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Introduction

The problem of finding the unique closed ellipsoid of smallest
volume enclosing an n-point set P in d-space (known as the
Löwner-John ellipsoid of P [5]) is an instance of convex
programming and can be solved by general methods in time
O(n) if the dimension is fixed [12, 6, 3, 1]. The problem-
specific parts of these methods are encapsulated in primitive
operations that deal with subproblems of constant size.

We derive explicit formulae for the primitive operations
of Welzl’s randomized method [12] in dimension d = 2.
Compared to previous ones [9, 7, 8], these formulae are sim-
pler and faster to evaluate, and they only contain rational
expressions, allowing for an exact solution.

Primitive Operations

For a finite point set P in the plane, not all points on a
line, we denote by me(P ) the smallest enclosing ellipse of
P . An inclusion-minimal set S ⊆ P with me(S) = me(P )
is a support set of P . Any support set satisfies |S| ≤ 5 and
me(S) = me(S), where me(S) denotes the smallest ellipse
with all points of S on the boundary. In general, if some
ellipse exists with a set B on its boundary, then also me(B)
exists and is unique [12].

Given P , Welzl’s algorithm computes a support set S
of P , provided the following primitive operation is available.

Given B ⊆ P , 3 ≤ |B| ≤ 5, such that me(B)
exists, and a query point q ∈ P \ B, decide
whether q lies inside me(B).

We call this operation the in-ellipse test. As we will see, the
case |B| = 4 presents the actual difficulty. Our method is
based on the concept of conics.

Conics

A conic C in linear form is the set of points p = (x, y)T ∈ R
2

satisfying the quadratic equation

C(p) := rx2 + sy2 + 2txy + 2ux + 2vy + w = 0, (1)
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r, s, t, u, v, w being real parameters. C is invariant under scal-
ing the vector (r, s, t, u, v, w) by any nonzero factor. After
setting

M :=

„

r t
t s

«

, m :=

„

u
v

«

, (2)

the conic assumes the form C = {pT Mp + 2pT m + w = 0}.
If a point c ∈ R

2 exists such that Mc = −m, C is symmetric
about c and can be written in center form as

C = {(p − c)T M(p − c) − z = 0}, (3)

where z = cT Mc − w. If det(C) := det(M) 6= 0, a center
exists and is unique. Conics with det(C) > 0 define ellipses.

By scaling with −1 if necessary, we can w.l.o.g. assume
that C is normalized, i.e. r ≥ 0. If E is a normalized ellipse,
q lies inside E iff E(q) ≤ 0.

If C1, C2 are two conics, the linear combination

C := λC1 + µC2, λ, µ ∈ R

is the conic given by C(p) = λC1(p) + µC2(p). If p belongs
to both C1 and C2, p also belongs to C.

Now we are prepared to describe the in-ellipse test, for
|B| = 3, 4, 5.

In-ellipse test, |B| = 3

It is well-known [11, 7, 8] that me({p1, p2, p3}) is given in
center form (3) by

c =
1

3

3
X

i=1

pi, M−1 =
1

3

3
X

i=1

(pi − c)(pi − c)T , z = 2.

From this, M is easy to compute. Query point q is inside
me(B) iff (p − c)T M(p − c) − z ≤ 0.

In-ellipse test, |B| = 4

me(B) is some conic through B = {p1, p2, p3, p4}, and any
such conic is a linear combination of two special conics C1, C2

through B [10], see Figure 1.
To see that these are indeed conics, consider three points

q1 = (x1, y1), q2 = (x2, y2), q3 = (x3, y3) and define

[q1q2q3] := det

„

x1 − x3 x2 − x3

y1 − y3 y2 − y3

«

.
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Figure 1: Two special conics through four points

[q1q2q3] records the orientation of the point triple; in par-
ticular, if the points are collinear, then [q1q2q3] = 0. This
implies

C1(p) = [p1p2p][p3p4p], C2(p) = [p2p3p][p4p1p],

and these turn out to be quadratic expressions as required
in the conic equation (1), easily computable from the points
in B.

Now, given the query point q, we determine the (unique
[10]) conic C0 through the five points B ∪ {q}. We get C0 =
λ0C1 + µ0C2, with λ0 = C2(q), µ0 = −C1(q). In the sequel
we assume that C0 is normalized.

Case 1. det(C0) ≤ 0, i.e. C0 is not an ellipse. Then exactly
one of the following statements holds.

(i) q lies inside any ellipse through B.
(ii) q lies outside any ellipse through B.

To prove this, assume there are two ellipses E , E ′ through
B, with E(q) ≤ 0 and E ′(q) > 0. Then we find λ ∈ [0, 1) such
that E ′′ := (1 − λ)E + λE ′ satisfies E ′′(q) = 0, i.e. E ′′ goes
through B ∪ {q}. Hence E ′′ equals C0 and is not an ellipse.
On the other hand, the convex combination of two ellipses
is an ellipse again, a contradiction.

Thus, it suffices to test q against any ellipse through the
four points to obtain the desired result. Let

α = r1s1 − t21, β = r1s2 + r2s1 − 2t1t2, γ = r2s2 − t22,

ri, si, ti the parameters of Ci in the linear form (1). Then
E := λC1 + µC2 with λ = 2γ − β, µ = 2α− β defines such an
ellipse. This follows from the fact that

det(E) = (4αγ − β2)(α + γ − β),

and both factors can be shown to have negative sign if the pi

are in convex position (which holds because we know that
me(B) exists) and in (counter)clockwise order (which can
be achieved in a preprocessing step)[4].

Case 2. det(C0) > 0, i.e. C0 is an ellipse E . We need to
check the position of q relative to E∗ = me(B), given by

E∗ = λ∗C1 + µ∗C2,

with unknown parameters λ∗, µ∗. In the form of (1), E is
determined by r0, . . . , w0, where r0 = λ0r1 + µ0r2. By scal-
ing the representation of E∗ accordingly, we can also assume
that r0 = λ∗r1 + µ∗r2 holds. In other words, E∗ is obtained
from E by varying λ, µ along the line {λr1 +µr2 = r0}. This
means,

„

λ∗

µ∗

«

=

„

λ0

µ0

«

+ τ∗

„

−r2
r1

«

. (4)

for some τ∗ ∈ R. Define

Eτ := (λ0 − τr2)C1 + (µ0 + τr1)C2, τ ∈ R.

Then E0 = E , Eτ
∗

= E∗. The function g(τ) = Eτ (q) is linear,
hence we get

E∗(q) = τ∗ ∂

∂τ
Eτ (q)

˛

˛

˛

˛

τ=0

= ρ τ∗,

where ρ = C2(q)r1 − C1(q)r2. Consequently, q lies inside
me(B) iff ρτ∗ ≤ 0.

The following Lemma is proved in [2], see also [8].

Lemma Consider two ellipses E1, E2, and let

Eλ = (1 − λ)E1 + λE2

be their convex combination, λ ∈ (0, 1). Then Eλ is an

ellipse satisfying Vol(Eλ) < max(Vol(E1), Vol(E2)).

Since Eτ is a convex combination of E and E∗ for τ ranging
between 0 and τ∗, the volume of Eτ decreases as τ goes from
0 to τ∗, hence

sgn(τ∗) = −sgn

„

∂

∂τ
Vol(Eτ )

˛

˛

˛

˛

τ=0

«

.

If Eτ is given in center form (3), its area is

Vol(Eτ ) =
π

p

det(M/z)
,

as can be seen by choosing the coordinate system according
to the principal axes of E, such that M becomes diagonal.
Consequently,

sgn

„

∂

∂τ
Vol(Eτ )

˛

˛

˛

˛

τ=0

«

= −sgn

„

∂

∂τ
det(M/z)

˛

˛

˛

˛

τ=0

«

.

Recall that if M, m collect the parameters of Eτ as in (2), c =
M−1m being its center, we get z = cT Mc−w = mT M−1m−
w, where M, m, w depend on τ (which we omit in the sequel,
for the sake of readability). Noting that

M−1 =
1

det(M)

„

s −t
−t r

«

,

we get

z =
1

det(M)
(u2s − 2uvt + v2r) − w.

Let us introduce the following abbreviations.

d := det(M), Z := u2s − 2uvt + v2r.

With primes (d′, Z′ etc.) we denote derivatives w.r.t. τ .
Now we can write

∂

∂τ
det(M/z) = (d/z2)′ =

d′z − 2dz′

z3
. (5)

Since d(0), z(0) > 0 (recall that E is a normalized ellipse),
this is equal in sign to

δ := d(d′z − 2dz′),



at least when evaluated for τ = 0, which is the value we are
interested in. Furthermore, we have

d′z = d′(
1

d
Z − w) =

d′

d
Z − d′w,

dz′ = d(
Z′d − Zd′

d2
− w′) =

Z′d − Zd′

d
− dw′.

Hence

δ = d′Z − dd′w − 2(Z ′d − Zd′ − d2w′)

= 3d′Z + d(2dw′ − d′w − 2Z ′).

Rewriting Z as u(us− vt) + v(vr − ut) = uZ1 + vZ2, we get

d = rs − t2, Z′

1 = u′s + us′ − v′t − vt′,
d′ = r′s + rs′ − 2tt′, Z′

2 = v′r + vr′ − u′t − ut′,

Z′ = u′Z1 + uZ ′

1 + v′Z2 + vZ ′

2.

For τ = 0, all these values can be computed directly
from r(0), . . . , w(0) (the defining values of E) and their cor-
responding primed values r′(0), . . . w′(0). For the latter we
get r′(0) = 0, s′(0) = r1s2 − r2s1, . . . , w

′(0) = r1w2 − r2w1.
We obtain that q lies inside me(B) iff sgn (ρ δ(0)) ≤ 0.

In-ellipse test, |B| = 5

In Welzl’s algorithm, B attains cardinality 5 only if before,
a test ‘p inside me(B \ {p}) ?’ has been performed (with a
negative result), for some p ∈ B. In the process of doing
this test, the unique conic (which we know is an ellipse E)
through the points in B has already been computed, see
previous section. Now we just ‘recyle’ E to conclude that q
lies inside me(B) iff E(q) ≤ 0.

Implementation

We have implemented the in-ellipse tests as subroutines of
Welzl’s method with move-to-front heuristic [12], without
any tuning.1 On a Sun SPARC-station 20, using ratio-
nal arithmetic over integers of arbitrary length provided by
LEDA2, the algorithm takes 220 seconds to compute me(P ),
P a set of 10,000 points with random 32-bit integer coordi-
nates. Under floating-point arithmetic, the computing time
drops to 2 seconds, but the result might be incorrect. This
gap (suggesting successful usage of floating-point filters and
other techniques to combine fast arithmetic with exact com-
putation) is explained by the fact that numbers get large
under rational arithmetic. If the input coordinates are k-
bit integers, an exact evaluation of δ(0) in case of |B| = 4
(which is the most expensive operation) requires 30k +O(1)
bits of precision in the worst case.

The output of the algorithm is a support set S. In addi-
tion, for |S| 6= 4, our method determines me(P ) = me(S) =
me(S) explicitly. For |S| = 4, the value τ∗ defining me(S)
via (4) appears among the roots of (5); a careful analy-
sis [7, 8] reduces this to a cubic polynomial in τ , thus an
exact symbolic representation or a floating-point approxima-
tion of τ∗ and me(S) can be computed in a postprocessing
step.

1A tuned version will become part of the CGAL library, see
http://www.cs.ruu.nl/CGAL/

2See http://www.mpi-sb.mpg.de/LEDA/leda.html
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