us
assume the upper hull & consists oh edges. Ouanalysis will use both parametars
(input size) andh (output size).Let T(n, h) denote the worst-case time complexity of the
algorithm. SupposéUH and RUH in steps 7 and 8 consist bf andh, edges, respec-
tively. Since L'|<|L| and R|<|R|, the tvo recursve alls in steps 7 and 8 takime
T(n/2,h;) and T(n/2,h,) time. (Notethat h=1+h; +h,. Hence,h,=h-1-h;.)
Therefore, the recurrence that describes the worst-case time giiynpfehe algorithm
is

0
00 +max {T(2 h) +T(X h-1-h)} ifh>2

T(n,h) =0 hy 2 2

7 O(n) ifh<?2

N



Theorem: T(n,h) =0O(n Ig h).
Proof: Suppose the tav occurences ofd(n) in the abwe recurrence are at mosh,

where ¢ is a suitably lage constant. We will show by induction on h that

T(n,h)<cnlgh for all n and h=2. For the base case wherd =2,
T(n,h) <cn<cnlg2 =cn Ig h. For the inductie ase,

T(n,h)scn+n?]ax{cglgh1+cglg(h—1—h1)}
=cn+chT;]ang(h1(h—1—hl))
n h h
<cn+c— g (=
cn czlg(zﬂz)

n h
=cn+c=2Ilg =
2975

=cnlgh.

Finding the Upper Bridgein Linear Time

The problem is this: we arevgh a ®llection P of n points in the plane, which is
separated into tavnon-empty subsets and R by a known vertical linen, with L on the
left andR on the right. We wish to find a lind passing through one point from each sub-
set, such that none of thevgn points lies abweet. See Fig 1(b). In other words, weawt
the upper exterior common tangent (the upper bridge) of theexdulls of L andR. If
the cowex hulls of L and R were known, the common tangents could easily be found in
linear time (see the merge step in the divide-&-conquevecohull algorithm discussed
earlier in the course).However, computing the covex hull of ®(n) points costs
©(n Ig n) time in the worst case.

Computation of the upper bridge bfandR can be formulated as a 2nable linear
program withn linear constraints, and hence, can be solve@(im) time by Meaiddo’s
linearprogramming algorithm.The linear program formulation is as falls. Suppose
the equation of the (non-vertical) bridge lins y = ax + 3. The two coefficientsa (the
slope) andg (the y-intersept) are the daunknowvns that we hae to compute. Suppose
the x-coordinate of the vertical separator ImebetweenL andR is x = a. (See Fig.
1(b).) Thenthe y-coordinate of the intersectiontohindmis y, = aa + B. Clearly ary
line that is at or abhwe every point of LOOR cannot intersecin at a y-coordinate {ger
thany,. This gves us he desired 2-variable linear program; finénd g to:

minimize aa+p
subject to:
ax(p)+B=2y(p) forallp OLOR.

Instead of discussing Meldo’s lution of this linear program, we will discuss
Kirkpstrick-Seidels drect method. The d&y t their algorithm is a simple
prune-&-search criterion that in linear time &l us to eliminate a good maof the
points that do not define the upper bridge.
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Let us fix for the moment our attention on lines of a particular sédop&Ve can
compute in linear time a supporting linelofof slopea. Suppose this line is tangent to
L at some poinpL. We can do the same fdR and obtain a supporting line & of
slopea tangent toR at some poingJR. Now if the linepq has slope less than, then
so must the common tangdntsimilarly, if pq has slope greater thanthen so does;
and if pg has sloper thent = pg. See Fig 2(a,b).
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Now suppose the first case holds, so slopé¢ isfless thamr. Letr,s be aly two
points of LOR, such thatr is to the left ofs and the liners has slopegreater thana.
Then we can conclude thatannot pass through because a line of slope less than
throughr must pass bel s. See Fig 2(c). The second case, where the slopei®f
greater thamr, is entirely symmetrical: we can eliminate the second memberyopain
r,s, with r to the left ofs, if the liners has slope less than

These remarks suggest the following prune-&-search metRed.up then given
points in an arbitrary ay, and find themedianslopea of the n/2 lines defined by those
pairs. Nav compute the supporting lines of, respedti, L andR of slopea and assume
these lines, respeedy, are tangent td. and R at pointspL andq[IR. It should be
obvious wty the median is a good choice: since half the paie Bape less thaa, and
half have dope greater than. Therefore, half the pairs will satisfy the criterion, no mat-
ter whether the slope @q is greater or less than So, in either case we eliminate one
point from half the pairs, for a total of at lea#d points. Of course ifpq has slopear
then we are done.

It is possible to find the median slope in time lineam rsing the same median find-
ing algorithm mentioned in the previous section. The other operations clea @ (tak
time. Therefore, in linear time we either stop, or eliminate at l@dsbf the original
points. If we repeatedly apply this elimination (or pruning) process on the remaining
points, we are guaranteed to find the common tangent, at a total cost of
O(n + (3/4)n + (3/4¥n + --) = O(n) time. Notethat we may eliminate a @&frent num-
ber of points fromL and fromR, but this does not &ct the analysisNow we can state
the following results.

Theorem: The upper bridg of wo vertically separated point sets can be computed in
linear time.
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Corollary: Kirkpatrick-Seidels anvex hull algorithm tales Qin Ig h) time.

Kirkpatrick-Seidel also siweed that in terms of the twparametersi andh, Q(n Ig h) is

a worst-case lower bound to compute theweonfull (using a general computational
model known as the algebraic decision tree model). Therefore, their algorithonsis w
case optimal.

3D Convex Hulls

The cowex hull of n points in R® can also be computed @(n Ig n) time by a
divide-&-conquer algorithm. Recentl§edelsbrunner and Shi [EdS91]veasown that
3D corvex hull can be computed i®(n Ig? h) time, whereh is the number of hull er-
tices (extreme points). Furthermore, Kenneth Clarkson and Peter Shor [CI889 gi
randomized 3D corex hull algorithm with O(n Ig h) expectedtime. Chazelleand
Matousek [ChM93] hee reported that derandomizing an algorithm of [CIS89kgjian
O(n Ig h) time deterministic algorithm. See also [CSY95].
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