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Abstract 
In this paper we present a new model for predicting text 
entry speed on a 12-button mobile phone keypad. The 
proposed model can predict the performance of novice 
users. Like other models for text entry, the proposed model 
includes a movement component based on Fitts’  law and a 
linguistic component based on letter digraph probabilities. 
It also adds cognitive delay times before key presses and 
takes into account the fact that Fitts’  law cannot model 
multiple presses of the same key accurately. Finally, we 
compare the prediction of our model to previously 
published experimental results, demonstrate that it fits 
observed results for novices very well, and list some 
observations about learning. 

Categories & Subject Descriptors: H.1.2 [Models 
and Principles]: User/Machine Systems – human factors. 

General Terms: Human Factors, Performance, Theory, 
Experimentation. 

Keywords: text entry, mobile phones, model. 

INTRODUCTION 
Most modern mobile phones include the capability to send 
and receive short text messages. Many people use this 
facility, and, in fact, during the last decade there has been 
phenomenal growth of the number of text messages sent. In 
the year 2002, more than 24 billion messages were 
transmitted each month through GSM networks alone [5]. 
This is remarkable, given that entering text on a phone 
keypad is not easy, for there are significantly fewer buttons 
on a phone keypad than there are letters in a language 
alphabet. Various text entry techniques for phones have 
been developed to deal with this issue, each trying to find 
the best way to use the 12 buttons on a keypad to enter text.  

Designing text entry methods for computing systems is not 
an easy undertaking: eventually one needs to build a 

prototype device and to conduct user studies in order to be 
able to judge how the newly developed technique compares 
to existing ones. Consequently, a model that predicts the 
performance of a new method as closely as possible without 
the need to do prototyping would be very valuable.  

Text Entry Methods for Mobile Phones 
The traditional 12-button keypad (Figure 1) consists of ten 
number keys and two additional symbols (* and #). The 
letters are assigned to the keys in alphabetical order. 
Although there are some minor variations, most keypads 
follow the ITU E.161 standard, also known as ANSI 
T1.703-1995/1999 or ISO/IEC 9995-8:1994. One can read 
more on phone keypads and related standards in [15].  

 

 

Figure 1. The standard 12-key keypad (Mitsubishi 
G310). 

In the following subsections, we will briefly describe the 
existing techniques for text entry on phone keypads. 

Multitap 
Most phones offer Multitap as the standard choice for text 
entry. In order to enter a letter with Multitap, a user presses 
the corresponding key repeatedly until the letter appears 
(e.g. press ‘2’  once to enter ‘a’ , twice to enter ‘b’  and so 
on). A notable difficulty with Multitap is entering 
consecutive letters that appear on the same key (a problem 
called segmentation). There are two ways to deal with this 
situation. One alternative is to use a timeout after which the 
system advances to the next letter. Another alternative is to 
advance the cursor using a dedicated key. The first 
approach requires fewer keystrokes; the second tends to be 
faster for expert users, even though the number of key 
presses is greater [10]. 
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Less-Tap 
Less-tap [14] differs from Multitap in the order in which the 
letters appear upon pressing a key. The objective of this 
idea is to allow the entry of the most frequent letter on each 
button with one keystroke, the second most frequent letter 
with two keystrokes and so on. This reduces the average 
number of keystrokes by about 25%, to 1.44 key presses per 
character.  

Two-Key 
As the name implies, two key presses are required for each 
letter. The first press selects the group of letters (e.g. ‘4’  
selects GHI). The second press then selects the letter from 
the group (e.g. ‘2’  selects H). Another interesting two-key 
approach, MessagEase is described in [13]. However, it 
uses a non-standard layout. In these approaches there is no 
issue of segmentation. Both of these two-key based methods 
are not much faster than Multitap [16] and will not be 
discussed further. 

All of the systems mentioned so far support eyes-free input 
[12], the ability to enter text without having to visually 
verify the result. This, of course, assumes the user had an 
opportunity to memorize the layout of the letters. 

Dictionary-Based Disambiguation 
There are several text entry techniques that disambiguate 
input based on a dictionary: T9 from Tegic 
Communications, iTap from Motorola, eZitext from Zi 
Corp. All of them act very similarly – the user presses each 
key only once for each entered letter. The system tries to 
match all possible interpretations of the entered key 
sequences to the words that are contained in the dictionary. 
The most probable word is the default choice offered. If this 
is not the word intended by the user, he or she has to press a 
special key (NEXT) until the intended word appears. This 
means that text entry speed goes down if a desired word is 
one of the less likely choices in the dictionary. This class of 
systems fails if the word is not in the dictionary or is 
misspelled. In principle, eyes-free input is impossible with 
these techniques. 

Prefix-Based Disambiguation 
The only system that uses prefix-based disambiguation is 
LetterWise [10], where the prefix is the sequence of letters 
preceding the current keystroke. It guesses the most 
probable next letter based on what the user entered 
previously. Up to three consecutive letters are used in the 
presented implementation. Since LetterWise uses a database 
of prefixes instead of words, the technique does not fail 
when a user attempts to enter non-dictionary words. To deal 
with the case when the letter that initially appears is not the 
desired one, the system employs a NEXT key, as an 
alternative to multiple key presses. Like dictionary-based 
disambiguation methods, LetterWise forces users to pay 
close attention to the screen while entering text, to verify 
that the prediction of the system matches the user’s 
intention. Therefore, eyes-free input is not possible. 

Methods That Use Non-Standard Keypads 
The following two methods use keypads different from the 
standard 12-button phone keypads and are described here 
only to provide an overview over alternative approaches. 
They will not be considered further in this paper in order to 
concentrate on 12-button-based text entry. 

While miniature QWERTY keyboards seem to be a natural 
choice for text entry, their use in mobile phones is not 
widespread, mainly due to their (even slightly) larger size 
and the inability to touch type. Also, single-handed 
performance on miniature QWERTY keyboards is 
significantly lower than double-handed performance. 
Having said that, it has been demonstrated that miniature 
keyboards are a viable choice for personal digital assistants 
(PDAs) where there is a need for faster text entry methods 
and the size is slightly less of a constraint. Another 
technique, Fastap [8], also uses more than 12 buttons. Each 
letter has a dedicated small button, and the button for space 
is double-sized. The buttons are arranged in a 4-by-7 grid 
(28 ‘nodes’  and 18 ‘cells’ ) and the letters are assigned to 
the buttons sequentially, in alphabetical order. To enter a 
letter, the user simply presses the corresponding key. 

Fitts’ Law 
Fitts’  model is an important component of our model. Fitts’  
law [4] is a model for serial fast, aimed movements. It is 
expressed as: 

MT = a + b · log2(A/W + 1) 

where A is the amplitude of the movement (e.g. the distance 
between buttons on a keypad), and W is the width of a 
target (e.g. a button). The log term in the equation is called 
the index of difficulty (ID): 

 MT = a + b · ID 

One of Fitts’  law’s limitations is that it assumes that the 
movements are only limited by human motor abilities. We 
will see later that in some cases the movement time is only a 
small fraction of the total time needed to perform a key 
press. Another limitation is that Fitts’  law does not work 
well for motions that have an ID of zero (e.g. key repeats) 
[18].  

The coefficients a and b are usually determined empirically 
for a given device (e.g. tablet, keypad) and the interaction 
style (e.g. pointing with a stylus, pointing with a finger, 
pressing with a thumb). Silfverberg et al. [16] determined 
the coefficients for the phone keypad used here. The 
reported Fitts’  law parameters were a = 176 ms and b = 64 
ms/bit (Nokia 5100 series, thumb entry). 

Existing Models for Text Entry 
Two models for text entry on a 12-button keypad were 
presented previously. Both of them were designed to 
predict expert (or peak) text entry rates for various text 
entry methods. 



  

The KLM Model 
The first model, a keystroke level model by Card et al. [2], 
is one of the earliest predictive models for human-computer 
interfaces. The model tries to account for times of 
individual key presses, including the “mental preparation 
times”  before each. Dunlop and Crossan [3] used this model 
to evaluate their text entry technique (a predictive method 
similar to T9) alongside Multitap. In their paper, the 
obtained predictions are 14.9 and 17.6 words per minute 
(wpm) for Multitap and the predictive text entry method 
respectively. We recomputed the predictions of the model 
considering that other models assume an average word 
length of 5 and other factors1. The revised predictions 
appear in Table 1.  

Major deficiencies of the KLM model stem from the fact 
that it was not intended to be an accurate and 
comprehensive model of text entry but merely as a tool to 
analyze human-computer interaction in general. The model 
does not rely on Fitts’  law to determine the movement time 
between keys and assumes that all key presses take an equal 
amount of time; that is, it assumes that pressing the 
sequence of buttons 2-3-2 takes as much time as 2-9-2 and 
as much as 2-2-2. Also, the mental preparation component 
of the model is assumed to be the same before each key 
press, which may not be true for phone text entry methods 
that require more than one press for certain letters. 

The Silfverberg Model 
The second model was presented by Silfverberg et al. [16] 
and is largely based on the model of Soukoreff et al. for 
soft keyboards [17]. It contains two parts: a movement 
model based on Fitts’  law [4] and a linguistic model to 
determine the distributions of the key digraphs for the given 
corpus. Like the previous model, this one assumes expert 
performance with no errors.  

The Silfverberg model predicts a text entry rate of 20.8 
wpm for Multitap (without a timeout kill button) and 40.6 

                                                           
1 We believe that the equation for T9 in [3] is incorrect as it includes the 

time to press space twice: as a part of the word’s 5.98 characters and as 
a part of the final sequence, bringing the average number of key presses 
to about 7.02 per word rather than 6.02 mentioned in the paper. We 
corrected it by replacing the factor kp by (word length – 1).  

wpm for T9. Again, for the purposes of this paper, we 
recomputed the numbers, to reflect the fact that in the 
experiments, the results of which we were using to verify 
the model, a timeout of 1.0 s was used, instead of 1.5 s. The 
revised predictions appear in Table 1. 

A thorough description of the models is beyond the scope 
of this paper; interested readers are encouraged to refer to 
the original texts. Note that the two models give different 
predictions, especially for T9. 

Published Experimental Results 

Study of T9 vs. Multitap 
An interesting result is a study that evaluates T9 and 
Multitap in an experiment with both novice and expert users 
[7]. The results are summarized in Table 1. As one can see, 
the actual observed rates do not agree with either model. 
Also, in [7], the authors assert that the notion of an expert 
text message user is unrealistic due to the very nature of the 
task. They report that a typical SMS user sends only about 
20 messages per month; which seems to be consistent with 
what we were able to observe. As the messages themselves 
are short, there would hardly be an opportunity for the users 
to ever become experts2! 

Study of Multitap vs. Less-Tap 
In another user study [14], the authors were able to observe 
improvements of their technique, Less-Tap, over Multitap 
ranging from 0% to around 20%, depending on the user, 
with the average being around 10%. While the range of 
improvement predicted by the models was reasonably 
consistent with the results that were experimentally 
obtained (the KLM model predicted the improvement of 
28% and Silfverberg model 20%), the actual text entry 
speeds observed were much lower than predicted. Again, 
please refer to Table 1 for a comparison.  

Trying to account for and to explain the observed 
discrepancies between the predictions and the experimental 
results has led us to the development of a new model. 

                                                           
2 It should be noted, however, that in many European countries as well as 

in some parts of Asia, the use of phones for text messaging is very 
common. In such countries there exist significant groups of users whose 
performance is close to expert level. 

Method 
KLM 
Model 
[2] ,[3]  

Silfverberg 
Model 
[16]  

Novice 
[14]  

Novice 
[7]  

Novice 
newspaper 

[7]  

Novice 
chat [7]  

Expert 
[7]  

Expert 
newspaper 

[7]  

Expert 
chat [7]  

Multitap 18.35 22.3 7.15 7.98 5.59 10.37 7.93 5.33 10.53 

T9 24.97 40.6  9.09 7.21 10.98 20.36 15.05 25.68 

Less-Tap 23.47 26.8 7.82       

Table 1. Existing model predictions and mean entry speeds observed for  
novices and experts (wpm); see text for details. 



  

A MODEL FOR TEXT ENTRY ON 12-BUTTON 
KEYPADS 
The model that will be described in the paper can largely be 
viewed as an extension of the aforementioned models of 
Silfverberg et al. and Card et al. However, the new model is 
also applicable to non-expert users. This is a very useful 
extension, since, as stated above, many people never reach 
the expert level. 

Non-Motor Components in Text Entry 
Obviously, humans are not just precise finite state machines 
that transform the intended text into a sequence of 
performed keystrokes at a speed limited only by the 
physical capabilities of their limbs. They tend to make 
pauses to verify the progress they have made so far, mainly 
to convince themselves that they haven’ t made an error, or 
to prepare for their next step. Humans also make mistakes 
(e.g. in the text entry task they hit a key different from the 
one intended). These are factors that are possible to predict 
and quantify based on existing statistical data and 
consequently can be incorporated into a model. Other 
factors are much harder to predict, for example, the use of 
different strategies to perform the same task (e.g. in our 
case: focusing the visual attention on the keypad, on the 
display, or on the environment). Such factors are not likely 
to be included in any model. 

From analyzing the key log data of previous phone text 
entry experiments [14] and our own observations we 
identified the following significant components:  

1. Re-reading the phrase to be entered (present only in 
text entry experiments; most people prefer not to 
memorize the phrase they are entering). 

2. Figuring out which letter of which word has to be 
entered next (spelling out the word). 

3. Determining on which button the next letter is located 
and how many key presses are needed (visual search 
and/or memory recall operations). 

4. Determining where the button is located (in case of the 
12-button phone keypads; this is usually a memory 
recall operation). 

5. Keeping count of the number of presses made while 
performing repeated presses of the same key. 

6. Visually verifying the result of the performed key 
press[es] (especially important if the technique 
employs some kind of non-determinism or prediction). 

Most of these components can be derived from the GOMS 
model [2]. Of course, we cannot be absolutely certain that 
the identified components are present for all users at any 
given point in time. Yet, we find it reasonable to believe 
that they are likely to be present on average for most users. 
We will demonstrate later that one can find these 
components even in experienced users. The times 
corresponding to these components will vary depending on 
the level of expertise of the user and the strategy employed. 

Also, there will be some very common words, like “ the” , 
“ in” , “ to” , which may be entered almost routinely.  

At first we considered measuring the individual components 
described above. However, as multiple components can 
easily be present between successive key presses, we chose 
to concentrate only on the combined times separating those 
presses, which are the times we can measure directly. 

In the next section, we describe the experiments we used to 
estimate the amounts of time corresponding to the 
aforementioned components. 

Determining Non-Motor Components – Method 
In all the experiments, the participants used a Nokia 5190 
telephone handset connected to a computer as an input 
device. The equipment was identical to the one employed in 
[14]. The software was extended to include additional text 
entry algorithms.  

Experiment 1: Finding a Key and Pressing it 
Repeatedly 
The goal of the experiment was to measure the time that 
precedes a key press in cases when no verification of the 
outcome was necessary (that is, when the text entry method 
was fully deterministic), as well as the time it takes to 
perform a repeated key press. Also, in order to test the 
assumption that, on a 12-buttton keypad, letters are slower 
to enter then numbers we had users enter both letters and 
numbers and then analyzed the times separately.  

An example of the sequence of characters participants had 
to enter is “cccc 99 zzz 5 i yyy kkkkk b 44 rrr” , 
meaning “press the button with ‘c’  four times, the button 
with ‘9’  two times and so on. The entry technique 
automatically disambiguated the letters for display and also 
automatically added spaces. The spaces in this experiment 
served only as visual separation of the symbol groups. 

The times preceding the first key press for each symbol 
(Inum, I ltr), which roughly correspond to components 1 
through 4 above, were computed as differences between the 
measured times for the first press and the times that would 
have been needed according to Fitts’  law. The times to 
perform repeated key presses (Rcount), which correspond to 
component 5, were determined as the differences between 
the timestamps of the repeated key presses and the ones of 
the immediately preceding key presses. 

Experiment 2: Verifying a Character 
The objective of this experiment was to measure the time to 
perform a key press in cases when some visual verification 
of the entered character was required. Only letters were 
entered, and there were no spaces. The entry method used 
was similar to Multitap, with one small difference: to 
guarantee that verification was always required, the order in 
which the letters appeared upon a key press was random 
each time. The participants were instructed to “press the 
corresponding button one or more times until the letter 
appeared” . For example, for the phrase 



  

“cwjqwmfzjoipxduasnewr” , they had to press ‘2’  until 
‘c’  appeared, then press ‘9’  until ‘w’  appeared and so on. 

The time to perform a repeated press while verifying the 
letter (Rverify) which corresponds to components 6 was again 
determined as the difference between the timestamps of the 
repeated key press and the preceding one.  

Experiment 3: Verifying a Word 
In the last experiment, we measured the time needed to 
verify a word and to press an appropriate button (Vw or 

Vw2), which corresponds to component 6. This kind of 
operation is present in systems that use word-based 
prediction. 

The text entry method used was similar to T9. In order to 
have more cases when word verification was needed, we 
implemented the technique in such a way that, unlike in T9, 
the word that appeared by default was not the most 
probable but was instead any random matching fragment 
that existed in the dictionary. The participants were 
instructed “ to press the corresponding button once for each 
letter in the word and to press the NEXT key (#) at the end of 
the word until the correct word appears” .  

The first and all subsequent presses of NEXT were analyzed 
separately, as the initial press also involves an inter-button 
movement while the others do not. The used set of phrases 
is described in [11]. 

Participants 
There were 12 participants in the test, recruited through 
advertisements posted on the university campus. Five 
participants were female, one was left-handed, and three 
were frequent users of text messaging. Age ranged from 18 
to 33 with a mean of 24.5. All had extensive computer 
experience (seven years or more). One did not own a cell 
phone. One reported using text messaging on the cell phone 
daily, another two used it weekly; all others used it very 
infrequently, if at all. All participants were compensated 
upon completion of the user study. 

Results 
Table 2 below shows the results from the experiments 1, 2, 
and 3 (all values are in milliseconds, standard deviation in 
round brackets).  

Table 2. Results from Experiments 1 through 3. 

Component 
Time (SD), 

ms 

Initial time before numbers, Inum  701  (383) 

Initial time before letters, I ltr 1285  (588) 

Repeated press while counting, Rcount  272  (83) 

Repeated press while verifying, Rverify  411  (114) 

First presses of a NEXT key, Vw 1088  (371) 

Subsequent presses of a NEXT key, Vw2  672  (254) 

 

The most remarkable result is that the times are much 
greater than one would expect by considering human motor 
performance alone. This discrepancy will be discussed later 
in the paper. 

Time to Enter Character – New Movement Model 
From the above experiment, we can derive the times 
required to enter text using different text entry systems. We 
chose not to consider two-key input methods and other 
methods, which use non-standard keypads. 

Multi-press Input Methods 
Multi-press input methods include Multitap and Less-Tap. 
For these methods, the time to enter a character can be 
described as: 

Tchar = I ltr + TFitts + N · (Rverify) + [Ttimeout]    (1) 

TFitts is the time needed to move the finger from the 
preceding key to the current key, as computed from Fitts’  
law equation. N is the number of additional presses (after 
the first, e.g. one for double or two for triple). Ttimeout is the 
time that the user would have to wait for if the current 
character is located on the same button as the previous one. 
In our studies, we didn’ t use the timeout kill key, but the 
model can account for that, if desired (the value for Ttimeout 
that we used was 1000 ms).  

Predictive Input Methods 
Predictive input methods include T9, iTap and others. There 
are several strategies possible with such methods [7], [10], 
[16]. However, it is often expected that users ignore the 
display until they finish entering the current word. 
Sometimes users have to press a NEXT key, which, 
statistically, accounts for less than 1% of the total number 
of presses [9], [16]. However, each time before pressing 
NEXT, the users would need to verify the current result, a 
task that takes over one second (Vw, Table 2)!  

Thus, the model for the time to enter a character with a 
predictive method is: 

Tchar = I ltr + TFitts + N1 · Vw + N2 · Vw2   (2) 

N1 is the number of first presses of the NEXT key (either 
present – one or absent – zero). N2 is the number of 
additional presses (after the first, e.g. one for double or two 
for triple).  

Linguistic Model 
A linguistic model contains information about the frequency 
of different letter-pairs (digraphs). In our case, it is based 
on the letter-pair data from the British National corpus [1] 
and may be slightly different from the one used in [16]. The 
model is represented by a 27×27 matrix, the 27 characters 
being the 26 English letters and a SPACE symbol. Each cell 
pij in the matrix is the probability of the corresponding letter 
pair in the corpus, so that all cells sum to unity.  



  

Combining the Models 
Now, that we have both a movement time and a linguistic 
model, we combine them to obtain the model that predicts 
the text entry rate for a text entry system and a language: 

 Tchar_in_corpus = ΣiΣj (pij · Tchar ij)   (3) 

Tchar_in_corpus is the average time to enter a character in the 
corpus using a selected text entry method, in seconds per 
character. Tchar ij is the average time to enter a character j 
after character i. To convert this number to words per 
minute (using the common assumption of 5 characters per 
word), we use the following expression: 

WPM = (1/Tchar_in_corpus)·(60/5)  (4) 

VERIFYING THE MODEL 

Model Predictions for Various Text Entry Methods 
At this point, we can apply all the collected data to compute 
predictions for text entry speeds. The obtained predictions 
are listed in Table 3. As mentioned previously, we used 
Fitts’  law coefficients from [16] (the ones for the thumb) 
since the same telephone handset was used in all the 
studies. As expected, the predictions show that Multitap is 
the slowest, Less-Tap is a bit faster (by 11%), and T9 is the 
fastest (16% faster than Less-Tap and 29% faster than 
Multitap).  

Table 3. Model predictions and  
experimental results (WPM). 

Technique KLM 
model 

Silfver
berg 

model 

Novice, 
newspa
per [7]  

Results 
from 
[14]  

New 
model, 
novice 

Multitap 18.35 22.3 5.59 7.15 5.87 

Less-Tap 23.47 26.8  7.82 6.53 

T9 24.97 40.6 7.21  7.58 

 

Experimental Data 
For comparison, all relevant data is summarized in Table 3. 
From [7], we took the results for the novice newspaper 
condition, since our linguistic model was derived from 
British National corpus, which is much closer to newspaper 
text than to “chat”  text. 

Even short term text entry experiments, such as [14], 
observe learning effects in practice, which explains the fact 
that our model underestimates the experimentally observed 
values. Probably for that very reason, the match is better for 
novice newspaper users in [7]. 

The study in [7] and [14] differ in the number of phrases 
entered (8 and 60 respectively). Therefore, the numbers 
from these two studies differ due to non-equal amounts of 
fatigue and learning involved. It is also possible that the 
small set of phrases chosen for [7] was favourable to T9. 
Yet, in our opinion, in both cases, the entry speeds observed 
for novices appear to be reasonably consistent with the ones 

predicted by the new model. In [10], the issue of text entry 
in predictive systems is investigated a bit further. Interested 
readers are encouraged to refer to the original text.  

Furthermore, notice the dramatic differences in relative 
predictions for T9 by different models: the KLM model, 
Silfverberg’s model, and the new model predict differences 
between T9 and Multitap of 36%, 82%, and 29% 
respectively, while the measured difference is 28%. Even 
though the ranking of the methods stays the same, one can 
easily see that using expert models for non-experts can be 
misleading. 

Observations about Changes of Coefficients with 
Time 
By varying the coefficients, it may be possible to adapt the 
model to predict the performance of users at various levels 
of expertise. Obviously, the coefficients of our model 
should decrease in magnitude with practice (see [5], for 
example). 

Short Term Changes 
Even though our experiments were short (less than 20 
minutes for each component), we observed significant 
changes in some of the components. 

The time to make the first press for a letter decreases over 
time. However, the time to enter a number stays practically 
constant or increases slightly, probably due to fatigue 
effects (see Inum and I ltr in Figure 2). Due to the short test 
and the associated large variance, it is not possible to 
observe that the change for letters has the expected power-
law trend [5]. 

The time to make an additional key press while keeping 
track of the number of key presses (see Rcount in Figure 2) 
decreases slightly at the very beginning, and then stays 
approximately constant. 
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Figure 2.  Changes of Iltr, Inum, Rcount with time. 



  

The time to make an additional key press while verifying 
the entered character (Rverify in Figure 3) gradually 
decreases with time. Clearly, a long-term experiment is 
needed to determine the exact shape of the curve. 
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Figure 3. Change of Rverify with time. 

The time for the first press of the NEXT key (Vw in Figure 4) 
decreases slightly at first, and then appears to level of. 
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Figure 4. Change of Vw with time. 

Long Term Changes 
For this analysis, we used the results for Multitap of 
MacKenzie et al. [10] where they compared Multitap and 
LetterWise in a longitudinal study. Their setup was different 
from ours in that they used a large desktop-size numeric 
keypad. The sessions in the study were approximately 30 
minutes long. Based on their data for text entry speed and 
equation (1) of our model, we estimated the values of the 
coefficients for all sessions. The following graph 
demonstrates our estimate of I ltr and the extrapolation based 
on the power-law for 20 more sessions. Please note that 
even at the 40th session (approximately 20 hours), the 
cognitive delay before the first press of a letter key is still 
far from zero. 
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Figure 5. Coefficient Iltr as a function of time. 

We hypothesize from this data that I ltr is the strongest factor 
in learning, and will account for most of the change in the 
text entry speed as users get more and more familiar with 
the keypad. 

Please note that even though we described our observations 
on how the coefficients change with time, we cannot claim 
that we can model learning of text entry methods 
effectively. We consider this a subject for future work. 

DISCUSSION  

How to Obtain Better Predictions  
Our model for novice multi-press and T9 users assumes that 
the users are complete beginners (e.g. verification of the last 
character was needed every time). Just as the concept of an 
expert user of text entry systems is not realistic, a concept 
of a complete novice user is not very practical either. 
Usually, users learn some features of a technique very 
quickly. E.g. even before one uses Multitap for the first 
time one can quickly observe that the first button with 
letters has ‘ABC’ on it and utilize this knowledge. Further 
learning happens gradually through memorization of the 
layout and through becoming accustomed to the text entry 
method. The first manifests itself in that users remember 
where the most frequent letters are; the second is evident in 
the decrease of the coefficients as shown in the results. 
Also, many users acquire the skill to quickly enter very 
common words. In the equations above, one could model 
this gradual behaviour by replacing the coefficients I ltr, 
Rverify by Inum and Rcount for certain letters (e.g. for the most 
frequent letters in the alphabet or the letters that are in the 
first position on a key). This models that certain key 
sequences become well known and the user does not need 
to visually verify the result anymore. However, we want to 
emphasize that we are only speculating about these learning 
factors, as we do not have scientific proof yet. 

SUMMARY 
In this paper, we presented a model that can predict the text 
entry speed on standard 12-button telephone keypads for 
novices. The major difference between this model and 



  

existing ones is that it includes not only movement times 
but also the mental overhead in its predictions. Thus it can 
more accurately predict the average performance of non-
experts. The values computed by the model (5.87 wpm for 
Multitap, 6.53 wpm for Less-Tap, and 7.58 wpm for T9 for 
novice users) are consistent with those experimentally 
observed. We also made some initial observations about the 
process of learning in text entry methods. 
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