
COSC 6114 Computational Geometry

Kirkpatrick-Seidel’s Prune-and-Search Convex Hull Algorithm

Introduction

This note concerns the computation of the convex hull of a given set
P = { p1, p2, . . . , pn} of n points in the plane.Let h denote the size of the convex hull, ie
the number of its vertices. Thevalue h is not known beforehand, and it can range any-
where from a small constant ton. We hav ealready seen that any convex hull algorithm
requires at leastΩ(n lg n) time in the worst case, and have studied a number of algo-
rithms, such as Graham’s scan algorithm, whose worst case time complexity isO(n lg n).
If n was the only measure of problem size, then these algorithms are optimal.However,
we also know that the Jarvis march algorithm requiresO(nh) time. Thelatter can range
anywhere fromO(n) to O(n2) depending on the value ofh. Is there an algorithm which is
asymptotically superior to both Graham scan and Jarvis march, for all possible values of
h? Below, we will describe Kirkpatrick and Seidel’s [KiS86] algorithm that requires
O(n lg h) time.

Kirkpatrick-Seidel’s algorithm applies a design technique known as theprune-and-
search method orMegiddo’s technique. Nimrod Megiddo showed, eg, how this technique
can be used to solve fixed dimensional linear programs in linear time [Meg83, Meg84],
and how to compute the smallest circle that encloses a finite number of given points in the
plane in linear time [Meg89]. Dyer [Dye84] independently discovered the same tech-
nique. Many other applications of this powerful algorithm design technique appear in the
literature. Edelsbrunner’s book [Ede87] also gives a brief description of the method in
section 15.6 and shows its applications, eg, to linear programming in chapter 10, and to
ham-sandwich cuts in section 14.1. Frances Yao in section 6, chapter 7 of van Leeuwen’s
book [vanL90] also discusses this technique.The prune-and-search technique can be
traced back to the first linear time median finding algorithm of Blum-Floyd-Pratt-Rivest-
Tarjan [BFP73]. The latter algorithm finds the median (and in general, thek-th smallest
element) of a finite set of given numbers in linear time and is also described in section
10.3 of Cormen-Leiserson-Rivest [CLR91].

Kirkpatrick-Seidel’s Algorithm

Consider the minimum and maximum x-coordinates of points inP, denotedxmin

andxmax. Convex Hull of P can be be viewed as a pair of convex chains called theupper
hull and thelower hull of P (excluding the possible vertical edges atxmin or xmax). (See
Fig. 1(a).) The algorithm that computes the upper-hull ofP is given below. The lower-
hull can be computed in a similar manner and is omitted from further discussion.

-2-

x x

upper hull

lower hull

vertical

edge

min max

(a)

p
q

m

t

L R

(b)

Fig. 1 (a) The upper and lower hulls, (b) The upper bridgepq.

Algorithm UpperHull(P)
0. if |P| ≤ 2 then return the obvious answer
1. else begin
2. Computethemedian xmed of x-coordinates of points inP.
3. Partition P into two setsL andR each of size aboutn/2 around the medianxmed.
4. Findtheupper bridge pq of L andR, p∈L, and q∈R
5. L′ ← { r ∈L x(r) ≤ x(p) }
6. R′ ← { r ∈R x(r) ≥ x(q) }
7. LUH ← UpperHall(L′)
8. RUH ← UpperHall(R′)
9. return the concatenated listLUH , pq, RUH as the upper hull ofP.
10.end

Analysis

This is a divide-&-conquer algorithm. The key step is the computation of theupper
bridge in step 4 which is based on the prune-&-search technique.(See Fig. 1(b).) In the
next section we will show that this step can be done inO(n) time. We also know that step
2 can be done inO(n) time by the linear time median finding algorithm. Hence, steps 3-6
can be done inO(n) time. For the purposes of analyzing algorithmUpperHall(P), let us
assume the upper hull ofP consists ofh edges. Ouranalysis will use both parametersn
(input size) andh (output size).Let T(n, h) denote the worst-case time complexity of the
algorithm. SupposeLUH and RUH in steps 7 and 8 consist ofh1 andh2 edges, respec-
tively. Since |L′| ≤ |L| and |R′| ≤ |R|, the two recursive calls in steps 7 and 8 take time
T(n/2,h1) and T(n/2,h2) time. (Note that h = 1 + h1 + h2. Hence, h2 = h − 1 − h1.)
Therefore, the recurrence that describes the worst-case time complexity of the algorithm
is

T(n, h) =







O(n) +
h1

max { T(
n

2
, h1) + T(

n

2
, h − 1 − h1) } i f h > 2

O(n) if h ≤ 2

-3-

Theorem: T(n, h) = O(n lg h).

Proof: Suppose the two occurences ofO(n) in the above recurrence are at mostcn,
where c is a suitably large constant. We will show by induction on h that
T(n, h) ≤ cn lg h for all n and h ≥ 2. For the base case whereh = 2,
T(n, h) ≤ cn ≤ cnlg2 = cn lg h. For the inductive case,

T(n, h) ≤ cn +
h1

max { c
n

2
lg h1 + c

n

2
lg (h − 1 − h1) }

= cn + c
n

2
⋅

h1

max lg (h1(h − 1 − h1))

≤ cn + c
n

2
lg (

h

2
⋅

h

2
)

= cn + c
n

2
2 lg

h

2

= cn lg h .

Finding the Upper Bridge in Linear Time

The problem is this: we are given a collection P of n points in the plane, which is
separated into two non-empty subsetsL andR by a known vertical linem, with L on the
left andR on the right.We wish to find a linet passing through one point from each sub-
set, such that none of the given points lies above t. See Fig 1(b). In other words, we want
the upper exterior common tangent (the upper bridge) of the convex hulls of L andR. If
the convex hulls of L and R were known, the common tangents could easily be found in
linear time (see the merge step in the divide-&-conquer convex hull algorithm discussed
earlier in the course).However, computing the convex hull of Θ(n) points costs
Θ(n lg n) time in the worst case.

Computation of the upper bridge ofL andR can be formulated as a 2-variable linear
program withn linear constraints, and hence, can be solved inO(n) time by Megiddo’s
linear-programming algorithm.The linear program formulation is as follows. Suppose
the equation of the (non-vertical) bridge linet is y = α x + β . The two coefficientsα (the
slope) andβ (the y-intersept) are the two unknowns that we have to compute. Suppose
the x-coordinate of the vertical separator linem betweenL and R is x = a. (See Fig.
1(b).) Then,the y-coordinate of the intersection oft andm is yo = α a + β . Clearly any
line that is at or above every point of L∪R cannot intersectm at a y-coordinate lower
thanyo. This gives us the desired 2-variable linear program; findα andβ to:

minimize α a + β
subject to:

α x(pi) + β ≥ y(pi) for all pi ∈ L∪R .

Instead of discussing Megiddo’s solution of this linear program, we will discuss
Kirkpstrick-Seidel’s direct method. The key to their algorithm is a simple
prune-&-search criterion that in linear time allows us to eliminate a good many of the
points that do not define the upper bridge.

-4-

Let us fix for the moment our attention on lines of a particular slopeα . We can
compute in linear time a supporting line ofL of slopeα . Suppose this line is tangent to
L at some pointp∈L. We can do the same forR and obtain a supporting line ofR of
slopeα tangent toR at some pointq∈R. Now if the line pq has slope less thanα , then
so must the common tangentt; similarly, if pq has slope greater thanα then so doest;
and if pq has slopeα thent = pq. See Fig 2(a,b).

p
q

m

L R

(a)

L R

p
q

m
m

p
q

L R

(b) (c)

r

r

s

r
s

s

α α
α

Fig 2.

Now suppose the first case holds, so slope oft is less thanα . Let r , s be any two
points of L∪R, such thatr is to the left ofs and the liners has slopegreater thanα .
Then we can conclude thatt cannot pass throughr , because a line of slope less thanα
through r must pass below s. See Fig 2(c). The second case, where the slope oft is
greater thanα , is entirely symmetrical: we can eliminate the second member of any pair
r , s, with r to the left ofs, if the liners has slope less thanα .

These remarks suggest the following prune-&-search method.Pair up then given
points in an arbitrary way, and find themedianslopeα of the n/2 lines defined by those
pairs. Now compute the supporting lines of, respectively, L andR of slopeα and assume
these lines, respectively, are tangent toL and R at pointsp∈L and q∈R. It should be
obvious why the median is a good choice: since half the pairs have slope less thanα , and
half have slope greater thanα . Therefore, half the pairs will satisfy the criterion, no mat-
ter whether the slope ofpq is greater or less thanα . So, in either case we eliminate one
point from half the pairs, for a total of at leastn/4 points. Of course ifpq has slopeα
then we are done.

It is possible to find the median slope in time linear inn using the same median find-
ing algorithm mentioned in the previous section. The other operations clearly take O(n)
time. Therefore, in linear time we either stop, or eliminate at leastn/4 of the original
points. If we repeatedly apply this elimination (or pruning) process on the remaining
points, we are guaranteed to find the common tangent, at a total cost of
O(n + (3/4)n + (3/4)2n + . . .) = O(n) time. Notethat we may eliminate a different num-
ber of points fromL and fromR, but this does not affect the analysis.Now we can state
the following results.

Theorem: The upper bridge of two vertically separated point sets can be computed in
linear time.

-5-

Corollary: Kirkpatrick-Seidel’s convex hull algorithm takes O(n lg h) time.

Kirkpatrick-Seidel also showed that in terms of the two parametersn andh, Ω(n lg h) is
a worst-case lower bound to compute the convex hull (using a general computational
model known as the algebraic decision tree model). Therefore, their algorithm is worst-
case optimal.

3D Convex Hulls

The convex hull of n points in R3 can also be computed inO(n lg n) time by a
divide-&-conquer algorithm. Recently, Edelsbrunner and Shi [EdS91] have shown that
3D convex hull can be computed inO(n lg2 h) time, whereh is the number of hull ver-
tices (extreme points). Furthermore, Kenneth Clarkson and Peter Shor [ClS89] give a
randomized 3D convex hull algorithm with O(n lg h) expected time. Chazelleand
Matousek [ChM93] have reported that derandomizing an algorithm of [ClS89] gives an
O(n lg h) time deterministic algorithm. See also [CSY95].

References

[BFP73] Blum,M., W. Floyd, V. Pratt, R. Rivest, R.E. Tarjan,‘‘ Time bounds for selec-
tion’’ , J. of Computer and System Sciences, vol. 7, pp. 448-461, 1973.

[CSY95] Chan,T.M.Y., J. Snoyink, C.K. Yap, ‘‘ Output-sensitive construction of poly-
topes in four dimensions and clipped Voronoi diagrams in three’’ Proc.
SODA’ 95, pp. 282-291, 1995.

[ChM93] Chazelle,B., and J. Matousek,‘‘ Derandomizing an output-sensitive convex
hull algorithm in three dimensions’’, Manuscript, 1993.

[ClS89] Clarkson,K., and P.W. Shor, ‘‘ Applications of random sampling in computa-
tional geometry, II’’ , Discrete & Computational Geometry, vol. 4, no. 5, pp.
387-421, 1989.

[Dye84] Dyer, M.E., ‘‘ Linear time algorithms for two- and three-variable linear pro-
grams’’, SIAM J. Computing, vol. 13, pp. 31-45, 1984.

[EdS91] Edelsbrunner, H., and W. Shi, ‘‘ An O(n log2 h) time algorithm for the three-
dimensional convex hull problem’’, SIAM J. Computing, vol. 20, no. 2,
259-269, 1991.

[KiS86] Kirkpatrick, D.G., and R. Seidel,‘‘ The ultimate planar convex hull algo-
rithm?’’ , SIAM J. Computing, vol. 15, no. 1, pp. 287-299, 1986.

[Meg83] Megiddo, N., ‘‘ Linear-time algorithms for linear programming in R3 and
related problems’’, SIAM J. Comp. 12, pp. 759-776, 1983.

[Meg84] Megiddo, N., ‘‘ Linear programming in linear time when the dimension is
fixed’’, J. Association for Computing Machinery (JACM) 31, pp. 114-127,
1984.

[Meg89] Megiddo, N., ‘‘ On the ball spanned by balls’’ , Discrete & Computational
Geometry, vol. 4, no. 6, pp. 605-610, 1989.

