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Abstract

This work addresses the problem of approximating a manifold by a
simplicial mesh, and the related problem of building triangulations for
the purpose of piecewise-linear approximation of functions. It has long
been understood that the vertices of such meshes or triangulations should
be “well-distributed,” or satisfy certain “sampling conditions.” This work
clarifies and extends some algorithms for finding such well-distributed ver-
tices, by showing that they can be regarded as finding ε-nets or Delone

sets in appropriate metric spaces. In some cases where such Delone prop-
erties were already understood, such as for meshes to approximate smooth
manifolds that bound convex bodies, the upper and lower bound results
are extended to more general manifolds; in particular, under some general
conditions, the minimum Hausdorff distance for a mesh with n simplices
to a d-manifold M is Θ((

R

M

p

|κ(x)|/n)2/d) as n → ∞, where κ(x) is the
Gaussian curvature at point x ∈ M . We also relate these constructions
to Dudley’s approximation scheme for convex bodies, which can be in-
terpreted as involving an ε-net in a metric space whose distance function
depends on surface normals. Finally, a novel scheme is given, based on the
Steinhaus transform, for scaling a metric space by a Lipschitz function to
obtain a new metric. This scheme is applied to show that some algorithms
for building finite element meshes and for surface reconstruction can be
also be interpreted in the framework of metric space ε-nets.

1 Introduction

The problem considered here is that of approximating a smooth manifold by a
polyhedral one. Smooth manifolds might represent, for example, the boundaries
of objects and obstacles in a motion planning problem, or the graphs of func-
tions. For many purposes, meshes (polyhedral manifolds made up of simplices)
are easier to work with, and so the approximation problem arises. This problem
can be attacked by first deciding where the vertices of the simplices should be,
and then deciding how to connect them. The vertex placement can be done
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by putting the vertices on the approximated manifold, and distributing them
“nicely” in an appropriate sense.

Intuitively, the niceness of the distribution of vertices would include the con-
dition that the higher the curvature of the manifold in a given neighborhood,
the more vertices in that neighborhood. This intuition can be made rigorous.
Gruber[Gru04] and others have shown, for example, that for a variety of approx-
imation requirements, the case where the manifold is the smooth boundary of
a convex body can be characterized as follows: the vertices of an optimal mesh
constitute a Delone set in a Riemannian metric DII induced by the Second Fun-
damental Form of the manifold. This quadratic form measures the directional
curvature of the manifold, so that points that are close in DII can be connected
by a nearly-straight curve on the surface.

Delone sets are defined more formally in Section 2 below; they are sets
that are both packings and coverings: a packing has no two points too close
together, and a covering S has D(x, S) small for every point x in the manifold,
where D(x, S) is minp∈S D(x, p). Metric space ε-nets are a particular kind of
Delone set.

Riemannian metrics are defined more formally in Section 3 below; the metric
DII here can be described roughly as follows: the length of a very small line
segment between two points on the manifold is the square root of the curvature
of the manifold along that segment; the length of a path is the integral of the
lengths of small segments of that path; the distance between two points is the
length of the shortest path connecting the two points. We will call this the root
curvature metric.

Gruber proved a Delone set characterization for general Riemannian man-
ifolds, not just for DII; his result has implications for optimal quantification
and other problems. For example, a set S of size n that minimizes the inte-
gral of squared distances

∫

M D(x, S)2 must be a Delone set. In the discrete
setting, such a problem is solved heuristically by the k-means (Lloyd’s) algo-
rithm; a similar heuristic can be applied in the continuous setting, as reviewed
by Du et al.[DFG99]. The Delone requirement means that a simple and fast
algorithm, the greedy method analyzed by Gonzalez [Gon85], has guaranteed
approximation properties. The greedy method is discussed in Section 2, and
the approximation property is Corollary 5.5.

A related line of work, starting with Eldar et al.[ELPZ97], applies the greedy
algorithm to the problem of finding a set of vertices for piecewise-linear inter-
polation, in the setting of computer vision applications. Also, Peyrè and Cohen
propose using the greedy algorithm together with geodesic distance measures
on surfaces, for remeshing and parameterization. They consider the issue, not
addressed here, of how to compute such distances efficiently; they discuss both
isotropic distances and distances scaled by curvature, but not the particular
measures analyzed here [PC05].

Section 5 contains a version of Gruber’s proof of this Delone set condition.
This new version is intended as an explication and simplification; it is also a
slight generalization, to the setting of metric measure spaces. At the least, it is
a bit more concise.
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In the terminology of center and median problems, a cover is a good k-
center. The idea of Gruber’s proof, and the one here, is to show that a local
search algorithm [AGK+01] for reducing

∫

M
D(x, S)2 can make progress if S is

not a Delone set. That is, if S is not a good k-center (up to a constant factor),
it is not a good k-median in this particular smooth setting. A converse is also
true, as shown in Corollary 5.5.

Not only has the Delone set characterization been proven for smooth convex
manifolds (that is, manifolds that bound convex bodies and are smooth), but
the error of approximating such manifolds has been characterized precisely: the
error of best approximations that use n vertices can be given, up to a factor of
1 + o(1), as n → ∞. (The error has been found for terms of even higher order,
when d = 1[Lud98].)

In particular, when the error measure is the Hausdorff distance, the error
for a convex d-manifold M is

Kd(

∫

M

√

κ(x)/n)2/d(1 + o(1))

as n → ∞, where d is the dimension, Kd is a factor dependent only on the
dimension, and κ(x) is the Gaussian curvature at point x ∈ M [Gru93]. A
2-sphere of radius r, for example, has

∫

M

√

κ(x) =
∫

M

√

1/r2 = A/r = Cr, for
some constant C, where A is the area, so the error is within a constant factor of
r/n. Note that

∫

M
κ(x) is the total Gaussian curvature of the manifold, which

by the Gauss-Bonet Theorem is constant for the sphere or any other convex
manifold.

However, suppose the manifold is not convex, in other words, is not the
boundary of a convex body. It is not hard to show, as in Section 4.1, that if the
vertices are an ε-net with respect to a “convexified” version DII of the Second
Fundamental Form, then some of the same upper bounds apply as for convex
manifolds, up to a constant factor. This generalizes somewhat the results of
Chen et al.[CSXar], who showed similar upper bound results and constructions
for the approximation of functions. It is shown in Section 4.2 that triangulations
with small Hausdorff distance must have a number of simplices that is within a
constant factor of the upper bound, under some reasonably general conditions on
the triangulation and the manifold. Thus the measure µII(M) :=

∫

M

√

|κ(x)|,
called here the “total root curvature,” seems to be a fundamental measure of
the difficulty of approximating a smooth manifold M .

While no such general bound on triangulation complexity in this setting
seems to have appeared before, there are several results on the optimal shape
of simplices in triangulations for approximating manifolds or functions. Nadler
proved such a result for function approximation[Nad86], and it was extended by
Heckbert and Garland[HG99]. Pottmann et al.[PKH+00] found the best shape
for a triangle in a regular mesh (repeating that triangle over and over). (See
also Shewchuk’s survey of a variety of measures of the quality of triangles for
function approximation, and in particular anisotropic measures that consider
the specific function being approximated [She02].) However, it could be that
the globally best triangulation uses simplices that are not optimum locally. The
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results of Section 4 show that, up to some conditions and a constant factor, such
a situation cannot occur.

Dudley has given a bound for the approximation of convex bodies [Dud74]
that has seen wide application in computational geometry. ([Cla94] is an early
reference; Agarwal et al. survey some related work [AHPV05].) His bound is the
same as the ones mentioned, with respect to dependence 1/n2/d on the number
of vertices, but is worse in its dependence on the body being approximated.
However, his construction can be applied to any convex body, not just a smooth
one. Moreover, while Dudley’s construction gives a triangulation with the given
number of vertices, the number of simplices is not similarly bounded. (A dual
version bounds the number of simplices, but not vertices. Per Jeff Erickson [Eri],
the number of simplices can be bounded, at the cost of losing the convexity of
the approximating mesh.) For Gruber’s construction, and the ones here, the
number of simplices is within a constant factor (depending on dimension) of the
number of vertices.

Although Dudley’s construction does not explicitly compute ε-covers, it is
clear from his proof of an error bound that the triangulation vertices it se-
lects form an ε-cover of a metric space whose distance measure involves both
Euclidean distance and variation in the surface normal. That is, the proof in-
volves the construction on an input convex manifold M of a set of points S
that has the following property: for any point x ∈ M , there is some point
s ∈ S such that DE(p, s) ≤ ε, and also DE(vp, vs) ≤ ε, where DE is the Eu-
clidean distance, vp is the unit normal vector to M at p, and similarly for vs.
So D(p, s) := max{DE(p, s), DE(vp, vs)} ≤ ε, and it’s not hard to show that
this function D(., .) is a metric. Thus Dudley’s construction involves finding an
ε-cover in a particular metric space. The approximating polytope that results
has Hausdorff distance ε2 to the input manifold M .

An analogous distance measure could be defined on arbitrary manifolds,
and indeed Pottmann et al. have done so, defining what they term a regular-
ized isophotic metric, or simply isophotic metric [PSH+04]. Section 6 shows
that an ε-covering set for this metric is also an ε-covering in the root curvature
metric, and therefore implies Hausdorff distance bounds for the corresponding
triangulation. Approximations using this metric are also related to the Varia-
tional Shape Approximations of Cohen-Steiner et al. [CSAD04]; that work used
a metric based on surface normals alone, and used the k-means algorithm to
minimize the integral square

∫

M D(x, S)2 of the distance. By Gruber’s results
(as in Section 5), an alternative approach yielding similar results would be to
use an ε-net in that metric.

The approximation results of Section 4 have implications for algorithmic
applications. For example, suppose a motion planning problem is given, in
which a plan is sought for moving an object among obstacles, where both object
and obstacles have smooth boundaries. One approach to this problem might be
to approximate the object and obstacles with meshes, and then use one of the
many techniques for solving the problem given input with a mesh representation.
If the approximations have Hausdorff distance ε to the original surfaces, then a
solution to the approximate problem with sufficient small clearance will also be
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a solution to the original problem.
Except for finding the approximating meshes, the work done is proportional

to functions of ε, and of the total root curvature µII(M), where M is the collec-
tion of smooth input surfaces, and nothing else related to the input “size”. That
is, µII(M) gives a measure of the intrinsic difficulty of polyhedral approximation
to M , and so of algorithmic problems associated with M .

A similar question might be raised about nearest neighbor searching: sup-
pose a set S of points are generated independently on a manifold, and a data
structure is desired so that, given a query point q, the nearest point in S to q can
be found. Are there data structures for this problem, or an approximate version
of it, whose complexity depends on the total root curvature of the manifold, or
other integral curvature value?

The above results generally concern manifolds without boundaries, or with
simple boundaries. There is an extensive literature of algorithms for finding
triangulations in two and three dimensions that have “well-shaped” simplices,
and also conform to the complicated piecewise-linear boundaries of a region. In
Section 8, we show that some algorithms for building conforming triangulations
can be viewed as algorithms for finding ε-nets in a particular metric space.

That space, and a related one, can be described using some constructions
that seem very basic, but are apparently new: given a metric space (U, D), and
a subset A ⊂ U, Section 7 shows that there is a related metric DA on U such
that when DA(x, y) is small,

DA(x, y) ≈ D(x, y)/D(x,A) ≈ D(x, y)/D(y,A).

A related construction in that section is the following: given a 1-Lipschitz func-
tion F on U, there is a metric DF on U such that when DF (x, y) is small, it is
approximately D(x, y)/F (x).

These constructions are used to show that the “local feature size” used for
building triangulations, and the “sampling conditions” used for proving con-
ditions on surface reconstruction, can be used to define metrics. Under these
metrics, the greedy algorithm for ε-net construction is similar to the Delau-
nay refinement algorithms of Chew and of Ruppert for building triangulations
[Che89, Rup95]. The sampling conditions on surfaces[AB99] become equivalent
to a Delone set condition in a corresponding metric space.

The metric space constructions are not done via a Riemannian metric, but
rather via the simpler “biotope transform,” and so are likely to be simpler to
work with. They do not, however, give rise to length spaces. (These terms are
defined in Sections 2, 3, and 7 below.)

The next two sections give some terminology and background, but before
that, a little miscellaneous notation: let DE(a, b) denote the Euclidean distance
between a and b; for values β > 0, x, and y, x ≤β y denotes the condition
x ≤ (1 + β)y; x ≈β y denotes the condition that x ≤β y and y ≤β x both hold.
When x ≤β y ≤β z, it follows that x ≤ (1 + β)2z, and thus x ≤3β z for β < 1.
So a version of the relation holds transitively, up to a constant factor.

5



2 Metric Spaces, Packings, Coverings, Nets, De-

lone Sets

Metric spaces. Given a set U and distance measure D : U×U → <+, the pair
(U, D) is a metric space and D is a metric, if, for all x, y, z ∈ U:

1. D(x, y) = 0 if and only if x = y;

2. D(x, y) = D(y, x);

3. D(x, z) ≤ D(x, y) +D(y, z).

A space is bounded if supx,y∈UD(x, y) <∞.
For S ⊂ U and x ∈ U, the distance

D(x, S) := inf
s∈S

D(x, s);

this infinum will exist if S is compact, and in particular if it is finite. The nota-
tion D(A,S) := supx∈AD(x, S). (Note that this is asymmetric, and D(A,S) 6=
D(S,A).) The Hausdorff distanceH(S,A) between sets S andA is max{D(A,S), D(S,A)}.
Given S ⊂ U, let

diamS := sup
p,p′∈S

D(p, p′);

given a collection A of sets, diamA := maxS∈A diam(S).
Coverings, packings, Delone sets, nets. A set S ⊂ U is an:

ε-covering if D(x, S) ≤ ε for all x ∈ U, that is, D(U, S) = H(U, S) ≤ ε.

ε-packing if D(s, S \ {s}) ≥ ε for all s ∈ S; that is, open balls of radius ε/2
centered at each s ∈ S do not meet;

(εp, εc)-Delone if S is an εp-packing and εc-covering; 1

ε-net if it is (ε, ε)-Delone; that is, for any x ∈ U, we have D(x, S) ≤ ε, and for
any two p, p′ ∈ S, we have D(p, p′) ≥ ε.

Construction of nets. It is a little surprising, perhaps, that ε-nets even
exist. However, they can be found using a simple greedy construction analyzed
by Gonzalez [Gon85]: pick an element of U arbitrarily to be in the net E. Next
repeat until E has k members, for some target size k: pick a point p in U whose
minimum distance D(p,E) is maximum in U, and add p to E.

This simple algorithm yields an ε-cover, where ε := D(p,E), such that an
(ε/2)-cover must have at least k members. (Briefly: the output E is also an

1 “Delone” is one transliteration of the family name of Boris Nikolaeviq Delone,
that is, Boris Nikolaevich Delone, a Russian mathematician. Delone sets are discussed in the
crystallography literature, and elsewhere. Another transliteration is “Delaunay,” as in De-
launay triangulations. The constructions here will include Delaunay triangulations of Delone
sets. According to J. H. Conway (via Wikipedia), Delaunay “got his surname from an Irish
ancestor called Deloney, who was among the mercenaries left in Russia after the Napoleonic
invasion of 1812.”
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ε-packing, by construction. If some (ε/2)-cover E ′ had fewer than k members,
then some two members of E would be covered by the same point e′ ∈ E′, that
is, be within ε/2 of it. They would therefore be closer than ε to each other.)
That is, the greedy algorithm is an approximation algorithm for the problem of
finding the smallest ε such that there is an ε-cover with k members.

Voronoi regions. For a given metric space (U, D), and S ⊂ U, let Vor(p, S)
denote the Voronoi region of p in U with respect to S, that is, the set of x ∈ U

so that p is no farther from x than any other p′ ∈ S. As a formula,

Vor(p, S) := {x ∈ U | D(x, p) = D(x, S)}.

Let C(p, S), the circumradius of Vor(p, S), denote

sup
x∈Vor(p,S)

D(p, x),

that is, the maximum distance to p of points in its Voronoi region. (This is
slightly abusive of terminology, because more typically the circumradius of a
region A is infp∈A supp′∈AD(p, p′). Note that the circumradius of every Voronoi
region of S is no more than ε, when S is an ε-cover.

Length spaces. A length space is a metric space for which the distance be-
tween two points is the infinum of the lengths of paths connecting the two points.
As discussed just below, distances between points in Riemannian manifolds are
defined using such paths, so Riemannian manifolds are length spaces.

3 Manifolds, Curvature, and Distance

This section gives a bare minimum of terminology and notation regarding man-
ifolds and curvature. The concepts are given in most differential geometry
textbooks, but not stated in the most direct way for application here.

Manifolds. A d-manifold M is a topological space that looks locally like a
region of <d; that is, there is a collection VM of open subsets of M , such that
for each V ∈ VM, there is open UV ⊂ <d and smooth bijection τV : V → UV ;
moreover, such charts τV and τV̂ must be compatible, meaning that the mapping

τ−1

V̂
◦ τV on V ∩ V̂ must also be smooth (this holds vacuously when V ∩ V̂ is

empty). The coordinates of τV (p) can be considered the coordinates of p ∈ V ,
so a chart τV will sometimes be called a coordinate system for V . There can be
many different charts.

Riemannian Manifolds. A Riemannian d-manifold comprises a d-manifold
M and a positive-definite quadratic form q(x; p) in x, for each p ∈ M and x in
the tangent space Tp of M at p. Put another way, for each p ∈ M , there is a
positive-definite matrix Hp, and q(x; p) is xTHpx. Also, the entries of Hp are
smooth functions of p. The form q(x; p) is also called a metric tensor, as it can
be used to define a measure of distance: the length of a curve γ : [a, b] →M can
be given as

∫

[a,b]

√

q(γ̂′(t); γ(t))dt, where γ̂(t) = τV (γ(t)) when γ(t) ∈ V ∈ VM .

(This expression can be extended across members of VM by addition.) The dis-
tance between two points is the infinum of the lengths of the curves connecting
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them; that is, (M, q) is a length space. Since γ ′(t) is the tangent vector to the
curve at t,

√

q(γ̂′(t); γ(t)) can be interpreted as the length of an infinitesimal
step in the direction of the curve, as measured by q. The metric tensor q also
defines an associated measure of area (d-volume), µq(S) :=

∫

S

√

det q(·; p)dp.
Charts of Surfaces. We will call a smooth d-manifold M embedded in

<d+1 a surface. (That is, M has codimension one.) Here, using smoothness and
the inverse function theorem, we can assume that the charts take a particular
form: for any point p ∈ M , let vp be the unit normal to M at p, and Qp be the
(d+ 1) × d matrix whose columns are the unit vectors of a basis of its tangent
hyperplane Tp. (We assume that the manifold has a unique unit normal at each
point; this is implied by smoothness, or could almost be viewed as our definition
of smoothness.) Form (d + 1) × (d + 1) matrix [Qp vp], whose last row is vp.
The Euclidean transformation Ep : x → [Qp vp]

T (x − p) has the properties
that Epp = 0 and that the xd+1 = 0 hyperplane is the tangent hyperplane to
EpM at p. Also, there is a neighborhood Np of p in M such that EpNp is a
Monge patch, that is, xd+1 = f(x1, . . . , xd) for a smooth bijection f , for all
(x1, . . . , xd+1) ∈ EpNp. The corresponding coordinate system τp takes point
y ∈ Np to x ∈ <d, where (x, f(x)) = Epy.

With the above conditions the Taylor expansion of f at p has its constant
and linear terms equal to zero, and its quadratic term is xTHpx. (The quadric
surface obtained by dropping the higher order terms in f is called the osculating
paraboloid.)

Diagonalization. Since any Hessian Hp is symmetric, it has an eigende-

composition Hp = ST
p ĤpSp, where Sp is an orthogonal matrix of eigenvectors,

and Ĥp is a diagonal matrix of real eigenvalues. Thus the Hessian at 0 = SpEpp

of (a new version of) f is the diagonal matrix Ĥp := diag(α1, . . . , αd), that is,
the mixed partial derivatives of f at SpEpp = 0 are all zero. With no loss of
generality, we can assume that f and H have this form, and will do so from now
on, so Ĥp will just be denoted by Hp. In this context, the above operations are
called reducing a quadratic form to a sum and difference of squares. This is not
very far from the Morse Lemma.

For p ∈ M , call the coordinate system constructed so far, with p at the
origin, tangent plane Tp equal to the xd+1 = 0 hyperplane, and Monge patch
function f with diagonal Hessian, the coordinate system oriented to p.

Convexification. The diagonal matrix |Hp| is positive semidefinite, where
|Hp| has entries that are the absolute values of the entries of Hp. The matrix
Hc

p := |Hp|+ δI is thus positive definite, for any δ > 0, and so yields a positive
definite quadratic form. Here the c means “convex”, since we have replaced
xTHpx with the related convex function xTHc

px.

The Riemannian metric tensor on M computed as xTHc
px at each point p (in

the coordinate system oriented to p) will be denoted q II(x; p). The “II” refers to
the Second Fundamental Form (discussed below), since xTHpx gives the value
of the quadratic form II at p, for tangent vector x. This “convexification” of
Hp is similar to a construction used for anisotropic Voronoi diagrams, and to
one used by Chen et al. [CSXar]. The additive term δI can be made arbitrarily
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small, at the cost of affecting the point at which asymptotic conditions apply.
Reducing to sums and differences. Having put the Hessian at p in the

diagonal form xTHx =
∑

i αix
2
i , it is only one more step to scale x by

√

Hc
p ,

giving a region such that for x̂ =
√

Hc
px in it, x̂T x̂ = xTHc

px. (Note that this
step, unlike previous ones, is not a Euclidean transformation: it stretches along
the coordinate axes.) Near p ∈ M , the metric tensor of the Euclidean distance
on x̂ corresponds to a metric tensor q II(·; p). Areas scale by

∏

i

√
αi =

√

detHc
p .

Fundamental Forms. With a coordinate system oriented to p, the matrix
of the First Fundamental Form I at 0 = SpEpp is simply the d × d identity
matrix I . The matrix of the Second Fundamental Form II at 0 = SpEpp is Hp,
and the matrix of the Third Fundamental Form III is H2

p (= HpHp).
The Riemannian metric tensor qI obtained by using the First Fundamental

Form gives the ordinary (inherited, natural) arc length, and the usual surface
area, denoted here µI. These may also be denoted by qE and µE , for Euclidean.

The metric tensor q III defined by

q III(x; p) := xT (δI +H2
p )x,

a δ-perturbation to the Third Fundamental Form, gives an arc length which is
the length of the image of the curve under the Gauss map, together with a small
term equal to δ times the ordinary arc length; here the Gauss map takes a point
p ∈M to the unit normal vector to M at p. (As with q II, the δ term is added to
make a positive definite quadratic form; the perturbation δI can be arbitrarily
small, but not zero.) In the limit as x → 0, the vector Hpx approaches the
difference between the unit normal [0;−1] to M at 0, and the unit normal
at x. Thus xTH2

px approaches the squared length of that difference.2 The
corresponding area (d-volume) measure of M ′ ⊂M , is

µIII(M
′) :=

∫

p∈M ′

√

det(δI +H2
p )dp.

The integrand is approximately det |H | when that quantity is not too small,
that is, the absolute value of the Gaussian curvature. Up to the δ-perturbation,
this integral is the area of the image of M ′ under the Gauss map, that is, the
total absolute curvature.

Finally, the metric induced by the convex form of II, with a metric tensor
given above as q II, will be called the root-curvature distance, and the corre-
sponding µII(M

′) :=
∫

M ′

√

detHc
p will be called the total root curvature. The

form II at x, that is, xTHpx, is the directional curvature of M , in the direction
x. The form q II therefore is always at least as large as the absolute value of the
directional curvature. Moreover, since the Taylor expansion of f(x) about p is

f(x) = f(p) + ∇f(p)x+ xT∇2f(p)x/2 +O(‖x‖3),

2 The (multi-dimensional) Taylor expansion of ∇f(x) at 0 is ∇f(x) = ∇f(0) +∇2f(0)x +
O(‖x‖2), and here ∇2f(0) = Hp and by construction ∇f(0) = 0, so ∇f(x) ≈ Hpx. The
unit normal to M at 0 is (0, . . . , 0,−1) ∈ <d+1, and at x is v(x)/‖v(x)‖, where v(x) =
(∇f(x),−1) ≈ (Hpx,−1). As ‖x‖ → 0, ‖v(x)‖ → 1, and the unit normal converges to
(Hpx,−1). Thus the difference of the normals is Hpx, up to higher-order terms, and xT H2

px
is its squared norm.
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and f(0) = 0 and ∇f(0) = 0 by construction for a coordinate system oriented
to p, we have

|f(x)| = |xTHpx/2| +O(‖x‖3) = q II(x; p)/2 +O(‖x‖3).

For p and p′ close enough together, DII(p, p
′)2 ≈ q II(p

′−p; p), and so DII(p, p
′)2

is thus an upper bound on |f(p′)|, and again, f(p′) is the distance of p′ ∈M to
the tangent plane at p, the deviation of M from flatness between p and p′. This
is discussed more formally as Lemma 4.1.

In Section 6, a metric implicitly used by Dudley for convex boundaries,
and called isophotic by Pottmann et al. will be discussed; its metric tensor is
q I+III := q I + q III. Since I is positive definite, and III is positive semidefinite,
no “convexification” is needed for qI or q I+III, and only the δ perturbation is
needed to make q III positive definite.

The distances onM implied by qX , for X ∈ {I, II, III, I+III}, will be denoted
by the correspondingDX . Combined with the corresponding area measures µX ,
the metric measure spaces (M,DX , µX) are obtained. A ball with center x and
radius ε in metric DX will be denoted BX(x, ε).

As discussed further in Section 5, a metric measure space (M,D, µ) will be
called dimension regular if there is a number d and constant C such that for
any x ∈M , µ(B(x, ε)) ≈C εd, for sufficiently small ε. We will generally assume
that a manifold M is such that (M,DX , µX) is dimension regular.

The following lemma is straightforward.

Lemma 3.1 If the compact metric measure space (U, D, µ) is dimension regular
with dimension d, then the size of an ε-net of U is Θ(µ(U)/εd) as ε→ 0.

Gruber[Gru93], Lemma 1, proves such a bound for Riemannian manifolds
that is tight up to lower order terms.

4 Hausdorff Approximations

The DII distance will be the main concern here; the next lemma gives the
basic relations between DII distance and deviation from linearity. The lemma
follows from the lemmas of Gruber[Gru93, Gru04], but a proof is included for
completeness.

Lemma 4.1 For any compact smooth d-surface M , value λ with 0 < λ < 1,
and point r ∈M , there is neighborhood Vr(λ) of r such that for p, p′ ∈ Vr(λ),

DE(p, Tp′) ≤λ DII(p, p
′)2 ≈λ ‖

√

Hc
r(τr(p− p′))‖2

in the coordinate system oriented to r, where DE(p, Tp′) is the minimum Eu-
clidean distance from p to the tangent plane at p′, and τrp is the orthogonal
projection of p onto Tr. Also, for V̂ ⊂ Vr(λ),

µII(V̂ ) ≈λ µ(τrV̂ )
√

| detHc
r |.
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Proof: By the smoothness of M , there is a neighborhood V of r where for
all p ∈ V and all x ∈ <d+1, in a coordinate system oriented to r,

xT∇2f(p)x ≤λ qII(x; p) ≈λ qII(τrx; r)

= (τrx)
THc

r (τrx) = ‖
√

Hc
r (τrx)‖2

2.

(Here, again, f(x) is the Monge function for the manifold in the neighborhood,
and τrx is the projection of x to <d, that is, setting the last coordinate to zero.)
For the dilated coordinates y :=

√

Hc
rτrx, then, qII(x; p) ≈λ y

T y. The latter is

the metric tensor of Euclidean distance, so DII(p, p
′)2 ≈λ ‖

√

Hc
r (τr(p − p′))‖2,

as claimed.
The tangent Tp′ is the best linear approximation to f at p′. By Taylor’s

theorem with Lagrange remainder,

f(p) = f(p′) + (p− p′)T∇f(p′) + (p− p′)T∇2f(p∗)(p− p′),

where p∗ is on the line segment from p to p′. So

DE(p, Tp′) ≤ |f(p) − (f(p′) + (p− p′)T∇f(p′))|
= |(p− p′)T∇2f(p∗)(p− p′)|
≤λ (p− p′)THc

p∗(p− p′)

≈λ (p− p′)THc
r (p− p′)|

= ‖
√

Hc
r (τr(p− p′))‖2 ≈λ DII(p, p

′)2.

Using the properties of the ≈λ relation, and renaming λ completes the proof
of the first relation of the lemma.

The area relation comes from the change of variable theorem of calculus, but
can also be described as follows. For p′ ∈ BII(p, ε) ⊂ Vr(λ), the relation

DII(p, p
′)2 ≈λ ‖

√

Hc
r(τr(p− p′))‖2

implies that
√

Hc
rτrBII(p, ε) is contained in

BE(
√

Hc
rτrp, ε(1 + λ)),

and contains the concentric ball with radius ε/(1 + λ), so on one side,

µ(
√

Hc
rτrBII(p, ε)) ≤ εd(1 + λ)d ≤ εd(1 + 2dλ),

for small enough λ, and this measure is greater than εd/(1 + 2dλ), so

µ(
√

Hc
rτrBII(p, ε)) =

√

detHr
cµ(τrBII(p, ε)) ≈2dλ ε

d.

Since µII(BII(p, ε)) = εd, the area relation follows for all sufficiently small balls,
and so for larger regions, after redefining λ appropriately.
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4.1 Upper Bound

The upper bound construction uses an ε-net on the surface, in the DII metric,
and then computes a Delaunay triangulation in the DII metric. The mesh T
then has the same vertex set, and for each DII-Delaunay simplex, a Euclidean
simplex with the same vertices.

To use this construction, we need to ensure that the ε-net E has a well-
defined DII-Delaunay triangulation. The results of Leibon and Letscher [LL00]
imply this, for ε small enough. The key property needed is that for d+ 1 points
close enough together, there is exactly one circumscribing sphere. The Delaunay
triangulation is then implied, as usual, by the set of circumspheres of points in
the ε-net E that are empty. Here empty means that the open ball bounded by
such a sphere contains no points of E.

The simplices of the triangulation, combinatorially, are the sets of points of
E that determine an empty circumsphere. It will be helpful to consider also
the simplices as a geometric subdivision of M . Such simplices can then be
defined as the cells of the power diagram of the triangulation circumcenters.
The power diagram is a kind of weighted Voronoi diagram; here the weight of
a circumcenter is picked to be the radius of its circumsphere. (See [ACK01],
for example, or an allusion in [LL00].) That is, each empty circumsphere with
center c has radius rc, and the region (Delaunay “simplex”) of c is

{p ∈ M | DII(c, p)
2 − r2c ≤ min

center c′
DII(c

′, p)2 − r2c′}

By definition, every point of M is in some face of the triangulation. It is not
hard to show that every point of M will be in some circumsphere, and that each
point of E determining the circumsphere of c is in the simplex of c, and also
that the simplex of c is contained in the circumsphere of c. Also, since E is an
ε-net, Delaunay neighbors are no more than 2ε apart: otherwise, the center of
the circumsphere of the neighbors is more than ε from them, and so more than
ε from any point in E.

It seems likely that the full power of [LL00] should not really be needed, be-
cause the constructed Delaunay triangulation will be equivalent to the Delaunay
triangulation based on a metric only slightly distorted from Euclidean. From
the previous lemma, each neighborhood Vr(λ) can be projected and scaled as
√

Hc
rτrVr(λ) (in the coordinate system oriented to r), so that Euclidean distance

in the transformed space is approximately equal to the DII distance between the
corresponding points in Vr(λ). It follows that the anisotropic Delaunay trian-
gulation based on DII will look, at the local scale of interest, very much like an
ordinary Euclidean Delaunay triangulation in

√

Hc
rτrVr(λ).

Note that it is not claimed that the mesh T so constructed is well-behaved
in every way, for example, with respect to orientation-reversal.

An alternative approach may be to find triangulations in each patch Vp(λ) by
using the lower convex hull of the points, as lifted to a quadratic approximation
surface. To ensure consistency of the triangulation across domains, a blending
of quadratic approximations using partitions of unity could be done.
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Theorem 4.2 A compact smooth d-surface M has a triangulation T compris-
ing m vertices and O(m) simplices, and with Hausdorff distance

H(M, T ) = O((µII(M)/m)2/d)

as m→ ∞, where the constant factors in the asymptotic bounds depend only on
the dimension.

Proof: As discussed above, pick an ε-net E in the DII metric as the vertex
set of the triangulation. By Lemma 3.1, with m points, such a net will have
ε ≤ Kd(µII(M)/m)1/d.

By the Lebesque Number Lemma and compactness of M , there is a γ > 0
such that for every p ∈ M , the ball BII(p, γ) is contained in some member of
the open cover {Vr(λ) | r ∈ M}. Choose m large enough that ε ≤ γ/5, so that
every ball BII(p, 5ε) ⊂ Vr(λ), for some r, where p ∈ E.

As discussed above, the interpolating mesh T will have the same vertices as
the DII-Delaunay triangulation TII, and for each simplex tII in TII, T will have
a Euclidean simplex t with the same vertex set.

Consider a point p′ ∈ BII(p, ε). There is a simplex t ∈ T , with vertices
in BII(p, 4ε), such that t is above p′, that is, τrp

′ ∈ τrt. This can be proven
as follows. Consider the set TII(p, 3ε) of all tII that meet BII(p, 3ε). From the
above discussion, such simplices are contained in BII(p, 5ε). Let T (p, 3ε) denote
the corresponding simplices of T . Since every point of Vr(λ) is in some simplex
of TII, TII(p, 3ε) covers BII(p, 3ε). There is a continuous mapping from each tII
onto the corresponding t, and so a continuous mapping from BII(p, 3ε) onto the
union of the simplices of T (p, 3ε). Hence the union of T (p, 3ε) has no holes, and
moreover, since the boundary of TII(p, 3ε) is outside BII(p, 3ε), the boundary of
τrT (p, 3ε) must be outside τrBII(p, ε), for λ small enough. So τrp

′ is in some
τrt, for t ∈ T with τrt ⊂ τrBII(p, 4ε).

By the previous lemma, every vertex of t is within Euclidean distance 16ε2(1+
λ) of Tp, and so some point of t is within that Euclidean distance of τrp

′. Since
p′ is no more than ε2(1 + λ) from τrp

′, it follows that some point of t is within
17ε2(1 + λ) of p′.

Since for every point p′ ∈ M , there is some p ∈ E within DII distance ε, it
follows that DE(M, T ) ≤ 17ε2(1 + λ).

A similar, but simpler argument shows that DE(T ,M) ≤C ε2: for t ∈ T ,
pick a vertex p of T ; since no point of tII is farther than 2ε from p, no point of t
is more than 4ε2(1+λ) from Tp. For each point in τrt, there is point of M with
the same projection, and also within 4ε2(1 + λ) of Tp. Therefore any point of t
is within 8ε2(1 + λ) of some point of M .

The theorem follows.

4.2 Lower Bound

When the diagonal entries of the diagonal matrix H (as discussed in Section 3)
all have the same sign, the second fundamental form is convex (or concave),
and so the first approximate inequality of Lemma 4.1 becomes an approximate
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equality, and the upper bound of the above theorem can become a lower bound
as well. However, when the signs are mixed, no such direct relationship between
DII and approximation error is possible, because in the mixed case, the manifold
(and some of it tangents) may contain straight line segments. The distance DII

thus does not allow lower bounds. As will be shown, though, the measure µII

does, for Hausdorff distance: roughly, if a simplex is large in measure, its error
must be also. After a lemma, this is shown for any triangulation of a pure-
quadric patch, and then for somewhat-restricted triangulations of somewhat-
restricted manifolds.

4.2.1 Lower Bound for Function Interpolation

The next lemma gives the basic relation between interpolation error and function
value, for a quadratic function. Recall the form of the function assumed in the
lemma is no loss of generality, except for the constraints on the αi’s.

Lemma 4.3 For x := (x1, . . . , xd) ∈ <d let

f(x) :=
∑

i

αix
2
i = xTDx,

where αi = ±1 for all i, and D := diag(α1, α2, . . . , αd). Then the maximum
error in linearly interpolating f between x ∈ <d and y ∈ <d is |f(x− y)|/4.

Proof: Noting that xTDy = yTDx, the error of interpolation at a point β of
the way from x to y is the absolute value of

f(x)+β(f(y) − f(x)) − f(x+ β(y − x))

= xTDx+ β(yTDy − xTDx) − (x+ β(y − x))TD(x + β(y − x))

= xTDx+ β(yTDy − xTDx) − xTDx− β(y − x)TDx− βxTD(y − x) − β2(y − x)TD(y − x)

= β(yTDy − xTDx− (y − x)TDx− xTD(y − x)) − β2(y − x)TD(y − x)

= (β − β2)(y − x)TD(y − x)

= β(1 − β)f(y − x)

Since β(1 − β)|f(y − x)| is maximum at β = 1/2, the lemma follows.

Lemma 4.4 For x := (x1, . . . , xd) ∈ <d let

f(x) :=
∑

i

αix
2
i = xTDx,

where αi = ±1 for all i, and D := diag(α1, α2, . . . , αd). Then for a simplex
t ⊂ <d, if the maximum error of linearly interpolating f within t is no more
than ε, then the volume of t is no more than εd/22.5d/

√
d!.
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Here the linear interpolation is assumed to assign f(v) to each vertex v of t,
that is, the error is zero at the vertices.

Proof: We can assume that the coordinates for which αi = 1 are the first
d+, for some d+ ≤ d, and the coordinates with αi = −1 are the following
d− := d− d+ ones.

Since x − y = (x − z) − (y − z), and error estimates will be by way of the
previous lemma, we can assume that one vertex of t is the origin. Let [aj bj ],
for j = 1, . . . , d, be the other vertices, where aj has d+ coordinates, and bj has
d− coordinates. Then the previous lemma, and assuming the error bound of ε,
imply that

|f([aj bj ] − [0 0])| ≤ 4ε,

for j = 1, . . . , d. For j and k in 1, . . . , d,

4ε ≥ |f([aj bj ] − [ak bk])|
= |(aj − ak)2 − (bj − bk)2|
= |a2

j − 2aj · ak + a2
k − (b2j − 2bj · bk + b2k)|

= |f([aj bj ]) + f([ak bk]) − 2(aj · ak − bj · bk)|,

and so |aj · ak − bj · bk| ≤ 6ε. If we define matrix A as having rows aj , and B
as having rows bj , then the above says that ‖AAT − BBT ‖∞ ≤ 6ε, where the
matrix norm is simply the maximum of the absolute values of the entries. We
can also write AAT −BBT as [A B][A −B]T , where [A B] is a d× d matrix, so
we have

‖[A B][A −B]T ‖∞ ≤ 6ε.

As is commonly known, the volume of t is | det([A B])|/d! in this notation.
Therefore, using standard facts about the determinant, including that detX ≤
d!, if ‖X‖∞ ≤ 1, and det(εX) = εd det(X) for d× d matrix X ,

d! Vol(t) = | det([A B])|

=
√

| det([A B])|| det([A −B]T )|

=
√

| det([A B][A −B]T )|

≤ (6ε)d/2
√
d!

≤ εd/22.5d
√
d!,

and the lemma follows.

4.2.2 Lower Bound for More General Manifolds

We can generalize this lower bound to a broader setting, but so far a completely
general statement for all smooth manifolds and all triangulations has been elu-
sive. A few conditions on the triangulation T and manifold M are needed. We
start with the assumption that the vertices of the approximating mesh are on
the manifold.
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Small Diameter. The property of smoothness allows us to consider trian-
gulations of small neighborhoods, but it is difficult to handle simplices that span
many such neighborhoods, even though the lower bound lemma above implies
that they must have small measure in any particular neighborhood, if the error
is small. We will simply consider triangulations with simplices each of which
has small diameter in the DII metric. Since only the vertices of a simplex are
assumed to be on the surface M , we need a little more: let Vor(t,M) denote
the Voronoi region of simplex t in M , the set of p ∈ M for which some point of
t is closest in the triangulation T , in Euclidean distance. We will assume that
maxt∈T diamII(Vor(t,M)) is small enough, where the threshold depends on M .

Locally Roughly Quadratic. We also need, to apply the above lemma, a
patch of the manifold to behave “enough” like a quadratic function. Specifically,
we need the condition that if the interpolation error of a local Monge patch is
small, then the error of its local quadratic approximation is also small.

For p ∈ M and λ > 0, pick γ > 0 such that BII(p, γ) ⊂ Vp(λ) (where Vp(λ)
was defined in Lemma 4.1), and let

Lγ(p) := sup
p′,p′′∈BII(p,γ)

y=τpp′,x=τpp′′−y

| xTHpx

f(y + x/2) − (f(y) + f(y + x))/2
|, (1)

where as usual, f(p) is the Monge patch function in the coordinate system
oriented to p, and Hp = ∇2f(p). If the denominator is zero, the fraction is
taken as infinite if xTHpx is nonzero, and as one otherwise. Also, it will be
convenient to make Lγ(p) infinite if Hp has determinant zero. Say that M if
locally roughly quadratic if there is some γ > 0, β > 0, and ψ > 0 such that

µII({p ∈ M | Lγ(p) ≤ β}) > ψµII(M),

that is, Lγ is small over most of M .
While this definition was constructed to fill the needs of the proof, the de-

nominator f(y + x/2) − (f(y) + f(y + x))/2 is proportional to xTHpx when
f(x) = xTHpx, and so the Lγ(p) function is large only when higher order terms
in the Taylor expansion of f are large; that is, when f varies too much from
quadratic. In particular, if x is such that xTHpx = 0, then f must be linear in
the x direction in the relevant neighborhood of p.

We will assume that the values γ, β, and ψ in this definition are fixed, but
unspecified. They affect the constant factor in bound below.

Local Average Aspect Ratio. Given a triangulation T and a ball B :=
BII(e, δ) in someM ′ ⊂M , letN(B) denote the set of simplices in T that contain
points that are nearest neighbors of points in B. That is, each simplex in N(B)
has a point p such that for some p′ ∈ B, DII(p, p

′) = DII(p
′, T ). Consider

the coordinate system oriented to e, so that τe(N(B)) is the projection of the
simplices in N(B) onto the tangent Te at e.

Define the local average aspect ratio of T as

LAAR(T ;M ′, δ) := sup
e∈M ′,B=BII(e,δ)

∑

t∈N(B) SAE(τe(t))
∑

t∈N(B) µE(τe(t))
,
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where SA() is the (Euclidean) surface area. This quantity will be required to
be bounded above.

A key property here is that for a convex body P and unit ball B,

µE(P + εB) = µE(P ) + ε SA(P ) +O(ε2) (2)

as ε→ 0.
Of course, it is sufficient for this condition to hold that a similar one hold

for every simplex t ∈ T individually, but the weaker local average condition is
enough for the lower bound. Also, suppose each simplex t ∈ T has a containing
hyperplane that is nearly parallel to the tangent hyperplane to M at points in
Vor(t). Here the aspect ratio of t, in this surface-area-to-volume sense, is about
the same as its projected version. So it is sufficient that every simplex to have
small aspect ratio, and to have a normal vector that has small angle to the
normal at the manifold region it is approximating.

Theorem 4.5 Suppose M is a d-surface which is roughly locally quadratic, as
defined just above, for some γ, β, and ψ. Then there is a value γ ′ depending on
M , and a constant Kd depending only on the dimension, so that the following
hold. Suppose T is a Euclidean triangulation near to M , whose vertex set is a
subset of M , and such that maxt∈T diamII(Vor(t,M)) ≤ γ′, and

LAAR(T ;M,γ′) ≤ 1/H(T ,M).

Then when the number of simplices |T | is large enough,

H(T ,M) ≥ Kd

β
(ψµII(M)/|T |)2/d,

for some Kd depending only on the dimension.

Proof:
The proof has three major steps, that show the following:

1. For γ′ small enough, every t ∈ T belongs to a “well-behaved” patch of M ,
using the diameter bound;

2. There is some t∗ ∈ T that is “large”, using the small local average aspect
ratio;

3. The error of linear interpolation (vertical distance) of f on t∗ is large,
using the hypothesis that M is roughly locally quadratic, and Lemma 4.4.

Consider the compact set

Mβ,γ := {p ∈M | Lγ(p) ≤ β},

and its open cover
{Vp(λ) ∩Mβ,γ | p ∈ M}.
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Here Vp(λ) is again as in Lemma 4.1, and λ > 0 is small enough, certainly less
than one tenth. Applying the Lebesque Number Lemma, there is some radius
γ′ so that all balls in Mβ,γ with radius no more than 3γ ′ are contained in some
member of that open cover. Set γ ′ := min{γ′, γ}, and find a γ′-net E of Mβ,γ.

For a simplex t ∈ T , let Vor(t) denote its Voronoi region in Mβ,γ.
Since E is a γ′-net, for any point x ∈ Vor(t), there is some e ∈ E within DII

distance γ′ of x. For such x and e, the assumption diamII(Vor(t)) ≤ γ′ implies
that Vor(t) ⊂ Ve(λ) ∩ BII(e, 2γ

′), and also that Lγ(x) ≤ β, as defined by (1).
Thus every simplex t ∈ T has Vor(t) contained in some well-behavedB(e, 2γ ′),

concluding part one of the proof outline.
Consider now the coordinate system oriented to e, as discussed in §3. Since

Vor(t) ⊂ BII(e, 2γ
′), each vertex v of t is inBII(e, 2γ

′). Hence τe(v) ∈ τe(BII(e, 2γ
′)),

and so τe(t) ⊂ τe(BII(e, 3γ
′)), for small enough λ. (Here the factor of three in

the radius allows for nonconvexity of τe(BII(e, 2γ
′)) due to variation in qII(; p)

over Vp(λ).)
For given e ∈ E and B := BII(e, γ

′) ∩Mβ,γ, let N(B), as above, be the set
of t ∈ T such that B ∩ Vor(t) is not empty. By the assumption regarding the
local average aspect ratio,

∑

t∈N(B)

µE(τe(t)) ≥ H(T ,M)
∑

t∈N(B)

SAE(τe(t)).

So by (2) and Lemma 4.1,

2
∑

t∈N(B)

µE(τe(t)) ≥
∑

t∈N(B)

µE(τe(t)) +H(T ,M) SAE(τe(t))

≥
∑

t∈N(B)

µE(τe(t) +BE(0, H(T ,M)))/2

≥
∑

t∈N(B)

µE(τe(Vor(t)))/2

≥ µII(B)/2(1 + λ)
√

| detHe|,

for small enough H(T ,M). (Here BE(0, H(T ,M)), as with τe(t), is in the
tangent hyperplane to M at e.)

Since E is a γ′-net, Vor(t) cannot be contained in too many balls B(e, 2γ ′),
at most K̂d for a constant K̂d at most exponential in d. Letting e(t) ∈ E denote
a member of E such that t ∈ N(BII(e, γ

′)), and he :=
√

| detHe|, we have, using
the definition of “roughly locally quadratic,”

∑

t∈T

he(t)µE(τe(t)(t)) ≥
∑

e∈E

µII(B)/4K̂d ≥ ψµII(U)/4K̂d.

Therefore, there is some t∗ ∈ T such that

he(t∗)µE(τe(t∗)(t
∗)) ≥ KdψµII(U)/|T |,
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where Kd := 1/4K̂d.
Thus there is some “large” t∗ ∈ T , concluding part two of the proof outline.
Applying the transformation x̂ =

√

|He|x, where e := e(t∗), we obtain a

simplex t̂ =
√

|He|τe(t∗) in the transformed coordinates with

µE(t̂) ≥ KdψµII(U)/|T |. (3)

Moreover, the function xTHex is equal to x̂TDx̂, where D is a diagonal ma-
trix with entries equal to ±1. Applying Lemma 4.4, we have that the error (ver-
tical distance) of linear interpolation within t∗ is at least Kd(ψµII(U)/|T |)2/d,
using a new value of Kd. Applying the hypothesis that M is “locally roughly
quadratic,” the error of linear interpolation of f is at least as large at that for
xTHex, divided by β, and so is

Kd

β
(ψµII(U)/|T |)2/d,

the bound of the theorem statement.
We are interested in the Hausdorff distance from t to M , and not linear

interpolation of f ; however, the Hausdorff distance includes the distance from
each point of t to M , and by construction λ bounds the angle between the
“vertical” normal at e and the unit normal at the nearest neighbor in M to a
point in t. The theorem follows, after again adjusting and renaming Kd.

5 Optimal Quantization Sets are Delone

It may be of interest to judge approximations using other distance measures, for
example, the average distance from the mesh to the manifold, rather than the
maximum distance. Such formulations lead to the optimal quantization problem
of information theory.

For a metric measure space (U, D, µ) and penalty function g, the optimal
quantization problem is to find a set S ⊂ U such that

∫

g(D(x, S))dµ(x) is as
small as possible. Gruber[Gru04] found tight bounds for the optimal quantiza-
tion problem, when U is a Riemannian manifold, and D and µ are the associated
metric and measure, respectively. The paper also shows that sets S that are
optimal quantizers (solve the above problem) are also Delone sets, and that
characterization is said to be “the hardest part of the proof.” This section gives
a proof of this characterization, using the natural assumptions of “Voronoi regu-
larity” and “dimension regularity”. For Riemannian manifolds these conditions
naturally follow from some of Gruber’s preliminary lemmas. The proof given
here applies to the penalty function g(z) = z2, but the extension to other ex-
ponents is trivial; Gruber has shown that the results apply to an even broader
class of penalty functions.

The next lemma uses simple properties of length spaces (defined in Section 2)
to bound the change resulting from deleting a member of S.
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Lemma 5.1 Let (U, D) be a length space. For finite set S ⊂ U, p ∈ S, and
x ∈ Vor(p, S), we have D(x, S \ {p}) ≤ 3C(p, S).

Proof:
Suppose p′ is the closest point of S \ {p} to p. Then there is a point x′

on the shortest path from p to p′ such that D(p, x′) = D(p′, x′) = D(p, p′)/2.
Moreover, D(x′, p′′) ≥ D(p, p′)/2 for p′′ ∈ S \{p, p′}, since otherwise D(p, p′′) ≤
D(p, x′)+D(x′, p′′) < D(p, p′), by the triangle inequality. For any x ∈ Vor(p, S),
again using the triangle inequality,

D(x, S \ {p}) ≤ D(x, p′) ≤ D(x, p) +D(p, x′) +D(x′, p′) ≤ 3C(p, S),

and the lemma follows.
Say that metric measure space Z = (U, D, µ) is Voronoi regular if there

is threshold tV such that for finite S ⊂ U with D(U, S) ≤ tV , it holds that
∑

p∈S µ(Vor(p, S)) = µ(U).
Gruber[Gru04] shows that a nonzero threshold tV exists for Riemannian

manifolds, but the following, from Remark 16 of Chrusciel et al.[CFGH02],
shows that tV can be taken as infinite. It can be proven using the Lipschitz
property of the function D(x, S), Rademacher’s result that Lipschitz functions
are differentiable almost everywhere, and the nondifferentiability of D(x, S) at
perpendicular bisectors.

Lemma 5.2 On a Riemannian manifold (U, D) and S ⊂ U, the set of points
in U that are equidistant from some two points in S has measure zero.

Say that Z is dimension regular if there is a threshold tD such that the balls
B(x, ε) are measurable for all x ∈ U and ε < tD, and also

H(ε) := sup
x∈U

µ(B(x, ε))/εd

and
L(ε) := inf

x∈U

µ(B(x, ε))/εd

are in Θ(1) as ε → 0. (These values are related to the injectivity radius. This
condition is stronger than the definition given by Cutler[Cut93] for dimension
regularity, which requires only that log(µ(B(x, ε))/εd) is in o(log(1/ε)). The
condition is equivalent to the positive density condition of Gruber[Gru04], com-
bined with the compactness of U.)

The following lemma implies that we can assume that D(U, Sn) is small, for
large enough n.

Lemma 5.3 If metric measure space Z = (U, D, µ) is dimension regular, then
sets Sn ⊂ U of size n that minimize

F (S) :=

∫

D(x, S)2dµ(x)

have D(U, Sn) = o(1) as n→ ∞.
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Proof: Find an ε-net E of U for ε < tD, using for example the greedy al-
gorithm. Since E is an ε-cover, F (E) ≤ ε2

∑

p∈E µ(B(p, ε)). Since E is an
ε-packing, the balls B(p, ε/2) are disjoint. By the dimension regularity assump-
tion, each B(p, ε/2) is measurable, and so by the disjointness and measurability,
∑

p∈E µ(B(p, ε/2)) ≤ µ(U). Again by dimension regularity, µ(B(p, ε/2)) =

Ω(µ(B(p, ε)), and so F (E) = ε2O(µ(U)). Since F (S|E|) ≤ F (E),

F (Sn) = o(1)

as n→ ∞.
Moreover, for any n, if q ∈ U has D(q, Sn) = D(U, Sn), then the ball B̂ :=

B(q, D̂), where D̂ := min{tD, D(U, Sn)/3}, has D(x, Sn) > 2D(U, Sn)/3 for all
x ∈ B̂, by the triangle inequality.

Thus F (S|E|) ≥ (2D(U, S|E|)/3)2Ω(D̂d), and so D(U, Sn) = o(1) also as
n→ ∞, as claimed.

Theorem 5.4 Suppose Z = (U, D, µ) is a compact metric measure space, for
length metric D and Borel measure µ. Suppose that Z is Voronoi regular and
dimension regular. Then a set Sn ⊂ U of size n that minimizes

F (S) :=

∫

D(x, S)2dµ(x)

is an (Ω(β(n)), O(β(n)))-Delone set, where

β(n) := (µ(U)/n)1/d,

as n→ ∞, and the constants depend only on d.

Proof: Suppose S is a set of size n with D(U, S) less than tD and tV ; by the
lemma just above, for large enough n this is a necessary condition for S to be
an optimal set Sn.

To prove the covering and packing conditions, we will show that if they
fail for such an S, then there is a point p ∈ S and a point q ∈ U such that
F (S \ {p} ∪ q) is smaller than F (S), so that S cannot be optimal. We will pick
a point p in this pivoting scheme to show that S is an O(β(n))-covering, and
then pick a different p to show that S is an Ω(β(n))-packing.

The point q will be one realizing D(U, S ′), where S′ := S \ {p}, so

D̂ := D(q, S′) = D(U, S′) ≥ D(U, S).

That is, S′, and so S, are D̂-coverings. Points in the ball B(q, D̂/3) have distance
to q no more than D̂/3, by definition, and at least 2D̂/3 from any point in S′,
by the triangle inequality. Therefore any point x ∈ B(q, D̂/3) has

D(x, S′)2 −D(x, S′ ∪ {q})2 ≥ (2D̂/3)2 − (D̂/3)2 = D̂2/3,

so
F (S′) − F (S′ ∪ {q}) ≥ µ(B(q, D̂/3))D̂2/3. (4)
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To show that Sn is a O(β(n))-covering, pick p ∈ S that has the smallest
Voronoi region in measure. Voronoi regularity implies that p has µ(Vor(p, S)) ≤
µ(U)/n. By Lemma 5.1, each x ∈ Vor(p, S) has D(x, S ′) ≤ 3C(p, S) ≤ 3D̂.
Thus deleting p increases F by at most (3D̂)2µ(U)/n, that is,

F (S) − F (S′) ≥ −(3D̂)2µ(U)/n.

By this fact, dimension regularity, and (4), we have

F (S) − F (S \ {p} ∪ {q})
= F (S) − F (S′) + F (S′) − F (S′ ∪ {q})
≥ −(3D̂)2µ(U)/n+ (D̂2/3)µ(B(q, D̂/3))

≥ D̂2[Ω((D̂/3)d)/3 − 9µ(U)/n],

as D̂ → 0. This expression is greater than zero when

Ω((D̂/3)d) > 27µ(U)/n.

Thus if D̂ = D(U, S′) is not in O(µ(U)/n)1/d, S cannot be optimal for its size.
Since S is an D̂-covering, Sn must be an O(β(n))-covering as claimed.

To show that Sn must be an Ω(β(n))-packing, assume as before that D(U, S)
is less than tD and tV , and also S is an O(β(n))-covering; these are all necessary
for optimality.

Now pick the closest pair of points p, p′ ∈ S, at distance D̃ := D(p, p′). We
will show that if D̃ is too small, then F (S \ {p} ∪ q) is smaller than F (S), so
that S is not optimal, where q is chosen as before. Note that by an argument
as in Lemma 5.1,

D̃ ≤ 2C(p, S) ≤ 2D(U, S) ≤ 2D(U, S \ {p}) =: D̂. (5)

For x ∈ Vor(p, S) we have D(p′, x) ≤ D̃ +D(p, x), so that

D(x, S′)2 −D(x, S)2 ≤ (D̃ +D(p, x))2 −D(p, x)2

= D̃(D̃ + 2D(p, x))

≤ D̃(D̃ + 2D̂). (6)

Using (4), (5), (6), and dimension regularity,

F (S) − F (S \ {p} ∪ {q}) ≥ (D̂2/3)Ω((D̂/3)d) − D̃(D̃ + 2D̂)O(D̃d),

≥ [Ω(D̂2) −O(D̃(D̃ + 2D̂))]D̂d,

as D̂ → 0. This is greater than zero when D̃ is less than a constant factor times
D̂.

It holds that D̂ = Ω(β(n)), which can be shown as follows. Since D̂ ≤ tV ,
there is some p′ ∈ S′ with µ(Vor(p′, S′)) ≥ µ(U)/(n−1). Letting Cp′ := C(p′, S),
we have µ(Vor(p′, S′)) = O(Cd

p′ ), and so

D̂ ≥ Cp′ = Ω((µ(U)/(n− 1))1/d) = Ω(β(n)).
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So for optimal Sn, D̃ must at least a constant factor times D̂, which is
Ω(β(n)). That is, the distance D̃ between the closest pair of points in S must
be Ω(β(n)), which means that Sn is an Ω(β(n))-packing.

This completes a version of the argument by Gruber. The following corollary
implies that ε-nets give constant-factor approximations.

Corollary 5.5 Under the conditions of Theorem 5.4, a greedy ε-net E of size
n has F (E) = O(F (Sn)) as n→ ∞, where F (Sn) is optimal for a set of size n.
The constant factor is at most exponential in the manifold dimension d.

Proof: From Theorem 5.4, Sn is a β-packing and a βh-cover, for some β and
βh = O(β). So

F (Sn) ≥ n(β/2)2Ω(βd) = nΩ(βd+2),

while a greedy ε-net E of size n has

F (E) ≤ n(ε)2O(εd) = nO(εd+2).

The greedy construction has the property that the associated εn for n points is
no more than twice the optimal cover radius for n points. Therefore εn ≤ βh =
O(β), and the greedy ε-net has F (E) = O(F (Sn)) as n→ ∞, as claimed.

The following characterization of optimal sets Sn may also be interest.

Theorem 5.6 Under the conditions of Theorem 5.4, for an optimal set Sn and
for any two points p, p̂ ∈ Sn, we have C(p̂, Sn) ≤ βdC(p, Sn), where

βd ≤ 6(H(C(p, Sn))/L(C(p̂, Sn)/3))d/(d+2).

That is, for a family of manifolds with H(ε) and L(ε) only exponentially
dependent on d, the circumradius ratio is in not increasing in d.

Proof: We will show that if the condition does not hold, then F (S\{p}∪{q})
is smaller than F (S), where q ∈ U realizes C(p̂, S \ {p}) ≥ C(p̂, S) =: D̂. As in
the proof of the theorem above, the reduction in F due to adding q to S is at
least (D̂2/3)Ω((D̂/3)d). Letting C̃ := C(p, S), S′ := S \ {p}, and p′ be closest
in S′ to p, for x ∈ Vor(p, S), the increase in distance is, using D(p, p′) ≤ 2C̃,

D(x, S′)2 −D(x, S)2 ≤ D(p′, x)2 −D(p, x)2

≤ (D(p, p′) +D(p, x))2 −D(p, x)2

= D(p, p′)(D(p, p′) + 2D(p, x)) ≤ 2C̃(2C̃ + 2C̃) ≤ 8C̃2.

Since also µ(Vor(p, S)) ≤ L(C̃) = O(C̃d), we have

F (S) − F (S \ {p} ∪ {q}) ≥ (D̂2/3)(D̂/3)dL(D̂/3) − 8C̃2(C̃)dH(C̃),

so we must have (D̂/C̃)d+2 ≤ 3d+18H(C̃)/L(D̂/3) for optimality, or D̂ ≤
C̃6(H(C̃)/L(D̂/3))1/(d+2).
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6 The curvature distance and Dudley’s construc-

tion

As discussed by Pottmann et al. [PSH+04] and mentioned in §1 and §3, the
regularized isophotic distance has metric tensor q I+III := q I + q III; that is, it
combines the metric tensor q I for arc length and q III for arc length in the Gauss
map image. As discussed in §3, at a point p the matrix of q I+III is I +H2

p in
the coordinate system is oriented to p. We will simply write H for Hp below.

The analogous matrix for the root-curvature metric q II is H . For any d-
vector v, its measure by the isophotic metric tensor at p is

√
vT v + vTH2v,

while for the root-curvature metric, it is
√
vTHv. Using the Cauchy-Schwartz

inequality and the arithmetic-geometric mean inequality, we have

q II(v; p) = vTHv ≤ ‖v‖‖Hv‖ ≤ (‖v‖2 + ‖Hv‖2)/2

= (vT v + vTH2v)/2 = q I+III(v; p).

Thus the isophotic distance between two points is always greater than the root-
curvature distance, and so an isophotic ε-cover is always an ε-cover for the
root-curvature distance.

By Lemma 3.1, the size of an ε-net for DI+III is proportional to 1/εd times
∫

M

√

det(I +H2
x)dx =

∫

M

√

∏

i

(1 + ki(x)2)dx

≤
∫

M

∏

i

(1 + |ki(x)|)dx,

where ki(x) is the i’th eigenvalue of H . For a 2-manifold, this is no more than
∫

M

dx+

∫

M

|k1(x)| + |k2(x)|dx +

∫

M

|k1(x)k2(x)|dx.

These terms are the surface area, the total mean curvature of the convexified
metric, and the total Gaussian curvature of the convexified metric, respectively.
The last term is more commonly known as the total absolute curvature. The
total mean curvature of the convexified metric is within a constant factor of the
“root mean square,” or RMS, curvature, with an integrand of

√

k1(x)2 + k2(x)2.
This bound can be strictly larger than for root-curvature distance.

As a concrete example, consider a circular cylinder of radius r, where the
surface area of the “wrapped” part (not one of the capping disks) is 1. While the
Gaussian curvature at a “wrapped” point is zero, the mean and RMS curvatures
are 1/r, and so the total RMS curvature is at least 1/r. As r → 0, this term
in the bound dominates the surface area term. Thus the size of an ε-net in the
DI+III metric is proportional to (1/r)/ε2. In contrast, the size of an ε-net on the
cylinder in the DII metric is to O(1/ε2), not increasing in 1/r, where the cost
comes from the capping disks.3 Since these two nets yield triangulations that
have Hausdorff error O(ε2), the net for DII is more economical for given error.

3Neglecting the δ-perturbation needed for positive-definiteness; on the other hand, a size
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7 Metric Versions of Local Feature Size

While previous sections considered simplicial meshes for approximating a man-
ifold, here the focus is on triangulations of planar regions, where a triangle is
used for piecewise-linear interpolation of a function. A common condition on
such meshes is that the triangles be as close to equilateral as possible. This
implies that the meshes are graded, so that neighboring triangles are not too
different in size.

Given a planar straight-line graph (PSLG) G = (V,E), the local feature size
D(x,G) at point x is the smallest radius r so that the ball B(x, r) meets an
edge e1 of G, and also meets another edge e2 of G that does not meet e1. Here
an edge includes its endpoints, so edges e1 and e2 cannot share endpoints.

The motivation for this definition is that the local feature size at vertex v of
a graded mesh is within a constant factor of the length of an edge incident to v.
We could imagine the local feature size as providing a scaling to the distance
between two points x and y: DE(x, y)/D(x,G) is a measure of the proximity
of x and y, relative to G. This is not symmetrical in x and y; also, it doesn’t
really make any sense if x and y are far from each other. However, it is not
hard to create a distance measure normalized by the local feature size that is
symmetrical, and even obeys the triangle equality; that is, a distance measure
that is a metric.

As shown below, the following two distance measures are metrics:

D1(x, y) := min{1, 2D(x, y)

D(x, y) +D(x,G) +D(y,G)
},

and

D2(x, y) :=
2D(x, y)

D(x, y) + infe1,e2∈E,e1∩e2={}Dt(x, y, e1) +Dt(x, y, e2)
,

that is, e1 and e2 are edges of G that do not meet, and

Dt(x, y, e) :=
1

2
inf
a∈e

DE(x, a) +DE(a, y),

the shortest path between x to y via e.
Both of these distance measures evidently have a maximum value of 1, and

the only metric property that they do not obviously satisfy is the triangle in-
equality. It will also be shown that when the distances are small, say less than
1/5, that they are reasonably well approximated by D(x, y)/D(x,G).

These constructions begin from the biotope transform, also called the Stein-
haus transform:

more like O(
√

αr/ε2) as ε → 0 would be obtained if the cylinder were approximated by the
convex hull of two torii of major radius r and minor radius α. The Gaussian curvature on
a torus in the region of interest is no more than 1/αr, and the area is αr, so the total root
curvature contributed by the torii is proportional to

√
αr.
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Lemma 7.1 [DLD97, Prop. 9.2.1] If (U, D) is a metric space, a ∈ U, and the
distance measure D{a} is defined by

D{a}(x, y) :=
D(x, y)

D(x, y) +D(x, a) +D(y, a)
,

then (U, D{a}) is also a metric space.

Note that if (U, D) is a metric space, then so is ({a, x, y, z}, D), where
{a, x, y, z} ⊂ U.

To show that D1 satisfies the triangle inequality, we use the well-known
property that D(x,G) is 1-Lipschitz, so that D(y,G) ≤ D(x, y) + D(x,G) for
all x and y. The claim then follows from the following more general one.

Lemma 7.2 Let (U, D) be a metric space, and F : U → <+ be a 1-Lipschitz
function, so |F (x) − F (y)| ≤ D(x, y) for all x, y ∈ U. Then

DF (x, y) := min{1, 2D(x, y)

D(x, y) + F (x) + F (y)
}

is a metric on U.

Note that the construction can be generalized to a β-Lipschitz function F
that has an infinum, since (F (x) − infy∈U F (y))/β is a nonnegative 1-Lipschitz
function.

Proof: All properties except the triangle inequality are trivial to verify. For
the latter, note that DF (x, z) ≤ 1 by construction, so that if DF (x, y) = 1 or
DF (y, z) = 1, then immediately DF (x, z) ≤ DF (x, y) +DF (y, z).

So suppose DF (x, y) < 1 and DF (y, z) < 1. From the definition, this implies

F (x) + F (y) > D(x, y) and F (y) + F (z) > DF (y, z) (7)

If also DF (x, z) < 1, then

F (x) + F (z) > D(x, z). (8)

Define the distance to some adjoined object a by D(w, a) := F (w) for w ∈
{x, y, z}, and of course D(a, a) := 0. Then (7) and (8), together with the 1-
Lipshitz property, imply that ({a, x, y, z}, D) is a metric space. (If D(w, a) =
F (w) = 0 for some w ∈ {x, y, z}, then D(w,w′) = 1 for any w′, so D(w, a) 6= 0
here for w 6= a .) Therefore ({a, x, y, z}, D{a}) is the biotope transform of
({a, x, y, z}, D), and the triangle inequality holds for D{a} at x, y, and z. Since
D{a} agrees with DF at x, y, and z, the triangle inequality holds also for DF

at x, y, and z, when DF (x, z) < 1.
Now suppose DF (x, z) = 1, but still DF (x, y) < 1 and DF (y, z) < 1. Then

F (x) + F (z) ≤ D(x, z). This condition and the 1-Lipschitz property imply

D(x, y) + F (x) + F (y) ≤ D(x, y) + F (x) + (F (z) +D(y, z))

≤ D(x, y) + F (x) + (D(x, z) − F (x) +D(y, z))

= D(x, y) +D(x, z) +D(y, z),

26



and similarly

D(y, z)+F (y)+F (z) ≤ D(y, z)+D(z, x)+D(y, x) = D(x, y)+D(x, z)+D(y, z).

Thus

DF (x, y) +DF (y, z)

=
2D(x, y)

D(x, y) + F (x) + F (y)
+

2D(y, z)

D(y, z) + F (y) + F (z)

≥ 2D(x, y)

D(x, y) +D(x, z) +D(y, z)
+

2D(y, z)

D(x, y) +D(x, z) +D(y, z)

=
2(D(x, y) +D(y, z))

D(x, y) +D(x, z) +D(y, z)

≥ 1 = DF (x, z),

since D(x, z) ≤ D(x, y) +D(y, z).
Thus whether DF (x, z) < 1 or not, the triangle inequality holds for DF .
The proof of the triangle inequality for D2 proceeds from the following gen-

eralization of the biotope transform.

Lemma 7.3 Suppose (U, D) is a metric space, Q ⊂ U is closed, and

DQ(x, y) :=
D(x, y)

D(x, y) + infa∈QD(x, a) +D(y, a)
.

Then (U, DQ) is also a metric.

Proof: The only property that is not immediate is the triangle inequality.
For given x, y, z ∈ U, suppose â ∈ Q yields infa∈QD(x, a) + D(z, a), so that
DQ(x, z) = D{â}(x, z). Then by Lemma 7.1,

DQ(x, z) = D{â}(x, z) ≤ D{â}(x, y) +D{â}(y, z) ≤ DQ(x, y) +DQ(y, z),

where the last inequality follows from the definition of DQ. So DQ obeys the
triangle inequality.

Note that

min{1, D(x, y)

D(x, y) + infa∈QD(x, a) + infa∈QD(y, a)
}

is also a metric, since infa∈QD(x, a) is 1-Lipschitz, but is not quite the same as
DQ.

Example: relation to hyperbolic metrics. Consider the points in the
unit disk U := {(x, y) | x2 + y2 ≤ 1}, let D be the Euclidean distance, and let
C be the unit circle bdU . Then

DC(p1, p2) =
D(p1, p2)

1 − ‖p1‖
(1 +O(D(p1, p2))
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as D(p1, p2) → 0. The metric tensor of the Poincairé disk model of hyperbolic
geometry at point z is

ds2 =
dx2 + dy2

1 − z2
.

It seems that DC behaves roughly like the hyperbolic tangent of the Poincairé
metric. It remains to be seen if (U,DC) is a hyperbolic metric space.

Theorem 7.4 Given a PSLG G = (V,E), the distance measures D1(x, y) and
D2(x, y), for x, y ∈ <2, are metrics.

Proof: Again, since D(x,G) is 1-Lipschitz, Lemma 7.2 immediately implies
that D1(x, y) = DD(·,G)(x, y) satisfies the triangle inequality, and the remaining
conditions for a metric are trivial to show.

The triangle inequality for D2 follows from the generalization of the biotope
transform in the lemma just above. Let

Q := {(p1, p2) | p1 ∈ e1, p2 ∈ e2, ei ∈ E, e1 ∩ e2 = {}}.

For x, y ∈ (<2)2, so x = (x1, x2) and y = (y1, y2) with x1, x2, y1, y2 ∈ <2,
let D(x, y) := DE(x1, y1) + DE(x2, y2). Let P := {(x, x) | x ∈ <2}, and let
U = Q∪P . Then (U, D) is a metric space, and DQ is a metric, by the previous
lemma. Moreover, for x, y ∈ P ,

DQ(x, y)

=
2D(x, y)

D(x, y) + infa∈QD(x, a) +D(y, a)

=
4DE(x1, y1)

2DE(x1, y1) + inf a1∈e1

a2∈e2

DE(x1, a1) +DE(x1, a2) +DE(y1, a1) +DE(y1, a2)

=
2DE(x1, y1)

DE(x1, y1) + infe1∩e2={}Dt(x1, y1, e1) +Dt(x1, y1, e2)

= D2(x, y).

So D1 and D2 satisfy the triangle inequality, and are metrics.

Lemma 7.5 Given a metric space (U, D), A ⊂ U, and 1-Lipschitz function F
on U,

DF (x, y) =
D(x, y)

F (x)
((1 −DF (x, y)(1 + γ)/2)),

where 0 ≤ γ ≤ 1, and also

DA(x, y) =
2D(x, y)

Dm
(1 −DA(x, y)/2),

where Dm = infa∈AD(x, a) +D(y, a).
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Proof: Dropping the E from DE , we have

2D(x, y)

D(x, y) + F (x) + F (y)
= D1(x, y),

or

2D(x, y) = DF (x, y)(D(x, y) + F (x) + F (y))

= DF (x, y)(D(x, y) + F (x) + F (x) + γD(x, y)),

for some γ with 0 ≤ γ ≤ 1, or

(2 −DF (x, y)(1 + γ))D(x, y) = 2DF (x, y)F (x)

so

DF (x, y) =
D(x, y)

F (x)
(1 −D1(x, y)(1 + γ)/2).

A similar argument gives the result for DA.

8 Interpretation of Previous Results

By applying the greedy algorithm for ε-nets to the local feature metrics D1 or
D2, then computing the (Euclidean) Delaunay triangulation of the ε-net, the
result is a graded triangulation. By first picking an ε′-net for each edge of G
individually, with ε′ sufficiently smaller than ε, a point set can be constructed
so that the triangulation conforms to G, that is, the edges of G are the union
of edges of the triangulation. The resulting triangulation has triangles that are
“nicely shaped”.

Such an algorithm is very close to that of Chew[Che89], or of Ruppert[Rup95],
but may give somewhat smoother results.

In surface reconstruction, sample points on a manifold are known, and an
approximation to the unknown manifold is desired. Several papers on surface
reconstruction, starting with that of Amenta and Bern[AB99], give sufficient
conditions on the sample points so that a well-behaved reconstruction of the
manifold is possible. These conditions use a “local feature size” that involves
distance to the medial axis of the manifold. The conditions amount to the
requirement that the sample points S are a Delone set with respect to the metric
DA which is the Euclidean distance, scaled by the distance to the medial axis.
The conditions can require sample sets that are larger than those required for
an approximating mesh. Of course, the requirements on the sample for surface
reconstruction are more stringent, and the resulting mesh satisfies consistency
conditions that the asymptotic approach here satisfies only for ε sufficiently
small.

29



9 Acknowledgement.

I am grateful to Gopi Meenakshisundaram for pointing out an error in the
example of Section 6.

References

[AB99] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering.
Discrete and Computational Geometry, 22:481–504, 1999.

[ACK01] Nina Amenta, Sunghee Choi, and Ravi Kolluri. The power crust,
unions of balls, and the medial axis transform. Computational Ge-
ometry: Theory and Applications, 19:127–153, 2001.

[AGK+01] Vijay Arya, Naveen Garg, Rohit Khandekar, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristic for k-median and facility
location problems. In STOC ’01: Proc. Thirty-Third Annual ACM
Symp. on Theory of Computing, pages 21–29, 2001.

[AHPV05] P.K. Agarwal, S. Har-Peled, and K. Varadarajan. Geometric ap-
proximation via coresets. In E. Welzl, editor, Current Trends in
Combinatorial and Computational Geometry. Cambridge University
Press, 2005.
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