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ABSTRACT
This work addresses the problem of approximating a mani-
fold by a simplicial mesh, and the related problem of build-
ing triangulations for the purpose of piecewise-linear approx-
imation of functions. It has long been understood that the
vertices of such meshes or triangulations should be “well-
distributed,” or satisfy certain “sampling conditions.” This
work clarifies and extends some algorithms for finding such
well-distributed vertices, by showing that they can be re-
garded as finding ε-nets or Delone sets in appropriate met-
ric spaces. In some cases where such Delone properties
were already understood, such as for meshes to approxi-
mate smooth manifolds that bound convex bodies, the up-
per and lower bound results are extended to more general
manifolds; in particular, under some general conditions, the
minimum Hausdorff distance for a mesh with n simplices to
a d-manifold M is Θ((

R
M

p
|κ(x)|/n)2/d) as n → ∞, where

κ(x) is the Gaussian curvature at point x ∈ M . We also re-
late these constructions to Dudley’s approximation scheme
for convex bodies, which can be interpreted as involving an
ε-net in a metric space whose distance function depends on
surface normals.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation—approxima-
tion of surfaces and contours, Spline and piecewise polyno-
mial approximation

General Terms
Theory
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1. INTRODUCTION
The problem considered here is that of approximating a

smooth manifold by a polyhedral one. Smooth manifolds
might represent, for example, the boundaries of objects and
obstacles in a motion planning problem, or the graphs of
functions. For many purposes, meshes (polyhedral mani-
folds made up of simplices) are easier to work with, and so
the approximation problem arises. This problem can be at-
tacked by first deciding where the vertices of the simplices
should be, and then deciding how to connect them. The
vertex placement can be done by putting the vertices on the
approximated manifold, and distributing them “nicely” in
an appropriate sense.

Intuitively, the niceness of the distribution of vertices would
include the condition that the higher the curvature of the
manifold in a given neighborhood, the more vertices in that
neighborhood. This intuition can be made rigorous. Gru-
ber[15] and others have shown, for example, that for a vari-
ety of approximation requirements, the case where the man-
ifold is the smooth boundary of a convex body can be char-
acterized as follows: the vertices of an optimal mesh consti-
tute a Delone set in a Riemannian metric DII induced by the
Second Fundamental Form of the manifold. This quadratic
form measures the directional curvature of the manifold, so
that points that are close in DII can be connected by a
nearly-straight curve on the surface.

Delone sets are defined more formally in Section 2 be-
low; they are sets that are both packings and coverings: a
packing has no two points too close together, and a cover-
ing S has D(x, S) small for every point x in the manifold,
where D(x, S) is minp∈S D(x, p). Metric space ε-nets are a
particular kind of Delone set.

Riemannian metrics are defined more formally in Section 3
below; the metric DII here can be described roughly as fol-
lows: the length of a very small line segment between two
points on the manifold is the square root of the curvature
of the manifold along that segment; the length of a path is
the integral of the lengths of small segments of that path;
the distance between two points is the length of the shortest
path connecting the two points. We will call this the root
curvature metric.

Gruber proved a Delone set characterization for general
Riemannian manifolds, not just for DII; his result has impli-
cations for optimal quantification and other problems. For
example, a set S of size n that minimizes the integral of
squared distances

R
M

D(x, S)2 must be a Delone set. In the
discrete setting, such a problem is solved heuristically by the
k-means (Lloyd’s) algorithm; a similar heuristic can be ap-
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plied in the continuous setting, as reviewed by Du et al.[9].
The Delone requirement means that a simple and fast al-
gorithm, the greedy method analyzed by Gonzalez [13], has
guaranteed approximation properties.

A related line of work, starting with Eldar et al.[11], ap-
plies the greedy algorithm to the problem of finding a set
of vertices for piecewise-linear interpolation, in the setting
of computer vision applications. Also, Peyrè and Cohen
propose using the greedy algorithm together with geodesic
distance measures on surfaces, for remeshing and parame-
terization. They consider the issue, not addressed here, of
how to compute such distances efficiently; they discuss both
isotropic distances and distances scaled by curvature, but
not the particular measures analyzed here [20].

Section 5 contains a version of Gruber’s proof of this De-
lone set condition. This new version is intended as an expli-
cation and simplification; it is also a slight generalization,
to the setting of metric measure spaces. At the least, it is a
bit more concise.

In the terminology of center and median problems, a cover
is a good k-center. The idea of Gruber’s proof, and the one
here, is to show that a local search algorithm [3] for reducingR

M
D(x, S)2 can make progress if S is not a Delone set. That

is, if S is not a good k-center (up to a constant factor), it
is not a good k-median in this particular smooth setting. A
converse is also true, as shown in Corollary 5.5.

Not only has the Delone set characterization been proven
for smooth convex manifolds (that is, manifolds that bound
convex bodies and are smooth), but the error of approxi-
mating such manifolds has been characterized precisely: the
error of best approximations that use n vertices can be given,
up to a factor of 1 + o(1), as n → ∞. (The error has been
found for terms of even higher order, when d = 1[18].)

In particular, when the error measure is the Hausdorff
distance, the error for a convex d-manifold M is

Kd(

Z
M

p
κ(x)/n)2/d(1 + o(1))

as n → ∞, where d is the dimension, Kd is a factor de-
pendent only on the dimension, and κ(x) is the Gaussian
curvature at point x ∈ M [14]. A 2-sphere of radius r, for

example, has
R

M

p
κ(x) =

R
M

p
1/r2 = A/r = Cr, for some

constant C, where A is the area, so the error is within a con-
stant factor of r/n. Note that

R
M

κ(x) is the total Gaussian
curvature of the manifold, which by the Gauss-Bonet Theo-
rem is constant for the sphere or any other convex manifold.

However, suppose the manifold is not convex, in other
words, is not the boundary of a convex body. It is not
hard to show, as in Section 4.1, that if the vertices are
an ε-net with respect to a “convexified” version DII of the
Second Fundamental Form, then some of the same upper
bounds apply as for convex manifolds, up to a constant fac-
tor. This generalizes somewhat the results of Chen et al.[4],
who showed similar upper bound results and constructions
for the approximation of functions. It is shown in Section 4.2
that triangulations with small Hausdorff distance must have
a number of simplices that is within a constant factor of
the upper bound, under some reasonably general conditions
on the triangulation and the manifold. Thus the measure
μII(M) :=

R
M

p
|κ(x)|, called here the “total root curva-

ture,” seems to be a fundamental measure of the difficulty
of approximating a smooth manifold M .

While no such general bound on triangulation complex-

ity in this setting seems to have appeared before, there are
several results on the optimal shape of simplices in triangu-
lations for approximating manifolds or functions. Nadler
proved such a result for function approximation[19], and
it was extended by Heckbert and Garland[16]. Pottmann
et al.[21] found the best shape for a triangle in a regular
mesh (repeating that triangle over and over). (See also
Shewchuk’s survey of a variety of measures of the quality
of triangles for function approximation, and in particular
anisotropic measures that consider the specific function be-
ing approximated [23].) However, it could be that the glob-
ally best triangulation uses simplices that are not optimum
locally. The results of Section 4 show that, up to some con-
ditions and a constant factor, such a situation cannot occur.

Dudley has given a bound for the approximation of con-
vex bodies [10] that has seen wide application in computa-
tional geometry. ([6] is an early reference; Agarwal et al.
survey some related work [1].) His bound is the same as

the ones mentioned, with respect to dependence 1/n2/d on
the number of vertices, but is worse in its dependence on
the body being approximated. However, his construction
can be applied to any convex body, not just a smooth one.
Moreover, while Dudley’s construction gives a triangulation
with the given number of vertices, the number of simplices
is not similarly bounded. (A dual version bounds the num-
ber of simplices, but not vertices. Per Jeff Erickson [12],
the number of simplices can be bounded, at the cost of los-
ing the convexity of the approximating mesh.) For Gruber’s
construction, and the ones here, the number of simplices is
within a constant factor (depending on dimension) of the
number of vertices.

Although Dudley’s construction does not explicitly com-
pute ε-covers, it is clear from his proof of an error bound that
the triangulation vertices it selects form an ε-cover of a met-
ric space whose distance measure involves both Euclidean
distance and variation in the surface normal. That is, the
proof involves the construction on an input convex mani-
fold M of a set of points S that has the following property:
for any point x ∈ M , there is some point s ∈ S such that
DE(p, s) ≤ ε, and also DE(vp, vs) ≤ ε, where DE is the Eu-
clidean distance, vp is the unit normal vector to M at p, and
similarly for vs. So D(p, s) := max{DE(p, s),DE(vp, vs)} ≤
ε, and it’s not hard to show that this function D(., .) is a met-
ric. Thus Dudley’s construction involves finding an ε-cover
in a particular metric space. The approximating polytope
that results has Hausdorff distance ε2 to the input manifold
M .

An analogous distance measure could be defined on ar-
bitrary manifolds, and indeed Pottmann et al. have done
so, defining what they term a regularized isophotic metric,
or simply isophotic metric [22]. Section 6 shows that an
ε-covering set for this metric is also an ε-covering in the
root curvature metric, and therefore implies Hausdorff dis-
tance bounds for the corresponding triangulation. Approx-
imations using this metric are also related to the Varia-
tional Shape Approximations of Cohen-Steiner et al. [7];
that work used a metric based on surface normals alone,
and used the k-means algorithm to minimize the integral
square

R
M

D(x, S)2 of the distance. By Gruber’s results (as
in Section 5), an alternative approach yielding similar results
would be to use an ε-net in that metric.

The approximation results of Section 4 have implications
for algorithmic applications. For example, suppose a mo-
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tion planning problem is given, in which a plan is sought for
moving an object among obstacles, where both object and
obstacles have smooth boundaries. One approach to this
problem might be to approximate the object and obstacles
with meshes, and then use one of the many techniques for
solving the problem given input with a mesh representation.
If the approximations have Hausdorff distance ε to the orig-
inal surfaces, then a solution to the approximate problem
with sufficient small clearance will also be a solution to the
original problem.

Except for finding the approximating meshes, the work
done is proportional to functions of ε, and of the total root
curvature μII(M), where M is the collection of smooth input
surfaces, and nothing else related to the input “size”. That
is, μII(M) gives a measure of the intrinsic difficulty of poly-
hedral approximation to M , and so of algorithmic problems
associated with M .

A similar question might be raised about nearest neighbor
searching: suppose a set S of points are generated indepen-
dently on a manifold, and a data structure is desired so
that, given a query point q, the nearest point in S to q can
be found. Are there data structures for this problem, or
an approximate version of it, whose complexity depends on
the total root curvature of the manifold, or other integral
curvature value?

The next two sections give some terminology and back-
ground, but before that, a little miscellaneous notation: let
DE(a, b) denote the Euclidean distance between a and b;
for values β > 0, x, and y, x ≤β y denotes the condition
x ≤ (1 + β)y; x ≈β y denotes the condition that x ≤β y
and y ≤β x both hold. When x ≤β y ≤β z, it follows that
x ≤ (1 + β)2z, and thus x ≤3β z for β < 1. So a version of
the relation holds transitively, up to a constant factor.

Proofs are frequently omitted in this extended abstract.

2. METRIC SPACES, PACKINGS,
COVERINGS, NETS, DELONE SETS

Metric spaces. Given a set U and distance measure
D : U × U → �+, the pair (U, D) is a metric space and D
is a metric, if, for all x, y, z ∈ U: D(x, y) = 0 if and only if
x = y; D(x, y) = D(y, x); and D(x, z) ≤ D(x, y) + D(y, z).
A space is bounded if supx,y∈U

D(x, y) < ∞.
For S ⊂ U and x ∈ U, the distance

D(x, S) := inf
s∈S

D(x, s);

this infinum will exist if S is compact, and in particular
if it is finite. The notation D(A, S) := supx∈A D(x,S).
(Note that this is asymmetric, and D(A, S) 
= D(S, A).)
The Hausdorff distance H(S, A) between sets S and A is
max{D(A, S), D(S, A)}. Given S ⊂ U, let

diam S := sup
p,p′∈S

D(p, p′);

given a collection A of sets, diamA := maxS∈A diam(S).
Coverings, packings, Delone sets, nets. A set S ⊂ U

is an: ε-covering if D(x, S) ≤ ε for all x ∈ U, that is,
D(U, S) = H(U, S) ≤ ε; ε-packing if D(s, S \ {s}) ≥ ε for
all s ∈ S; that is, open balls of radius ε/2 centered at each
s ∈ S do not meet; (εp, εc)-Delone set if S is an εp-packing

and εc-covering, and ε-net if it is (ε, ε)-Delone; that is, for
any x ∈ U, we have D(x, S) ≤ ε, and for any two p, p′ ∈ S,
we have D(p, p′) ≥ ε.1

The classical greedy algorithm of Gonzalez is a construc-
tive proof that ε-nets exist [13].

Voronoi regions. For a given metric space (U, D), and
S ⊂ U, let Vor(p, S) denote the Voronoi region of p in U

with respect to S, that is, the set of x ∈ U so that p is no
farther from x than any other p′ ∈ S. As a formula,

Vor(p, S) := {x ∈ U | D(x, p) = D(x, S)}.

Let C(p, S), the circumradius of Vor(p, S), denote

sup
x∈Vor(p,S)

D(p, x),

that is, the maximum distance to p of points in its Voronoi
region. Note that the circumradius of every Voronoi region
of S is no more than ε, when S is an ε-cover.

Length spaces. A length space is a metric space for
which the distance between two points is the infinum of the
lengths of paths connecting the two points. As discussed just
below, distances between points in Riemannian manifolds
are defined using such paths, so Riemannian manifolds are
length spaces.

3. MANIFOLDS, CURVATURE, AND
DISTANCE

This section gives a bare minimum of terminology and
notation regarding manifolds and curvature. The concepts
are given in most differential geometry textbooks, but not
stated in the most direct way for application here.

Manifolds. A d-manifold M is a topological space that
looks locally like a region of �d; that is, there is a collection
VM of open subsets of M , such that for each V ∈ VM,
there is open UV ⊂ �d and smooth bijection τV : V →
UV ; moreover, such charts τV and τV̂ must be compatible,

meaning that the mapping τ−1

V̂
◦ τV on V ∩ V̂ must also be

smooth (this holds vacuously when V ∩ V̂ is empty). The
coordinates of τV (p) can be considered the coordinates of
p ∈ V , so a chart τV will sometimes be called a coordinate
system for V . There can be many different charts.

Riemannian Manifolds. A Riemannian d-manifold com-
prises a d-manifold M and a positive-definite quadratic form
q(x; p) in x, for each p ∈ M and x in the tangent space Tp

of M at p. Put another way, for each p ∈ M , there is a
positive-definite matrix Hp, and q(x; p) is xT Hpx. Also, the
entries of Hp are smooth functions of p. The form q(x; p) is
also called a metric tensor, as it can be used to define a mea-
sure of distance: the length of a curve γ : [a, b] → M can

be given as
R
[a,b]

p
q(γ̂′(t);γ(t))dt, where γ̂(t) = τV (γ(t))

when γ(t) ∈ V ∈ VM . (This expression can be extended
across members of VM by addition.) The distance between

1“Delone” is one transliteration of the family name of
Boris Nikolaeviq Delone, that is, Boris Nikolaevich
Delone, a Russian mathematician. Delone sets are discussed
in the crystallography literature, and elsewhere. Another
transliteration is “Delaunay,” as in Delaunay triangulations.
The constructions here will include Delaunay triangulations
of Delone sets. According to J. H. Conway (via Wikipedia),
Delaunay “got his surname from an Irish ancestor called De-
loney, who was among the mercenaries left in Russia after
the Napoleonic invasion of 1812.”
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two points is the infinum of the lengths of the curves con-
necting them; that is, (M, q) is a length space. Since γ′(t)

is the tangent vector to the curve at t,
p

q(γ̂′(t); γ(t)) can
be interpreted as the length of an infinitesimal step in the
direction of the curve, as measured by q. The metric ten-
sor q also defines an associated measure of area (d-volume),

μq(S) :=
R

S

p
det q(·; p)dp.

Charts of Surfaces. We will call a smooth d-manifold
M embedded in �d+1 a surface. (That is, M has codimen-
sion one.) Here, using smoothness and the inverse function
theorem, we can assume that the charts take a particular
form: for any point p ∈ M , let vp be the unit normal to
M at p, and Qp be the (d + 1) × d matrix whose columns
are the unit vectors of a basis of its tangent hyperplane
Tp. (We assume that the manifold has a unique unit nor-
mal at each point; this is implied by smoothness, or could
almost be viewed as our definition of smoothness.) Form
(d + 1) × (d + 1) matrix [Qp vp], whose last row is vp. The
Euclidean transformation Ep : x → [Qp vp]

T (x − p) has the
properties that Epp = 0 and that the xd+1 = 0 hyperplane
is the tangent hyperplane to EpM at p. Also, there is a
neighborhood Np of p in M such that EpNp is a Monge
patch, that is, xd+1 = f(x1, . . . , xd) for a smooth bijection
f , for all (x1, . . . , xd+1) ∈ EpNp. The corresponding co-
ordinate system τp takes point y ∈ Np to x ∈ �d, where
(x, f(x)) = Epy.

With the above conditions the Taylor expansion of f at
p has its constant and linear terms equal to zero, and its
quadratic term is xT Hpx. (The quadric surface obtained by
dropping the higher order terms in f is called the osculating
paraboloid.)

Diagonalization. Since any Hessian Hp is symmetric,

it has an eigendecomposition Hp = ST
p ĤpSp, where Sp is

an orthogonal matrix of eigenvectors, and Ĥp is a diago-
nal matrix of real eigenvalues. Thus the Hessian at 0 =
SpEpp of (a new version of) f is the diagonal matrix Ĥp :=
diag(α1, . . . , αd), that is, the mixed partial derivatives of f
at SpEpp = 0 are all zero. With no loss of generality, we can
assume that f and H have this form, and will do so from
now on, so Ĥp will just be denoted by Hp. In this context,
the above operations are called reducing a quadratic form to
a sum and difference of squares. This is not very far from
the Morse Lemma.

For p ∈ M , call the coordinate system constructed so far,
with p at the origin, tangent plane Tp equal to the xd+1 =
0 hyperplane, and Monge patch function f with diagonal
Hessian, the coordinate system oriented to p.

Convexification. The diagonal matrix |Hp| is positive
semidefinite, where |Hp| has entries that are the absolute
values of the entries of Hp. The matrix Hc

p := |Hp| + δI is
thus positive definite, for any δ > 0, and so yields a positive
definite quadratic form. Here the c means “convex”, since
we have replaced xT Hpx with the related convex function
xT Hc

px.

The Riemannian metric tensor on M computed as xT Hc
px

at each point p (in the coordinate system oriented to p)
will be denoted q II(x; p). The “II” refers to the Second
Fundamental Form (discussed below), since xT Hpx gives the
value of the quadratic form II at p, for tangent vector x.
This “convexification” of Hp is similar to a construction used
for anisotropic Voronoi diagrams, and to one used by Chen
et al. [4]. The additive term δI can be made arbitrarily

small, at the cost of affecting the point at which asymptotic
conditions apply.

Reducing to sums and differences. Having put the
Hessian at p in the diagonal form xT Hx =

P
i αix

2
i , it is only

one more step to scale x by
p

Hc
p, giving a region such that

for x̂ =
p

Hc
px in it, x̂T x̂ = xT Hc

px. (Note that this step,
unlike previous ones, is not a Euclidean transformation: it
stretches along the coordinate axes.) Near p ∈ M , the met-
ric tensor of the Euclidean distance on x̂ corresponds to a
metric tensor q II(·; p). Areas scale by

Q
i

√
αi =

p
det Hc

p.
Fundamental Forms. With a coordinate system ori-

ented to p, the matrix of the First Fundamental Form I at
0 = SpEpp is simply the d × d identity matrix I . The ma-
trix of the Second Fundamental Form II at 0 = SpEpp is
Hp, and the matrix of the Third Fundamental Form III is
H2

p(= HpHp).
The Riemannian metric tensor qI obtained by using the

First Fundamental Form gives the ordinary (inherited, nat-
ural) arc length, and the usual surface area, denoted here
μI. These may also be denoted by qE and μE , for Euclidean.

The metric tensor q III defined by

q III(x; p) := xT (δI + H2
p)x,

a δ-perturbation to the Third Fundamental Form, gives an
arc length which is the length of the image of the curve under
the Gauss map, together with a small term equal to δ times
the ordinary arc length; here the Gauss map takes a point
p ∈ M to the unit normal vector to M at p. (As with q II,
the δ term is added to make a positive definite quadratic
form; the perturbation δI can be arbitrarily small, but not
zero.) In the limit as x → 0, the vector Hpx approaches
the difference between the unit normal [0;−1] to M at 0,
and the unit normal at x. Thus xT H2

px approaches the
squared length of that difference.2 The corresponding area
(d-volume) measure of M ′ ⊂ M , is

μIII(M
′) :=

Z
p∈M′

q
det(δI + H2

p)dp.

The integrand is approximately det |H | when that quantity
is not too small, that is, the absolute value of the Gaussian
curvature. Up to the δ-perturbation, this integral is the area
of the image of M ′ under the Gauss map, that is, the total
absolute curvature.

Finally, the metric induced by the convex form of II,
with a metric tensor given above as q II, will be called the
root-curvature distance, and the corresponding μII(M

′) :=R
M′

p
detHc

p will be called the total root curvature. The

form II at x, that is, xT Hpx, is the directional curvature of
M , in the direction x. The form q II therefore is always at
least as large as the absolute value of the directional curva-
ture. Moreover, since the Taylor expansion of f(x) about p
is

f(x) = f(p) + ∇f(p)x + xT∇2f(p)x/2 + O(‖x‖3),

2The (multi-dimensional) Taylor expansion of ∇f(x) at 0 is
∇f(x) = ∇f(0)+∇2f(0)x+O(‖x‖2), and here ∇2f(0) = Hp

and by construction ∇f(0) = 0, so ∇f(x) ≈ Hpx. The

unit normal to M at 0 is (0, . . . , 0,−1) ∈ �d+1, and at x
is v(x)/‖v(x)‖, where v(x) = (∇f(x),−1) ≈ (Hpx,−1). As
‖x‖ → 0, ‖v(x)‖ → 1, and the unit normal converges to
(Hpx,−1). Thus the difference of the normals is Hpx, up to
higher-order terms, and xT H2

px is its squared norm.
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and f(0) = 0 and ∇f(0) = 0 by construction for a coordi-
nate system oriented to p, we have

|f(x)| = |xT Hpx/2| + O(‖x‖3) = q II(x; p)/2 + O(‖x‖3).

For p and p′ close enough together, DII(p, p′)2 ≈ q II(p
′ −

p; p), and so DII(p, p′)2 is thus an upper bound on |f(p′)|,
and again, f(p′) is the distance of p′ ∈ M to the tangent
plane at p, the deviation of M from flatness between p and
p′. This is discussed more formally as Lemma 4.1.

In Section 6, a metric implicitly used by Dudley for con-
vex boundaries, and called isophotic by Pottmann et al. will
be discussed; its metric tensor is q I+III := q I + q III. Since I
is positive definite, and III is positive semidefinite, no “con-
vexification” is needed for qI or q I+III, and only the δ per-
turbation is needed to make q III positive definite.

The distances on M implied by qX , for X ∈ {I, II, III, I +
III}, will be denoted by the corresponding DX . Combined
with the corresponding area measures μX , the metric mea-
sure spaces (M, DX , μX) are obtained. A ball with center x
and radius ε in metric DX will be denoted BX(x, ε).

As discussed further in Section 5, a metric measure space
(M, D, μ) will be called dimension regular if there is a num-
ber d and constant C such that for any x ∈ M , μ(B(x, ε)) ≈C

εd, for sufficiently small ε. We will generally assume that a
manifold M is such that (M, DX , μX) is dimension regular.

The following lemma is straightforward.

Lemma 3.1. If the compact metric measure space (U, D, μ)
is dimension regular with dimension d, then the size of an
ε-net of U is Θ(μ(U)/εd) as ε → 0.

Gruber[14], Lemma 1, proves such a bound for Rieman-
nian manifolds that is tight up to lower order terms.

4. HAUSDORFF APPROXIMATIONS
The DII distance will be the main concern here; the next

lemma gives the basic relations between DII distance and de-
viation from linearity. The lemma follows from the lemmas
of Gruber[14, 15], but a proof is included for completeness.

Lemma 4.1. For any compact smooth d-surface M , value
λ with 0 < λ < 1, and point r ∈ M , there is neighborhood
Vr(λ) of r such that for p, p′ ∈ Vr(λ),

DE(p, Tp′) ≤λ DII(p, p′)2 ≈λ ‖
p

Hc
r (τr(p − p′))‖2

in the coordinate system oriented to r, where DE(p, Tp′) is
the minimum Euclidean distance from p to the tangent plane
at p′, and τrp is the orthogonal projection of p onto Tr. Also,
for V̂ ⊂ Vr(λ),

μII(V̂ ) ≈λ μ(τrV̂ )
p

|detHc
r |.

Proof: By the smoothness of M , there is a neighborhood
V of r where for all p ∈ V and all x ∈ �d+1, in a coordinate
system oriented to r,

xT∇2f(p)x ≤λ qII(x; p) ≈λ qII(τrx; r)

= (τrx)T Hc
r (τrx) = ‖

p
Hc

r (τrx)‖2
2.

(Here, again, f(x) is the Monge function for the manifold
in the neighborhood, and τrx is the projection of x to �d,
that is, setting the last coordinate to zero.) For the dilated
coordinates y :=

√
Hc

rτrx, then, qII(x; p) ≈λ yT y. The latter

is the metric tensor of Euclidean distance, so DII(p, p′)2 ≈λ

‖
√

Hc
r (τr(p − p′))‖2, as claimed.

The tangent Tp′ is the best linear approximation to f at
p′. By Taylor’s theorem with Lagrange remainder,

f(p) = f(p′) + (p − p′)T∇f(p′) + (p − p′)T∇2f(p∗)(p − p′),

where p∗ is on the line segment from p to p′. So

DE(p, Tp′) ≤ |f(p) − (f(p′) + (p − p′)T∇f(p′))|
= |(p − p′)T∇2f(p∗)(p − p′)|
≤λ (p − p′)T Hc

p∗(p − p′)

≈λ (p − p′)T Hc
r (p − p′)|

= ‖
p

Hc
r(τr(p − p′))‖2 ≈λ DII(p, p′)2.

Using the properties of the ≈λ relation, and renaming λ
completes the proof of the first relation of the lemma.

The area relation comes from the change of variable the-
orem of calculus, and its proof is omitted in this abstract.

4.1 Upper Bound
The upper bound construction uses an ε-net on the sur-

face, in the DII metric, and then computes a Delaunay trian-
gulation in the DII metric. The mesh T then has the same
vertex set, and for each DII-Delaunay simplex, a Euclidean
simplex with the same vertices.

To use this construction, we need to ensure that the ε-
net E has a well-defined DII-Delaunay triangulation. The
results of Leibon and Letscher [17] imply this, for ε small
enough. The key property needed is that for d + 1 points
close enough together, there is exactly one circumscribing
sphere. The Delaunay triangulation is then implied, as
usual, by the set of circumspheres of points in the ε-net
E that are empty. Here empty means that the open ball
bounded by such a sphere contains no points of E.

The simplices of the triangulation, combinatorially, are
the sets of points of E that determine an empty circum-
sphere. It will be helpful to consider also the simplices as
a geometric subdivision of M . Such simplices can then be
defined as the cells of the power diagram of the triangula-
tion circumcenters. The power diagram is a kind of weighted
Voronoi diagram; here the weight of a circumcenter is picked
to be the radius of its circumsphere. (See [2], for example, or
an allusion in [17].) That is, each empty circumsphere with
center c has radius rc, and the region (Delaunay “simplex”)
of c is

{p ∈ M | DII(c, p)2 − r2
c ≤ min

center c′
DII(c

′, p)2 − r2
c′}

By definition, every point of M is in some face of the trian-
gulation. It is not hard to show that every point of M will
be in some circumsphere, and that each point of E deter-
mining the circumsphere of c is in the simplex of c, and also
that the simplex of c is contained in the circumsphere of c.
Also, since E is an ε-net, Delaunay neighbors are no more
than 2ε apart: otherwise, the center of the circumsphere of
the neighbors is more than ε from them, and so more than
ε from any point in E.

It seems likely that the full power of [17] should not really
be needed, because the constructed Delaunay triangulation
will be equivalent to the Delaunay triangulation based on a
metric only slightly distorted from Euclidean. From the pre-
vious lemma, each neighborhood Vr(λ) can be projected and
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scaled as
√

Hc
rτrVr(λ) (in the coordinate system oriented to

r), so that Euclidean distance in the transformed space is
approximately equal to the DII distance between the cor-
responding points in Vr(λ). It follows that the anisotropic
Delaunay triangulation based on DII will look, at the lo-
cal scale of interest, very much like an ordinary Euclidean
Delaunay triangulation in

√
Hc

rτrVr(λ).
Note that it is not claimed that the mesh T so constructed

is well-behaved in every way, for example, with respect to
orientation-reversal.

An alternative approach may be to find triangulations in
each patch Vp(λ) by using the lower convex hull of the points,
as lifted to a quadratic approximation surface. To ensure
consistency of the triangulation across domains, a blending
of quadratic approximations using partitions of unity could
be done.

Theorem 4.2. A compact smooth d-surface M has a tri-
angulation T comprising m vertices and O(m) simplices,
and with Hausdorff distance

H(M,T ) = O((μII(M)/m)2/d)

as m → ∞, where the constant factors in the asymptotic
bounds depend only on the dimension.

Proof: As discussed above, pick an ε-net E in the DII

metric as the vertex set of the triangulation. By Lemma 3.1,
with m points, such a net will have ε ≤ Kd(μII(M)/m)1/d.

By the Lebesque Number Lemma and compactness of M ,
there is a γ > 0 such that for every p ∈ M , the ball BII(p, γ)
is contained in some member of the open cover {Vr(λ) | r ∈
M}. Choose m large enough that ε ≤ γ/5, so that every
ball BII(p, 5ε) ⊂ Vr(λ), for some r, where p ∈ E.

As discussed above, the interpolating mesh T will have the
same vertices as the DII-Delaunay triangulation TII, and for
each simplex tII in TII, T will have a Euclidean simplex t
with the same vertex set.

Consider a point p′ ∈ BII(p, ε). There is a simplex t ∈ T ,
with vertices in BII(p, 4ε), such that t is above p′, that is,
τrp

′ ∈ τrt. This can be proven as follows. Consider the
set TII(p, 3ε) of all tII that meet BII(p, 3ε). From the above
discussion, such simplices are contained in BII(p, 5ε). Let
T (p, 3ε) denote the corresponding simplices of T . Since ev-
ery point of Vr(λ) is in some simplex of TII, TII(p, 3ε) cov-
ers BII(p, 3ε). There is a continuous mapping from each tII
onto the corresponding t, and so a continuous mapping from
BII(p, 3ε) onto the union of the simplices of T (p, 3ε). Hence
the union of T (p, 3ε) has no holes, and moreover, since the
boundary of TII(p, 3ε) is outside BII(p, 3ε), the boundary of
τrT (p, 3ε) must be outside τrBII(p, ε), for λ small enough.
So τrp

′ is in some τrt, for t ∈ T with τrt ⊂ τrBII(p, 4ε).
By the previous lemma, every vertex of t is within Eu-

clidean distance 16ε2(1 + λ) of Tp, and so some point of t is
within that Euclidean distance of τrp

′. Since p′ is no more
than ε2(1 + λ) from τrp

′, it follows that some point of t is
within 17ε2(1 + λ) of p′.

Since for every point p′ ∈ M , there is some p ∈ E within
DII distance ε, it follows that DE(M, T ) ≤ 17ε2(1 + λ).

A similar, but simpler argument shows that DE(T , M) ≤C

ε2: for t ∈ T , pick a vertex p of T ; since no point of tII is
farther than 2ε from p, no point of t is more than 4ε2(1+λ)
from Tp. For each point in τrt, there is point of M with the
same projection, and also within 4ε2(1+λ) of Tp. Therefore
any point of t is within 8ε2(1 + λ) of some point of M . The
theorem follows.

4.2 Lower Bound
When the diagonal entries of the diagonal matrix H (as

discussed in Section 3) all have the same sign, the second
fundamental form is convex (or concave), and so the first
approximate inequality of Lemma 4.1 becomes an approxi-
mate equality, and the upper bound of the above theorem
can become a lower bound as well. However, when the signs
are mixed, no such direct relationship between DII and ap-
proximation error is possible, because in the mixed case,
the manifold (and some of it tangents) may contain straight
line segments. The distance DII thus does not allow lower
bounds. As will be shown, though, the measure μII does,
for Hausdorff distance: roughly, if a simplex is large in mea-
sure, its error must be also. After a lemma, this is shown
for any triangulation of a pure-quadric patch, and then for
somewhat-restricted triangulations of somewhat-restricted
manifolds.

4.2.1 Lower Bound for Function Interpolation
The next lemma gives the basic relation between inter-

polation error and function value, for a quadratic function.
Recall the form of the function assumed in the lemma is no
loss of generality, except for the constraints on the αi’s.

Lemma 4.3. For x := (x1, . . . , xd) ∈ �d let

f(x) :=
X

i

αix
2
i = xT Dx,

where αi = ±1 for all i, and D := diag(α1, α2, . . . , αd).
Then the maximum error in linearly interpolating f between
x ∈ �d and y ∈ �d is |f(x − y)|/4.

Proof: Omitted in this abstract.

Lemma 4.4. For x := (x1, . . . , xd) ∈ �d let

f(x) :=
X

i

αix
2
i = xT Dx,

where αi = ±1 for all i, and D := diag(α1, α2, . . . , αd).
Then for a simplex t ⊂ �d, if the maximum error of linearly
interpolating f within t is no more than ε, then the volume
of t is no more than εd/22.5d/

√
d!.

Here the linear interpolation is assumed to assign f(v) to
each vertex v of t, that is, the error is zero at the vertices.

Proof: We can assume that the coordinates for which αi =
1 are the first d+, for some d+ ≤ d, and the coordinates with
αi = −1 are the following d− := d − d+ ones.

Since x − y = (x − z) − (y − z), and error estimates will
be by way of the previous lemma, we can assume that one
vertex of t is the origin. Let [aj bj ], for j = 1, . . . , d, be the
other vertices, where aj has d+ coordinates, and bj has d−
coordinates. Then the previous lemma, and assuming the
error bound of ε, imply that

|f([aj bj ] − [0 0])| ≤ 4ε,

for j = 1, . . . , d. For j and k in 1, . . . , d,

4ε ≥ |f([aj bj ] − [ak bk])|
= |(aj − ak)2 − (bj − bk)2|
= |a2

j − 2aj · ak + a2
k − (b2

j − 2bj · bk + b2
k)|

= |f([aj bj ]) + f([ak bk]) − 2(aj · ak − bj · bk)|,
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and so |aj ·ak − bj ·bk| ≤ 6ε. If we define matrix A as having
rows aj , and B as having rows bj , then the above says that
‖AAT −BBT ‖∞ ≤ 6ε, where the matrix norm is simply the
maximum of the absolute values of the entries. We can also
write AAT −BBT as [A B][A −B]T , where [A B] is a d× d
matrix, so we have

‖[A B][A −B]T ‖∞ ≤ 6ε.

As is commonly known, the volume of t is |det([A B])|/d!
in this notation. Therefore, using standard facts about the
determinant, including that det X ≤ d!, if ‖X‖∞ ≤ 1, and
det(εX) = εd det(X) for d × d matrix X,

d! Vol(t) = |det([A B])|
=

p
|det([A B])||det([A −B]T )|

=
p

|det([A B][A −B]T )|
≤ (6ε)d/2

√
d!

≤ εd/22.5d
√

d!,

and the lemma follows.

4.2.2 Lower Bound for More General Manifolds
We can generalize this lower bound to a broader setting,

but so far a completely general statement for all smooth
manifolds and all triangulations has been elusive. A few con-
ditions on the triangulation T and manifold M are needed.
We start with the assumption that the vertices of the ap-
proximating mesh are on the manifold.

Small Diameter. The property of smoothness allows
us to consider triangulations of small neighborhoods, but it
is difficult to handle simplices that span many such neigh-
borhoods, even though the lower bound lemma above im-
plies that they must have small measure in any particular
neighborhood, if the error is small. We will simply consider
triangulations with simplices each of which has small diam-
eter in the DII metric. Since only the vertices of a simplex
are assumed to be on the surface M , we need a little more:
let Vor(t, M) denote the Voronoi region of simplex t in M ,
the set of p ∈ M for which some point of t is closest in
the triangulation T , in Euclidean distance. We will assume
that maxt∈T diamII(Vor(t, M)) is small enough, where the
threshold depends on M .

Locally Roughly Quadratic. We also need, to ap-
ply the above lemma, a patch of the manifold to behave
“enough” like a quadratic function. Specifically, we need
the condition that if the interpolation error of a local Monge
patch is small, then the error of its local quadratic approxi-
mation is also small.

For p ∈ M and λ > 0, pick γ > 0 such that BII(p, γ) ⊂
Vp(λ) (where Vp(λ) was defined in Lemma 4.1), and let

Lγ(p) := sup
p′,p′′∈BII(p,γ)

y=τpp′,x=τpp′′−y

| xT Hpx

f(y + x/2) − (f(y) + f(y + x))/2
|,

(1)
where as usual, f(p) is the Monge patch function in the
coordinate system oriented to p, and Hp = ∇2f(p). If the
denominator is zero, the fraction is taken as infinite if xT Hpx
is nonzero, and as one otherwise. Also, it will be convenient
to make Lγ(p) infinite if Hp has determinant zero. Say that
M if locally roughly quadratic if there is some γ > 0, β > 0,

and ψ > 0 such that

μII({p ∈ M | Lγ(p) ≤ β}) > ψμII(M),

that is, Lγ is small over most of M .
While this definition was constructed to fill the needs of

the proof, the denominator f(y +x/2)− (f(y)+ f(y+x))/2
is proportional to xT Hpx when f(x) = xT Hpx, and so the
Lγ(p) function is large only when higher order terms in
the Taylor expansion of f are large; that is, when f varies
too much from quadratic. In particular, if x is such that
xT Hpx = 0, then f must be linear in the x direction in the
relevant neighborhood of p.

We will assume that the values γ, β, and ψ in this defi-
nition are fixed, but unspecified. They affect the constant
factor in bound below.

Local Average Aspect Ratio. Given a triangulation
T and a ball B := BII(e, δ) in some M ′ ⊂ M , let N(B)
denote the set of simplices in T that contain points that are
nearest neighbors of points in B. That is, each simplex in
N(B) has a point p such that for some p′ ∈ B, DII(p, p′) =
DII(p

′, T ). Consider the coordinate system oriented to e,
so that τe(N(B)) is the projection of the simplices in N(B)
onto the tangent Te at e.

Define the local average aspect ratio of T as

LAAR(T ; M ′, δ) := sup
e∈M′,B=BII(e,δ)

P
t∈N(B) SAE(τe(t))P
t∈N(B) μE(τe(t))

,

where SA() is the (Euclidean) surface area. This quantity
will be required to be bounded above.

A key property here is that for a convex body P and unit
ball B,

μE(P + εB) = μE(P ) + ε SA(P ) + O(ε2) (2)

as ε → 0.
Of course, it is sufficient for this condition to hold that a

similar one hold for every simplex t ∈ T individually, but
the weaker local average condition is enough for the lower
bound. Also, suppose each simplex t ∈ T has a containing
hyperplane that is nearly parallel to the tangent hyperplane
to M at points in Vor(t). Here the aspect ratio of t, in
this surface-area-to-volume sense, is about the same as its
projected version. So it is sufficient that every simplex to
have small aspect ratio, and to have a normal vector that
has small angle to the normal at the manifold region it is
approximating.

Theorem 4.5. Suppose M is a d-surface which is roughly
locally quadratic, as defined just above, for some γ, β, and
ψ. Then there is a value γ′ depending on M , and a con-
stant Kd depending only on the dimension, so that the fol-
lowing hold. Suppose T is a Euclidean triangulation near
to M , whose vertex set is a subset of M , and such that
maxt∈T diamII(Vor(t,M)) ≤ γ′, and

LAAR(T ; M, γ′) ≤ 1/H(T , M).

Then when the number of simplices |T | is large enough,

H(T , M) ≥ Kd

β
(ψμII(M)/|T |)2/d,

for some Kd depending only on the dimension.

Proof:
The proof has three major steps, that show the following:
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1. For γ′ small enough, every t ∈ T belongs to a “well-
behaved” patch of M , using the diameter bound;

2. There is some t∗ ∈ T that is “large”, using the small
local average aspect ratio;

3. The error of linear interpolation (vertical distance) of
f on t∗ is large, using the hypothesis that M is roughly
locally quadratic, and Lemma 4.4.

Consider the compact set

Mβ,γ := {p ∈ M | Lγ(p) ≤ β},
and its open cover

{Vp(λ) ∩ Mβ,γ | p ∈ M}.
Here Vp(λ) is again as in Lemma 4.1, and λ > 0 is small
enough, certainly less than one tenth. Applying the Lebesque
Number Lemma, there is some radius γ′ so that all balls in
Mβ,γ with radius no more than 3γ′ are contained in some
member of that open cover. Set γ′ := min{γ′, γ}, and find
a γ′-net E of Mβ,γ .

For a simplex t ∈ T , let Vor(t) denote its Voronoi region
in Mβ,γ .

Since E is a γ′-net, for any point x ∈ Vor(t), there is
some e ∈ E within DII distance γ′ of x. For such x and e,
the assumption diamII(Vor(t)) ≤ γ′ implies that Vor(t) ⊂
Ve(λ) ∩ BII(e, 2γ′), and also that Lγ(x) ≤ β, as defined by
(1).

Thus every simplex t ∈ T has Vor(t) contained in some
well-behaved B(e, 2γ′), concluding part one of the proof out-
line.

Consider now the coordinate system oriented to e, as dis-
cussed in §3. Since Vor(t) ⊂ BII(e, 2γ′), each vertex v of t is
in BII(e, 2γ′). Hence τe(v) ∈ τe(BII(e, 2γ′)), and so τe(t) ⊂
τe(BII(e, 3γ′)), for small enough λ. (Here the factor of three
in the radius allows for nonconvexity of τe(BII(e, 2γ′)) due
to variation in qII(; p) over Vp(λ).)

For given e ∈ E and B := BII(e, γ
′) ∩ Mβ,γ , let N(B), as

above, be the set of t ∈ T such that B∩Vor(t) is not empty.
By the assumption regarding the local average aspect ratio,X

t∈N(B)

μE(τe(t)) ≥ H(T , M)
X

t∈N(B)

SAE(τe(t)).

So by (2) and Lemma 4.1,

2
X

t∈N(B)

μE(τe(t)) ≥
X

t∈N(B)

μE(τe(t)) + H(T , M) SAE(τe(t))

≥
X

t∈N(B)

μE(τe(t) + BE(0, H(T , M)))/2

≥
X

t∈N(B)

μE(τe(Vor(t)))/2

≥ μII(B)/2(1 + λ)
p

| detHe|,
for small enough H(T , M). (Here BE(0, H(T , M)), as with
τe(t), is in the tangent hyperplane to M at e.)

Since E is a γ′-net, Vor(t) cannot be contained in too

many balls B(e, 2γ′), at most K̂d for a constant K̂d at most
exponential in d. Letting e(t) ∈ E denote a member of E

such that t ∈ N(BII(e, γ
′)), and he :=

p
|detHe|, we have,

using the definition of “roughly locally quadratic,”X
t∈T

he(t)μE(τe(t)(t)) ≥
X
e∈E

μII(B)/4K̂d ≥ ψμII(U)/4K̂d.

Therefore, there is some t∗ ∈ T such that

he(t∗)μE(τe(t∗)(t
∗)) ≥ KdψμII(U)/|T |,

where Kd := 1/4K̂d.
Thus there is some “large” t∗ ∈ T , concluding part two

of the proof outline.
Applying the transformation x̂ =

p
|He|x, where e :=

e(t∗), we obtain a simplex t̂ =
p

|He|τe(t
∗) in the trans-

formed coordinates with

μE(t̂) ≥ KdψμII(U)/|T |. (3)

Moreover, the function xT Hex is equal to x̂T Dx̂, where
D is a diagonal matrix with entries equal to ±1. Applying
Lemma 4.4, we have that the error (vertical distance) of

linear interpolation within t∗ is at least Kd(ψμII(U)/|T |)2/d,
using a new value of Kd. Applying the hypothesis that M is
“locally roughly quadratic,” the error of linear interpolation
of f is at least as large at that for xT Hex, divided by β, and
so is

Kd

β
(ψμII(U)/|T |)2/d,

the bound of the theorem statement.
We are interested in the Hausdorff distance from t to M ,

and not linear interpolation of f ; however, the Hausdorff
distance includes the distance from each point of t to M , and
by construction λ bounds the angle between the “vertical”
normal at e and the unit normal at the nearest neighbor in
M to a point in t. The theorem follows, after again adjusting
and renaming Kd.

5. OPTIMAL QUANTIZATION SETS ARE
DELONE

It may be of interest to judge approximations using other
distance measures, for example, the average distance from
the mesh to the manifold, rather than the maximum dis-
tance. Such formulations lead to the optimal quantization
problem of information theory.

For a metric measure space (U, D, μ) and penalty func-
tion g, the optimal quantization problem is to find a set
S ⊂ U such that

R
g(D(x,S))dμ(x) is as small as possi-

ble. Gruber[15] found tight bounds for the optimal quanti-
zation problem, when U is a Riemannian manifold, and D
and μ are the associated metric and measure, respectively.
The paper also shows that sets S that are optimal quan-
tizers (solve the above problem) are also Delone sets, and
that characterization is said to be “the hardest part of the
proof.” This section gives a proof of this characterization,
using the natural assumptions of “Voronoi regularity” and
“dimension regularity”. For Riemannian manifolds these
conditions naturally follow from some of Gruber’s prelimi-
nary lemmas. The proof given here applies to the penalty
function g(z) = z2, but the extension to other exponents is
trivial; Gruber has shown that the results apply to an even
broader class of penalty functions.

The next lemma uses simple properties of length spaces
(defined in Section 2) to bound the change resulting from
deleting a member of S.

Lemma 5.1. Let (U, D) be a length space. For finite set
S ⊂ U, p ∈ S, and x ∈ Vor(p, S), we have D(x,S \ {p}) ≤
3C(p, S).
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Proof: Omitted in this abstract.
Say that metric measure space Z = (U, D, μ) is Voronoi

regular if there is threshold tV such that for finite S ⊂ U with
D(U, S) ≤ tV , it holds that

P
p∈S μ(Vor(p, S)) = μ(U).

Gruber[15] shows that a nonzero threshold tV exists for
Riemannian manifolds, but the following, from Remark 16
of Chrusciel et al.[5], shows that tV can be taken as infinite.
It can be proven using the Lipschitz property of the func-
tion D(x, S), Rademacher’s result that Lipschitz functions
are differentiable almost everywhere, and the nondifferentia-
bility of D(x, S) at perpendicular bisectors.

Lemma 5.2. On a Riemannian manifold (U, D) and S ⊂
U, the set of points in U that are equidistant from some two
points in S has measure zero.

Say that Z is dimension regular if there is a threshold tD

such that the balls B(x, ε) are measurable for all x ∈ U and
ε < tD, and also

H(ε) := sup
x∈U

μ(B(x, ε))/εd

and

L(ε) := inf
x∈U

μ(B(x, ε))/εd

are in Θ(1) as ε → 0. (These values are related to the injec-
tivity radius. This condition is stronger than the definition
given by Cutler[8] for dimension regularity, which requires
only that log(μ(B(x, ε))/εd) is in o(log(1/ε)). The condition
is equivalent to the positive density condition of Gruber[15],
combined with the compactness of U.)

The following lemma implies that we can assume that
D(U, Sn) is small, for large enough n.

Lemma 5.3. If metric measure space Z = (U, D, μ) is di-
mension regular, then sets Sn ⊂ U of size n that minimize

F (S) :=

Z
D(x, S)2dμ(x)

have D(U, Sn) = o(1) as n → ∞.

Proof: Omitted in this abstract.

Theorem 5.4. Suppose Z = (U, D, μ) is a compact met-
ric measure space, for length metric D and Borel measure
μ. Suppose that Z is Voronoi regular and dimension regular.
Then a set Sn ⊂ U of size n that minimizes

F (S) :=

Z
D(x, S)2dμ(x)

is an (Ω(β(n)), O(β(n)))-Delone set, where

β(n) := (μ(U)/n)1/d,

as n → ∞, and the constants depend only on d.

Proof: Suppose S is a set of size n with D(U, S) less than
tD and tV ; by the lemma just above, for large enough n this
is a necessary condition for S to be an optimal set Sn.

To prove the covering and packing conditions, we will
show that if they fail for such an S, then there is a point
p ∈ S and a point q ∈ U such that F (S \ {p} ∪ q) is smaller
than F (S), so that S cannot be optimal. We will pick a
point p in this pivoting scheme to show that S is an O(β(n))-
covering, and then pick a different p to show that S is an
Ω(β(n))-packing.

The point q will be one realizing D(U, S′), where S′ :=
S \ {p}, so

D̂ := D(q, S′) = D(U, S′) ≥ D(U, S).

That is, S′, and so S, are D̂-coverings. Points in the ball
B(q, D̂/3) have distance to q no more than D̂/3, by defini-

tion, and at least 2D̂/3 from any point in S′, by the triangle

inequality. Therefore any point x ∈ B(q, D̂/3) has

D(x, S′)2 − D(x, S′ ∪ {q})2 ≥ (2D̂/3)2 − (D̂/3)2 = D̂2/3,

so

F (S′) − F (S′ ∪ {q}) ≥ μ(B(q, D̂/3))D̂2/3. (4)

To show that Sn is a O(β(n))-covering, pick p ∈ S that has
the smallest Voronoi region in measure. Voronoi regularity
implies that p has μ(Vor(p, S)) ≤ μ(U)/n. By Lemma 5.1,

each x ∈ Vor(p, S) has D(x, S′) ≤ 3C(p, S) ≤ 3D̂. Thus

deleting p increases F by at most (3D̂)2μ(U)/n, that is,

F (S) − F (S′) ≥ −(3D̂)2μ(U)/n.

By this fact, dimension regularity, and (4), we have

F (S) − F (S \ {p} ∪ {q})
= F (S) − F (S′) + F (S′) − F (S′ ∪ {q})
≥ −(3D̂)2μ(U)/n + (D̂2/3)μ(B(q, D̂/3))

≥ D̂2[Ω((D̂/3)d)/3 − 9μ(U)/n],

as D̂ → 0. This expression is greater than zero when

Ω((D̂/3)d) > 27μ(U)/n.

Thus if D̂ = D(U, S′) is not in O(μ(U)/n)1/d, S cannot be

optimal for its size. Since S is an D̂-covering, Sn must be
an O(β(n))-covering as claimed.

The proof that Sn must be an Ω(β(n))-packing is similar,
and omitted in this abstract.

This completes a version of the argument by Gruber. The
following corollary implies that ε-nets give constant-factor
approximations.

Corollary 5.5. Under the conditions of Theorem 5.4, a
greedy ε-net E of size n has F (E) = O(F (Sn)) as n → ∞,
where F (Sn) is optimal for a set of size n. The constant
factor is at most exponential in the manifold dimension d.

Proof: Omitted in this abstract.
The following characterization of optimal sets Sn may also

be interest.

Theorem 5.6. Under the conditions of Theorem 5.4, for
an optimal set Sn and for any two points p, p̂ ∈ Sn, we have
C(p̂, Sn) ≤ βdC(p, Sn), where

βd ≤ 6(H(C(p, Sn))/L(C(p̂, Sn)/3))d/(d+2).

That is, for a family of manifolds with H(ε) and L(ε) only
exponentially dependent on d, the circumradius ratio is in
not increasing in d.

Proof: Omitted in this abstract.
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6. THE CURVATURE DISTANCE AND
DUDLEY’S CONSTRUCTION

As discussed by Pottmann et al. [22] and mentioned in §1
and §3, the regularized isophotic distance has metric tensor
q I+III := q I + q III; that is, it combines the metric tensor
q I for arc length and q III for arc length in the Gauss map
image. As discussed in §3, at a point p the matrix of q I+III

is I + H2
p in the coordinate system is oriented to p. We will

simply write H for Hp below.
The analogous matrix for the root-curvature metric q II is

H . For any d-vector v, its measure by the isophotic metric
tensor at p is

√
vT v + vT H2v, while for the root-curvature

metric, it is
√

vT Hv. Using the Cauchy-Schwartz inequality
and the arithmetic-geometric mean inequality, we have

q II(v; p) = vT Hv ≤ ‖v‖‖Hv‖ ≤ (‖v‖2 + ‖Hv‖2)/2

= (vT v + vT H2v)/2 = q I+III(v; p).

Thus the isophotic distance between two points is always
greater than the root-curvature distance, and so an isophotic
ε-cover is always an ε-cover for the root-curvature distance.

By Lemma 3.1, the size of an ε-net for DI+III is propor-
tional to 1/εd timesZ

M

p
det(I + H2

x)dx =

Z
M

sY
i

(1 + ki(x)2)dx

≤
Z

M

Y
i

(1 + |ki(x)|)dx,

where ki(x) is the i’th eigenvalue of H . For a 2-manifold,
this is no more thanZ

M

dx +

Z
M

|k1(x)| + |k2(x)|dx +

Z
M

|k1(x)k2(x)|dx.

These terms are the surface area, the total mean curvature
of the convexified metric, and the total Gaussian curvature
of the convexified metric, respectively. The last term is more
commonly known as the total absolute curvature. The total
mean curvature of the convexified metric is within a con-
stant factor of the “root mean square,” or RMS, curvature,
with an integrand of

p
k1(x)2 + k2(x)2. This bound can be

strictly larger than for root-curvature distance.
As a concrete example, consider a circular cylinder of ra-

dius r, where the surface area of the “wrapped” part (not
one of the capping disks) is 1. While the Gaussian curvature
at a “wrapped” point is zero, the mean and RMS curvatures
are 1/r, and so the total RMS curvature is at least 1/r. As
r → 0, this term in the bound dominates the surface area
term. Thus the size of an ε-net in the DI+III metric is pro-
portional to (1/r)/ε2. In contrast, the size of an ε-net on
the cylinder in the DII metric is to O(1/ε2), not increasing
in 1/r, where the cost comes from the capping disks.3 Since
these two nets yield triangulations that have Hausdorff error
O(ε2), the net for DII is more economical for given error.

3Neglecting the δ-perturbation needed for positive-
definiteness; on the other hand, a size more like O(

√
αr/ε2)

as ε → 0 would be obtained if the cylinder were approx-
imated by the convex hull of two torii of major radius r
and minor radius α. The Gaussian curvature on a torus in
the region of interest is no more than 1/αr, and the area
is αr, so the total root curvature contributed by the torii is
proportional to

√
αr.
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[5] P. T. Chruściel, J. Fu, G. Galloway, and R. E. Howard. On fine
differentiability properties of horizons and applications to
Riemannian geometry. J. Geometry and Physics, 41:1–12,
2002.

[6] K. L. Clarkson. An algorithm for approximate closest-point
queries. In SOCG ’94: Proc. Tenth Annual ACM Symp. on
Computational Geometry, pages 160–164, 1994.

[7] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape
approximation. ACM Trans. Graph., 23(3):905–914, 2004.

[8] C. D. Cutler. A review of the theory and estimation of fractal
dimension. In H. Tong, editor, Dimension Estimation and
Models. World Scientific, 1993.

[9] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi
tessellations: Applications and algorithms. SIAM Rev.,
41(4):637–676, 1999.

[10] R. M. Dudley. Metric entropy of some classes of sets with
differentiable boundaries. J. Approximation Theory,
10:227–236, 1974.

[11] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi. The
farthest point strategy for progressive image sampling, 1997.

[12] J. Erickson. Personal Communication.

[13] T. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoret. Comput. Sci., 38:293–306, 1985.

[14] P. M. Gruber. Asymptotic estimates for best and stepwise
approximation of convex bodies I. Forum Math., 5:281–297,
1993.

[15] P. M. Gruber. Optimum quantization and its applications. Adv.
Math., 186:456–497, 2004.

[16] P. S. Heckbert and M. Garland. Optimal triangulation and
quadric-based surface simplification. Comput. Geom. Theory
Appl., 14(1-3):49–65, 1999.

[17] G. Leibon and D. Letscher. Delaunay triangulations and
Voronoi diagrams for Riemannian manifolds. In SCG ’00:
Proceedings of the Sixteenth Annual Symposium on
Computational geometry, pages 341–349, New York, NY, USA,
2000. ACM Press.

[18] M. Ludwig. Asymptotic approximation of convex curves; the
Hausdorff metric case. Arch. Math., 70:331–336, 1998.

[19] E. Nadler. Piecewise linear best �2 approximation on
triangulations. In C. K. Chui, L. L. Schumaker, and J. D.
Ward, editors, Approximation Theory V, pages 499–502.
Academic Press, 1986.
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