

Model for non-Expert Text Entry Speed on 12-Button
Phone Keypads

Andriy Pavlovych Wolfgang Stuerzlinger
Dept. of Computer Science,

York University
Toronto, Ontario, Canada

http://www.cs.yorku.ca/{ ~andriyp|~wolfgang} /

Abstract
In this paper we present a new model for predicting text
entry speed on a 12-button mobile phone keypad. The
proposed model can predict the performance of novice
users. Like other models for text entry, the proposed model
includes a movement component based on Fitts’ law and a
linguistic component based on letter digraph probabilities.
It also adds cognitive delay times before key presses and
takes into account the fact that Fitts’ law cannot model
multiple presses of the same key accurately. Finally, we
compare the prediction of our model to previously
published experimental results, demonstrate that it fits
observed results for novices very well, and list some
observations about learning.

Categories & Subject Descriptors: H.1.2 [Models
and Principles]: User/Machine Systems – human factors.

General Terms: Human Factors, Performance, Theory,
Experimentation.

Keywords: text entry, mobile phones, model.

INTRODUCTION
Most modern mobile phones include the capability to send
and receive short text messages. Many people use this
facility, and, in fact, during the last decade there has been
phenomenal growth of the number of text messages sent. In
the year 2002, more than 24 billion messages were
transmitted each month through GSM networks alone [5].
This is remarkable, given that entering text on a phone
keypad is not easy, for there are significantly fewer buttons
on a phone keypad than there are letters in a language
alphabet. Various text entry techniques for phones have
been developed to deal with this issue, each trying to find
the best way to use the 12 buttons on a keypad to enter text.

Designing text entry methods for computing systems is not
an easy undertaking: eventually one needs to build a

prototype device and to conduct user studies in order to be
able to judge how the newly developed technique compares
to existing ones. Consequently, a model that predicts the
performance of a new method as closely as possible without
the need to do prototyping would be very valuable.

Text Entry Methods for Mobile Phones
The traditional 12-button keypad (Figure 1) consists of ten
number keys and two additional symbols (* and #). The
letters are assigned to the keys in alphabetical order.
Although there are some minor variations, most keypads
follow the ITU E.161 standard, also known as ANSI
T1.703-1995/1999 or ISO/IEC 9995-8:1994. One can read
more on phone keypads and related standards in [15].

Figure 1. The standard 12-key keypad (Mitsubishi
G310).

In the following subsections, we will briefly describe the
existing techniques for text entry on phone keypads.

Multitap
Most phones offer Multitap as the standard choice for text
entry. In order to enter a letter with Multitap, a user presses
the corresponding key repeatedly until the letter appears
(e.g. press ‘2’ once to enter ‘a’ , twice to enter ‘b’ and so
on). A notable difficulty with Multitap is entering
consecutive letters that appear on the same key (a problem
called segmentation). There are two ways to deal with this
situation. One alternative is to use a timeout after which the
system advances to the next letter. Another alternative is to
advance the cursor using a dedicated key. The first
approach requires fewer keystrokes; the second tends to be
faster for expert users, even though the number of key
presses is greater [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

Less-Tap
Less-tap [14] differs from Multitap in the order in which the
letters appear upon pressing a key. The objective of this
idea is to allow the entry of the most frequent letter on each
button with one keystroke, the second most frequent letter
with two keystrokes and so on. This reduces the average
number of keystrokes by about 25%, to 1.44 key presses per
character.

Two-Key
As the name implies, two key presses are required for each
letter. The first press selects the group of letters (e.g. ‘4’
selects GHI). The second press then selects the letter from
the group (e.g. ‘2’ selects H). Another interesting two-key
approach, MessagEase is described in [13]. However, it
uses a non-standard layout. In these approaches there is no
issue of segmentation. Both of these two-key based methods
are not much faster than Multitap [16] and will not be
discussed further.

All of the systems mentioned so far support eyes-free input
[12], the ability to enter text without having to visually
verify the result. This, of course, assumes the user had an
opportunity to memorize the layout of the letters.

Dictionary-Based Disambiguation
There are several text entry techniques that disambiguate
input based on a dictionary: T9 from Tegic
Communications, iTap from Motorola, eZitext from Zi
Corp. All of them act very similarly – the user presses each
key only once for each entered letter. The system tries to
match all possible interpretations of the entered key
sequences to the words that are contained in the dictionary.
The most probable word is the default choice offered. If this
is not the word intended by the user, he or she has to press a
special key (NEXT) until the intended word appears. This
means that text entry speed goes down if a desired word is
one of the less likely choices in the dictionary. This class of
systems fails if the word is not in the dictionary or is
misspelled. In principle, eyes-free input is impossible with
these techniques.

Prefix-Based Disambiguation
The only system that uses prefix-based disambiguation is
LetterWise [10], where the prefix is the sequence of letters
preceding the current keystroke. It guesses the most
probable next letter based on what the user entered
previously. Up to three consecutive letters are used in the
presented implementation. Since LetterWise uses a database
of prefixes instead of words, the technique does not fail
when a user attempts to enter non-dictionary words. To deal
with the case when the letter that initially appears is not the
desired one, the system employs a NEXT key, as an
alternative to multiple key presses. Like dictionary-based
disambiguation methods, LetterWise forces users to pay
close attention to the screen while entering text, to verify
that the prediction of the system matches the user’s
intention. Therefore, eyes-free input is not possible.

Methods That Use Non-Standard Keypads
The following two methods use keypads different from the
standard 12-button phone keypads and are described here
only to provide an overview over alternative approaches.
They will not be considered further in this paper in order to
concentrate on 12-button-based text entry.

While miniature QWERTY keyboards seem to be a natural
choice for text entry, their use in mobile phones is not
widespread, mainly due to their (even slightly) larger size
and the inability to touch type. Also, single-handed
performance on miniature QWERTY keyboards is
significantly lower than double-handed performance.
Having said that, it has been demonstrated that miniature
keyboards are a viable choice for personal digital assistants
(PDAs) where there is a need for faster text entry methods
and the size is slightly less of a constraint. Another
technique, Fastap [8], also uses more than 12 buttons. Each
letter has a dedicated small button, and the button for space
is double-sized. The buttons are arranged in a 4-by-7 grid
(28 ‘nodes’ and 18 ‘cells’) and the letters are assigned to
the buttons sequentially, in alphabetical order. To enter a
letter, the user simply presses the corresponding key.

Fitts’ Law
Fitts’ model is an important component of our model. Fitts’
law [4] is a model for serial fast, aimed movements. It is
expressed as:

MT = a + b · log2(A/W + 1)

where A is the amplitude of the movement (e.g. the distance
between buttons on a keypad), and W is the width of a
target (e.g. a button). The log term in the equation is called
the index of difficulty (ID):

 MT = a + b · ID

One of Fitts’ law’s limitations is that it assumes that the
movements are only limited by human motor abilities. We
will see later that in some cases the movement time is only a
small fraction of the total time needed to perform a key
press. Another limitation is that Fitts’ law does not work
well for motions that have an ID of zero (e.g. key repeats)
[18].

The coefficients a and b are usually determined empirically
for a given device (e.g. tablet, keypad) and the interaction
style (e.g. pointing with a stylus, pointing with a finger,
pressing with a thumb). Silfverberg et al. [16] determined
the coefficients for the phone keypad used here. The
reported Fitts’ law parameters were a = 176 ms and b = 64
ms/bit (Nokia 5100 series, thumb entry).

Existing Models for Text Entry
Two models for text entry on a 12-button keypad were
presented previously. Both of them were designed to
predict expert (or peak) text entry rates for various text
entry methods.

The KLM Model
The first model, a keystroke level model by Card et al. [2],
is one of the earliest predictive models for human-computer
interfaces. The model tries to account for times of
individual key presses, including the “mental preparation
times” before each. Dunlop and Crossan [3] used this model
to evaluate their text entry technique (a predictive method
similar to T9) alongside Multitap. In their paper, the
obtained predictions are 14.9 and 17.6 words per minute
(wpm) for Multitap and the predictive text entry method
respectively. We recomputed the predictions of the model
considering that other models assume an average word
length of 5 and other factors1. The revised predictions
appear in Table 1.

Major deficiencies of the KLM model stem from the fact
that it was not intended to be an accurate and
comprehensive model of text entry but merely as a tool to
analyze human-computer interaction in general. The model
does not rely on Fitts’ law to determine the movement time
between keys and assumes that all key presses take an equal
amount of time; that is, it assumes that pressing the
sequence of buttons 2-3-2 takes as much time as 2-9-2 and
as much as 2-2-2. Also, the mental preparation component
of the model is assumed to be the same before each key
press, which may not be true for phone text entry methods
that require more than one press for certain letters.

The Silfverberg Model
The second model was presented by Silfverberg et al. [16]
and is largely based on the model of Soukoreff et al. for
soft keyboards [17]. It contains two parts: a movement
model based on Fitts’ law [4] and a linguistic model to
determine the distributions of the key digraphs for the given
corpus. Like the previous model, this one assumes expert
performance with no errors.

The Silfverberg model predicts a text entry rate of 20.8
wpm for Multitap (without a timeout kill button) and 40.6

1 We believe that the equation for T9 in [3] is incorrect as it includes the

time to press space twice: as a part of the word’s 5.98 characters and as
a part of the final sequence, bringing the average number of key presses
to about 7.02 per word rather than 6.02 mentioned in the paper. We
corrected it by replacing the factor kp by (word length – 1).

wpm for T9. Again, for the purposes of this paper, we
recomputed the numbers, to reflect the fact that in the
experiments, the results of which we were using to verify
the model, a timeout of 1.0 s was used, instead of 1.5 s. The
revised predictions appear in Table 1.

A thorough description of the models is beyond the scope
of this paper; interested readers are encouraged to refer to
the original texts. Note that the two models give different
predictions, especially for T9.

Published Experimental Results

Study of T9 vs. Multitap
An interesting result is a study that evaluates T9 and
Multitap in an experiment with both novice and expert users
[7]. The results are summarized in Table 1. As one can see,
the actual observed rates do not agree with either model.
Also, in [7], the authors assert that the notion of an expert
text message user is unrealistic due to the very nature of the
task. They report that a typical SMS user sends only about
20 messages per month; which seems to be consistent with
what we were able to observe. As the messages themselves
are short, there would hardly be an opportunity for the users
to ever become experts2!

Study of Multitap vs. Less-Tap
In another user study [14], the authors were able to observe
improvements of their technique, Less-Tap, over Multitap
ranging from 0% to around 20%, depending on the user,
with the average being around 10%. While the range of
improvement predicted by the models was reasonably
consistent with the results that were experimentally
obtained (the KLM model predicted the improvement of
28% and Silfverberg model 20%), the actual text entry
speeds observed were much lower than predicted. Again,
please refer to Table 1 for a comparison.

Trying to account for and to explain the observed
discrepancies between the predictions and the experimental
results has led us to the development of a new model.

2 It should be noted, however, that in many European countries as well as

in some parts of Asia, the use of phones for text messaging is very
common. In such countries there exist significant groups of users whose
performance is close to expert level.

Method
KLM
Model
[2] ,[3]

Silfverberg
Model
[16]

Novice
[14]

Novice
[7]

Novice
newspaper

[7]

Novice
chat [7]

Expert
[7]

Expert
newspaper

[7]

Expert
chat [7]

Multitap 18.35 22.3 7.15 7.98 5.59 10.37 7.93 5.33 10.53

T9 24.97 40.6 9.09 7.21 10.98 20.36 15.05 25.68

Less-Tap 23.47 26.8 7.82

Table 1. Existing model predictions and mean entry speeds observed for
novices and experts (wpm); see text for details.

A MODEL FOR TEXT ENTRY ON 12-BUTTON
KEYPADS
The model that will be described in the paper can largely be
viewed as an extension of the aforementioned models of
Silfverberg et al. and Card et al. However, the new model is
also applicable to non-expert users. This is a very useful
extension, since, as stated above, many people never reach
the expert level.

Non-Motor Components in Text Entry
Obviously, humans are not just precise finite state machines
that transform the intended text into a sequence of
performed keystrokes at a speed limited only by the
physical capabilities of their limbs. They tend to make
pauses to verify the progress they have made so far, mainly
to convince themselves that they haven’ t made an error, or
to prepare for their next step. Humans also make mistakes
(e.g. in the text entry task they hit a key different from the
one intended). These are factors that are possible to predict
and quantify based on existing statistical data and
consequently can be incorporated into a model. Other
factors are much harder to predict, for example, the use of
different strategies to perform the same task (e.g. in our
case: focusing the visual attention on the keypad, on the
display, or on the environment). Such factors are not likely
to be included in any model.

From analyzing the key log data of previous phone text
entry experiments [14] and our own observations we
identified the following significant components:

1. Re-reading the phrase to be entered (present only in
text entry experiments; most people prefer not to
memorize the phrase they are entering).

2. Figuring out which letter of which word has to be
entered next (spelling out the word).

3. Determining on which button the next letter is located
and how many key presses are needed (visual search
and/or memory recall operations).

4. Determining where the button is located (in case of the
12-button phone keypads; this is usually a memory
recall operation).

5. Keeping count of the number of presses made while
performing repeated presses of the same key.

6. Visually verifying the result of the performed key
press[es] (especially important if the technique
employs some kind of non-determinism or prediction).

Most of these components can be derived from the GOMS
model [2]. Of course, we cannot be absolutely certain that
the identified components are present for all users at any
given point in time. Yet, we find it reasonable to believe
that they are likely to be present on average for most users.
We will demonstrate later that one can find these
components even in experienced users. The times
corresponding to these components will vary depending on
the level of expertise of the user and the strategy employed.

Also, there will be some very common words, like “ the” ,
“ in” , “ to” , which may be entered almost routinely.

At first we considered measuring the individual components
described above. However, as multiple components can
easily be present between successive key presses, we chose
to concentrate only on the combined times separating those
presses, which are the times we can measure directly.

In the next section, we describe the experiments we used to
estimate the amounts of time corresponding to the
aforementioned components.

Determining Non-Motor Components – Method
In all the experiments, the participants used a Nokia 5190
telephone handset connected to a computer as an input
device. The equipment was identical to the one employed in
[14]. The software was extended to include additional text
entry algorithms.

Experiment 1: Finding a Key and Pressing it
Repeatedly
The goal of the experiment was to measure the time that
precedes a key press in cases when no verification of the
outcome was necessary (that is, when the text entry method
was fully deterministic), as well as the time it takes to
perform a repeated key press. Also, in order to test the
assumption that, on a 12-buttton keypad, letters are slower
to enter then numbers we had users enter both letters and
numbers and then analyzed the times separately.

An example of the sequence of characters participants had
to enter is “cccc 99 zzz 5 i yyy kkkkk b 44 rrr” ,
meaning “press the button with ‘c’ four times, the button
with ‘9’ two times and so on. The entry technique
automatically disambiguated the letters for display and also
automatically added spaces. The spaces in this experiment
served only as visual separation of the symbol groups.

The times preceding the first key press for each symbol
(Inum, I ltr), which roughly correspond to components 1
through 4 above, were computed as differences between the
measured times for the first press and the times that would
have been needed according to Fitts’ law. The times to
perform repeated key presses (Rcount), which correspond to
component 5, were determined as the differences between
the timestamps of the repeated key presses and the ones of
the immediately preceding key presses.

Experiment 2: Verifying a Character
The objective of this experiment was to measure the time to
perform a key press in cases when some visual verification
of the entered character was required. Only letters were
entered, and there were no spaces. The entry method used
was similar to Multitap, with one small difference: to
guarantee that verification was always required, the order in
which the letters appeared upon a key press was random
each time. The participants were instructed to “press the
corresponding button one or more times until the letter
appeared” . For example, for the phrase

“cwjqwmfzjoipxduasnewr” , they had to press ‘2’ until
‘c’ appeared, then press ‘9’ until ‘w’ appeared and so on.

The time to perform a repeated press while verifying the
letter (Rverify) which corresponds to components 6 was again
determined as the difference between the timestamps of the
repeated key press and the preceding one.

Experiment 3: Verifying a Word
In the last experiment, we measured the time needed to
verify a word and to press an appropriate button (Vw or

Vw2), which corresponds to component 6. This kind of
operation is present in systems that use word-based
prediction.

The text entry method used was similar to T9. In order to
have more cases when word verification was needed, we
implemented the technique in such a way that, unlike in T9,
the word that appeared by default was not the most
probable but was instead any random matching fragment
that existed in the dictionary. The participants were
instructed “ to press the corresponding button once for each
letter in the word and to press the NEXT key (#) at the end of
the word until the correct word appears” .

The first and all subsequent presses of NEXT were analyzed
separately, as the initial press also involves an inter-button
movement while the others do not. The used set of phrases
is described in [11].

Participants
There were 12 participants in the test, recruited through
advertisements posted on the university campus. Five
participants were female, one was left-handed, and three
were frequent users of text messaging. Age ranged from 18
to 33 with a mean of 24.5. All had extensive computer
experience (seven years or more). One did not own a cell
phone. One reported using text messaging on the cell phone
daily, another two used it weekly; all others used it very
infrequently, if at all. All participants were compensated
upon completion of the user study.

Results
Table 2 below shows the results from the experiments 1, 2,
and 3 (all values are in milliseconds, standard deviation in
round brackets).

Table 2. Results from Experiments 1 through 3.

Component
Time (SD),

ms

Initial time before numbers, Inum 701 (383)

Initial time before letters, I ltr 1285 (588)

Repeated press while counting, Rcount 272 (83)

Repeated press while verifying, Rverify 411 (114)

First presses of a NEXT key, Vw 1088 (371)

Subsequent presses of a NEXT key, Vw2 672 (254)

The most remarkable result is that the times are much
greater than one would expect by considering human motor
performance alone. This discrepancy will be discussed later
in the paper.

Time to Enter Character – New Movement Model
From the above experiment, we can derive the times
required to enter text using different text entry systems. We
chose not to consider two-key input methods and other
methods, which use non-standard keypads.

Multi-press Input Methods
Multi-press input methods include Multitap and Less-Tap.
For these methods, the time to enter a character can be
described as:

Tchar = I ltr + TFitts + N · (Rverify) + [Ttimeout] (1)

TFitts is the time needed to move the finger from the
preceding key to the current key, as computed from Fitts’
law equation. N is the number of additional presses (after
the first, e.g. one for double or two for triple). Ttimeout is the
time that the user would have to wait for if the current
character is located on the same button as the previous one.
In our studies, we didn’ t use the timeout kill key, but the
model can account for that, if desired (the value for Ttimeout
that we used was 1000 ms).

Predictive Input Methods
Predictive input methods include T9, iTap and others. There
are several strategies possible with such methods [7], [10],
[16]. However, it is often expected that users ignore the
display until they finish entering the current word.
Sometimes users have to press a NEXT key, which,
statistically, accounts for less than 1% of the total number
of presses [9], [16]. However, each time before pressing
NEXT, the users would need to verify the current result, a
task that takes over one second (Vw, Table 2)!

Thus, the model for the time to enter a character with a
predictive method is:

Tchar = I ltr + TFitts + N1 · Vw + N2 · Vw2 (2)

N1 is the number of first presses of the NEXT key (either
present – one or absent – zero). N2 is the number of
additional presses (after the first, e.g. one for double or two
for triple).

Linguistic Model
A linguistic model contains information about the frequency
of different letter-pairs (digraphs). In our case, it is based
on the letter-pair data from the British National corpus [1]
and may be slightly different from the one used in [16]. The
model is represented by a 27×27 matrix, the 27 characters
being the 26 English letters and a SPACE symbol. Each cell
pij in the matrix is the probability of the corresponding letter
pair in the corpus, so that all cells sum to unity.

Combining the Models
Now, that we have both a movement time and a linguistic
model, we combine them to obtain the model that predicts
the text entry rate for a text entry system and a language:

 Tchar_in_corpus = ΣiΣj (pij · Tchar ij) (3)

Tchar_in_corpus is the average time to enter a character in the
corpus using a selected text entry method, in seconds per
character. Tchar ij is the average time to enter a character j
after character i. To convert this number to words per
minute (using the common assumption of 5 characters per
word), we use the following expression:

WPM = (1/Tchar_in_corpus)·(60/5) (4)

VERIFYING THE MODEL

Model Predictions for Various Text Entry Methods
At this point, we can apply all the collected data to compute
predictions for text entry speeds. The obtained predictions
are listed in Table 3. As mentioned previously, we used
Fitts’ law coefficients from [16] (the ones for the thumb)
since the same telephone handset was used in all the
studies. As expected, the predictions show that Multitap is
the slowest, Less-Tap is a bit faster (by 11%), and T9 is the
fastest (16% faster than Less-Tap and 29% faster than
Multitap).

Table 3. Model predictions and
experimental results (WPM).

Technique KLM
model

Silfver
berg

model

Novice,
newspa
per [7]

Results
from
[14]

New
model,
novice

Multitap 18.35 22.3 5.59 7.15 5.87

Less-Tap 23.47 26.8 7.82 6.53

T9 24.97 40.6 7.21 7.58

Experimental Data
For comparison, all relevant data is summarized in Table 3.
From [7], we took the results for the novice newspaper
condition, since our linguistic model was derived from
British National corpus, which is much closer to newspaper
text than to “chat” text.

Even short term text entry experiments, such as [14],
observe learning effects in practice, which explains the fact
that our model underestimates the experimentally observed
values. Probably for that very reason, the match is better for
novice newspaper users in [7].

The study in [7] and [14] differ in the number of phrases
entered (8 and 60 respectively). Therefore, the numbers
from these two studies differ due to non-equal amounts of
fatigue and learning involved. It is also possible that the
small set of phrases chosen for [7] was favourable to T9.
Yet, in our opinion, in both cases, the entry speeds observed
for novices appear to be reasonably consistent with the ones

predicted by the new model. In [10], the issue of text entry
in predictive systems is investigated a bit further. Interested
readers are encouraged to refer to the original text.

Furthermore, notice the dramatic differences in relative
predictions for T9 by different models: the KLM model,
Silfverberg’s model, and the new model predict differences
between T9 and Multitap of 36%, 82%, and 29%
respectively, while the measured difference is 28%. Even
though the ranking of the methods stays the same, one can
easily see that using expert models for non-experts can be
misleading.

Observations about Changes of Coefficients with
Time
By varying the coefficients, it may be possible to adapt the
model to predict the performance of users at various levels
of expertise. Obviously, the coefficients of our model
should decrease in magnitude with practice (see [5], for
example).

Short Term Changes
Even though our experiments were short (less than 20
minutes for each component), we observed significant
changes in some of the components.

The time to make the first press for a letter decreases over
time. However, the time to enter a number stays practically
constant or increases slightly, probably due to fatigue
effects (see Inum and I ltr in Figure 2). Due to the short test
and the associated large variance, it is not possible to
observe that the change for letters has the expected power-
law trend [5].

The time to make an additional key press while keeping
track of the number of key presses (see Rcount in Figure 2)
decreases slightly at the very beginning, and then stays
approximately constant.

y = -1.687x + 1736.4

y = 0.1373x + 993.98

y = -0.3541x + 271.03

0

500

1000

1500

2000

2500

time, min

ti
m

e,
 m

s

I_ltr

I_num

R_count

Linear fit (I_ltr)

Linear fit (I_num)

Linear fit (R_count)

Figure 2. Changes of Iltr, Inum, Rcount with time.

The time to make an additional key press while verifying
the entered character (Rverify in Figure 3) gradually
decreases with time. Clearly, a long-term experiment is
needed to determine the exact shape of the curve.

y = -0.2083x + 449.76

0

100

200

300

400

500

600

Time, min

T
im

e,
 m

s

R_verify

Linear fit (R_verify)

Figure 3. Change of Rverify with time.

The time for the first press of the NEXT key (Vw in Figure 4)
decreases slightly at first, and then appears to level of.

y = 1368.1x-0.0583

0

200

400

600

800

1000

1200

1400

1600

Time, min

T
im

e,
 m

s

V_w

Power fit (V_w)

Figure 4. Change of Vw with time.

Long Term Changes
For this analysis, we used the results for Multitap of
MacKenzie et al. [10] where they compared Multitap and
LetterWise in a longitudinal study. Their setup was different
from ours in that they used a large desktop-size numeric
keypad. The sessions in the study were approximately 30
minutes long. Based on their data for text entry speed and
equation (1) of our model, we estimated the values of the
coefficients for all sessions. The following graph
demonstrates our estimate of I ltr and the extrapolation based
on the power-law for 20 more sessions. Please note that
even at the 40th session (approximately 20 hours), the
cognitive delay before the first press of a letter key is still
far from zero.

y = 1103x-0.4514

R2 = 0.9991

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Session

T
im

e,
 m

s

I_ltr

Power fit (I_ltr)

Figure 5. Coefficient Iltr as a function of time.

We hypothesize from this data that I ltr is the strongest factor
in learning, and will account for most of the change in the
text entry speed as users get more and more familiar with
the keypad.

Please note that even though we described our observations
on how the coefficients change with time, we cannot claim
that we can model learning of text entry methods
effectively. We consider this a subject for future work.

DISCUSSION

How to Obtain Better Predictions
Our model for novice multi-press and T9 users assumes that
the users are complete beginners (e.g. verification of the last
character was needed every time). Just as the concept of an
expert user of text entry systems is not realistic, a concept
of a complete novice user is not very practical either.
Usually, users learn some features of a technique very
quickly. E.g. even before one uses Multitap for the first
time one can quickly observe that the first button with
letters has ‘ABC’ on it and utilize this knowledge. Further
learning happens gradually through memorization of the
layout and through becoming accustomed to the text entry
method. The first manifests itself in that users remember
where the most frequent letters are; the second is evident in
the decrease of the coefficients as shown in the results.
Also, many users acquire the skill to quickly enter very
common words. In the equations above, one could model
this gradual behaviour by replacing the coefficients I ltr,
Rverify by Inum and Rcount for certain letters (e.g. for the most
frequent letters in the alphabet or the letters that are in the
first position on a key). This models that certain key
sequences become well known and the user does not need
to visually verify the result anymore. However, we want to
emphasize that we are only speculating about these learning
factors, as we do not have scientific proof yet.

SUMMARY
In this paper, we presented a model that can predict the text
entry speed on standard 12-button telephone keypads for
novices. The major difference between this model and

existing ones is that it includes not only movement times
but also the mental overhead in its predictions. Thus it can
more accurately predict the average performance of non-
experts. The values computed by the model (5.87 wpm for
Multitap, 6.53 wpm for Less-Tap, and 7.58 wpm for T9 for
novice users) are consistent with those experimentally
observed. We also made some initial observations about the
process of learning in text entry methods.

ACKNOWLEDGMENTS
The authors would like to thank Scott MacKenzie and
William Soukoreff for sharing their extensive knowledge on
text entry methods, as well as NSERC for funding.

REFERENCES
[1] British National Corpus, available at

<ftp://ftp.itri.bton.ac.uk/bnc>.

[2] Card, S.K., Moran, T.P., and Newell, A. The
Psychology of Human-Computer Interaction,
Lawrence Erlbaum, Hillsdale, NJ (1983).

[3] Dunlop, M. D., Crossan, A. Dictionary based text entry
method for mobile phones, Second Workshop on
Human-Computer Interaction with Mobile Devices,
Edinburgh, Scotland (1999), 5-7.

[4] Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of
movement, Journal of Experimental Psychology 47
(1954), 381-391.

[5] GSM World Association. <www.gsmworld.com>.

[6] Isokoski, P., MacKenzie, I. S. Combined Model for
Text Entry Rate Development, Extended Abstracts of
the ACM Conference on Human Factors in Computing
Systems – CHI 2003, ACM, New York, NY (2003),
752-753.

[7] James, C. L., and Reischel, K. M. Text input for
mobile devices: Comparing model predictions to actual
performance, Proceedings of the ACM Conference on
Human Factors in Computing Systems - CHI 2001,
ACM, New York, NY (2001), 365-371.

[8] Levy, David. The Fastap Keypad and Pervasive
Computing, Proceedings of the First International
Conference, Pervasive 2002, LNCS 2414, Springer,
Heidelberg, Germany (2002), 58-68.

[9] MacKenzie, I. S., KSPC (Keystrokes per Character) as
a Characteristic of Text Entry Techniques, Proceedings
of the Fourth International Symposium on Human-
Computer Interaction with Mobile Devices, Springer,
Heidelberg, Germany (2002), 195-210.

[10] MacKenzie, I. S., Kober, H., Smith, D., Jones, T., &
Skepner, E. (2001). LetterWise: Prefix-based
Disambiguation for Mobile Text Input. Proceedings of
the ACM Symposium on User Interface Software and
Technology – UIST 2001, ACM, New York, NY
(2001), 111-120.

[11] MacKenzie, I. S., Soukoreff, R. W. Phrase Sets for
Evaluating Text Entry Techniques, Extended Abstracts
of the ACM Conference on Human Factors in
Computing Systems – CHI 2003, ACM, New York, NY
(2003), 754-755.

[12] MacKenzie, I. S., Soukoreff, R. W. Text Entry for
Mobile Computing: Models and Methods, Theory and
Practice, Human-Computer Interaction, 17, (2002),
147-198.

[13] Nesbat, S. B. Fast, A System for Fast, Full-Text Entry
for Small Electronic Devices, available at
<http://exideas.com/ME/ICMI2003Paper.pdf>.

[14] Pavlovych, A., Stuerzlinger, W. Less-Tap: A Fast and
Easy-to-learn Text Input Technique for Phones.
Graphics Interface 2003. Also available at
<http://www.cs.yorku.ca/~wolfgang/publications.html>

[15] Phone Key Pads,
<http://www.dialabc.com/motion/keypads.html>.

[16] Silfverberg, M., MacKenzie, I. S., Korhonen, P.
Predicting Text Entry Speed on Mobile Phones.
Proceedings of the ACM Conference on Human
Factors in Computing Systems – CHI 2000, ACM,
New York, NY (2000), 9-16.

[17] Soukoreff, R. W., MacKenzie, I. S. Theoretical Upper
and Lower Bounds on Typing Speed Using a Stylus
and Soft Keyboard. Behaviour & Information
Technology, 14 (1995), 370–379.

[18] Soukoreff, R. W., MacKenzie, I. S., Using Fitts’ law to
Model Key Repeat Time in Text Entry Models. Poster
presented at Graphics Interface 2002. Also available at
<http://www.cs.yorku.ca/~will/>.

