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ABSTRACT

This paper describes two approaches that allow us to intersect rays with triangular meshes
more quickly by amortizing computation over neighbouring triangles. The first approach accom-
plishes this by performing the in-out test for each triangle using three plane equations, each one
representing a boundary edge for the triangle. Each plane is shared between four neighbouring
triangles and the cost of intersecting each plane is amortized over all four of these triangles. The
second approach, which is more numerically robust than traditional approaches, uses Pl¨ucker
coordinates to decide on which side of a triangle’s edge a ray passes through. In this case side
information can be amortized over two triangles. Speedups of over 25% have been recorded
when incorporating these approaches in a typical ray tracer. Extending the algorithms to more
general polygonal meshes is straightforward.

The Problem

When rendering higher-order surfaces, such as parametric patches, many ray tracers tessellate these surfaces into
polygonal meshes and then intersect the resulting polygons (typically triangles) directly [1, 2]. The hope is that the
simplicity and speed of the ray-triangle intersection computation will more than offset the fact that many more
objects will now hav e to be intersected.

To get the most performance out of this approach the cost of ray-triangle intersection has to be minimized. Previous
solutions have taken approaches that concentrated on dealing with triangles independently. In this paper we develop
two algorithms that try to capitalize on the fact that these triangles are part of a mesh and thus try to reduce the total
cost of intersecting these triangles.

Previous Solutions

Most graphics systems associate transformations with individual objects in a scene, allowing the user to indepen-
dently modify each of these objects. When intersecting an isolated arbitrary triangle, the best solution is to precom-
pute a transformation that takes the arbitrary triangle and transforms it to the x-y plane with the vertices mapped to
(0, 0, 0), (0, 1, 0), (1, 0, 0). (This transformation is concatenated to the object’s transformation and thus requires no
extra space or computation.) In this coordinate system computing the ray-triangle intersection is simplified [3].
First, the intersection of the ray and the x-y plane plane is performed (this is simpler than intersecting an arbitrary
plane, requiring about 8 flops) and then the intersection point (in 2-D) can be tested to see if it lies within the requi-
site triangle (only 4 flops).

For each triangle the transformation and its inverse must be stored (21 floating-point numbers total) and every ray
must be transformed independently for each triangle (36 flops) even before the actual intersection computation can
begin. This solution, which requires 48 flops and is optimal for isolated triangles, needs too much space for polygo-
nal meshes.



The approach most renderers use when intersecting triangular meshes [2] is to precompute and store a plane that the
triangle is embedded in with each triangle and to share the vertex information amongst neighbouring triangles. The
ray intersects the triangle’s plane (a general plane now) and if thet value of the ray’s intersection is reasonable, the
actual intersection point is computed: pt = origin + t ⋅

→
dir (21 flops). This intersection point is then tested to see if it

is truly inside the triangle; this is typically done using a barycentric approach (approximately 25 flops). The total
cost is thus about 46 flops worst case [1, 4]. More recent work by Spackman [5] and Green and Worley [6], by con-
centrating on determining when the actual intersection point is inside the triangle, have improved on this. Spackman
noted that part of the barycentric computation can be precomputed (extra storage is now required per triangle); this
reduces the number of flops to determine if there is an intersection to 31 flops worst case. Greene and Worley pro-
ject the triangle into 2D and store the 2D plane equation for each triangle’s edge with the triangle. The intersection
point is inserted into these plane equations and reject it if it is on the wrong side. This approach requires 33 flops
worst case and also needs extra storage.

Because the above approaches to triangle intersection treat triangles independently there is no way to capitalize on
neighbourhood information to reduce the total computational cost. In the next two sections we introduce two such
approaches.

Approach A: Boundary Planes

Consider figure 1a. It shows a triangle embedded in the plane and rather than using vertices, we use threeboundary
planes to define the extent of the triangle. We can now use these planes to decide if a point is inside. In our exam-
ple, the normals point out. Thus p0 would be inside the triangle (it is on the inside of all the boundary planes) and
p1 would be outside (p1 is on the outside of at least one plane).

Using these boundary planes to decide if a point is inside when intersecting triangles (21 flops) is a little faster than
the barycentric approach but it requires more space for the planes.
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Consider figure 1b. In this view, the plane that embeds the triangle is perpendicular to the page and we can now see
how a ray would intersect the boundary planes (only 2 are shown for clarity). The intersection of the ray and the tri-
angle embedding plane occurs at p0 and has a t-value oft0. We can also compute the t-values of the intersection of
the ray with the boundary planes and gett1 andt2 (for plane 1 and plane 2 respectively).

In deciding if the ray intersects the triangle if we havet1, t0 and t2 we don’t need to compute p0. As the ray is
entering plane 1 (

→
N1 ⋅

→
dir < 0.0) any t-value greater than or equal tot1 is OK and since it is leaving plane 2 any t-

value less than or equalt2 is OK. In other words ift1≤t0≤t2 then the ray intersects the triangle. Thus to determine if
a ray intersects a triangle we now need to compute the t-values of the intersection of the ray with 4 planes (the trian-
gle embedding plane and three boundary planes), and compare t-values. This ray classification approach has the
flavor of the Cyrus-Beck parametric line clipping algorithm [7].

Below is a procedure that illustrates the approach:



Boolean RayIntersectTriangle(Ray *ray, Triangle *triangle,
double closestHitSoFar, double *tAtHit)

{
Boolean goingIn;
double tBasePlane, t;
int i;

RayIntersectTrianglePlane(ray, triangle->plane, &tBasePlane);
if(tBasePlane <= EPSILON || tBasePlane >= closestHitSoFar)

return MISS;
for(i=0; i < 3; i++) {

RayIntersectBoundaryPlane(ray, triangle->boundary[i],
&t, &goingIn);

if(goingIn){
if (tBasePlane < t)

return MISS;
} else {

if (tBasePlane > t)
return MISS;

}
}
*tAtHit = tBasePlane;
return HIT;

}

This approach of comparing t-values, however, is more expensive than using barycentric coordinates and the total
cost of intersecting a triangle works out to 63 flops worst case. It also requires space for the planes. However, this is
not the end of the story. Consider figure 2.
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We can construct a plane which goes through the three vertices 1, 2 and 3. This plane will be a boundary plane to
triangles A, B, C and D. In a similar manner we can construct triangle boundary planes for all the triangles and each
boundary plane (with the exception of the mesh boundaries) will be shared by four triangles.

When we intersect such a boundary plane, the t-value of the intersection as well as whether the ray is going in or out
of the plane is identical for all four neighbouring triangles. The cost of the ray-boundary plane intersection can thus
be amortized over the four triangles. By sharing this information just under two ray-plane intersections per triangle
are required to determine if a ray intersects the triangle. This works out to 29.25 flops worst case and is better than
the traditional approaches.

To share this information each triangle points to shared copies of the boundary plane, and the boundary plane data



structure is extended to include the shared information:

typedef struct {
Plane p;
double t;
Boolean goingIn;
long rayID;

} BoundaryPlane;

Depending on the order in which triangles in the mesh are intersected, it may be necessary to indicate that the
boundary plane has already been intersected by the current ray and that thet andgoingIn fields are current. One
way of doing this is to give each ray a unique rayID and store the rayID of the ray in the boundary plane whenever it
is intersected [8].

One detail that we have glossed over in the above paragraphs is that the normal of a boundary plane that is pointing
out for one triangle is pointing in for its neighbour. Consider figure 3:
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If we consistently orient the boundary planes we find we have two types of triangle in the mesh: type A and type B.
Type A triangles have all boundary planes pointing out; type B triangles have all boundary planes pointing in. By
replacing one line in the above code fragment we can easily deal with this:

if(goingIn){

with:

if(goingIn ˆ triangle->typeB){ /* x-or with triangle type */

And by keeping two lists in the mesh, one for each triangle type, we can remove the type information from the trian-
gle data structure and reduce the total space requirments.

The above algorithm determines if a ray intersects a triangle and if it does, computes the t-value of the intersection.
This information is sufficient for shadow computation but is insufficient for primary rays. In this case, one may need
to know the normal, color and texture coordinates at the point of intersection. This information is typically com-
puted by interpolating the values at the verticies using the barycentric coordinates to do the interpolation. When
using our algorithm for primary rays this barycentric interpolation computation is only performed for the one visible
triangle after we have determined that it is visible; this computation is unnecessary for all the other triangles.

Approach B: Plücker Coordinates

The second approach that we will introduce is based on Pl¨ucker coordinates. Pl ̈ucker coordinates are an alternate
way of describing directed lines in three space using six numbers [9, 10]. By peforming a six-dimensional permuted



inner product of these numbers (11 flops) we can determine whether two directed lines intersect (the inner product is
0.0) or whether one passes to one side or the other (depending on the sign of the inner product). (A fuller descrip-
tion of this is found in the appendix). These three possibilities are illustrated in figure 4 (after Teller):
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By determining on which side a line passes with respect to another we can determine if a ray passes through a trian-
gle. Consider figure 5:
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The three lines 1, 2, and 3, help define the edges of the triangle.A andb are two rays in three space. Raya hits the
triangle. Notice that it is on the same side of all three edges. If we perform the Pl¨ucker inner product of the ray with
each of the lines they will all have the same sign. A ray which doesn’t hit the triangle, such as rayb, cannot be on
the same side of all three edges; one edge will be different from the rest. Now, if we perform an Pl¨ucker inner prod-
uct, one if the edges will have a different sign.

By carefully noting the resulting sign when we do Pl¨ucker inner products of the ray with the edges we can now for-
mulate a new algorithm for determining if a ray intersects a triangle. The new procedure requires 51 flops worst
case. However, just as we amortized many of the flops in the boundary plane approach we can do the same thing
here. Each edge of a triangular mesh is shared by two triangles (with the exception of the boundaries) and the side
information is identical for both. Thus by sharing this information we can reduce the number of flops required to do
the above computation to 33 flops worst case. To do this we will need to extend the edge data structure (which con-
sists of the six Pl¨ucker coordinates) to include both the side information as well as the rayID.†

typedef struct {
float plucker[6];
long rayID;
Boolean side;

} Edge;

An additional benefit of this approach is that it is numerically robust. Single-precision floating-point arithmetic is

† If space is scarce we need only store three of the Pl¨ucker coordinates as the other three can be computed with three
subtractions. As well, we can collapse the side and rayID variables into one long by incrementing rayID by two instead
of one every time and using the lowest-order bit to store side (we can also do the same thing with rayID and goingIn in
the boundary plane approach).



sufficient for both storing the Pl¨ucker coordinates and performing the inner product. One does not have to worry
about rays falling through the cracks between triangles as an incorrect determination because of round-off of the
Pl ̈ucker coordinate will simply indicate that the neighbouring triangle was intersected.

Boolean RayIntersectTriangle(Ray *ray, Triangle *triangle,
double closestHitSoFar, double *tAtHit)

{
Boolean side0, side1, side2;
double t;

side0= Side(ray->plucker, triangle->edge[0]->plucker) >= 0.0;
side1= Side(ray->plucker, triangle->edge[1]->plucker) >= 0.0;
if (side0 != side1)

return MISS;
side2= Side(ray->plucker, triangle->edge[2]->plucker) >= 0.0;
if (side0 != side2)

return MISS;

RayIntersectTrianglePlane(ray, triangle->plane, &t);
if(t <= EPSILON || t >= closestHitSoFar)

return MISS;
*tAtHit = t;
return HIT;

}

Note: if the ray is coplanar with the triangle the Pl¨ucker inner product returns 0.0 for all three edges and thus would
seem to indicate a hit. However, the t-value range test in the second half of the procedure will cull out such coplanar
triangles and correctly return a miss.

By carefuly labeling edge directions we can again classify the triangles into two types: A and B. In this approach
the type indicates either clockwise or counter-clockwise edge orientations (see figure 6). The above procedure
doesn’t depend on this orientation and consequently handles both orientations without modification.
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When comparing the two approaches we see that they perform their computations in opposite order: the boundary
plane approach does a t-value range test and then checks if the intersection is within the triangle, while the Pl¨ucker
approach first makes sure that the ray pierces the triangle and only later does it perform the t-value range test.

Note: the amount of extra space required by the edge data structures of the Pl¨ucker approach (and the boundary
plane approach) is less than either Spackman or Green and Worley’s methods.



Implementation and Results

Both approaches were implemented (along with the barycentric approach and those of Spackman and Green and
Worley) and tested on a 100 MHz SGI Indigo workstation [11]. Implementation revealed that there were several
special cases that had to be addressed, especially in the boundary plane approach. Consider figure 2. If point 1 is
coplanar with triangle D then the boundary plane going through points 1, 2 and 3 is the same as the triangle embed-
ding plane for triangle D. In this situation it is now quite possible that both triangles A and B are on the same side
of the embedding plane instead of being on opposite sides. In such situations, and in situations where we have
degenerate edges (consider the top of a Utah teapot where several control points are coincident) we can only share
the boundary plane among two triangles instead of four.

In the first test the scene consisted of a simple pot made up of 24 b-spline patches and one light source. Plate A
shows the scene rendered at 256x256x1 using the Pl¨ucker approach. Intersection candidate culling was minimal (a
bounding box around the whole pot). This allowed us to see how the algorithms compared with each other without
intersection culling influencing the results. Below is a summary of the results:
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Figure 7

The horizontal axis indicates the level of subdivision of the patches while the vertical axis indicates the ratio of the
running time of the new approaches compared to the half-plane approach of Green and Worley. The barycentric and
the Spackman approaches were also tested. Note, a subdivision level ofn produces 2n2 triangles.

As can be seen, the Pl¨ucker approach was about 35% faster. An advantage with the Pl¨ucker approach is that the first
half of the computation evaluates shared information, the Pl¨ucker inner products; theRayIntersectTriangle-
Plane computation, which cannot be shared, is performed afterwards. If it is decided early that no intersection is
possible the Pl¨ucker inner product results can still be shared and amortized. Measurements revealed that over 70%
of the intersection computations return miss after the first comparision, with only 2 Pl¨ucker inner products com-
puted. This explains why the average case performance of the Pl¨ucker approach is much better than the worst case.

The boundary plane approach was not as good, better only than the barycentric approach. The order of computation
of the boundary plane approach is such that the shared computation, which can be amortized, is done last; theRay-
IntersectTrianglePlane computation is done first. As well, measurements revealed that less than 25% of
the intersections return miss after the first part of the computation (this number would be equally true for all the
approaches except Pl¨ucker). A variant of the boundary plane approach was created to see if reversing the order of
computation might produce better results.

After encorporating a more reasonable intersection culling algorithm, uniform spatial subdivision with a grid of
10x10x10 [8], the following graph was produced:
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Figure 8

For very low subdivision rates (less than 1 triangle/voxel) the Pl¨ucker approach was average and only started to do
well when there was a moderate amount of subdivision. At very low subdivision rates only a very small number of
triangles are intersected and thus there is little amortization of computation. Once the subdivision rate was reason-
able the Pl¨ucker approach did well. By the time 50% of the edge compuatations were shared the Pl¨ucker approach
was 10-15% faster.

The boundary plane approach was uniformly worse. Reversing the order of computation didn’t help. More careful
measurement revealed that the shared computation did not cull enough rays early enough in the boundary plane
computation to make it as big a win as for the Pl¨ucker approach. As well the boundary plane approach as it has to
amortize over four triangles, not two as in the Pl¨ucker approach.

A scene consisting of a Utah teapot (28 Bezier patches) and one light source rendered at 256x256x1 was also tested
(plate B) and produced the following:
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Figure 9

Again the Pl¨ucker approach produced superior results. Note: we did not program neigbouring triangles along the
borders of Bezier patches to share information so these results can be improved upon.



Conclusions

We hav e introduced two new approaches for ray tracing triangular meshes. The second approach, using Pl¨ucker
coordinates, promises significant speedup over current approaches (we have observed speedups of better than 25%),
is numerically robust, uses less memory that either Spackman or Green and Worley, and is recommended for general
use.

Thanks to Andrew Woo for many useful discussions. Thanks to Pat Hanrahan and James Stewart for pointers to the
computational geometry literature and Pl¨ucker coordinates. Thanks to NSERC for their financial support.
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Appendix

(The following is taken from Teller’s paper) Consider a directed line going through the pointsp = (px, py, pz) and
q = (qx, qy, qz). We can compute the following:

π l0 = pxqy − qx py

π l1 = pxqz − qx pz

π l2 = px − qx

π l3 = pyqz − qy pz

π l4 = pz − qz

π l5 = qy − py

Given two directed lines,a and b, we can take the following permuted inner product to tell us which side one
directed line is with respect to another:

Side(a, b) = π a0π b4 + π a1π b5 + π a2π b3 + π a4π b0 + π a5π b1 + π a3π b2.
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