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Abstract
The paper presents a real-time physically based simulation
of object damage and motion due to a blast wave impact.
An improved connected voxel model is used to represent the
objects. The paper also explores auxiliary visual effects
caused by the blast wave that increase visual believability
without being rigorously physically based or computation-
ally expensive.

1. Introduction

Explosions, and their resultant blast waves, continue to
be a popular phenomenon depicted in film, television, com-
puter games, and other visual media. There are certain ad-
vantages to simulating the appearance and behavior of blast
waves using computer graphics, such as safety, reproduci-
bility, customizability, and interactivity.

Blast waves, however, follow complex fluid dynamics
rules, and modeling them very accurately is computationally
expensive. This is especially true for a game or a real-time
application, where immediate visual feedback is paramount.
Users expect instant gratification with unpredictable and
chaotic blast effects. Meticulous physical accuracy is less
desirable here than a fast simulation speed.

This paper takes the blast wave simulator and connected
voxel model presented by Mazarak et al [MMA99] and
extends its scope to real-time graphics. The pertinent en-
hancements and simplifications necessary for the improve-
ment of computing time are discussed. The functionality of
the model is also enhanced by the introduction of arbitrary
voxel shapes. Furthermore, certain commonly expected
visual cues are added to the simulation to improve the vis-
ual believability of the explosion at low computational cost.

2. Previous work

Previous efforts on explosion modeling in the field of
computer graphics have traditionally focused more on the
graphical representation of an explosion, rather than its ef-
fects on objects in the environment. Usually, the attributes
and motion of an explosion are controlled explicitly by the
user, or else the explosion follows a set of informal behav-
ioral rules [Reeves83]. Other techniques concentrate on cer-
tain after-effects of an explosion, such as fire [COMM94]
and smoke.

Interest has recently been rekindled in blast waves and
their effects. In his Master’s thesis, Bashforth employs vol-
ume cell subdivision to model shock front propagation
[Bashforth98]. Neff and Fiume model the fracturing of a
planar surface into polygonal fragments by a spherical blast
wave [NF99]. Mazarak et al use connected voxels to model
objects breaking into solid debris when hit by a spherical
blast wave [MMA99]. Yngve et al model blast wave propa-
gation using a combination of spatial voxelization and finite
elements [YOH00]. Except for [MMA99], these approaches
eschew simulation speed in favor of rigorous physical accu-
racy, which makes them inappropriate for use in real-time
graphics.

Although papers discussing explosions and blast waves
are somewhat rare in the field of computer graphics, it is
important to note that this is not the case for the disciplines
of physics and chemistry. There have been numerous works
published in those areas that delve with great detail into the
creation and detonation of explosive materials, the propa-
gation of the generated shock fronts, and their effect on
various materials.

Several computer methods for the modeling of blast
waves have also been proposed and implemented [Baker73].
These models, however, are concerned primarily with pre-
dicting and duplicating the behavior of explosions and ex-
plosion effects down to the smallest detail. They require



substantial computational power and time to handle the
governing fluid dynamics equations.

In real-time computer graphics, replicating blast wave
behavior in every detail is simply not feasible. Instead, we
cull some of the overall relevant physical properties, and
make certain simplifications and optimizations. In this way,
it is possible to obtain a balance between accurate modeling
and realistic visuals without sacrificing a great deal of com-
puting time.

3. Blast wave theory

An explosion in air causes a blast wave to propagate
outwards from the source at supersonic speed. Since the
resurgence of recent interest in blast wave modeling in
computer graphics, the fundamentals of blast wave theory
have been adequately covered in several papers ([MMA99],
[NF99], and [YOH00]).

Our blast wave model is a combination of simplified
physical equations and experimental data. The air sur-
rounding the explosion is assumed to be still and homoge-
nous, and the explosion source is spherically symmetric.
This results in an ideal blast wave that is itself perfectly
symmetrical. The pressure profile generated by an ideal
blast wave at a point at some fixed distance R removed from
the center of the explosion is as shown in the following
Figure 1 [Baker73].

Figure 1. Pressure-time curve of an ideal blast
wave

Before the shock front reaches the given point, the ambi-
ent pressure is p0. At arrival time ta, the pressure rises dis-

continuously to the peak value of p0 + +
sP . The quantity

+
sP  is called the peak overpressure. The pressure then de-

cays to ambient in total time ta + +T , drops to a partial vac-

uum of value p0 - 
−

sP , and eventually returns to the ambi-

ent pressure p0, in total time ta + +T  + −T  [Baker73].

Our simulation models blast wave profiles using the
modified Friedlander equation:

p(t) = p0 + +
sP (1 – t / +T ) 

+− Tbte / (3-1)

Time is measured from time of arrival ta. The blast wave

parameters +
sP , ta, 

+T , and b allow freedom to customize

the pressure profile curve for any explosion, at various dis-
tances from the source.

The modified Friedlander equation improves over sim-
pler formulae, which either have linear decay or fail to re-
turn to ambient pressure [Baker73]. More complex equa-
tions given by Brode [Brode95] and Dewey [Dewey64]
generate blast wave profiles that are closer to experimental
or theoretical models. For a real-time simulation, however,
the increased accuracy does not justify the concomitant
higher computational costs.

Our blast wave model employs Equation (3-1) to com-
pute physically accurate pressure changes at any distance R
from the source of the explosion. The blast wave parameters
required by Equation (3-1) are obtained from experimental
data for a reference explosion of one kilogram of TNT (tri-
nitrotoluene) in a standard atmosphere [KG85]. The ex-

perimental data contains values for peak overpressure +
sP ,

expected arrival time ta, positive phase duration +T , and
the pressure decay coefficient b, measured at certain dis-
tances R1, R2, …, Rn, from the source. The corresponding
parameters for any arbitrary distance R are obtained by lin-
ear interpolation.

Time and distance related parameters for explosions with
different yields than one kilogram of TNT are derived from
the reference explosion data by using an appropriate scaling
factor as determined by the scaling laws [KG85]. This
scaling factor is normally equal to the inverse of the cube
root of the energy of the derived explosion:

3/1W

R
Z = (3-2)

where Z is the scaled distance, R is the actual distance from
the center of the explosion in meters, and W is the mass of
the explosive converted into an equivalent weight of TNT
in kilograms.

Since blast waves move at supersonic velocities, they
propagate in a non-linear fashion. Environmental interac-
tions frequently cause pressure increases, irregular reflec-
tions, vortices, and other complex phenomena [Baker73].
These computationally intensive effects are difficult to
simulate in real time, so we use a simple model that propa-
gates blast waves outwards as if they were in the open air
and not being affected by surrounding objects. As a result,
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object damage occurs that is not identical to a real-life ex-
plosion. Fracturing in our simulation is more accurate when
there are no, or few, obstructions between the explosion
source and a given object.

4. Modeling and animation

Rigid bodies in the environment are affected by blast
waves in two major ways. Firstly, the blast wave creates
tensile stress within the object that can cause it to fracture
and break apart. Secondly, the blast wave pressure exerts
forces on the object that can cause it to move and rotate.
Therefore, a particular object model must be chosen that
takes both of these effects into account.

4.1 Connected voxels

The objects in the simulation are modeled with con-
nected voxels [MMA99]. An object is decomposed into vol-
ume elements, or voxels, that make up its volume. Adjacent
voxels are connected to each other with inflexible links that
keep the voxels firmly attached together.

The connected voxel approach offers several advantages
over other models. Firstly, it is volumetric- rather than sur-
face-based, so fracturing of an object’s interior is possible.
Secondly, the model is scaleable. If a more accurate simu-
lation is desired, the voxel size can be reduced, allowing a
finer representation. Likewise, if simulation speed is more
important than precision, a larger voxel size can be used.
Thirdly, the links connecting the voxels are infinitely stiff,
unlike the spring-mass particle model [TPBF87]. This makes
the object a true rigid body, and the simulation remains ro-
bust. Finally, surface association for the objects is not re-
quired when using connected voxels because each voxel
already has a given shape assigned to it. This is an impor-
tant benefit in a real-time explosion simulation, because
accurately computing new surfaces for the dynamically cre-
ated debris is non-trivial.

In the original implementation by Mazarak et al
[MMA99], every voxel was identical and homogenous. A
basic voxel cube shape resulted in objects that were blocky
and unrealistic. Our simulation improves upon this noticea-
bly, through the introduction of arbitrarily shaped voxels.
The basic voxel cube shape can be scaled by any desired
amount along any axis. As well, the voxel’s vertices can be
displaced by any amount in any arbitrary direction.

Each voxel can also have unique properties appropriate
for the material it represents. This makes object modeling
much more flexible, and permits the user to create voxel
shapes that better suit his or her needs for a particular appli-
cation.

Determination of visible surfaces is trivial in the con-
nected voxel model. Any voxel face that does not have a

link attached to it is visible and must be rendered. Render-
ing is thus linear on the number of boundary voxels.

Regardless of the voxel shape, the simulation assumes
that any given voxel has a constant density, which simplifies
the force and torque computations used in object animation.

4.2 Fracture simulation

When a blast wave hits an object, pressure differentials
cause the object to weaken and fracture. We simulate this
by weakening and breaking links and voxels in the object
model. As the object breaks apart, new fragments may be
created. Independent objects in the scene are represented by
the connected components of the entire scene’s connectivity
graph, where the nodes are individual voxels and the arcs
are the links between voxels [MMA99].

Every link has an associated yield limit, which is the
maximum pressure that the link can withstand before
breaking. A link is broken whenever the absolute value of
the pressure at that link’s midpoint exceeds its yield limit.
Any links that encounter a blast wave have their yield limits
weakened, making them vulnerable to subsequent explo-
sions.

Additionally, links that are parallel to the direction of the
wave are further weakened by an orientation factor, com-

puted as a dot product of the wave’s radius vector R
r

 and

the link vector l
r

. The inclusion of this orientation factor
allows the simulation to better mimic a real explosion,
where tensile forces created by the blast wave inside an
object are much stronger in the direction parallel to the di-
rection of the wave than normal to it.

An enhancement can be made to the fracture model by
adding a yield limit for the voxels themselves. Pressure
from a blast wave is measured at the center of each voxel. If
the absolute value of the pressure at a voxel’s center ex-
ceeds its yield limit, that voxel is removed and replaced
with a small particle system. Linear momentum of the origi-
nal voxel is passed on to the individual particles in the re-
placement particle system. This simulates the destruction of
object fragments into particulate dust if they undergo suffi-
cient stress due to the blast wave. As with damaged links,
voxels that survive a first blast wave have their yield limits
weakened.

Figure 2. Flexible object modeling using arbi-
trary voxels.



A significant benefit of replacing voxels with particle
systems is that particles are easier to handle computation-
ally, and are also generally quicker to render. Furthermore,
allowing voxels to be destroyed helps circumvent certain
problems such as prolonged interpenetration during colli-
sion.

Since the shock front pressure forces are very strong,
objects in the environment tend to start tumbling every-
where once the blast wave hits them. This is unrealistic for
buildings that are supposed to have foundations. For such
fixed structures, the simulation tags voxels that are in con-
tact with the ground as foundation voxels. An object having
these foundation voxels in it is defined as “fixed”, i.e., blast
waves will affect voxel and link strength but will not impart
any momentum to the structure. This allows debris to fly off
the object and have momentum, but the original structure
remains stationary and does not tumble around.

Figure 3. Foundation voxels (shown shaded)
stabilize the rigid body.

Of course, blast waves can sometimes be strong enough
to rip a building right off its foundations. So, a foundation
yield limit is introduced for each foundation voxel. As with
voxel yield limits, the blast wave pressure measured at the
center of each voxel is used to diminish its foundation yield
limit. Once a voxel’s foundation yield limit drops to zero or
below—assuming it hasn’t been destroyed completely—its
foundation voxel status is removed. If all of the foundation
voxels in a structure revert to ordinary voxels in this way,
that object is no longer “fixed”. In effect, it has been blown
off its foundations. Blast waves hitting the structure now
impart momentum to it, as well as voxel and link damage.

We assign variable yield limits by perturbing some ran-
dom value, generated within a certain range, around some
mean value [TF88]:

yield_limit = mean_yield ±  rand(var_yield) (4-1)

This allows the object to have a non-homogenous struc-
ture, with weaker and stronger sections. The continual dete-
rioration of the object’s links and voxels also simulates par-
tial, persistent damage.

It is possible that a simple variance in object structure
might be insufficient. For example, a game designer may
want a specific building wall to be easily destroyed. He or
she can then alter link and voxel properties explicitly to

customize objects for a particular game and override the
basic variance values assigned in object configuration.

4.3 Animation

The blast wave not only causes object fracture and frag-
mentation; it also affects their translation and rotation
through the application of forces and torques. Computing
the force at the voxel center [MMA99] is insufficient since
one-voxel bodies would not experience torque. Further-
more, forces exerted on arbitrary voxel shapes would be
inaccurate. Therefore, the forces exerted by the blast wave
are evaluated at the vertices of each voxel.

The force at a given vertex is computed as a product of
the blast wave pressure and the area of that voxel projected
onto the surface of the shock front. Assuming a spherical
blast wave, the force vector is congruent to the blast wave
radius vector:

R

R
AtpF

r

r

r

⋅⋅=  )( (4-2)

where p(t) is a function that returns the pressure value at a
given voxel vertex at time t, A is the surface area of the
voxel projected onto the spherical shock front, and R is a
radius vector from the source of the explosion to the voxel
vertex.

The projected surface area of a cubic voxel onto a
spherical blast wave varies mainly on its size and very little
depending on its orientation. Computing the actual pro-
jected surface area for each voxel is too time-consuming in
a real-time simulation, so A is assumed to be constant, de-
pending on the size of the voxel. Non-cubic voxels are as-
signed the projected surface area of a cubic voxel with a
side equal to the original voxel’s largest dimension. This
approximation is imprecise, with the accuracy decreasing as
the difference increases between the non-cubic voxel and
the original cubic voxel.

The torque on the body is computed as the cross product
of the relative position of a specific voxel vertex within the
body, and the force experienced by that vertex:

FrT
r

r

r

×= (4-3)

where r
r

 is the relative position of the voxel vertex to the
center of mass of the body. The force and torque computa-
tion for a single voxel vertex is shown in Figure 4.

Noting that the body’s boundary voxels approximate its
surface implies that the force and torque vectors only need
to be computed for the boundary voxels. These force and
torque vectors are then summed up to obtain the resultant
force and torque vectors for the entire body.
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The dynamic simulator then updates the body’s position
using the resultant force vector and the body’s orientation
using the resultant torque vector.

The linear and angular momenta of any newly created
body fragments are computed as weighted portions of the
linear and angular momenta of the original body:

original
original

fragment
fragment P

m

m
P = (4-6)

original
original

fragment
fragment L

m

m
L = (4-7)

where P is the linear momentum, L is the angular momen-
tum, and m is the mass. This agrees with the law of conser-
vation of momentum, and ensures accurate motion of the
split fragments.

Using a discrete time step to simulate the continuous
propagation of a shock front tends to lead to inaccuracy. It
is possible for the shock front to “skip over” certain voxels
completely from time t to next consecutive time t + t∆ .
Reducing the size of the time step will reduce this discreti-
zation error—at the cost of a slower-running simulation—
but will not remove it completely. Voxel size and arrange-
ment might still be such that the shock front skips over par-
ticular voxels. Using an adaptive time step size that ensured
the shock front hit every voxel would eliminate any such
error. However, the simulation would need a large number
of tiny time steps whenever the shock front passes over
voxels located in very close proximity, which is the case for
any multi-voxel object.

We currently reduce this error by using shock front pre-
computation. Every time an explosion is introduced into the
environment, the peak overpressure (the most significant

part of the blast wave profile), arrival time, and resultant
shock front force are computed for each voxel. These pre-
computed values are then stored in a chronologically sorted
list for that voxel.

At each simulation time step, forces and torques are
computed for a boundary voxel. In addition, that voxel’s list
of precomputed values is checked to determine if any of the
precomputed shock front forces are set to occur. If the cur-
rent simulation time is equal to the stored arrival time for
that entry in the list, this implies that the shock front is pre-
cisely at that particular voxel’s center. In this case, the pre-
computed values are used in place of the current force and
torque computation. If the current simulation time is greater
than the stored arrival time, this implies that the shock front
has skipped over that voxel. So here, the precomputed val-
ues are added to the current force and torque computation.
In both cases, the entry is removed from that voxel’s list.

This treatment of precomputed shock front values is ad-
vantageous because it allows the simulation to maintain a
constant time step while still taking into account the effect
of the peak overpressure for each voxel. The method is not
entirely accurate, however, since the stored arrival time is
offset from the current simulation time by a small amount.
The magnitude of the error is always smaller than the size
of the time step:

| tcurrent – tarrival | < t∆ (4-8)

In practice, this inaccuracy is negligible compared to the
original discretization error.

It is important to note that only the blast wave’s peak
overpressure is precomputed. Pressure changes at other
points in the pressure-time curve are computed as they oc-
cur during the simulation.

5. Collision detection

Once objects are in motion, there is a possibility that
they will interpenetrate if appropriate checks for collision
are not made.

5.1 Dynamic contact

Dynamic contact occurs when adjoining objects are
moving together with some positive velocity. We limit col-
lision tests to boundary voxels, since they approximate the
object’s surface. Additionally, a voxel will never collide
with other voxels belonging to the same rigid body because,
by definition, a rigid body’s link structure coherently main-
tains the relative positions of all of its component voxels
and prevents self-intersection. Hence, collision tests need
only be done for voxels from separate bodies.

Figure 4. Force and torque computation.
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Associating bounding volumes to the objects can reduce
the number of comparisons even further. If two bounding
volumes are determined to be disjoint, then their contents
must necessarily be non-intersecting, and no extra tests for
those specific objects are needed. We use a two-level hier-
archical scheme with spheres as the bounding volumes. At
the higher level, a rigid body is assigned a bounding sphere
with a radius equal to the distance between the center of
mass and the voxel vertex furthest from the center of mass.
Since a body rotates about its center of mass, this ensures
that the bounding sphere covers all possible body orienta-
tions at a given position. At the lower level, each voxel is
assigned a bounding sphere with radius equal to the distance
between the voxel center and the voxel vertex furthest from
the center, for a similar reason.

For a real-time simulation, unfortunately, very accurate
collision detection is too time-consuming. Therefore, two
bodies are considered to collide in the simulation when their
voxel-level bounding spheres intersect. If the voxels are
stationary or moving away from each other, no collision
response is necessary since interpenetration will not occur.
If the voxels are moving towards each other, a proper colli-
sion response is computed to prevent interpenetration of the
bodies. The linear and angular momenta of the bodies is
changed discontinuously ([BW97], [MC95]) to ensure that
the collision occurs with little to no deformation. Each
voxel has an associated coefficient of restitution that deter-
mines how “bouncy” a collision is. A coefficient of zero
corresponds to a perfectly inelastic collision where all ki-
netic energy is lost, whereas a coefficient of one corre-
sponds to a perfectly elastic collision where all kinetic en-
ergy is retained.

Figure 5. Dynamic contact collision.

Precise surface reconstruction is too time-consuming for
real-time simulation, so the surfaces of the bodies are as-

sumed to be smooth. Thus, the collision normal N
r

 is ap-
proximately parallel to the distance vector between the col-
liding voxels, and the collision point p is approximately
equal to the midpoint of the distance vector [MMA99].

A blast wave can impart exceptionally high velocities to
objects it hits, potentially causing some of them to inter-
penetrate noticeably in a single time step. Objects may even

pass through each other completely. In principle, this prob-
lem can be solved by reducing the time step adaptively until
the interpenetration is kept within a certain tolerance. How-
ever, this is not feasible for a real-time simulation because
the time step may become prohibitively small.

One approach we use is the reduction of voxel strength
by collision forces so that voxels that interpenetrate for too
long are eventually destroyed. This method has an addi-
tional advantage because it approximates object damage
due to collision. Another tactic is the creation of “dust”-like
particle systems at collision points to mask interpenetration.
This also adds visual information to the scene.

A difficulty with collision response algorithms is that the
resolution of one contact could lead to the creation of new
contacts. In theory, this situation could loop indefinitely and
cause a major performance hit. In our implementation, all
contacts are only resolved once in the current frame. Any
new contacts created by collision resolution, as well as
those that arise during the normal course of the simulation,
are dealt with in the subsequent frame. Consequently, inter-
penetration is more pronounced but the frame rate is kept
reasonable.

5.2  Static contact

Objects are defined to be at rest—i.e., in static contact—
when they are in contact and are not moving with respect to
each other. Finding static contact forces for a multi-body
system is a complicated process, requiring efficient quad-
ratic programming algorithms, such as those described in
[Baraff94]. In order to facilitate static contact resolution, we
introduce two limitations to collision.

Firstly, an object can only be at rest when it is in static
contact with the ground, not with other objects. Objects that
are adjacent and have zero relative velocity have no associ-
ated collision responses. This means that objects are kept
from interpenetrating but tend to bounce, wobble, or slide
when they fall atop one another with low velocities. Given
that the blast wave from an explosion usually causes objects
to move very fast, this is an acceptable restriction. Due to
this limitation in our simulation, however, large debris piles
eventually collapse towards the ground.

 Secondly, static contact with the ground is resolved not
with the computation of balanced repulsive forces, but
through a combination of dynamic collision response and a
heuristic—rather than physically based—implementation of
friction that we call pseudo-friction.

When an object collides with the ground, the following
assumptions are made to simplify calculations: the ground

has infinite mass; the collision normal N
r

 is equal to the
ground plane normal; and the collision point p is at the col-
liding voxel vertex.

p

Bounding sphere

N
r



If the object is moving into the ground, the simulator
computes the proper dynamic collision response to prevent
interpenetration. As mentioned above, collision forces di-
minish voxel strength—destroying the voxel and replacing
it with a particle system if its strength drops to zero or be-
low—and “dust”-like particle systems are spawned at colli-
sion points.

 Simulating rigid body dynamics using the dynamic col-
lision methods detailed above leads to the following diffi-
culty. Objects tend to keep moving, spinning, and sliding
around on the ground. It takes a long time for them to come
to rest, if ever. In order to compel the objects to eventually
come to rest, the simulation uses a sort of pseudo-friction.

Figure 6. Ground collision.

An object in contact with the ground has an associated
velocity v

r

 at the point of contact p. That vector v
r

 can be
decomposed into a normal component Nv

r

 and a tangential

component Tv
r

. If Tv
r

 is non-zero, the presence of tangential

friction needs to be taken into account. This is done by the

addition of a tangential force TF
r

 to the object in the oppo-

site direction of the tangential velocity Tv
r

. The magnitude

of TF
r

 is correlated to the magnitude of Tv
r

 and the mass of

the object m; i.e., a heavier object moving faster experi-
ences more friction than a lighter object moving slower.

Adding the above tangential friction prevents objects
from sliding along the ground forever. However, objects
still tend to oscillate. Subtracting a part of an object’s linear
and angular momenta whenever it comes into resting con-
tact with the ground can minimize these oscillations. Rest-
ing contact is defined to occur whenever an object in con-
tact with the ground has a normal velocity Nv

r

 of zero

(within a certain threshold). Furthermore, if an object has
three or more contact points with the ground, and either its
linear or angular momentum approaches zero, it is clamped
to zero. Using this implementation of pseudo-friction elimi-
nates any small perturbations to a body, and thus also helps
maintain the stability of an object already at rest.

We chose a lower limit of three contact points for the
clamping of linear and angular momenta to zero because an
object usually needs at least three ground contact points to
remain at rest (e.g., a tripod). In the real world, however, an

object whose center of mass lies outside the convex hull of
its ground contact points—regardless of the number of
contact points—is unbalanced, and will therefore topple
over.

An object is in balanced rest only when its center of
mass projected onto the ground plane lies within the convex
hull of its ground contact points. Computing the convex hull
of an object’s ground contact points proves to be too com-
putationally expensive to justify in a real-time simulation.
Instead of the convex hull, an axis-aligned bounding box
containing the ground contact points is computed. Pseudo-
friction is only applied if the projected center of mass lies
within this rectangular base. Obviously there are cases
where this approximation is invalid, but it yields better re-
sults than if no “balancing” condition is used, and is much
quicker than using an accurate convex hull.

6. Accelerated visual cues

In addition to object fracture, a spectator viewing a real
explosion has numerous other visual cues that convince him
or her that the detonation is authentic. A cue is something
that adds expected or perceived visual information to the
scene, and ultimately makes the animation more plausible.
Any such cue need not be rigorously physically derived as
long as it satisfies the viewer’s expectations. A simulator
that renders virtual explosions needs to mimic as many of
these cues as possible in order to convince a viewer that the
blast is believable. This is even more obvious in real time
where it is easier to duplicate simple, expected explosion
effects than it is to meticulously simulate unfamiliar phe-
nomena.

Since this is a real-time simulation, all of the visual cues
are generated concurrently with the blast wave computation
and object rendering, rather than as a post-processing step
after the animation is completed. More realistic methods
may be chosen provided they are not too computationally
intensive.

A primary visual cue is the explosion itself. Possibly in-
fluenced by films and television, a viewer expects to see a
large fireball at the explosion source. A display like this is
created in the simulation by spawning multiple flame-like
particle systems at the explosion source. Adding a bright
yellow-orange light to each explosion particle system also
maintains the illusion of an intense fireball.

In real life, the density changes across the shock front
cause the index of refraction to be modified. Light rays
passing through these regions of different refraction indices
are bent by varying amounts. The amount of refraction due
to the blast wave is usually very minor, and can barely be
seen amidst the sound and fury of the explosion unless a
viewer knows exactly what to look for. An accurate repre-
sentation of light refraction by the shock front can be ob-
tained by using ray-traced images in the simulation. Unfor-
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tunately, ray tracing is too time-consuming to use in a real-
time simulation.

Nevertheless, viewers still expect to see some visual in-
dication of the shock front itself. Since the simulation as-
sumes the blast wave is spherical, a viewer’s expectations
can be fulfilled in this case by rendering a semi-transparent
sphere centered at the explosion source, and having a radius
equal to the radius of the blast wave. Transparency is
gradually increased as the radius increases.

Since the blast wave itself is almost invisible, its propa-
gation is notable mainly by the effect it has on the environ-
ment. As the blast wave moves along the ground, it kicks up
clouds of dust. We achieve this by adding dust-like particle
systems at the intersection of the expanding blast wave
sphere and the ground plane. The blast wave also knocks
dust off of the objects in its path. To imitate this effect, we
generate particle systems at the intersection of the blast
wave and the voxels.

A visual indicator not limited to explosions is the dust
thrown off when objects hit the ground or each other with
sufficient force. Again, the simulation reproduces this by
spawning dust-like particle systems at voxel collision
points. The dust thrown up at collision points also helps to
mask any interpenetration that occurs.

Explosions produce high temperature conditions that
lead to nearby flammable objects getting set on fire. For the
average viewer, there is an inextricable link—again, possi-
bly reinforced by films and television—between explosions
and fire. Currently, the simulation models the pressure
changes across a shock front using physically derived meth-
ods. It is possible to emulate combustibility by using a sim-
pler, heuristic approach.

As with the yield limit, each voxel has a combustibility
limit that is assigned in a similar fashion. During an explo-
sion, the blast wave pressure measured at each voxel’s cen-
ter is scaled by a user-definable parameter. This scaled
pressure is then used to diminish the combustibility limit for
that voxel. Once a voxel’s combustibility drops below zero,
it is “set on fire”, i.e., it spawns fire- and smoke-like particle
systems. Voxels that are on fire have their yield limits
weakened continually as long as they are aflame. Links that
are attached to burning voxels also have their yield limits
weakened. This simulates the destructive nature of fire.

In the real world, fire propagates based on the presence
of nearby flammable objects that are affected by elevated
temperatures. Rather than use a proximity approach—which
is much more computationally expensive—the simulation
takes advantage of the existence of links and propagates
heat along them instead. Non-burning voxels attached to
burning voxels have their combustibility limits weakened in
turn. Based on the observation that fire tends to spread up-
wards in a structure, an orientation factor is computed for
the position of the neighboring non-burning voxel. Voxels
located directly above the burning voxel are accorded a

larger orientation factor than voxels located to the side or
below. This orientation factor is then used to scale deterio-
ration of neighboring voxels so that fire propagation and
damage tends to progress upwards.

When objects break apart, the sides that were hidden in
the original object usually have a different appearance than
the exposed faces. Any voxel face not originally visible that
subsequently appears due to object breakage is assigned a
generic “voxel damage” texture. This effect can be im-
proved by having specific “damage” textures for individual
voxels. It can be generalized further by having appropriate
“damage” textures painted on as a voxel diminishes in
strength, or is affected by fire.

Lastly, it is self-evident that footage of real explosions is
shot with real cameras. What is less obvious, though, is that
they are as affected by the blast wave as other objects. Un-
less the camera is locked down completely (and sometimes
even then), it will shake as the blast wave passes it. Adding
a similar “wobble” to the simulated camera when it en-
counters the blast wave helps to bring the virtual scene even
closer to its real-world counterpart.

7. Results

The simulation generates animations that are visually
similar to real-world explosions, through the use of physi-
cally based methods and the presence of particular visual
cues. Important aspects of the blast wave, such as the peak
overpressure and the negative phase, are present in the
simulation.

Without collision detection, the simulation speed is de-
pendent on the computation of connected bodies in the
scene. This has an upper bound of O(n), where n is the total
number of voxels in the scene. Pair-wise testing for colli-
sion detection increases the simulation time to O(m2), where
m is the total number of boundary voxels in the scene. The
addition of object-level bounding spheres reduces the initial
number of tests to O(k2), where k is the total number of ob-
jects in the scene.

The basic blast wave simulation—without graphical out-
put—is very fast (see Figure 7). In fact, the frame rate with
no rendering is consistently about two orders of magnitude
faster than similar tests with rendering. This demonstrates
that rendering each frame causes a large performance hit.
The frame rate can be improved substantially using hard-
ware graphics acceleration.

The implementation performs reasonably close to real
time (see Figure 8). For small (<200) numbers of voxels,
the performance is near 30 frames/sec. When the number of
voxels increases to 500 and more, the performance drops
below 20 frames/sec.

Apart from graphical output, the main bottleneck for the
simulation itself is collision detection. As the number of
independent objects in the scene increases—either due to a



large initial set of objects or due to object fragmentation—
the frame rate decreases, as more collision checks need to
be made.

The simulation tests were performed on an Intel P3
900MHz machine with no hardware optimization for
OpenGL.

8. Conclusions and future work

This paper has extended the connected-voxel model used
in [MMA99] for the real-time animation of a blast wave im-
pact on solid objects. Visual realism of the animation is
achieved primarily through the volumetric representation of
an exploding object, resulting in convincing solid debris.
Arbitrary voxel shapes permit the creation of objects that
are more complex using fewer voxels.

Several simplifications are required to achieve a simula-
tion that runs in real time. The blast wave model assumes
that the shock front remains perfectly spherical as it propa-
gates. Using shock front precomputation minimizes the in-
accuracy inherent in dynamic simulators using discrete time
steps.

The collision response algorithms for both dynamic and
static contact between objects are also somewhat imprecise.
More accurate contact resolution would adversely affect the
frame rate. Certain simplifications, such as the use of
pseudo-friction in static contact resolution, are employed to
maintain an acceptable simulation speed.

The addition of several key visual cues commonly asso-
ciated with explosions improves the visual believability of
the scene. Each cue is not rigorously physically derived or
simulated in the interest of speed. It is sufficient to have a
specific cue looking reasonably similar to its real-world
counterpart without it being a totally accurate facsimile.
Whereas our simulator works on a purely visual basis, it is
noteworthy that an observer of an explosion also relies on

auditory cues to provide authenticity. Adding immediate
explosion sound effects to the simulation would enhance its
believability considerably.

The user has a high level of control in most areas of the
implementation. The design of an initial object can be cus-
tomized to a large extent, from the way it looks (using arbi-
trary voxel shapes) to the way it behaves under a blast wave
impact (using non-homogenous link and voxel properties).
The level of accuracy in the simulation can also be chosen
depending on the user’s goals.

The main challenge would be to simulate more complex
wave interactions with both objects and the environment in
real time. Examples of this are reflection, refraction, Mach
stem formation, and vortices [Baker73]. Yngve et al
[YOH00] model these complex blast wave interactions fairly
accurately, but running times for their simulation ranged
from several hours to several days.

A related problem is the simulation of shock wave
propagation within an object itself. The implementation can
also be enhanced with more efficient collision detection to
improve simulation speed, and more advanced object frac-
ture modeling (such as [OH99], [SWB00]) to increase accu-
racy and visual believability.
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Figure 7. Performance without graphical output.
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Figure 8. Performance with OpenGL rendering.
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Figure 9. House destruction (single object of ~150 voxels).
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Figure 10. Building damage (single object of ~4300 voxels).
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Figure 11. Logo destruction (multiple objects of ~70 voxels).
The “00” in “2001” was specified as more flammable than the other objects.


