An Efficient Method For Distributing Data

In Hypercube Computers

De-Lei Lee

Mokhtar Aboelaze

Department of Computer Science
York University
North York, Ontario
Canada M3J 1P3

Abstract

In this paper, we propose a method for distributing
data of an N X N matrix in an n -hypercube multiproces-
sor with N =2" processors (# is even). This method is
capable of distributing data among the processors’ local
memories so that the processors can have parallel access
to rows, columns, contigunous blocks, and distributed
blocks of the matrix without any memory contention. In
accessing data, each processor can read/write the
required element based only on the processor number
and the instance of the data structure to be accessed (row
number, column number, or block number), thereby
requiring no communication among the processors for
computing the addresses of the elements. We provide
two techniques to permute the accessed data among the
processors to accommodate applications with different
computational structures. One technique maps the ele-
ments of any instance of the data structure into the pro-
cessors in row-major order. The other technique maps
neighboring elements into processors which are
hypercube-neighbors. Routing algorithms are presented
for each of these techniques, and our results indicate that
O(log N) steps are required for all elements to reach
their destinations.

Key Words: Communication overhead, hypercube com-
puters, conflict-free data access, parallel data structures,
routing algorithms

1. INTRODUCTION

High-performance computer systems are in great
demand in areas such as aerodynamic simulations, quan-
tum chemistry, structural analysis, weather forecasting,
among others. Without high-performance computer sys-
tems, some of these areas cannot even be approached by
engineers. However, with the transistor switching speed,
and consequently the processor speed, approaching its
physical limits, parallel processing is widely accepted as
the only approach for building high-performance com-
puter systems. However, parallel computing is, by no
means, a problem free field. In decomposing an applica-
tion program to run on a multiprocessor system, a com-
munication overhead arises by the need of the different
modules of the program to exchange data or to access
data that resides in another processor’s memory. This
usually requires blocking the current execution of the
program, preparing a message to send to another proces-
sor, sending the message through the interconnection
network to the destination processor. Thus, causing a
delay that is proportional to the amount of communica-
tion between the different processors. In order to fully
utilize the power of parallel processing, the communica-
tion overhead should be kept minimum. Two factors
should be considered when minimizing the communica-
tion overhead. The first is the way data is distributed
among the processors (i.e. how frequent the processors
are interrupted to communicate with each other), and the
second is the interconnection network connecting the
processors (i.e. how fast the message will be transmit-
ted). In this paper, we consider this problem in the con-
text of hypercube multiprocessors, and we describe an

This work was supported in part by the Natural Science and Engineering Research of Canada under grant

NSERC-OGP0009196 and NSERC-OGP0043688.

0-8186-2113-3/90/0000/0858$01.00 © 1990 IEEE

efficient method for distributing data of matrices in order
to minimize the communication overhead. We start our
discussion with a very brief introduction to hypercube
multiprocessors.

Figure 1
A 3-D view of the 4-hypercube.

An n-dimensional hypercube multiprocessor is a
multiprocessor architecture consisting of N =2" identi-
cal processors. Each processor has its own memory and
works independently from the others. Processors
exchange data by sending messages to each other, The
nodes are numbered from 0 to 2”—~1. Two processors are
connected if the binary representation of their numbers
(addresses) differ by one and only one bit. This leads to
a node connectivity of »n, and a diameter of n (the diam-
eter is the largest distance between two nodes). This
hypercube network enjoys a very simple routing scheme.
In routing, the processor has to compare the destination
address, and its own address. Then it sends the message
across one of the links that corresponds to a bit that
differs in its binary address from the same bit in the des-
tination address. Figure 1 shows a 4-hypercube graph
with 16 nodes. The hypercube is a fixed connection
design that has the ability to exploit particular topologies
of problems in order to minimize communication cost
[14]. With its excellent mapping capability, it easily
maps common geometries such as grids, linear arrays or
meshes in such a way as to preserve the original neigh-
boring relations between processors. This explains in
part the growing interest in using hypercube computers.
A few machines based on the hypercube topology have
been implemented and others are now being built [6],
{10], {7]. However, in order to use a hypercube mul-

859

tiprocessor efficiently, we have to minimize the com-
munication overhead, and the synchronization delay
involved in the computation.

Kuck’s study of parallelism suggested that rows,
columns, diagonals, and square blocks of matrices are
typical parallel data structures frequently encountered in
large numerical applications. Budnik and Kuck in [3]
proposed a storage scheme that allows a conflict-free
access to these data structures by using a prime number
of memory modules, which excludes the possibility of
using all the nodes of a hypercube multiprocessor, since
2" is even. Lawrie in [8] proposed a storage scheme that
allows parallel, conflict-free access of these data struc-
tures by using twice as many memory modules as the
number of processors. In the context of using hypercube
multiprocessors, this means that in order to achieve
conflict-free access in an N processor hypercube com-
puter, only half of the processor can be effectively used.
Batcher in [1] proposed a storage scheme that allows
conflict-free access to rows, and columns, and the
method is directly applicable to hypercube architecture.
However, Batcher’s method does not allow conflict-free
access to contiguous blocks or distributed blocks. Lee in
[9] proposed a storage scheme to distribute data in N
memory modules, that allows conflict-free access to
rows, columns, contiguous blocks, and distributed
blocks. However, the work in [9] was for SIMD array
processors based on a special purpose multistage inter-
connection network, which is drastically different from
the hypercube interconnection network. For a review
article about the limitations on the use of parallel
memories the reader is referred to [13]

Although data alignment research was mainly per-
formed for SIMD machines, where a central controller is
controlling the whole system, and a single instruction is
broadcast to all the processors to be executed simultane-
ously by all active processors. However, the same princi-
ple can be applied to MIMD multiprocessors as well.
The goal is not for the data to be at the correct destina-
tion at the correct time for the next instruction to be exe-
cuted, but rather to minimize the synchronization delays
among the processors (synchronization delay is the delay
when a processor blocks the execution of its module
waiting to receive a piece of data from another proces-
sor).

In this paper, we present an efficient method for
distributing data of N X N matrices in a n-hypercube
computer with N =2" nodes (n is even). Our method
permits conflict-free access of rows, columns, contigu-
ous blocks, and distributed blocks of the matrix. Each
processor can calculate the local memory address it has
to access to get the element of this data structure stored
in its memory. We also want this calculation to be based

on its own processor number and the instance of the data
structure, without a need of any global communication.
After accessing the required element, each processor
routes its element to the proper destination -processor.
We considered two cases for the proper destination to
facilitate applications with different computational struc-
tures. The first is to route the elements to processors in a
row-major order. i.e. element number { in the data struc-
ture is routed to processor number i. The second is to
route the neighboring elements in the data structure to
processors that are also neighbors in the hypercube. The
calculation of the destination processor, is also based on
local information without a need for any global commun-
ication. Routing algorithms are presented for both cases,
our results indicate that O(log N') steps are required for
data routing.

2. PROBLEM OBJECTIVE AND DEFINITIONS

Consider the problem of storing an N X N matrix
A into the N memory modules of the N processors of
n-hypercube multiprocessor, where N =2". If the
matrix is stored in the canonical way i.e. A (i,j) is stored
in the memory module of processor j, then it will be
possible to fetch all the clements of a row simultane-
ously, because all the elements of any row lie in distinct
memory modules. On the other hand, fetching a column
is extremely slow, because all the elements of any
column lie in one memory module, and fetching such a
column requires N sequential fetching operations. In this
paper, we are concerned with a storage scheme that
allows conflict-free access to the rows, columns, contigu-
ous blocks, and distributed blocks of a matrix A .

‘We define the sub-parts of the matrix we want to
access as templates, in practice, the most frequently
encountered templates in numerical computations are
rows, columns, contiguous blocks, and distributed
blocks. Following, we define these four templates. Let A
represents a matrix, where A (i ,j) represents the element
in row i and column j of A. Throughout the rest of this
paper [or j represents a variable, while I or J
represents a constant

Definition 1: For0</ <N, row [of a matrix A is
definedas{A({l,j) 1 0<j <N}

Definition 2: ForO0<J < N, columnJ of a matrix A
isdefinedas {A(iJ) 1 0<i <N}

Definition 3: For 0<7,J <N, contiguous block
I,J of matrix A, is defined as

{A(INN +a,JVN +)I10< o < VN }. The contiguous
block can be pictured as partitioning the matrix A into N
smaller matrices, each is VN 3N , and addressing these
matrices by théir relative positions in the A matrix.

860

Definition 4: For 0<7,J <N, distributed block
number / J of a matrix A, is defined as

{Ad +oN ,J +BIN)I0<aB <VN}. A distributed
block can be envisioned as follows, after partitioning the
A matrix into VN xVN sub-matrices, we take the I* ,J®
element of each of these sub-matrices, and arrange them
in a VN x«N matrix form.

Figure 2 shows 4 X 4 matrix. The matrix is divided into 4
contiguous blocks by the vertical and horizontal dashed
lines. The elements of the distributed block 0,0 are
shown inside circles while the elements of the distributed
block 0,1 are shown inside squares.

_ : _1
:
}
Bo.1 203
:
1
A =} _a_llo_ - _a_l’_l_ R A
|
\
1
i
a3 0 a31) aj 3
L 1
Figure 2

4 x 4 matrix with distributed block 0,0 elements
inside circles, and distributed block 0,1 inside squares

The need for parallel fetching of rows, columns,
contiguous blocks, and distributed blocks is well-known
for various common matrix operations and image pro-
cessing operations [3] [5] [11]. We assume that the
hypercube has N nodes, such that N =2", and n =2k.
Following are two more definitions we use throughout
the rest of this paper.

Definition 5; I:J is the number formed by the con-
catenation of the binary representation of I followed by
the binary representation of J. ie. if I =0010, and
J =1100 then7:J = 00101100

Definition 6: Let the binary representation of / be n
bits long. I,; is the high order % bits of 1, and I, is the

low order —'21 bits of 1

In this paper, we are interested in evenly distribut-
ing the N? entries of A into the N processors of the n-
hypercube computer in such a way that, (a) each proces-
sor stores N entries, (b) the processors have a conflict-
free access to rows, columns, contiguous blocks, and dis-
tributed blocks of the matrix, and (c) the accessed data
can be routed to their destinations in parallel.

3. DATA ACCESS METHOD

To achieve conflict-free memory access to data,
we assign element A(i,j) to location i of the local
memory of processor m = (i) @ j, where E(i) = iy iy,
which interchanges the lower order n/2 bits with the
higher order n/2 bits of i. For properties regarding
conflict-free access to the various data of interest, proofs
are contained in Appendix I.

The method of accessing data is as follows. When
the system accesses a specific data structure (row I,
column J, contiguous block 7,7, or distributed block
1,J), each processor receives (or internally generate) the
index of this data structure (I ,or J for rows or columns,
or I,J for contiguous or distributed blocks). This index,
together with the processor number, each processor can
calculate the memory location it has to access to get the
element of this data structure stored in its memory.

After accessing the data, each data element must
be routed to the proper destination. In this paper, we
consider two different proper destinations for the ele-
ments of the template.

The first is to route element i in any template to
processor i, i.e., in a row-major order.

The second is to let the 2" nodes of the hypercube
to reconfigure in a- linear array fashion for rows and
columns, and to reconfigure in a N2 x N2 mesh for the
contiguous, and distributed block, then the purpose is to
map the element in the template to its corresponding
node in the array or mesh. Using this method, the neigh-
boring relation between the elements of a template is
preserved (if two elements are neighbors in the template,
they are mapped into two neighboring processors of the
hypercube). In section 4 we will explain these two
methods.

In order to read/write the required element, each
processor must be capable of calculating the address of
the data element in its own memory, given the index of
the template to be accessed. The only information
required is the index of the template (row 7, column J,
or contiguous or distributed block /,J) and the processor
own number (address).

Lemma: In order for any processor m to access a
specific element of any template, the address generation

861

is as follows:

(1) For row I, each processor accesses memory loca-
tion / :

(2) For column J, each processor accesses memory
location E(m ©J).

(3) For contiguous block 7/, each processor accesses

memory locations / :my @J.

(4) For distributed block 7,7, each processor accesses

memory locations m; @J:I.

Where, my is the higher order n/2 bits of m, and m, is

the lower order n /2 bits of m.

Proof: .
Note that A (i,j) is stored in location i of the local
memory of processor () ;.

(1). When accessing the I* row, ie., elements
{Ad,j)1 0<j <N } each processor knows that if it
has A (1 ,j) then it is stored in location [

(2. When accessing the J™ column ie.,
{A(@EJ)! 0<i <N } each processor knows that ele-
ment A (i J) is stored in location ¢ (if it has it in its own
memory). However each processor knows only the
column number J, however, since m =§() ®J, by
solving this equation for i, we get i =&(m ©J), which
is the memory location cach processor should access to
get an element of the J* column.

(3). When accessing contiguous block I,J, notice that
the elements of this contigunous block are
{AUVNN +0JVN +B)=A:0J:B) 1 0<aB <N }.
Notice that since both 7, and o are n/2 bits numbers,
INN is the same as I shifted n/2 bits to the left. Then,
INN +a=1I :a. Each processor knows that its element
of this contiguous block is stored in location I :c., to get
the value of «, each processor should solve the equation
m=E{l:0) ®(J:B) yielding a=my®J and the
memory location to be accessed is :a=1:my, ®J

(4). When accessing distributed block 7/, notice that the
elements of this contiguous block are
{Al+aVN J +BIN)=A(I BJ) | 0<saB<VN }.
Notice that since both I, and o are n/2 bits numbers,
oWN is the same as o shifted n/2 bits to the left. Then,
ovN +1 =a:I. Each element of this block is stored in
location af, to get o each processor has to solve the
equation m =E(cwl) ®(B:J) yielding a=m; ®J, and
the memory location to be fetched is m; ©J:1

4. ROUTING METHODS

In this section, we discuss the routing of the data
to its destination. After each processor fetches its ele-
ment of the required templates, it should send it to the
proper destination. we consider two different alternatives
for destination processor.

4.1. Method 1 :

What we mean by the proper destination in this
method is as follows. For rows and columns, the i ele-
ment of the template (either a row or a column) is routed
10 processor number i, for example in 4 X 4 matrix, and
fetching the 2 row, (A (2,0),4 (2,1).4 (2,2).A (2,3)), ele-
ment A (2,0) is routed to processor 0, A (2,1) is routed to
processor 1, A(2,2) is routed to processor 2, and finally
A (2,3) is routed to processor 3.

For the contiguous and distributed blocks, the tem-
plates are arranged as a VN x VN mesh, and the ele-
ments are mapped to the processors according to their
position in the mesh, in a row-major fashion. For exam-
ple, if we considered a 4 x 4 matrix, and we considered
contiguous block 0,;1. The elements of this block are
A0,2),A(0,3),A(1,2),A(1,3). Then element A(0,2) is
routed to processor 0, element A (0,3) is routed to proces-
sor 1, element A (1,2) is routed to processor 2, and ele-
ment A(1,3) to processor 3. If we consider the distri-
buted block number 1,0, whose elements are
(A(0,1),A(0,3),A(2,1),A(2,3)). Then, A (0,1) is routed to
processor 0, A(0,3) is routed to processor 1, A(2,1) is
routed to processor 2, and A (2,3) is routed to processor
3.

. For calculating the forwarding address for the dif-
ferent templates, for the rows, in fetching row 7, element
A(l,j) is routed to processor j, which can be calculated
by solving the equation m =§() ®j. yielding
j=m ®&(). For columns, in fetching column J ele-
ment A (i ,J) is routed to processor i, which can be cal-
culated by solving the equation m = &(i) @J, yielding
Em ®J). For a contiguous block number 7./,
A(l:0J:B), 0<aB <VN, or a distributed block number
IJ, Al BJ), 0<oB <VN. Since the element posi-
tion in the template is simply B, then the target proces-
sor for this element should be o:B. Both o and 8 can be
calculated from the equation m =& :0) @ (J:f) for
contiguous blocks, and m =&(od) & (B:J) for distri-
buted blocks. Table 1 shows the destination addresses for
the previously mentioned templates. Notice that in cal-
culating the destination processor for each data element,
each processor just need to know its own number and the
template number (/, S, or 1 ,J)

The next step is to route each element to its desti-
nation. The way routing is done in a hypercube mul-

tiprocessor is by each processor examining the binary
representation of its address, and the binary representa-
tion of the destination address, and forwarding the mes-
sage (o a link that corresponds to a bit that is different in
these two binary representations. If we consider a com-
pletely synchronized system (SIMD), where it takes at
least » routing steps to transfer any data such that in the
first cycle each processor examine bit 0, and decide
whether the message will be forwarded across link O or
not, then in the second cycle, each processor examine bit
1 and so on. In this case the hypercube emulates a mul-
tistage banyan network, and it takes 2n to perform the
previous routing. However, this may not necessarily be
the case for MIMD systems, even for SIMD system there
is no need for this restrictions. For example in the first
cycle, each processor searches for the first bit that differ
in its own address from the same bit in the destination
address (which may be the first, second or the i* bit) and
forward the message across the link corresponding to
this bit. In this case, it takes, in the average, less than 2n
cycles. Figure 3 shows the simulation results for the
relation between the cube size and the number of hops
(which can be considered a crude measure of delay) for
forwarding data for the four above mentioned templates

columns and dist. blocks
“rows and square blocks

Average number of hops

0 T T T ¥ 1 v
4 6 8
Cube dimension

Figure 3
Number of hops vs the cube size for Method 1

Notice that in Figure 3, routing of rows and con-
tiguous blocks requires the same number of hops, while
columns and distributed blocks require substantially

more time.

4.2. Method 2

In this method we investigate another approach for
data routing. One of the main advantages of the hyper-
cube muitiprocessors is its ability of mapping other
graphs into the hypercube network. What we mean by
mapping other graphs into hypercube is to find a one-to-
one mapping between the nodes of the graph and the
nodes of the hypercube in such a way to preserve the ori-
ginal neighboring relation in the graph (if two nodes are
neighbors in the original graph, then, they are mapped
into two neighboring nodes in the hypercube) [12], [2],
[15].

The advantages of such mapping are two folds.
First, it facilitate the design of algorithms for the hyper-
cube, because if some algorithm has been developed to
run on a different architecture, and this architecture can
be mapped into hypercube. Then, with some minor
modifications, this algorithm can be adopted to run on a
hypercube multiprocessor. Second, some problems have
a well-defined communication pattern that is different
from the hypercube. Mapping this pattern into hyper-
cube, results in substantial saving in communication
overhead. For example consider solving elliptic differen-
tial equations [4] using iterative methods, all the com-
munications are local between the grid points. If the grid
can be mapped into hypercube, then all the communica-
tions are between neighboring nodes, which means less
communication overhead. Another example is the 2-
Dimensional convolution, where a 2-dimensional grid of
the window size scans the image from left to right per-
forming the required convolution. If the processors of a
hypercube can be configured in a mesh of the same size
as the window, this will facilitate loading the image to
the different processors.

Since we are interested in this paper in fetching
rows, columns, contiguous blocks, and distributed
blocks. We investigate how to route these templates to
processors in order to maintain the original neighboring
relation. In other words, if two elements are neighbors in
the row, column, contiguous block, or distributed block
accessed, then, they should be forwarded into two neigh-
boring processors in the hypercube. Essentially, we are
interested- in mapping. linear arrays (for rows and
columns) and meshes (contiguous and distributed blocks)
into the hypercube, also we want the calculation of the
destination address to be simple and does not require any
global information.

Saad and Schultz in [12], proposed a mapping of
the grid and ring (linear array is a ring without the con-
nection between the first and last processor) into the
hypercube. For mapping rings into hypercube, their idea

863

depends on Gray coding. Basically, they considered a
gray code of length 1 to be the two numbers O and 1,
then to get Gray code of length 2, take the sequence (0,1)
and insert O in front of each member, then, take the same
sequence in reverse order and insert 1 in front of each
element yielding (00,01, 11, 10). In general to con-
struct Gray code of n bits, take a Gray code sequence of
n—1 bits, insert 0 in front of each element, then take the
same sequence in reverse order and insert 1 in front of
each element. For Gray code of length 3, which can be
done by taking Gray code sequence of length 2
(00,01,11, 10) and insert O in front of each element,
then take it in a reverse order and insert 1 in front of
each element, yielding

000 001 OI1 010 110 111 101 100
T T T 7 T) T)
0 1 2 3 4 5 6 1

Figure 4
Gray code of 0 — 7

which means that Gray code for 0 is 000, Gray code for
1 is 001, Gray code for 2 is 011 . . . etc. Notice that the
hamming distance between any two numbers is 1, which
means that using the mapping in Figure 4, the hyper cube
is reconfigured into a linear array. In Figure 5 we
present an algorithm to calculate a Gray code for for any
number i of length » bits. The idea of the algorithm is
better explained by an example using the above 3 bits
Gray code. Assume that the number (i) is represented as
byb by First, we divide the 8 numbers into two groups,
the first 4 numbers, and the last 4 numbers. Then if the
number i is in the first half, then the M.S.B of its Gray
code (b,) is O, else it is 1. Assume that we chose the
number 4, since 4 is in the second half, then set b, =1,
then we consider the numbers in the second half
(4,5,6,7), we divide the four numbers into two groups,
the first two numbers, and the last two numbers. Since
these four numbers have already been reversed during
constructing the code, if the required number is in the
first half, then the 2™ M.S.B. of its Gray code is 1, else
it is 0. Since 4 is in the first half of (4,5,6,7), we set
(b= 1). Then we consider the lower half of these four
numbers (4,5), we divide them into two groups, set
bo=0 for the lower half, and set bo=1 for the upper
half, i.e.we set by = 0 yielding 110 as the gray code for 4.
Figure 5 shows algorithm to calculate the Gray code of
any length. Notice that this algorithm can be easily
mapped into hardware, the flag variable can be
represented by one bit register that is toppled from O to 1

or vice versa when incrementing the flag, and checking
for even flag is simply checking for zero. Checking if i
is in the lower half or upper half of the 2/ numbers can
be simply achieved by checking bit number J of the
binary representation of i

Algorithm Gray(i,n)
/* This algorithm calculates the gray code of a number i,
with n bits binary representation */

begin
Flag=0
for j=n—-1 0 step —1)
begin
if (flag = even) then
begin
if (7 is in the Jower half of the 2/*! numbers)
then
pll[b i = 0
else
begin
put bl =1
increment flag
end
end
else
begin
if (¢ is in the upper half of the 2/*! numbers)
then
put bj =0
else
begin
increment flag
end
end
return (b)
end

Figure 5
Gray code of i of length n

For mapping a N> x N'? square mesh into hyper-
cube with N nodes, assume that each mesh point is
labelled (x,y), where 0 <x ,y <N'2, Notice that both x
and y can be represented as n/2 bits binary number.
Since any n-hypercube can be considered as the cross
product of two n/2-hypercubes, in this case the mapping
can simply be achieved by finding the n/2 bits Gray code
of x (Gray(x.,n/2)) and the n/2 bits Gray code of y
(Gray(y,n/2)). Then (x.y) are mapped ' to the node

864

number Gray (x,n/2):Gray (y,n/2), where : means con-
catenation. Table 1. shows the destination processors for
the different templates for Method 2. Figure 6 shows the
simulation results for the average number of hops as a
function of the cube size for routing the different tem-
plates in Method 2. Notice that the it required more time
than Method 1 to perform the permutations.

1o distributed block

1 ——%&— Square block

. % I OW

—4&— column

Average number

of hops

0 T T T v T
2 4 6

Cube dimension

Figure 6

Number of hops vs cube size for Method 2

5. CONCLUSION

In this paper, we presented a method for distribut-
ing matrices into the memory modules of n-hypercube
multiprocessors, that allows conflict-free access to TOWS,
columns, contiguous blocks, and distributed blocks. Gen-
eration of memory addresses to access the elements of
any instance of the data structure is simple and does not
require any global communication among processors.
We also investigated the delay (measured in number of
hops) associated with sending the accessed elements to
their proper destinations. Specifically, we have con-
sidered two different proper destinations. The first uses
a row-major ordering based on the processors’ numbers.
(element number i in the accessed data structure is
routed to processor i). The second involves ordering of
the processors to preserve the neighboring relation
between the elements of the data structure., (Gf two ele-
ments are neighbors in the data structure, then they are

0 o

Template Location in Destination
local memory | for Method 1

Row I I m ®E()

Column J E(m ®J) E(m ®J)

S-Block I J I:my ®J J ®my:1 &m,

D-Block! ,J m, ®J:1 J ©&my] ®my,
Template Destination

for Method 2

Row I Gray(m ®&U),n)
Column J Gray(&m ©J)n)
S-Block I ,J Gray ((J ©my),n/2): Gray (I ®m,).n/2)
D-Blockl ,J | Gray((J ®my),n/2): Gray (I ®my),n/2)

Table 1. The local address for accessing the different
data structures (m is the processor number) and
calculating the destination processor for Method 1
and 2. (Gray(i,n) is the function defined in Figure 5).

routed to two neighboring processors). A simulation
results for the number of hops required to perform these
two routings is presented.

6. REFERENCES
{11 Kenneth E. Batcher, ‘“The Multidimensional
Access Memory in STARAN,”” IEEE Transac-
tions on Computers, February 1977, pp. 174-177.
S.N. Bhatt and 1. C. F. Ispen, How {0 Embed Trees
in Hypercubes, Res. Rep. 443, Dep. Computer
Science, Yale University, Yale University, 1985.
Paul Budnik and David J. Kuck, ‘‘The organiza-
tion and Use of Parallel Memories,”” IEEE Tran-
sactions on Computers, December 1971, pp.
1566-1569.

Tony F. Chan, Youcef Saad, and Martin H.
Schultz, “‘Solving Elliptic Partial Differential
Equations on Hypercubes,”’ in Hypercube Mul-
tiprocessors 1986, Michael T. Heath, ed., SIAM,
1986.

P. E. Danielsson and S. Levialdi, ‘‘Computer
Architecture for Pictorial Information Systems,”’
Computer, Vol. 14, Nov. 1981, pp. 53-67.

G. Fox, The Performance of the Caltech Hyper-
cube in Scientific Calculations, Caltech Report
CALT-68-1298, Caltech, 1985.

INMOS Corp., Transputer Reference Manual,
INMOS Corp., Colorado Springs, 1985.

(21

(31

(4]

(5]

(6]

71

865

(81 D. Lawrie, ““Access and Alignment of Data in an
Array Processor,”” IEEE Transactions on Comput-
ers, Vol. C-24, December 1975, pp. 1145-1155.
D-L. Lee, ‘‘Scrambled Storage for Parallel
Memory Systems,’’ Proc. of the 15th International
Symposium on Computer Archztecture May 1988,
pp- 232-239. ‘

NCUBE Corp., NCUBE Handbook, version 1.0,
NCUBE Corp., Beaverton, Oregon, 1986.

James M. Ortega and William G. Poole, Jr.,
Numerical Methods for Differential Equations,
Pitman Publishing Inc., 1981.

Youcef Saad and Martin -H. Schultz, “Topologlcal
Properties of Hypercubes,” IEEE Transactions on
Computers, Vol. 37, July 1988, pp. 867-872.

H. D. Shapiro, ‘‘Theoretical Limitations on the
Efficient Use of Parallel Memories,”” IEEE Tran-
sactions on Computers, Vol. C-27 May 1978, pp.
421-428.

H. J. Siegel, Interconnection Networks for Large-
Scale Parallel Processing: Theory and Case Stu-
dies, Lexington Books, Lexington, MA, 1985.

A. Y. Wu, “Embedding of Tree Networks into
Hypercubes,”’ J. Parallel and Distributed Comput-
ing, Vol. 2, 1985, pp. 238-249.

91

(10]

(11]
{12]

(13]

(14]

(15]

APPENDIX 1

Property 1 : No two elements of the same column are in
the local memory of the same processor.

Proof : By contradiction. Consider two elements in the
J* column A (i 1,J) and A (i,,J) according to the above
scheme, these two elements are mapped into memories
of processors m, and m, respectively, Assume: that
my=myie. &@i;) ®J =&(i,) $J therefore &) =K@y
hencei,=1i,. a

Property 2 : No two elements of the same row are in the
local memory of the same processor.

Proof : By contradiction. Consider two elements of the

same row A(/,j,), and A{{,j,;). According to the map-

ping, these two elements are mapped to processor

my=&UI)®j,, and m,=EU) Dj, respectively, if

my=m, then EJ) ®j,=EJ) D j,, therefore j,=j,
] ‘

Property 3 : No two clements of the same contiguous
block are in the local memory of the same processor.

Proof : By contradiction. From Definition 3, contiguous

block (J)0<IJ <YN of matix A is defined as

{AUWN +o,JVN +B),0<0a,B <VN} where
0</I,J,0.8 <VN which means that both /J,0,p are
n/2 bits long. Hence, VN is the same as ! shifted n/2
bits to the left (multiplied by 22 =\N yie IVN +a
can be rewritten as /:o. Similarly, JYN +J can be
rewritten as J :p.

Assume that two elements of contiguous block 7.J
A(VN +ay,JVN +B)) and AJVN +0,,JYN +By)

are mapped to the same memory module. i.e.
EUNN +) ®UVN +B,)=EUVN +) ®UVN +8)
Ed:0y) ®U:By) =& :ap) BBy

Since E(I) is to switch the low order n/2 bits with the
high order n/2 bits. The above equation can be rewritien
as B

(0q:) ®U:By) = (0d) B :By)
(oq &) ©B)) = (0, BJ):(I BBy

For two binary numbers to be equal, the low order half
of the first number should equal the low order half of the
second number, and similarly for the high order half.
Then

[0 7% DJ =0y DJ and [@BIZI @BZ
=0, and B,=0, g

Property 4 : No two elements of the same distributed
block are in the local memory of the same processor.

Proof : By contradiction. From Definition 4, the ele-
ments of a distributed block (I J) 0<I,J <VN of matrix
A are {AQ+oVNJ +BVN),0<0o,B<VN}. Using
the same logic as in property 2, this can be rewritten as
A (ol BoJ), assume that two elements of the same distri-
‘buted block, A (o, ,B,:J) and A (021 ,B,:J), are mapped
into the same processor memory, i.e.
§(0yl) B (BJ) =8(0) B (By))
(I:0y) &BiJ) =0 BPyJ)
d &Py &)= BBy:(a, ®J)
I &8,=1 &, and o, &J =0, ©J

Bi=B and oy=0y O

866

