
IET
doi:

www.ietdl.org
Published in IET Computers & Digital Techniques
Received on 13th April 2007
Revised on 22nd August 2007
doi: 10.1049/iet-cdt:20070055

ISSN 1751-8601

Energy efficient i-cache using multiple line
buffers with prediction
K. Ali1 M. Aboelaze2 S. Datta2

1School of Computing, Queens University, Kingston, Ontario, Canada
2Department of Computer Science and Engineering, York University, Toronto, Ontario, Canada
E-mail: aboelaze@cse.yorku.ca

Abstract: Modern microprocessors dedicate a large portion of the chip area to the cache. Decreasing the energy
consumption of the microprocessor, which is a very important design goal especially for small, battery powered,
devices, depends on decreasing the energy consumption of the memory/cache system in the microprocessor. The
authors investigate the energy consumption in caches and present a novel cache architecture for reduced energy
instruction caches. Our cache architecture consists of the L1 cache, multiple line buffers and a prediction
mechanism to predict which line buffer, or L1 cache, to access next. In the proposed technique, the authors
use the multiple line buffers as a continuous small filter cache that can catch most of the cache access but
they access only a single line buffer, thus reducing the energy consumption of the cache. They used
simulation to evaluate the proposed architecture and to compare it with the HotSpot cache, filter cache and
single line buffer cache. Simulation results show that the approach is slightly faster than the above mentioned
caches, and it consumes considerably less energy than any of these cache architectures.
1 Introduction
In the computer architects’ quest for faster, smaller, more
powerful and cheaper processors, the size of the processor
is increasing and more and more transistors are put on the
chip. As the size of the chip increases, the cache size also
increases, increasing the total energy in the sytem.
Therefore reducing energy consumption in caches is a
priority for computer architects.

Reducing the energy consumption in the cache can be
achieved in two different ways. At the physical (hardware)
level, the physical design of the cache and the voltage
requirements can be used to reduce the energy
consumption. Reducing leakage power and reducing
the voltage swing on the bit lines was proposed in [1].
Whereas in [2] the authors proposed a new register
design, Content-charge-aware CRA to reduce the
power consumption without added delay. At the
architecture level, novel cache architecture, prediction and
replacement policies are used to reduce the energy
consumption of the cache. In this paper, we concentrate on
the architecture level.
Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
10.1049/iet-cdt:20070055

Authorized licensed use limited to: York University. Downloaded on January 3, 2009
There have been many attempts to improve the cache
performance (average memory access time) as well as
decreasing the energy consumption of the cache. In this
section, we briefly discuss some of the recent attempts of
reducing energy consumption and the average memory
access time at the architecture level. In [3], the authors
showed how to reduce the total area of the cache by 20–
30% by using a unified cache instead of a split cache, at the
same time they did not sacrifice performance by
maintaining the same hit rate as a split cache. Albonesi in
[4] proposed the selective way cache. In set associative
caches, a lot of energy is consumed by accessing all the
ways of the set associative cache. Since the requested item,
if found, is in only one of the ways, the energy consumed
in accessing the other (non-successful) ways is wasted. In
selective ways cache, preferred ways (a subset of all the
ways) are accessed first; in case of a miss, the rest of the
ways are accessed, thus requiring a second access cycle in
case of miss in the preferred ways. The saving in energy (by
not accessing all the ways) is accomplished at the expense
of increasing the access time. Zhang et al. [5] proposed
fine-tuning the cache architecture to the running
application. The tuning is done at run time. They proposed
355

& The Institution of Engineering and Technology 2008

 at 16:49 from IEEE Xplore.  Restrictions apply.



35

&

www.ietdl.org
a cache where by setting a configuration register they can
reconfigure the cache size, the cache associativity and the
cache line size. By fine-tunning the cache parameters to the
application, they achieved a power saving of up to 40%.

The authors in [6] showed how to tune the filter cache to
the needs of a particular application in order to save energy.
Way prediction was used in [7] to reduce cache energy. In
order not to sacrifice the cache speed, they used a two-level
prediction scheme. First, they decide if they use way
prediction or not; if not then all the ways in a set
associative cache are accessed. However, if the decision is to
use way prediction, the predicted way is accessed first, in
case of a miss, the rest of the ways are accessed. A non-
uniform cache was introduced in [8]. In this design, the
cache has different values for associativity. The optimal
value for the number of ways is determined for each
application and used for this application. They also
proposed some techniques in order to minimise the access
to redundant cache ways and cache tags to minimise energy
consumption.

HotSpot cache was introduced in [9]. The main idea of the
HotSpot cache is to use a small filter cache (HotSpot cache)
to store frequently executed loops. The loops that are
executed more than a specific number of times (threshold)
are marked as hot blocks and are moved to the HotSpot
cache. The loops are detected by modifying the branch
target buffer (BTB) by adding a counter to each entry in
order to count the number of times that entry is accessed
(which is the same as the number of times the loop is
executed). These loops are promoted to the HotSpot cache
when they reach their threshold values. Their design
resulted in reducing the energy consumption of the cache.
Jouppi in [10] showed how to use a small fully associative
cache and prefetching to improve the performance of a
direct-mapped cache without paying the price of a fully
associative cache. Zhang et al. introduced the way-halting
cache in [11] where they used some bits from the tag in
order to choose which way to access in a multiway (set
associative) cache.

In [12], the authors proposed a variable sized block cache.
Their scheme depends on identifying the basic blocks (block
tail is a backward branch, block head is the target of the
backward branch) and they mapped them to a variable size
cache block. They successfully addressed the problem of the
instruction overlap among traces that was present in
the trace cache [13]. In [14], the authors investigated the
energy dissipation in the bit array and the memory
peripheral interface circuits. Taking these parameters into
consideration, they optimized the performance and power
dissipation in the cache. Different techniques for reducing
static energy consumption in multiprocessors caches were
compared in [15]. Whereas Benini et al. [16] proposed
code compression techniques, where the instructions are
accessed from the cache in a compressed form.
6
The Institution of Engineering and Technology 2008

Authorized licensed use limited to: York University. Downloaded on January 3, 2009 
In [17], the authors proposed a technique for energy saving
in caches by using a dynamic zero-sensitivity scheme. They
prevented the bitlines from discharging when reading zeros,
thus reducing the energy consumption of reads. In [18],
the authors dealt with energy consumption in the memory.
They considered the operating system level and discussed
techniques to reduce the overall energy consumption in the
memory. Their technique, power aware buffer cache
management, resulted in energy saving up to 63%.
However, as we mentioned, they considered the overall
memory system not only the cache. Quershi and Patt in
[19] introduced a runtime mechanism for partitioning the
cache among multiple concurrently executing applications.
They showed that their techniques reduces the energy
consumption by an average of 11% over LRU-based cache
partitioning on a dual-core system using multiprogrammed
workload. Both hardware and software-controlled power
management techniques were used in [20]. These
techniques resulted in both higher system performance and
low average power consumption.

In this paper, we introduce a new cache architecture that
has a slightly better average cache access time than many
existing architectures and consumes considerably less energy
compared with the existing architectures. We use
applications from Mediabench, Mibench benchmarks, as
well as SPEC2000 to compare our results with the
standard cache without any line buffers, the filter cache, the
HotSpot cache and the single line buffer cache.

The organisation of this paper is as follows. In Section 2,
we discuss the motivation behind our architecture. In Section 3,
we propose and explain our architecture. Section 4 gives
details of our prediction and line placement algorithm.
Section 5 presents the simulation setup and compares our
proposed architecture with the HotSpot cache, filter cache
and single line buffer cache for embedded applications.

2 Motivation
In [21], we showed how to use a single line buffer with
prediction in order to reduce energy consumption in a
direct-mapped cache (for the remaining of this paper, we
assume that line buffer is the same size as the cache line).
However, by careful analysis of the programs in the
Mediabench and Mibench we found the following (Fig. 1
shows the loop length distribution for Mediabench and
Mibench suites).

1. More than 75% of the loops in the applications include 16
or less instructions.

2. Almost 95% of the loops in the applications contain 30 or
less instructions

3. Almost 90% of the loops in SPEC2000 contains 30 or less
instructions.
IET Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
doi: 10.1049/iet-cdt:20070055

at 16:49 from IEEE Xplore.  Restrictions apply.



IET
doi

www.ietdl.org
Although many loops cannot be captured using a single
line buffer, they could be captured if 4–8 line buffers are
used with a good cache organisation to guarantee that the
instructions in the loops are mapped to the entire set of line
buffers instead of replacing each other in a small number of
line buffers. Increasing the line size is not the solution since
it affects the temporal locality and may reduce the hit ratio.

Fig. 2 shows the loop length distribution for SPEC2000
benchmark. We can see that the distribution is more flat
for SPEC2000 with higher percentage of loops with
.20 bytes. That makes it more difficult to capture loops in
SPEC2000 compared with Mediabench and Mibench. As
we will see in the experimental result section, our proposed
architecture works better for embedded application than for
general CPU intensive applications.

In this paper, we propose adding more line buffers in order
to capture these loops. We also propose a new prediction and
mapping mechanism in order to fully utilise the line buffers.
Our simulation results show that we have succeeded in
reducing the energy consumption of the cache subsystem,
without sacrificing the average cache access time.

Figure 2 Distribution of conditional instruction relative
targets for SPEC2000

Figure 1 Distribution of conditional instruction relative
targets for Mibench/Mediabench applications
Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
: 10.1049/iet-cdt:20070055

Authorized licensed use limited to: York University. Downloaded on January 3, 2009
3 Proposed architecture
In [21], we proposed a single line buffer cache architecture
with prediction in order to reduce the energy consumption
of the cache. Our proposed architecture consists of the
regular L1 cache, with a single line buffer that can hold a
cache line. We used prediction in order to steer the cache
access to either the L1 cache or the line buffer, thus saving
the energy required to access the cache when the required
data are in the line buffer. Considering that the line buffer
requires less energy compared with the L1 cache, the
protocol resulted in considerable energy saving.

However, one of the problems we faced in the previous
work is that the line buffer is not big enough to hold most
of the loops we encountered in Mediabench and Mibench.
Increasing the line size or using a filter cache that can hold
multiple cache lines result in reducing the miss ratio, but
requires more energy in accessing the filter cache or a large
line buffer compared with the energy required to access a
single line buffer with the size of a cache line. Our
objective is to increase the size of the line buffer(s) in order
to avoid L1 cache access, and at the same time maintain
the same energy consumption as a single line buffer.

In order to fully utilise the temporal locality in a program
and the line buffers, we now extend our single predictive line
buffer scheme [21] by adding multiple line buffers between
the CPU and the L1 cache. We also propose a new
prediction and placement algorithms. Our goal is to store
the loops in the line buffers and to predict the line buffer
containing the next memory reference. During the fetch
cycle only one of the line buffers is accessed. In case of a
miss in the line buffer, the instruction will be fetched from
the L1 cache and the line containing the fetched
instruction is placed in one of the line buffers. Fig. 3 shows
a schematic of the proposed architecture with four line
buffers, labelled as lb0, . . . , lb3 and the L1 cache. The
optimal number of line buffers depends on the application.

Figure 3 Multiple line buffers cache architecture
357

& The Institution of Engineering and Technology 2008

 at 16:49 from IEEE Xplore.  Restrictions apply.



358

&

www.ietdl.org
In our simulations, we found that having 4–6 line buffers
achieves the best results for most of the programs in
Mibench, Mediabench suites and SPEC2000.

Our scheme dynamically selects between one of the line
buffers and the L1 cache for instructions fetching. We
assume the existence of BTB, which is common in many
modern processors. The BTB is a small fast buffer that
holds the addresses of the branch instructions and the
target addresses for them. The BTB is used in order to
minimise stall cycles because of control instructions. In this
paper, we use the BTB for three things. First, it tells us if
the instruction is a control instruction or not, if it is a
control instruction, is it taken or not, and if it is taken,
what is the target address for that control instruction. Note
that our proposed scheme does not add any extra delay
cycles for cache access, since predicting instruction i
overlaps with the fetching of instruction i 2 1.

4 Prediction scheme for multiple
line buffers
In order to predict between line buffers and the L1 cache we
need to keep some state information. The state information
we have to keep are as follows:

† fetch_mode is an indicator to where to fetch the data from,
it could be either L1 cache or line buffer

† curr_lb points to the line buffer number predicted to
contain the requested data. Of course this is meaningful
only if the fetch_mode points to line buffer.

† pred_way is a flag which is used for steering mechanism
between line buffers and L1 cache. pred_way could have
one of three different values 21, 0 or 1. A value of 21
The Institution of Engineering and Technology 2008

Authorized licensed use limited to: York University. Downloaded on January 3, 2009 
indicates that we predict that the requested instructions will
be found in the line buffers, but we are not sure
(MAYBE). A value of 0 indicates that the line is not
available in any line buffer (NO). Finally, a value of 1
indicates that the prediction we made was correct and for
sure the line is in one of the line buffers (YES).

The program counter (PC) is checked against the entries
in the BTB at address output time to see if that instruction
(if it is a conditional branch) predicted is taken or not. If it
is a backward-branch and predicted taken, then we follow
the flow chart in Fig. 4a. The predicted target’s address tag
value from the BTB along with the current instruction’s
address tag value (from PC) is used to find if the predicted
target cache line can be found in any of the line buffers.
This is simply done by using the difference of the line
number (the instruction address less the offset bits,
indicated by target_tag) of the target and current instructions.

pred lb ¼ curr lb� ðaddr tag� target tag):

Note that, the term (addr_tag 2 target_tag) means how
many line buffer we have to jump backwards in order to go
to the target address. If the target cache line can be found,
(pred_lb � 0); then curr_lb is set to that particular line
buffer along with pred_way to 21 (MAYBE) and
fetch_mode to line buffer. Otherwise, if the target cache
line cannot be found, fetch_pred is set to L1 with curr_lb
and pred_way both set to 0. The idea here is to start each
loop from the first line buffer to capture all block’s
instructions in the line buffers sequentially. This ease the
task of finding the block because either the whole block
exists in sequence in line buffers or it doesn’t. The first
access after pred_way is set to MAYBE, we have to decide
if it will be changed to YES or NO. Fig. 4b shows the flow
chart to do that.
Figure 4 Flow chart for the prediction and correction mechanism

a Prediction
b Correction
IET Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
doi: 10.1049/iet-cdt:20070055

at 16:49 from IEEE Xplore.  Restrictions apply.



IET
doi

www.ietdl.org
If the last accessed instruction is the last instruction in a
cache line, then the next sequential instruction is definitely
not in the same line buffer. Fig. 5 shows the flow chart to
account for the last word access. If we are in the middle of
a block, once we reached the end of a line buffer, then we
increment curr_lb in order not to miss on the next access.
If the block is being accessed for the first time, then the
next line buffer does not contain the next word and we set
the access mode to L1.

The steering mechanism comes at a price. We have to
implement the prediction (Fig. 4a), correction (Fig. 4b)
and cache access mechanism (Fig. 5) in hardware. For the
prediction mechanism, we need a subtracter (adder) in
order to calculate the pred_lb. That is a delay that is
usually on the critical path of memory access. Moreover, we
have to wait for the result of the BTB access to get the
target_tag before we start subtraction. The rest of the
prediction requires comparison to 0 and setting flags which
require minimum delay. The correction mechanism does
not require any time since it could be done in parallel with
the memory access.

The cache access Fig. 5 mechanism requires only
incrementing the line buffer number (in our design it is 2–
3 bits long, fast addition could easily be implemented) and
some testing logic and setting flags. That definitely will
require increasing the cycle, however as we mentioned fast
addition and subtraction could be easily implemented. The
added hardware is minimal.

Figure 5 Flow diagram for the cache access
Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
: 10.1049/iet-cdt:20070055

Authorized licensed use limited to: York University. Downloaded on January 3, 2009
5 Experimental results
In this section, we will compare our proposed scheme with
filter cache, HotSpot cache and a single line buffer cache.
Our baseline cache architecture is a direct-mapped cache.
We compare both the average memory access time and
energy consumed of our proposed architecture with the
above mentioned architectures. First, we starts with a set of
experiments to decide the best number of line buffers. We
simulated the programs in the Mediabench, Mibench and
SPEC’s CPU2000 benchmarks using up to eight line
buffers. We found that the optimal number of line buffer
to use depends on the application. From our simulations
we concluded that 4–6 line buffer are the best choice over
a large number of applications spanning SPEC2000,
Mibench and Mediabench benchmarks. Throughout the
rest of our simulation we use both four and six line buffers.

The optimal number of line buffers depends on the
application. For Mediabench and Mibench, four line buffers
capture most of the loops in most of the programs. Some
programs such as lame, g721_en, and especially mpeg_de
benefits from six line buffers. Adding seven- or eight-line
buffers did not result in any improvement. For SPEC2000
benchmark, there is less benefit for six-line buffers, most of
the programs work as well with four-line buffers as with six
( just few programs report an improvement by increasing the
number of line buffers from four to six).

5.1 Experimental setup

We used SimpleScalar toolset [22] and CACTI 3.2 [23] to
conduct our experiments. We have modified SimpleScalar to
simulate filter cache, HotSpot cache and single line buffer
cache architecture. Our base architecture is using 16 KB
direct-mapped level-1 cache with 32 bytes line size. The line
buffer used in the HotSpot cache is 32 bytes. We also
assumed 512 bytes, direct-mapped L0 cache for filter cache
and HotSpot cache. The BTB is four-way set-associative
using two-level branch predictor. We evaluated energy
consumption using 0.35 mm process technology. For
HotSpot cache, we used value of 16 as candidate threshold as
was suggested in [9] and used HotSpot with a line buffer.
We used SPEC2000, Mediabench and Mibench benchmarks
and datasets, to evaluate the different architectures. Although
we ran the simulation for all the programs in these suites, we
show the results for some representative applications in these
two benchmarks. However, the average is taken over all the
programs in the corresponding suite.

Energy per cache access, as is obtained from CACTI, the
energy for the line buffer is obtained from [9]. The energy
consumption of the different components is shown in Table 1.

5.2 Embedded/media applications

We start by presenting our results for applications from
Mediabench and Mibench benchmarks. These benchmarks
359

& The Institution of Engineering and Technology 2008

 at 16:49 from IEEE Xplore.  Restrictions apply.



360

&

www.ietdl.org
represent mainly multimedia applications that are common in
portable devices. Our results show that the proposed
architecture does save energy without sacrificing the average
cache access time.

5.2.1 Energy: We now compare energy consumption of
multiple predictive line buffers with HotSpot cache, filter
cache and single predictive line buffer. Fig. 6 shows the
energy consumption normalised to the baseline
architecture, which is the direct-mapped cache. The
multiple line buffer graphs are generated using four- and
six-line buffers. We can see that our proposed architecture
consumes less energy than the filter cache, HotSpot cache
and single line buffer cache for most of the applications.

For some applications, such as mpeg2 benchmark, the
energy consumption is 20% that of the standard direct

Figure 6 Normalised consumption for Mediabench/
Mibench

Table 1 Energy consumed per access

Cache Energy, nJ

256 L0 cache 0.62

512 L0 cache 0.69

line buffer 0.12

16 KB direct-map 1.63
The Institution of Engineering and Technology 2008

Authorized licensed use limited to: York University. Downloaded on January 3, 2009
mapped cache and 40% that of the HotSpot cache. That is
because of the match between the loop size and the buffer
size. Most of the references of mpeg2 are from the line
buffer which require much less energy than the L1 cache.
For some applications, such as epic and unepic, there is
hardly any improvement by using six-line buffer over four-
line buffer. This is because for most loops block in such
application, can easily be contained within four-line buffers.

Table 2 shows average normalised energy and delay of the
different architectures over all the programs in Mediabench
and Mibench benchmarks. It is obvious that our proposed
architecture has a better performance than the other four
architectures.

5.2.2 Delay: Our proposed architecture does have a lower
delay than the other four architectures. And it does not incur
any performance overhead compared with the base
architecture. Fig. 7 shows the normalised delay for the
different architectures. When using six-line buffers,
application such as FFT and unepic performs slightly better
than the base architecture. The reason is because for such
applications, our scheme effectively captures most of loop
blocks in the line buffers. That results in avoiding an extra
delay of accessing and eliminate thrashing in level-1 cache,
as we’ll see in Section 5.2.3. We can also see in Fig. 7 that
for application such as epic, the four-line buffers perform
worse than six- or single-line buffer. That could be
explained if a part of the loop is in the line buffers but the
entire loop require .4. That means there is a miss in every
iteration of the loop. We also calculated the normalised
energy–delay product for the different architectures. We
found that using either four or six predictive line buffer
significantly reduces energy–delay product. On the average,
for all applications of Mediabench and Mibench, using six-
line buffers decreases energy–delay product by 66%,
compared with 37% and 47% for filter cache and HotSpot
cache, respectively. We did not report on the
energy � delay because of space limitation, the average
results are shown in Table 2.

5.2.3 Off-chip memory access: Accessing off-chip
memory is very expensive in terms of energy consumption
and delay. Our proposed architecture does not increase the
number of off-chip accesses. We ran simulations to
Table 2 Various schemes average normalised energy, delay and normalised delay using direct-mapped cache

Scheme Normalised energy Normalised delay Delay Normalised energy � delay

Four-predictive line buffer 0.3581 1.0086 1.2011 0.3612

Six-Predictive line buffer 0.3458 0.9962 1.1899 0.3445

filter cache 0.5858 1.0800 1.2969 0.6327

HotSpot cache 0.5104 1.0308 1.2330 0.5261

predictive line buffer 0.3932 1.0034 1.2036 0.3945
IET Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
doi: 10.1049/iet-cdt:20070055

 at 16:49 from IEEE Xplore.  Restrictions apply.



IET
do

www.ietdl.org
measure the off-chip memory access of our proposed
architecture and compared it with HotSpot cache and filter
cache. Fig. 8 shows the normalised memory access for the
five different architectures. On the average, over all the
programs in Mediabench and Mibench, our proposed
architecture has 8% less off-chip memory access compared
with HotSpot cache and filter cache. This shows that our
proposed scheme is effective not only in reducing cache
energy consumption but also the overall cache and memory
energy.

5.3 SPEC2000 applications

Now, we test our new architecture for general purpose CPU
intensive applications using SPEC CPU2000 [24].
SPEC2000 is a benchmark suite for testing different
aspects of computer performance. SPEC2000 can be
used to test and compare the performance of many systems
such as general CPU performance, graphics applications,
web servers, mail servers etc. In this section, we use
CPU2000 and calculate the average memory access time
and the power consumption using our proposed cache
architecture.

Figure 7 Normalised delay for Mediabench/Mibench

Figure 8 Normalised main memory access for Mediabench/
Mibench
Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
i: 10.1049/iet-cdt:20070055

Authorized licensed use limited to: York University. Downloaded on January 3, 2009
5.3.1 Energy: Fig. 9 shows the average normalised energy
consumption for some representative programs in CPU2000.
From that figure, we can see that our proposed scheme with
four- or six-line buffers consume considerably less energy
than filter cache or HotSpot cache. However, in some
applications a single line slightly buffer outperform multiple
line buffers (gcc and gzip). Whereas four–six line buffers
slightly outperform a single line buffers for other
applications (parser, and vortex).

5.3.2 Delay: Fig. 10 shows the average memory access
time for some representative programs in CPU2000
applications. Again, in that figure we can see that our
proposed architecture has a slightly better delay than filter
cache or HotSpot cache. Also, for completeness, we must
mention here that for our proposed architecture, there was
no change in the main memory access pattern for SPEC’s
CPU2000.

Figure 9 Normalised energy for SPEC2000

Figure 10 Normalised delay for SPEC2000
361

& The Institution of Engineering and Technology 2008

 at 16:49 from IEEE Xplore.  Restrictions apply.



36

&

www.ietdl.org
6 Conclusion
In this paper, we extended our single predictive-line buffer
scheme in order to capture long loops in the line buffers.
We presented a cache architecture that utilises 4–6 line
buffers, the BTB and a simple prediction mechanism to
reduce the energy consumption in the instruction cache.
Our simulation results, using Mediabench, Mibench and
SPEC’s CPU2000 benchmarks show that on the average,
our scheme greatly reduces instruction cache’s energy
compared with a baseline cache, the filter cache and the
HotSpot cache without sacrificing performance.

7 References

[1] ALY R.E., BAYOUMI M.A.: ‘Precharged SRAM cell for ultra
low-power on-chip cache’. Proc. IEEE Int. SOC Conf.,
November 2005, pp. 95–98

[2] CHANG Y.-J.: ‘A new register design for low power TLB and
cache’. Proc. NORCHIP Conf., November 2005, pp. 301–304

[3] MIZUNO H., ISHIBASHI K.: ‘A separated bit-line unified
cache: Conciliating small on-chip cache die-area and low
miss ratio’, IEEE Trans. Very Large Scale Integr. Syst., 1999,
7, (1), pp. 139–144

[4] ALBONESI D.: ‘Selective cache ways: on-demand cache
resource allocation’. Proc. 32nd ACM/IEEE Int. Symp.
Microarchitecture, 1999, pp. 248–259

[5] ZHANG C., VAHID F., NAJJAR W.: ‘A highly configurable cache
for low energy embedded systems’, ACM Trans. Embed.
Comput. Syst., 2005, 4, (2), pp. 363–387

[6] VIVEKANANDARAJAH K., SRIKANTHAN T.: ‘Custom instruction
filter cache synthesis for low-power embedded systems’.
16th IEEE Int. Workshop Rapid System Prototyping, (RSP
2005), June 2005, pp. 151–157

[7] ZHU Z., ZHANG X.: ‘Access mode prediction for low-power
cache design’, IEEE Micro, 2002, 22, (2), pp. 58–71

[8] ISHIHARA T., FALLAH F.: ‘A non-uniform cache architecture
for low power system design’. Proc. 2005 Int. Symp. Low
Power Electronics and Design, ISLPED ’05, August 2005,
pp. 363–368

[9] YANG C.-L., LEE C.-H.: ‘HotSpot cache: joint temporal and
spatial locality exploitation for I-cache energy reduction’.
Proc. 2004 Int. Symp. Low Power Electronics and Design
ISPLD’04, August 2004, pp. 114–119

[10] JOUPPI N.P.: ‘Improving direct-mapped cache
performance by the addition of a small fully associative
cache and prefetch buffers’. 17th Annual Int. Symp.
Computer Architecture ISCA, May 1990, pp. 364–373
2
The Institution of Engineering and Technology 2008

Authorized licensed use limited to: York University. Downloaded on January 3, 2009
[11] ZHANG C., VAHID F., YANG J., NAJJAR W.: ‘A way-halting cache
for low-power high-performance systems’. Proc. 2004 Int.
Symp. Low Power Electronics and Design ISPLD’04,
August 2004

[12] BEG A., YUL C.: ‘Improved instruction fetching with a new
block-based cache scheme’. Proc. Int. Symp. Signals, Circuits
and systems ISSCS2005, 14 – 15 July 2005, vol. 2,
pp. 765–768

[13] ROTENBERG E., ET AL.: ‘A trace cache microarchitecture
and evaluation’, IEEE Trans. Comput., 1999, 48, (2),
pp. 111–120

[14] KO U., BALSARA P.T., NANDA A.K.: ‘Energy optimization of
multilevel cache architecture for RISC and CISC
processors’, IEEE Trans. Very Large Scale Integr., 1998, 6,
(2), pp. 299–308

[15] HANSON H., HRISHIKESH M.S., AGARWAL V., KECKLER S.W., BURGER

D.: ‘Static energy reduction techniques for multiprocessor
caches’, IEEE Trans. Very Large Scale Integr. Syst., 2003,
11, (3), pp. 303–313

[16] BENINI L., MACII A., NANNARELLI A.: ‘Code compression
architecture for cache energy minimization in embedded
systems’, IEE Proc. Comput. Digit. Tech., 2002, 149, (4),
pp. 157–163

[17] CHANG Y.-J., LAI F.: ‘Dynamic zero-sensitivity scheme for
low-power cache memories’, IEEE Micro, 2005, 25, (4),
pp. 20–32

[18] LEE M., SEO E., LEE J., KIM J.-S.: ‘PABC: power-aware buffer
cahe management for low power consumption’, IEEE
Trans. Comput., 2007, 56, (4), pp. 488–501

[19] QUERSHI M., PATT Y.: ‘Utility-based cache partitioning:
a low-overhead, high-performance runtime mechanism to
partition shared caches’. Proc. Annual IEEE/ACM Int.
Symp. Microarchitecture, July 2006, pp. 423–432

[20] HASEGAWA A., KAWASAKI I., YOSHIOKA S., KAWASAKI S., BISWAS P.:
‘SH3: high code density, low power’, IEEE Micro, 1995, 15,
(6), pp. 11–19

[21] ALI K., ABOELAZE M., DATTA S.: ‘Predictive line buffer: a fast
energy efficient cache architecture’. Proc. IEEE Southeast
Conf. 2006, January 2006

[22] The Simplescalar simulator, available at: www.
simplescalar.com, May 2006

[23] SHIVAKUMAR P., JOUPPI N.: ‘CACTI 3.0: An integrated cache
timing, power, and area model’, Technical Report, 2001.2
Compaq Research Lab’2001

[24] SPEC CPU2000, available at: www.spec.org
IET Comput. Digit. Tech., 2008, Vol. 2, No. 5, pp. 355–362
doi: 10.1049/iet-cdt:20070055

 at 16:49 from IEEE Xplore.  Restrictions apply.


