
Bringing TCP/IP Networking to Resource Limited Embedded

Systems

Roman Glistvain, and Mokhtar Aboelaze, Senior Member, IEEE

Abstract- The TCP/IP network interface is considered a
luxury feature in many embedded devices because it is
expensive to implement. It requires additional hardware and
complex software to enable the device to be accessible on the
local area network or over the Internet. This paper describes a
simple way of integrating a simplified TCP/IP stack with the
Romantiki operating system. Our approach allows the user to
use standard multithreaded approach to write application code,
and at the same time use a small memory footprint similar to
super loop based applications. This approach paves the way to
have complex devices running standard TCP/IP applications on
a very inexpensive and energy efficient microcontrollers with a
small RAM and Flash memories.

I. INTRODUCTION

U

P to a few years ago computers were the only

electronic devices connected to a network in an

average household. TVs, DVDs and VCRs were

devices with dedicated functionality and without the need to

be connected to a network. Today with the expansion of Wi

Fi routers, Netflix streaming, smart appliances - many

devices have TCP/IP connectivity options and need to be

controlled, monitored and troubleshot via TCP/IP. Currently

the approach to these devices is to use high end

microprocessors and complex software architecture, running

operating systems such as Linux, Windows or VxWorks.

These operating systems provide a standard multithreaded

paradigm of writing applications and include an integrated

TCP/IP stack with a standard "Socket API". This approach

allows integrating existing off-the shelf open-source or

commercial components into embedded devices at the

expense of the increased complexity, increased price, slow

boot-up time and slow operation of such devices. The result

of this approach is a slow adoption of networking in certain

devices. For example - it will be hard to sell a TV set which

takes 1 min to boot-up. However, the TV set is a good

example of a device which could benefit from TCP/IP

networking. A TV can stream live video from On-Line TV

stations, YouTube, Netflix and other services.

Low end embedded networking microcontrollers are

starting to gain popUlarity and replace complex high end

microprocessors in embedded devices requiring simple

R. Glistvain is currently with Turck USA in Minneapolis, MN USA
(email : romangl@email.com). .

M. Aboelaze is with the department of Computer SCIence and
Engineering, York University Toronto, Ontario. Canada. (email:
aboelaze@cse.yorku.ca)

978-1-4244-7101-0/10/$26.00 ©2010 IEEE

networking functionality. These microcontrollers are

characterized by a simple processor with a limited

processing power, limited resources, and low power

consumption. They also have a low-to-moderate size

memory without a Memory management Unit (MMU).

These processors require special attention in developing

application programs for them. For example

STM32F105R8T6 [19] micro controller with an embedded

Ethernet core has 64K byte of programmable flash and 20K

byte of SRAM.

We proposed Romantiki [9] as a simple operating system

that can run on embedded devices with very limited memory

resources, and at the same time can bring TCP/IP

functionality to these resource-limited microcontrollers.

Romantiki offers the feature-set of a standard cooperative

multitasking operating system but it requires a very small

amount of memory compared to a standard operating system

such as Linux or Windows.

Since Romantiki is directed at small microcontrollers with

limited memory resources, our design requirement for

Romantiki is to satisfy the following important criteria:

First, we want our proposed operating system to have a

fast startup time.

Second, a small footprint in both RAM and Flash, since

small microcontrollers are characterized by a small on-chip

memory.

Third we would like our proposed operating system to

work with applications that require soft real time constraints.

This means we have to have prioritization in scheduling.

Fourth we would like to present a multitasking OS model

to the user where a single stack is used for all tasks [10]. We

also require that applications developed for Romantiki can

be easily ported to other operating systems with a minimum

of modifications (zero modifications in most of the cases).

Finally, we would like to present to the user a "socket

like" API to support networking applications. Another

objective here is to create a common networking abstraction

layer common to Romantiki and traditional operating system

such that applications written for Romantiki can be

recompiled to run on other operating systems without any

changes in the source code.

The remainder of the paper is organized as follows:

Section II describes the motivation behind our work and

discusses related work. Section III presents an overall view

of Romantiki operating system with emphasis on the TCP/IP

components. Section IV describes the simplified TCP/IP

stack in Romantiki OS and compares it with the traditional

full strength TCP/IP stack. Section V provides performance

239

and footprint comparison between a similar networking

application running on FreeRTOS and Romantiki as.
Section VI describes future work and conclusion.

II. MOTIVATION AND PREVIOUS WORK

A. Motivation

In his paper we focus on resource-constrained embedded

devices which have network based user interface (UI). These

devices include network routers, managed switches,

automation equipment, wireless sensor network devices, as

well as military surveillance and communication devices.

We will show that it is possible to write software for such

devices following standard as like architecture and create

real-time software components which can be shared between

complex devices and resource limited devices.

The objective of our proposed operating system is

reducing cost by using simple inexpensive microcontrollers,

reducing the startup time by using a simple as with a much

faster startup time compared to existing ones, and finally

reducing the power consumption of the system since both

the application and the as can fit in the memory of small

microcontrollers without having an off-chip memory.

The uniqueness of the Romantiki operating system is that

it integrates a specialized TCP/IP stack which allows

developing multitasking networking application code that is

easy to maintain and extend. This code can easily be shared

between traditional operating systems and Romantiki as
through the use of a common as abstraction layer.

Networking programs written for Romantiki enjoy a

significant performance increase over the corresponding

programs written for operating systems with traditional

networking abstractions. In this paper we compare the

performance of a simple TCP based application running on

Romantiki as and FreeRTOS with IwIP TCP/IP stack. It

will be shown that Romantiki based application provides

2.7x TCP performance increase compared to the same

application running on FreeR TOS with IwIP

B. Related Work

Traditional embedded networking devices are not power

efficient due to the use of large number of on-board

components to provide simple networking functionality.

This inefficiency is in conflict with the new trend to reduce

the amount of power consumption in devices and allow

battery operated applications. This trend produced a number

of microcontrollers with memory, networking and other

peripherals integrated into the microcontroller chip [2], [13].

The amount of memory in these micro controllers is very

limited and is not sufficient to run traditional networking

operating systems.

An example of a small and efficient operating system is
Nut/O/S [16] which provides a large set of services and is

targeted to limited memory embedded devices. It is very

practical for programmers who migrate from superloop

based paradigm towards an operating system based approach

and who want to avoid mistakes when using synchronization

primitives and accessing shared memory. However, this

operating system does not provide footprint reduction

compared to preemptive operating systems since tasks in this

system use separate stacks. Salvo [18] is another cooperative

as for small microcontrollers. Its main drawback is its

inability to perform blocking calls within nested functions

called from a thread.

A small real-time operating system was proposed in [11].

Their as was designed for monitoring flight parameters and

responding to any risk to the aircraft. Their main design

criterion is fault tolerance. They designed and built the

hardware for the system and the fault tolerance was

introduced at both the hardware and software level.

Although the as is small it was not meant to support

networking applications.

In [20], the author presents design challenges of the

design of an operating system for wireless embedded

systems powered by energy harvesters. Although their as is

designed to run on limited resources microcontrollers like

our system, the main design criterion for their as is energy

efficiency, since it is using energy harvesting techniques for

power instead of batteries.

Some embedded TCP/IP stacks are extremely small and

provide an extensive TCP/IP protocol handling but they do

not provide the BSD style networking API. Examples of

such systems are uIP TCP/IP stack [4], Contiki as [6] and

microchip [17] TCP/IP stack. Those stacks are programmed

in an event-driven style with very limited blocking socket

capabilities.

Other TCP/IP stacks such as IwIP [5], uC/TCP-IP [22]

and InterNiche TCP/IP stack [15] provide networking

abstractions compatible with traditional BSD socket layer.

These typically run under an R TOS and require a

significantly larger amount of resources in RAM and Flash

than event driven TCP/IP stacks.

Romantiki implements a TCP/IP stack targeted at server

only embedded systems located on a local area network.

This stack stands in the middle between BSD Socket

compatible TCP/IP stacks and event driven TCP/IP stacks. It

provides networking abstractions similar to traditional BSD

socket API while fitting the footprint of an event-driven

TCP/IP stack. The Romantiki TCP/IP stack offers a "socket

like" networking API which makes it possible to write single

threaded blocking socket applications and multisession non

blocking socket applications. This functionality is typical of

an embedded system which handles multi-session servers

using non-blocking sockets to avoid multiple tasks handling

sessions with large stack allocations per task. The socket

like networking API employed in Romantiki makes it

possible to share the same application codebase between

large projects running on complex preemptive operating

systems and projects running on resource limited embedded

devices. This is especially useful for providing limited

functionality networking applications on resource limited

devices while providing the same applications with full

functionality running on traditional operating system sharing

240

the same application code.

III. ROMANTIKIOS

Romantiki OS [9] is a cooperative multitasking operating

system with task priorities where all tasks share a common

stack. The tasks are run-to-completion programs written

using local-continuation programming style to provide

blocking 110 functionality [10]

Romantiki achieves real-time cooperation by using

yielding. Special yield statements are placed in the code that

allows the program to yield if there is a higher priority

program waiting, and return to the appropriate place in the

function after the higher priority task is completed [10].

Romantiki OS uses traditional intertask communication

primitives such as Event Objects, Timers, and Semaphores

which are implemented using blocking system calls.

Romantiki allows making blocking I/O calls within nested

functions. The use of traditional intertask communication

abstractions allows creating a common OS abstraction API

which enables the sharing of application code between other

embedded operating systems such as FreeRTOS, ThreadX

and Romantiki OS. A block diagram of the Romantiki

operating system is shown in Figure 1.

Legend

Block Diagram of the Romantiki Operating System

IE""' ",.,. •• m f- n�

i 1

i I

I i

Mutt"
Subl�lem

I sourc· fu- --� Deslinationcomponenl usHurvlces ofsourcecomponenl

Fig I. Block diagram of Romantiki OS
Romantiki OS features an integrated TCP/IP stack which

enabled the creation of TCP/IP server applications in

memory limited devices.

IV. TCP/IP STACK IN ROMANTIKI

A. Overview

The TCP/IP Stack in Romantiki is optimized for "server

only" embedded applications. The device running the

Romantiki cannot initiate TCP or UDP connections but it

can accept TCP connections and respond to TCP/UDP

messages. The TCP/IP stack is written with the intention to

keep the code as simple as possible while closely following

the "socket API" interface to be able to port existing

applications to Romantiki OS.

The following sections describe various algorithms

implemented in the TCP/IP stack in Romantiki.

B. "Socket-Like" API

The socket-like API of Romantiki allows us to handle

both TCP and UDP sockets. For TCP it implements socket

creation, sending, receiving, accepting and closing a socket.

It also implements socket select for non-blocking sockets.

For UDP it implements creating a socket, sending, and

receiving operations.

Each socket can be configured in a blocking or non

blocking mode of operation. Blocking sockets are used to

implement single threaded server application while non

blocking sockets are used to create multisession servers.

The socket-like API closely follows the traditional BSD

socket API and that makes it possible to create a common

abstraction layer which allows us to compile identical source

code implementing variety of networking servers for

Romantiki and traditional operating systems using BSD

socket compatible TCP/IP stack.

Many socket operations are implemented via Zero-Copy

fashion common to many TCP/IP stacks such as Trek

TCP/IP Stack [21], embOS/IP [7] and uC/OS-II TCP/IP

[12]. This contributes to the fast performance of the

Romantiki TCP/IP stack

C. ARP Handling and IP Routing

Typically a TCP/IP stack is structured in a layered model.

TCP/IP defines 4 protocol layers: Application layer,

Transport layer, Internet layer and a Link layer. Each layer

performs certain processing of incoming and outgoing

frames. At the same time each layer is responsible for certain

protocols specific to that layer. For example: ARP protocol

is handled entirely within the Link Layer while the TCP

protocol handling is part of the Transport layer.

The footprint of the Romantiki TCPIIP stack is very

small. This is accomplished by blurring the distinction

between the layers of the TCP/IP protocols and making

certain assumptions about the device functionality and

network infrastructure. The following assumptions In

Romantiki affect the ARP handling and IP routing:

I. The Link layer is Ethernet based.
2. The device never originates TCP/UDP/ICMP sessions

but always responds to external requests.

241

3. The device has a single Ethernet port. It can not act as a
router between multiple IP networks.

4. Paths are symmetric - the outgoing frame should be
transmitted to the same gateway which forwarded the
incoming frame.

5. The MAC Address of the connection originator is part of
the connection structures in Internet and Transport
layers. This construct eliminates a standalone ARP cache
and simplifies routing decisions for ICMP, UDP and
TCP protocols.

Some of the parameters typically required for proper

TCP/IP operation are not necessary in devices built with

these assumptions. Based on the above assumptions, the

Netmask, ARP Cache, Default Gateway and Routing table

are not part of the Romantiki TCP/IP stack because each

TCPIUDP application knows the MAC address of the

gateway the response needs to be forwarded to. This greatly

simplifies the structure of the TCP/IP stack as well as makes

the memory footprint small and deterministic. This approach

also reduces the number of user configurable parameters to

one (IP Address of the device) which allows for easier field

maintenance.

D. TCP Delayed ACK

The TCP delayed acknowledgement algorithm in

Romantiki is different than the one used in a traditional

stack. The acknowledgement for the incoming data is

delayed until one of two events occurs:

1- The receiving application task blocks waiting for more

data. This means that the socket's RX buffer is empty and

more data needs to be received.

2- The application is sending the response. In this case the

acknowledgment is piggybacked to the response frame.

The algorithm is targeted towards Industrial automation

applications where the complete application frame typically

fits a single MSS segment. Therefore, the ACK is typically

piggybacked to the response frame.

On one hand, this scheme may not be as bandwidth

efficient as the traditional delayed acknowledgement

algorithm for protocols that have multiple segments in

transit. On the other hand, this algorithm is very efficient for

the majority of control network traffic in industrial

automation networks and many LAN applications and it

doesn't pose the performance problem of the traditional

delayed ACK algorithm [3].

E. Additional Features a/the TCPI/P Stack

The TCP socket can be configured to "defy" the

traditional delayed acknowledgement algorithm by splitting

each outgoing frame into two. This causes the remote

application to send an ACK frame right away. This is similar

to uip_split feature of the uIP stack [23].

The TCP IP stack also provides an internal functionality

to respond to "ICMP ECHO" frames providing the "PING"

functionality as well as responding to ARP frames.

v. FOOTPRINT AND PERFORMANCE COMPARISON

The Romantiki OS provides a coding style similar to

traditional embedded operating systems. It features a TCP/IP

stack that provides a "socket-like" interface which is easier

to program than uIP based code. The performance and

footprint of this stack is much better than BSD compatible

TCP/IP stacks as it will be described in the following

comparison.

In order to provide a realistic comparison of performance

of different operating systems, it is necessary to compare

their performance on a similar application running on an

identical hardware. The TCP echo server application, shown

below, was used as a basis for comparison since it is a very

simple application and yet it exercises a large number of

operations in the operating system such as multitasking,

intertask communication and networking subsystem. It

provides a benchmark on the performance of networking

applications running on top of an operating system.

unsigned char echo_data[256];
/ / define listening socket
DEF _ LST _ SOCKET(echo _listen _sock, I);
II define connected socket
DEF _STRM_SOCKET(echoJeaUock);

BFD EchoServerTask(void* prm)
{

242

AUTO unsigned int txed _len, rxed_len;
SOCK_BUF(sock_buf,256);
AUTO int res;

BF_BEGIN
II initialize listening socket
LST_SOCKET(echo_listen_sock,

SOCK _MODE(SOCK _BLOCKING»;
II initialize connected socket
STRM_SOCKET(echoJeal_sock,

SOCK_ MODE(SOCK_ BLOCKING),
(unsigned char*)sock_buf,
sizeof(sock_but);

socketJisten(&echo_listen_sock,5200,0);
for (;;)
{

socket_ accept(&echo Jisten _sock,
&echo Jeal_sock,&res);

if (res==EOK)
{

while (I)
{

socketJecv(&echo Jeal_sock,
(unsigned char*)echo_data,
256,&rxed_Ien,&res,NULL);

socket_ send(&echo Jeal_ sock,
(unsigned char*)echo_ data,rxed _len,
&txed _len,&res,NULL);

if«rxed_Ien != txed_len) II (rxed_Ien == 0»
{

break;

The following library makes it possible to run the

above code on a TCP/IP stack based on traditional BSD

sockets:

#define AUTO
#define SOCK_BUF(name,x)
#define BFD void
#define BF BEGIN
#define BF -END
#define TRUE I
#define FALSE 0
#define EOK TRUE

#define DEF _LST_SOCKET(x,y) SOCKET x
#define DEF _STRM_SOCKET(x) SOCKET x
enum
{

SOCK_BLOCKING
};
#define SOCK_MODE(x) x
#define LST_SOCKET(x,y) iniUock_socket(&x,y)
void init_sock_socket(SOCKET* sock,int y)
{

*sock = socket(AF _INET, SOCK_STREAM, 0);
}
#define STRM_SOCKET(x,y,z,t) init_sock_socket(&x,y)
void sockeUisten(SOCKET* x,int port,int tmp)
{

struct sockaddr _in serv _ addr;
memset((char *) &serv _addr,O, sizeof(serv _addr));
serv_addr.sinJamily = AF INET;
serv addr.sin addr.s addr;;; INADDR ANY'
serv = addr.sin �ort = htons(port); -

,

bind(*x, (struct sockaddr *) &serv _addr,
sizeof(serv _addr));

listen(*x,5);

void socket_accept(SOCKET* listen, SOCKET* client, int* res)
{

}

int clilen;
struct sockaddr in cli addr;
clilen = sizeof(cli_addr);
*client = accept(*listen,

(struct sockaddr *) &cli_addr,
&clilen);

*res=EOK;

#define socket_send(c,b,l,t,d I ,d2) *t=send(*c,(char*)b,I,O)
#define socket_recv(c,b,l,r,d I ,d2) *r=recv(*c,(char*)b,I,O)

The code in the previous section follows the structure of a

traditional socket server. Therefore it is possible to adapt a

common abstraction layer which allows using the above

code in an operating system supporting standard socket

abstractions

The AT91SAM7X-EK [1] evaluation board was used to

evaluate the performance and the footprint of the Romantiki

operating system. The Romantiki OS is compared against

FreeRTOS[8] operating system with two different TCPIIP

stacks: uIP [23] and IwIP [14]. The FreeRTOS operating

system was chosen due to the ease of porting it to the

AT91 SAM7X-EK [1] evaluation board as well as the ability

to limit the number of used features so that the executable

image has a similar feature set as the executable image of

Romantiki OS.

The performance of the different operating systems is

measured using the setup described in Figure 2.

PC

Device under test

-------- 8---
OS,TCP/IP --------------

Fig 2. Experiment Setup

TCP Echo I I server
application

The absolute timing of network frames was captured

using the network sniffer and results were averaged over 5

samples for each platform.

Table 1 provides the comparison between the performance

of the echo server application on Romantiki OS and

FreeRTOS (using both IwIP and uIP).

TABLE I COMPARISON BETWEEN ECHO SERVER PERFORMANCE ON
ROMANTIKI OS AND FREERTOS

Combined
size of all Size of Cycle time
data the Code in

Operating System segments in segment microseco
and TCP/IP stack bytes in bytes nds

Romantiki OS
based application 8064 14396 345
FreeRTOS and uIP
based application 9320 13112 238
FreeRTOS and
IwIP based
application 16554 33176 934

As we can see from the footprint comparisons, the

Romantiki based application has a similar footprint as the

uIP application running on FreeRTOS operating system

(both the code size and the RAM size). At the same time, the

coding style of the Romantiki based socket applications is

very similar to a IwIP based application while occupying a

far smaller memory and code size footprint.

The Romantiki OS positions itself as a general purpose

OS which enables code sharing between other operating

systems running TCP/IP stacks similar to BSD stack. This

functionality is similar to the IwIP stack running on top of a

FreeRTOS operating system.

The differences between the application running on

Romantiki OS and a similar application based on FreeRTOS

with IwIP are the following:

The Flash footprint of the Romantiki application is 2.3 times
smaller than the same application implemented in FreeRTOS
with IwIP stack.

The RAM footprint of the Romantiki application is 2

times smaller than the same application implemented In

FreeRTOS with IwIP stack.

The TCP performance of the Romantiki application is 2.7
times faster than the same application implemented in
FreeRTOS with IwIP stack.

The performance of the uIP application is the best among

243

the three platforms. This is due to the requirement that

TCP/IP applications in uIP need to be structured as event

handlers invoked by Ethernet processing task. This reduces

the amount of intertask communications to process TCP/IP

frames at the expense of abandoning traditional "socket"

based program structure. The event handling approach for

TCP/IP applications is fast and simple for request/response

applications where the response data can be directly

computed from the request. However, the code becomes

quite complex when the data needs to be read or written

using blocking 1/0. The performance of such an application

could suffer if the blocking 110 is implemented in a polled

fashion. An application such as a web server where the web

pages are stored on SD card could be slow and complex

when implemented using FreeR TOS with ulP stack.

Moreover, the requirement of using event driven coding

style makes it hard to adapt existing TCP/IP code based on

blocking sockets to uIP stack.

The memory footprint of the Romantiki OS based

application is quite similar to that of ulP based application,

however, the performance of the uIP based application is 1.4

times better. The performance lead of uIP is due to the event

handling structure of the ulP stack.

As it was shown in this section, Romantiki OS provides a

big boost in performance while also providing a far smaller

footprint compared to FreeRTOS with traditional TCP/IP

stack IwIP. Even though the Romantiki TCP/IP stack does

not use the standard socket interface, its API is very close to

traditional sockets and makes it possible to share the same

codebase between projects running on large microprocessors

and resource limited microcontrollers.

VI. FUTURE WORK AND CONCLUSION

Romantiki was designed as a proof of concept of a

multithreaded networking operating system which fits the

RAM and Flash footprint of a superloop project. It is very

compact and easily portable to different architectures.

This operating system allows constructing complex

devices using very small and inexpensive micro controllers.

There are many different applications of these devices in

the areas of industrial automation, home automation,

telecommunications and military applications.

The future work will concentrate on adding originator

support in the Romantiki TCP/IP stack.

REFERENCES

[I] AT9ISAM7X-EK Evaluation board
http://www.atmel.comldynlproducts/tools_card.asp?tool_id=3759

[Accessed May 2010]
[2] AT91SAM7X ARM7 Microcontroller [Online] available

http://www.atmel.comldynlresources/prodldocuments/6120s.pdf
[Accessed May 2010]

[3] S. Cheshire "TCP Performance problems caused by interaction
between Nagle's Algorithm and Delayed ACK"
http://www.stuartcheshire.org/papers/nagleDelayed Ack [accessed
May. 2010]

[4] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali" Protothreads:
Simplifying Event-Driven Programming of Memory-Constrained
Embedded Systems" Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems" Boulder, CO 2006.

[5] A. Dunkels "Full TCP/IP for 8-bit architecture" Proceedings of the 1st
international conference on Mobile systems, applications and services.
pp 85-9SSan Francisco, CA 2003.

[6] A. Dunkels, B. GrOnvall, and T. Voigt "Contiki - "A Lightweight and
Flexible Operating System for Tiny Networked Sensors". Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks pp 455-462 2004

[7] Emb/OS Real Time Operating System
http://www.segger.comlembosip�eneral.html

[S] FreeRTOS Operating System http://www.freertos.org/ [Accessed
May 2010]

[9] R. Glistvain, M. Aboelaze "Romantiki - A Single Stack Operating
System for Resource Limited Embedded Devices". Proceeding of the
7111 International Conference on Informatics and System. Cairo, Egypt
March 2010.

[10] R. Glistvain "Romantiki O/S - networking operating system for
limited memory embedded devices". A M.Sc. Thesis, Dept. of
Computer Science and Engineering, York University. Toronto,
Canada April 2010.

[11] T. Kaegi-Trachsel, and 1. Gutknecht "Minos: The design and
implementation of an embedded real-time operating system with a
perspective on fault tolerance". Proceedings of the International
multiconference on Computer Science and Information technology pp
649-656 Oct. 200S.

[12] J. Labrosse "MicroC/OS-II: The Real-Time Kernel:" 2IED CMP
Books 2002.

[13] LM3S8962 ARM-Cortex M3 Microcontroller [Online] available
http://www.luminarymicro.comlproducts/LM3SS962.html [Accessed
May 2010]

[14] IwIP TCP/IP stack http://en.wikipedia.org/wikilLwIP [Accessed May
2010]

[IS] NicheStack IPv4 http://www.iniche.comlnichestack.php [Accessed
May 2010]

[16] Nut/O/S Cooperative RTOS Available
http://www.ethernut.de/enlfirmware/nutos.html [Accessed May 2010]

[17] N. Rajbhart. "Microchip TCP/lP stack" - ANS33 Microchip
Technology Inc. August 200S.

[IS] RTOS http://www.pumpkininc.coml[Accessed May 2010]
[19] STM32FI05R8 Microcontroller with embedded Ethernet core

http://www.st.comlmculdevicedocs-STM32F I 05RS-II O.html
[Accessed May 2010]

[20] A. Strba "Operating System design challenges for wireless embedded
systems powered by energy harvesters" Proc. Of the International
Symposium on Applied machine Intelligence and Informatics. Pp 35-
4- Jan. 2009.

[21] TREK TCP/IP stack http://www.treck.comlpd£.TCP.pdf [Accessed
May 2010]

[22] uCITCP-IP stack for uC/OS-ii
http://www.arm.comlcommunity/display.....Product/rw/ProductIdl2442/
[Accessed May 2010]

[23] UIP-Split module for uIP TCP/IP stack

244

http://www.sics.se/-adarnluip/uip-I. 0-refrnanla0020 I. html [Accessed
may 2010]

