
T H E  M A P P I N G  O F  A P P L I C A T I O N S  T O  M U L T I P L E  BUS A N D  B A N Y A N  
I N T E R C O N N E C T E D  M U L T I P R O C E S S O R  S Y S T E M S :  A C A S E  S T U D Y  

C a t h e r i n e  E. Hous t i s  * 
M o k h t a r  A b o e l a z e  
E l e c t r i c a l  E n g i n e e r i n g  D e p a r t m e n t  
P u r d u e  U n i v e r s i t y  

A b s t r a c t  

We study the mapping of a robot elbow manipulator  application, to two different classes 
of multiprocessor systems the multiple bus and Banyan interconnected systems. A compara- 
tive performance analysis of the two systems is performed. The application is parti t ioned 
into communicating computational  modules and three different part i t ions of it are approxi- 
mated. Fas t  heuristic algorithms are used to produce assignments of modules to processors. 
A number of performance measures are also employed to evaluate the matching of 
applicat ion/archi tecture pairs. 

1. I N T R O D U C T I O N  

In previous work [HOUS83], [HOUS87a], we have outlined a mapping methodology which 
has been applied to the computations involved in the solution of par t ia l  differential equa- 
tions. We continue this study here for a different application, a robot arm elbow manipula- 
tor and two different system architectures, multiple bus and banyan interconnected parallel 
multiprocessor systems. 

The mapping problem arises when the number of computational modules required by the 
application exceeds the number of processors availab]e or when the interconnection structure 
of the application's computational modules, differs from the interconnection structure of the 
parallel machine [BERM84]. In [BOKH81], the mapping problem is defined as the assignment 
of modules to processors and the problem of maximizing the number of pairs of connnunicat- 
ing modules tha t  fall on pairs of directly connected processors. It is also shown, that  the 
mapping problem is equivalent to a graph isomorphism problem, or to a bandwidth reduction 
problem. In either case, an exact algorithm for the mapping problem is unlikely to be found. 
Research in this area has concentrated on efficient heuristics which give good solutions in 
most cases, [BERM85], [BOKH81], IJENN77], [ABRA86], [GILB87]. 

The application we consider here, is the solution of the Newton Euler equation for the 
motion of a six degree of freedom manipulator  whose joints are all rotational,  i.e., an elbow 
manipulator.  The computations involved are modelled by a precedence graph, where each 
node in the graph represents a computational module's computation and memory require- 
ments and each link represents communication requirements between modules. The decom- 
position of the applications computation is given in [KASA85], and it is broken down in such 
a way tha t  parallelism is used to maximum advantage.  

*This research was supported by NSF grant DMC-8508684A1. 
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The paratlel multiprocessor system architectures, are composed of processors each hav- 
ing a local memory and shared memory modules and they are interconnected via multiple 
busses or a Banyan switch. The systems are homogeneous, i.e., they have identical processors 
and identical local or shared memories. The processors are assumed uniprogrammed. Com- 
munication is performed via message passing between the processors by using common access 
to shared memories and the interconnection network. The communication network of the 
multiprocessor system is represented by its performance characteristic which is the communi- 
cation Queueing Delay vs its Utilization. This requires its performance analysis. We have 
used one of the multiples bus interconnection models presented in [MARS831, and performed 
a similar performance analysis. We have also performed a comparable analysis for the 
Banyan interconnection network. 

The solution of the mapping problem, involves a number of steps which can be per- 
formed somewhat independently [HOUS87a]. (a) Schedule the computational modules into 
parallel clusters, (b) reduce the number of parallel clusters to the number of parallel proces- 
sors in the machine then (c) imbed the application into the machine. VVe concentrate on a 
heuristic algorithm, that  is used in step (a) and also in step (b) with a simple modification. 

Step (c) for the interconnection architectures used and homogeneous systems is trivial since 
there is a communication link between all processors, or processors can be considered equally 
distant. An arbitrary assignment of clusters obtained in step (b) to processors is sufficient. 
We have discussed this step (c) in [HOUS87c]. Thus we shall concentrate on steps (a), and 
(b). 

In [HOUS83], [HOUSS7a] only step (a) of this approach has been demonstrated for appli- 
cations whose precedence graphs had no more than 50 communicating modules and a bus 
interconnected system architecture. In this work, a much larger graph is considered that has 
105 nodes and two different system architectures are tested. The architectures are chosen so 
that the parallelism reduction, (step (b)), can be evaluated. We consider on one hand, a mul- 
tiple bus architecture where the number of processors can be increased (or decreased) by one. 
In this case, the application's parallelism can be fully exploited since the number of proces- 
sors can always be adjusted to equal the number of paralIel clusters obtained in step (a). 
Then step (u) is a sufficient solution to the mapping problem. If the system has a fixed 
number of processors which are less than the clusters obtained, then the parallelism reduc- 
tion step (b) is necessary. In a Banyan interconnected system, the number of processors can 
be increased (or decreased) only in powers of 2. Thus, if the number of clusters obtained is 
not a power of 2 then it is cost effective to use a system where the number of processors is 
the highest power of 2 and less than the number of clusters. In this case, the parallelism 

reduction, step (b), is unavoidable. 

In a number of heuristic algorithms dealing with step (a) [CHUB0] [EFE82], [JENN77], 
[STO78], [GYL76], [BERM87] an assignment of computational modules to processors is pro- 
duced by minimizing the communication required among processors. We assign a cost to this 
communication which is the interconnection system's Queueing Delay. We claim that  a 
different schedule is produced when the system's Queueing Delay is involved and that  it is a 
more realistic schedule. We demonstrate this in Section 4.2. The use of Queueing Delay 
models simplifies the complexity of the mapping problem. A number of performance meas- 
ures are also calculated which indicate how good applications/architecture pairs are matched. 

In Section 2, the performance analysis of two interconnection networks is given. In Sec- 
tion 3, the application is presented and how different partitions of the application are 
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obtained. In Section 4, step (a) of the mapping problem is summarized and the results 
obtained using the two systems and the considered application are given. In Section 5, the 
parallelism reduction, step (b), is performed and the resulting schedules are presented. A 
comparison of the performance of the two systems is also demonstrated. In Section 6, conclu- 
sions about this methodology, application and systems are discussed. 

2. C O M P A R A T I V E  P E R F O R M A N C E  ANALYSIS  OF 
I N T E R C O N N E C T I O N  N E T W O R K S  

In steps (a) and (b) of the mapping problem, the objective is to exploit the parallelism of 
the multiprocessor system and that  of the application in order to obtain optimal speed ups 
for the application. For this, two conditions must be met. (1) The application's computa- 
tions must be decomposed into smaller sub-computations that  can run in parallel, and at the 
same time the amount of data transfer between these sub-computations must be kept at a 
minimum. We further discuss this problem in the next section. (2) The system overhead 
must also be kept at a minimum. Our work has concentrated on the second condition. The 
system overhead comes mainly from the communication conflicts of the processors at the 
different memory modules or at the interconnection network. 

In the systems we consider, processors have approximately comparable capabilities. All 
processors share access to a common memory module, I /O channels, and peripheral devices. 
Most importantly, the entire system is controlled by a single integrated operating system pro- 
viding interactions between processors and their programs at various levels. Besides the 
shared memories and I/O devices, each processor has its own local memory. Interprocessor 
communications can be done via the shared memories. In this mode of operation, each pro- 
cessor executes a program stored in its local memory, on a set of data stored in the same 
local memory. When processor i wants to communicate with another processor j, either 
requesting a set of data or provldlng to the other processor with some needed data, processor 
i forms a message and sends it to the common memory module of processor j, via the inter- 
connection network. 

There are many physical configurations for the interconnection network. The simplest 

form is the single bus, where a single bus is used by all the processors to access any memory 
module. The single bus is very inexpensive, but the bandwidth of such a network is usually 
low, since only one processor can use the bus at any time, and thus it is inadequate even for 
a small number of processors. At the other end of the spectrum is the crossbar switch. In a 
crossbar interconnection, any processor can access any memory module, given that no other 
processor is accessing the same memory module. Although the crossbar interconnection offers 
the highest possible bandwidth, it is very expensive, and considering todays technology, it is 
the most expensive part in the system. Moreover, it will be very hard to justify its use espe- 
cially for large systems. 

In this paper, we study two classes of interconnection networks. The multiple bus net- 
work and the multistage banyan network. Notice that  the single bus and the crossbar net- 

work are both a special case of the multiple bus network. 
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2.1 Banyan network 

The banyan networks have been proposed mainly for SIMD "Single Instruction Multil~le 
Data" machines, where more than one processor executes the same instruction on a different 
set of data. However, they have been used successfully in MMD "Multiple Instructions Mul- 
tiple Data" machines. They can be divided into two main categories, Single stage and Mul- 
tistage networks. 

Single s tage,  also called recirculating networks, because data may have to circulate 
through more than one processor to reach their final destination. Fig. 1, shows the different 
configurations for the single stage cube network. 

Fig. 1. Single Stage Cube Network. 

Mul t i  s tage  ne tworks ,  connec t  k processors ,  v ia  logk stages and allow communica- 
tion between any two processors to take place in logk steps. The multistage networks can be 
characterized by three parameters, [SIEG85], interchange box, topology and control struc- 
ture. 

Interchange box is a two input two output switch, used as the basic building block for 
the multistage interconnection network. Fig. 2, shows an interchange box with two inputs 
marked a I and a 2 and two outputs marked b 1 and b 2. There are four configurations for the 

interchange box (1) straight, where a i ~ bi, a 2 ~ b2; (2) exchange, where a i ~ b2, a 2 --* 

bi; (3) upper broadcast, where a I --* hi, a 2 --~ bi; and (4) lower broadcast, where a i -+  b2, 

a 2 ---* b 2. A two function interchange box can only take the configdration of straight and 

exchange, while a four function interchange box can take any one of the four configurations 

[SIEG78]. 

Topology is the actual connection between the different interchange boxes in the 
different stages. One topology is the indirect binary /c-cube, shown in Fig. 3, for k--8. The 
input to the first stage is numbered 0 through 7. Any interchange box in stage i is connected 
to two inputs that  differ in the fih bit of their binary representation. Straight configuration 
for an interchange box will connect two numbers having the same i th bit, while exchange 
configuration will connect two numbers that  are different in their i th bit. The indirect 
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a l ~  bl 
a 2 b 2 

Fig. 2. I n t e r c h a n g e  box. 

b i n a r y  k cube ne twork  is used in the  s t a r a n  ne t w ork  [BATC76]. A n o t h e r  ne twork  is the  

Omega  ne twork ,  [LAWR75], shown in Fig. 4. T he  omega  ne twork  is bused  on the  perfect  

shuffle in t e rconnec t ion  ne twork ,  which  routes  d a t a  f rom posi t ion i whose b i n a r y  represen ta -  

t ion  is i~_ 1 • • • i l l  o to posi t ion s ( i )  whose b i n a r y  r e p r e s e n t a t i o n  is ik_ 2 • ' ' i l ioik_ ~. 

C o n t r o l  s t r u c t u r e .  The  cont ro l  s t r u c t u r e  of t he  ne twork  can  be e i the r  indiv idual  s tage 

control  or ind iv idual  box control .  In the  indiv idual  s tage  control  , t he  same control  signal is 

used to set all t he  boxes in the  s tage,  so all the  boxes in one s tage  should  have  the  same 

configurat ion.  I t  is c lear  t h a t  the  indiv idual  box cont ro l  is more efficient, however,  it will 

require every message to have  a heade r  to de t e rmine  its des t ina t ion .  The  individual  boxes 

should  have  cont ro l  c i rcui t ry  to in t e rp re t  the  des t i na t i on  heade r  and  set its own 

configurat ion.  In the  res t  of th is  paper ,  when  we m e n t i o n  a b a n y a n  ne twork  we m e a n  a mul-  

t i s t age  ne twork  w i th  indiv idual  box control .  

2 .2  M o d e s  o f  o p e r a t i o n  

We first in t roduce  the  o rgan iza t ion  of the  sys tem.  The  sys tem is composed of k proces- 

sors and  k memory  modules,  ( a l though  we are a s suming  t h a t  the  n u m b e r  of processors is the  

same  as the  n u m b e r  of memory  modules,  the  same  analys is  can  be appl ied  when  the  n u m b e r  

of processors is less t h a n  the  n u m b e r  of the  memory  modules) .  E a c h  processor  has  its own 

p r iva te  memory  module,  where  the  p r o g r a m  a n d  t he  d a t a  are s tored.  If processor  i w a n t s  to 

commun ica t e  wi th  processor  j ,  it p repares  a message a n d  sends  it to the  memory  module  

n u m b e r  j where  th is  memory  can  be accessed by  processor  j. We  are assuming  an  asynchro-  

nous communica t ion ,  so any  processor  can  be in any  one of th ree  s ta tes .  

1) The  processor  is execut ing  a p r o g r a m  in its local memory;  

2) The  processor  is send ing  a message  to a n o t h e r  processor;  

3) The  processor  is b locked wai t ing  for the  i n t e r connec t ion  ne twork  to deliver a mes- 

sage to a n o t h e r  processor.  

Processors  in the  first s tage  are considered ac t ive  processors,  i.e., processors  doing useful 

work not  b locked or c o m m u n i c a t i n g  wi th  o the r  processors.  W e  do no t  accoun t  for the  t ime  

t a k e n  by  any  processor  to r ead  a message sent. by  a n o t h e r  processor  to  i ts memory  module,  

since th is  is considered to be  p a r t  of the  p r og r am  execu ted  by  the  processor.  

We  are assuming  t h a t  the  t ime  be tween  the  gene ra t ion  of messages is exponent ia l ly  dis- 
1 

t r i b u t e d  r a n d o m  va r i ab l e  w i th  m e a n  -~, a n d  the  length  of the  message is an  exponent ia l ly  

1 
d i s t r ibu ted  r a n d o m  var i ab le  wi th  m e a n  - - .  We are also assuming t h a t  an  access request  

# 
f rom processor  i is d i rec ted  to memory  module  j w i th  p robab i l i ty  Pij  = l / m  where m is the  
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Fig. 3. Binary k-cube network (k=8). 

number of memory modules (rn~-k). If any processor needs to send a message to another pro- 
cessor, it stops executing its program. Then, if the interconnection network can establish a 
path from the source processor to the destination module it will do so instantaneously with 

no delay and the sending processor will begin to send its message. When the message is com- 
pleted the sending processor will return to its active state. If there is contention at the inter- 
connection network or destination module the processor is put in queue, "blocked", waiting 
for the contention to be resolved and then transmits its message. 

2.3 P e r f o r m a n c e  A n a l y s i s  of  a B a n y a n  N e t w o r k  

There have been some atterapts to analyze the banyan network, IPATE791 [KRUS83]. 

However, in their analysis they considered the system to be synchronized. At the beginning 
of each cycle, every processor generates a message with a certain probability and they calcu- 
lated the probability of message acceptance. In this paper, we assume the system to be asyn- 

chronous. The length of the message generated by any processor is an exponentially distri- 
buted random variable, and the time interval between the generation of two consecutive mes- 
sages by the same processor is also an exponentially distributed random variable. We shall 
calculate the expected number of active processors, and the average delay encountered by an 

average message. 

We are representing the system as an M / M / c / K / K  queueing system "Machine repair 
model with K machines and c repairmen", [ALLE78]. This model, assumes a population of k 
identical devices (processors), each of which has an operating time of O time units between 
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Fig. 4. Omega network. 

1 
breakdowns, O having a exponential distribution with average value of -~. The repairman 

(communicatioin network) repairs the machines with an average repair time of 1__ time units. 
# 

Fig. 5, shows the state transition diagram for the M / M / c / K / K  queueing system with a ser- 
vice rate c i at state i. Notice that the service rate will depend upon how many customers 

(processors) are requesting service. 

k ;L (k-1) X (k-2) X X 

IJ, C 1 [.iC 2 #O k 

Fig. 5. State transition diagram for the M / M / c / K / K  queueing system. 

To calculate % we have to know how many requests will go through the network if i 

processors request to send messages at the same time. Consider the first stage of the banyan 
k 

network as shown in Fig. 3, or 4, where there are - -  switches, each switch connected to 2 
2 

inputs. If one input is active, i.e., it is requesting to send a message and the other input is 
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idle, then  the average throughput  of this switch is 1. If two inputs  are active at the same 
time, then the average throughput  of this switch is 1.5 [PATE79]. Thus, the expected 
nmnber  of messages to go through one stage of the banyan  network given tha t  there are i 
requests equals the expected number  of switches with one active input  × 1 ÷ the expected 
number  of switches with two active inputs x 1.5. The probabi l i ty  tha t  any  switch chosen at  
random has one active input  is p i, where 

2 q k - - i )  

vl = k(k-1))  

The probabil i ty  tha t  any switch chosen at  r andom has two active inputs is P2, where 

q i - i )  
v2 = k ( k - i )  

Since the number  of switches in one stage is k/2, then the expected number  of messages to go 
through one stage given i requests is ¢( i ) ,  where 

¢(i) = (pi+l.Sp2)~ i >_ 1 

¢(i) = i 

In a banyan  network with k inputs we have logk stages. We can calculate the average 
number  of messages to go through the network in a recursive manner .  If c(i) is the average 
number  of messages to go through the network given tha t  there are i requests, then let f¢(i) 
= expected number  of messages tha t  wilI go through the ~-th stage given tha t  the input  in 

the first stage will be i.  Then,  

fo(i)  = (~(f0_l(i)) 

~(2k-0.si-i.s) 
with fl(i) = ¢(i) = (pl+1.5P2) = 2 (k -1 )  

and  c(i) = flogk(i) 

After obta ining the service rate for the different states of the t rans i t ion  d iagram in Fig. 5, 

the probabi l i ty  of being at  s tate  i is, Pi, where 

= ~ k !  __ 1 
Pi Po (a--):n" :,, 

C(,]) y-i 

with P0 

The expected number  of processors wait ing in a queue is Lq, where 

k 
Lq = 2 u(i-c(i))Pi 

i=1 

and 

P0 = 

The actual  request rate is X, where 

0 x > 0  u(x) = 
x < O  
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k 

where Wq is the average time a processor spends in the queue. After applying Little's for- 

mula, we obtain 

Lq 1 W 1 L q  
wq - × - q+Tj-T 

solving for Wq, we obtain 

1 1 Lq( + 7 )  
Wq = k--Lq 

By normalizing the time with respect to i and noticing that  the total delay is the sum of 
# 

the waiting time and the service time, we obtain 

k+Lqp k 
D -  , where # :  

k--Lq p 

D is the average delay per message. The interconnection network utilization, U is 

U = I - - P  o 

and the number of Active Processors (AP) is 

k 
A P =  E jPj  

2.4 P e r f o r m a n c e  ana lys i s  of a m u l t i p l e  b u s  s y s t e m  

In a multiple bus system, we assume k processors and m memory modules connected 

through a b bus interconnection network, as shown in Fig. 6. When processor i needs to 
access memory module j, processor i will check to see if there is an available bus. If one is 

found and memory module j is free (no other processor is accessing it), then a path from pro- 
cessor i to memory module j is established immediately with zero delay. If there is no avail- 
able bus or there is another processor accessing memory module j, then processor i is blocked 
in a queue waiting for a bus, or for memory module j, or for both. Marsan and Gerla, 
[MARS83], analyzed the Markov chain of such a system. They concluded that the exact 
Markov chain is not easy to handle, because the number of states will increase very rapidly 
with the system size. They introduced four approximations with moderate computational 
complexity. In this work, we use an approximation which is very similar to approximation 
C2 in their work, which gives a lower bound for the average number of active processors. We 
analyze the system using this approximate model, and we use Pi, where Pi is the probability 

of having i processors requesting access to the memory (either accessing a memory module or 
waiting in a queue). Using the machine repairman model with k servers, [ALLE78], the 
expected number of processors waiting in a queue is lq, where 

k 
lq = E 

i=0 

P~ is given in [MARS83] and is 
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and 

and 

where 

[__~]k--i k! k- i~ lp  k 

[ k-x 
b-1 q-b 
E jpy(l))+b 2 [Pb(J+b)Pm-b(Q--2b--j+m)] 

/~9 = j=~ y=o Q>o 
b - - 1  ~ - b  ~ - -  

pj(9)+ 2 [Pb (j+b)Pm-b (i)--2b - - j+m)]  
i=J i=o 

p/(~) = py(Q-j)+pi_l(Q-j)+...+pl(~)-j)+po(~-j) 
with initial conditions 

pj(9)=0 ~<y 
po(~)=o 9>o 
pf(i)) = 1 j~O 

In Fig. 7, 8 the performance of the two systems is plotted for 8 processor systems. 

Fig. 6. A kxrnxb multiple bus system. 

bus 1 
bus 2 

b~s b 

8. A R O B O T  E L B O W  M A N I P U L A T O R  A P P L I C A T I O N  

The representation of an applications computations by a precedence graph requires a 
proper partitioning of the application into computational modules. Partitioning techniques 
via a system's compiler are presented in [SARK86]. There are applications which are amen- 
able to mathematical decomposition techniques [OLEAR85], [BOKHS1], [MA.RI871. In the 
applications we have studied, [HOUS87a], knowledge of the application allow the use of 
mathematical decomposition to partition it and identify potential parallelism among modules. 
An integration of compiler techniques and decomposition techniques are needed for an 
appropriate partition. 
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Fig. 7. Queueing delay vs. Utilization of 
interconnection networks. 
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Fig. 8. Active Processors vs. Utilization 
of interconnection nets. 

Once a partition is decided, the execution times of modules and communication times 
among modules have to be determined. In [HOUS87a] a parallel simulation language, 
SIMON, [FUJI85], was used to obtain these times along with the synchronization delay of 
each module. Since synchronization delay is an attribute of the application, it has been 
included in the graph by adding it to the processing time of its corresponding module. If 
communication paths among modules are not a priori known, then the partition is modeled 
by a stochastic logic graph {HOU87b]. A stochastic analysis of this graph results in a pre- 

cedence graph as described above. 

In [KASA85] a partitioning of the robot elbow manipulator computations is given at the 
equation level, i.e., computational modules represent the solution of an equation. We use this 
partition with slight modifications. In Fig. 9, a precedence graph of the application is shown. 
The numbers assigned to the modules are to simply identify them. Modules are grouped on 
different levels and parallel modules are shown by being drawn at the same level. The execu- 
tion times of modules are given on IKASA851 in #sec for an Intel 8087 processor. The parti- 
tion given in [KASA851 is such that  very little communication is required among modules and 
it is considered negligible. We have modified this by assuming that  the execution time, re, of 

a module, includes both processor's processing time and communication time. If t x (#sec) is 

the processing time and ty (#sec) is the communication time of a module, then tx+ty=t e. We 

assume that synchronization delay is included in t~. We assign ty according to a uniform dis- 

tribution to the outgoing links of its corresponding module. Thus, we have been able to 
investigate the effect of varying the ratio, r, between the amount of processing and communi- 
cation of a module, where r = tJty. Three values of r have been used r = 1, .1, 10. We note 

at this point that by using r in this way, we only approximate what actually happens to a 
partition when the communication increases and processing decreases or vice versa. Usually, 
more communication is present when a partition is finer, i.e., module size (processing time) 
gets smaller but at the same time the number of modules is increased. By changing r, we 
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Fig. O. The precedence graph of the robot elbow manipulator. 

change the partition grain but without increasing or decreasing the number of modules. 

From the communication requirements between a pair of modules, Cij , w e  calculate the 

corresponding utilization of the interconnection network U, where 

U -- cij 
CxT 

where C is the capacity of the interconnection network and T is the time frame during which 
each parallel processor is running. This time frame will be described in the following section 
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and it represents a time constraint within which the application is required to complete exe- 
cution. 

4. S C H E D U L I N G  T O  M I N I M I Z E  C O M M U N I C A T I O N  D E L A Y  

The first step of the mapping problem deals with the scheduling of modules into parallel 
clusters. A heuristic algorithm is used which is based on the minimization of communication 
delay between modules. The algorithm's input is the information represented in the 
application's precedence graph, the multiprocessor system specifications (processor speed, 
memory availability, bandwidth) and the Queueing Delay vs Utilization characteristic of the 
interconnection network. A detailed presentation of the algorithm's parameters and heuristic 
technique used is presented in [HOUS87b]. Here we summarize for completion purposes. The 
merit of this heuristic is that  it is fast, that  is, its computational complexity increases only 
linearly with the number of links in the application. The scheduling problem is a constraint 
minimization problem as follows: 

(i) r esource  c o n s t r a i n t s :  

- -  Every computational module must fit into the memory assigned. 

- -  Computations must have enough processor time. 

(ii) pa ra l l e l i sm c o n s t r a i n t :  

- -  parallel modules cannot be assigned to the same processor. 

(iii) ar t i f ic ia l  c o n s t r a i n t  

- -  Processing time on each processor is limited to T (a parameter). 

ob jec t ive  func t ion :  

- -  minimize the queueing delay of the multiprocessor system interconnection network, 
due to the application's communication requirements. 

The time frame T is used to calculate the utilization of the interconnection network accord- 
ing to equation (1), for every cij. The corresponding queueing delay is then found from Fig. 7 

depending on which interconnectlon network architecture is used. T is also used to calculate 
the processor's utilization every time a pair of candidate modules is merged, (see next sec- 
tion), and check if constraint (i) is satisfied. After the module assignment to processors is 
completed, the final processor utilizations are calculated using the final value of T. 

4.1 The  heur i s t i c  a l g o r i t h m  

For a specified time frame value of T 
Start 

Assign one processor per module. 
Iteration 

(a) make up a list of eligible pairs of modules which are ordered according to longest 
amount of required communication and thus queueing delay among them. 

(b) If no constraints are violated merge the pair of modules which will result in the max- 
imum reduction of the objective function. If there is more than one pair then merge the 



527 

pair that  results in the least processor loading; if there is still more than one, select a 
pair at random. 

If we define by np the potential number of parallel modules in the application graph, and 

by cp the number of parallel clusters obtained by the algorithm, then cp>np. The initial 

value of T is large since the assignments of one module per processor represents the worst 
possible queueing delay in the systems. The value of T is decreased until T = TpAR where 

TpA R is the shortest time for which the allocated processors can run the application in paral- 

lel. It turns out that  TpAR is a close upper bound of the elapsed time of the application when 

synchronization delay for each module is incorporated as part of the processing time of 
modules [HOUS87a]. TpAR is the optimal time frame. Further reduction of T results in more 

and more processors to be used. 

4.2 Resu l t s  

The robot elbow manipulator application, shown in Fig. 9, was allocated to a lexmxb 
parallel multiple bus system architecture, where k is the number of processors, m is the 
number of common memory modules (m-~k), and b is the number of common busses. In our 
application np ~ 11 and cp : 12 or 13. A 13×13×1 and a 13×13×8 systems have been used. 

An 8 processor Banyan interconnected system was also used. In the case of a multiple bus 
architecture the number of parallel clusters obtained is equal to the number of processors in 
the system. Outputs of the heuristic algorithm for different values of the ratio r, (r ~ pro- 
cessing time/communication time per module), and the two multiple bus systems are shown 
in Figures 10a,b,c and Figures 11a,b,c. A schedule of assigned modules to each processor, its 

utilization and the optimal the frames TpAR obtained are given. We are also showing the 

total processor utilization which includes the processing and communication delay required 
by all modules assigned cluster to a processor. A number of observations can be made by 
comparing Fig. 10 and Fig. 11. 

First, we observe that optimal time frames are shorter in the case of an 8 bus system as 
compared to the 1 bus system, for r ~ 1, 1/10. This is expected, since the 8 bus system has 
higher bandwidth and thus Iess delay and there is enough communication between modules to 
affect the scheduling decision. Note that  in both cases, different processor schedules have 
been obtained. In the case r : 10/1, communication delay does not play a significant role in 
scheduling (only total utilizations are slightly different when we compare the output of the 8 
busses system, to the output of the 1 bus system). As a result identical schedules have also 
been obtained. From Fig. 7, one can see that unless communication between modules is such 
that  it results in over 50~  utilization of the interconnection network there is no significant 
difference in queueing delay between the 1 bus and the 8 busses system. We note that  pro- 
cessor utilizations are low. This is due to the parallelism constraint of modules that  limits 
their scheduling possibilities. 

In Fig. 12, a schedule is shown which is based on minimizing the communication among 
modules without assigning a cost to it, namely, its corresponding queueing delay (no system is 
assumed). Note that the schedule produced is different as compared to the same case 
schedule in Fig. 10b (1 bus system). Thus, involving queueing delay in the scheduling deci- 
sion instead of simply the amount of communication among modules produces different 
results. If we compare Fig. 12 to its corresponding case in Fig. l l b  (8 busses system), then 
one observes that  the same schedule has been obtained. This is due to the fact that  a 
13×13×8 system is practically a crossbar switch unless the communication between parallel 
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m o d u l e s  is v e r y  h i g h  a n d  t h u s  r e s u l t i n g  in i n t e r c o n n e c t i o n  u t i l i z a t i o n  v a l u e s  g r e a t e r  t h a n  

8 0 % ,  w h i c h  is n o t  t h e  c a s e  in  t h i s  a p p l i c a t i o n .  O n e  s h o u l d  n o t  f o r g e t  t h a t  if  t h e r e  a r e  

m o d u l e s  w i t h  h i g h  c o m m u n i c a t i o n  a m o n g  t h e m  t h e y  a re  s c h e d u l e d  i n t o  t h e  s a m e  p r o c e s s o r  

un l e s s  t h e y  a r e  p a r a l l e l  m o d u l e s .  T h i s  e l i m i n a t e s  m o s t  of t h e  h i g h  c o m m u n i c a t i o n  b e t w e e n  

m o d u l e s .  

s y s t e m :  13x13x1 ,  r ~-- 1 /1 ,  TpA R 2206 ] 

Processor Total (%) Utilization Modules 
id utilization (%) assigned 

1 51.13 45.33 1 57 81 83 66 67 69 72 92 98 104 
2 70.31 68.67 2 37 49 59 65 71 73 86 87 93 97 99 100 101 102 103 105 
3 50.50 36.49 3 7 9 24 36 42 48 54 78 
4 35.34 20.85 4 I0 16 46 

5 35.34 20.85 5 11 17 47 
6 36.35 21.98 6 12 18 60 
7 36.60 21.76 8 14 15 29 
8 51.65 38.30 13 41 43 53 56 62 68 91 
9 71.26 57.34 19 20 21 22 23 26 31 32 33 34 35 

10 83.36 64.59 25 30 40 52 76 77 80 84 90 95 
11 51.77 32.41 27 38 44 50 74 88 
12 58.79 46.69 28 55 58 64 70 81 85 96 
13 75.02 55.52 39 45 51 75 79 82 83 89 94 

Fig .  lOa.  S c h e d u l e  of m o d u l e  a s s i g n m e n t s  of t h e  r o b o t  e l b o w  m a n i p u l a t o r .  

s y s t e m :  13×13×1,  r -~ 1 /10 ,  T p ~  ~ 4054 ] 

Processor Total (%) Utilization Modules 
id utilization (%) assigned 

1 10.88 3.05 1 27 28 61 66 67 72 92 98 104 
2 18.94 4.26 2 7 24 36 37 42 48 49 54 78 87 
3 14.82 4.62 3 9 58 64 70 81 85 96 

4 15.86 2.06 4 10 16 46 
5 15.86 2.06 5 11 17 47 
6 15.86 2.17 6 12 18 60 
7 16.29 2.15 8 14 15 29 
8 10.16 2.24 13 25 43 57 
9 18.93 5.87 19 20 21 22 23 26 31 32 34 35 

10 18.93 5.40 30 39 45 51 55 75 79 83 89 94 100 
11 9.80 5.76 38 44 50 73 74 82 88 93 99 102 105 
12 19.29 7.80 40 41 52 53 76 77 80 84 90 91 95 101 
13 15.31 5.25 56 59 62 65 68 71 8B 97 103 

Fig .  10b. S c h e d u l e  of  m o d u l e  a s s i g n m e n t s  of t h e  r o b o t  e l b o w  m a n i p u l a t o r .  
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Processor  T o t a l  (%) Ut i l iza t ion Modules  
id u t i l iza t ion  (%) assigned 

1 12.97 12.38 1 27 30 61 67 

2 42.08 40.16 2 6 12 18 37 49 60 87 
3 89.98 88.03 3 9 39 41 45 51 53 75 79 83 89 91 94 100 

4 26.67 25.31 4 10 16 46 

5 26.67 25.31 5 11 17 47 
6 67.46 65.20 7 8 14 15 24 29 36 42 48 54 78 

7 25.25 24.76 13 43 57 63 69 
8 70.90 69.60 19 20 21 22 23 26 31 32 33 34 35 

9 34.31 33.29 25 28 55 66 72 92 98 104 
10 71.10 70.70 38 44 50 73 74 82 88 93 99 102 105 

11 74.85 74.00 40 52 76 77 80 84 90 95 101 

12 65.36 64.37 56 59 62 65 68 71 86 97 103 
13 51.73 51.17 58 64 70 81 85 96 

F i g .  l O c .  S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  o f  t h e  r o b o t  e l b o w  m a n i p u l a t o r .  

system: 13x13×8, r z 1/1,  TpA R z 2125 

Processor  T o t a l ( % )  Ut i l iza t ion Modules 
id u t i l i za t ion  (%) assigned _ _  

1 58.87 58.35 1 61 66 67 72 73 87 92 93 98 99 100 101 102 103 104 105 

2 44.27 30.12 2 27 37 41 49 53 91 

3 81.15 62.35 3 9 39 45 51 75 79 82 83 89 94 

4 32.92 21.65 4 i0 16 46 

5 32.92 21.65 5 11 17 47 
6 34.00 22.82 6 12 18 60 
7 74.58 55.76 7 8 14 15 24 29 36 42 48 54 78 

8 61.06 52.24 13 43 56 59 62 65 68 71 86 97 
9 70.36 59.53 19 20 21 22 23 26 31 32 33 34 35 

10 27.30 22.12 25 57 63 69 

11 57.89 48.47 28 55 58 64 70 81 85 96 

12 76.96 64.71 30 40 52 76 77 80 84 90 95 

13 44.00 31.29 38 44 50 74 88 

F i g .  l l a .  S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  o f  t h e  r o b o t  e l b o w  m a n i p u l a t o r .  
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Processor  T o t a l  (%) Ut i l iza t ion  Modules  
id u t i l iza t ion  (%) ass igned 

1 8.86 2.34 1 13 25 43 57 63 69 

2 15.53 4.45 2 7 24 36 37 42 48 49 54 78 87 
3 13.22 4.82 3 9 58 64 70 81 85 96 

4 13.51 2.15 4 10 16 46 

5 13.51 2.15 5 11 17 47 
6 13.53 2.27 6 12 18 60 
7 13.88 2.25 8 14 15 29 
8 16.83 5.93 19 20 21 22 23 26 31 32 33 34 35 

9 11.30 6.04 27 28 61 66 67 72 73 92 93 98 99 100 101 102 103 104 105 
10 26.23 6.21 30 39 45 51 55 75 79 82 83 89 94 

11 15.92 3.12 38 44 50 74 88 
12 20.40 8.06 40 41 52 53 76 77 80 84 90 91 95 
13 12.65 5.06 56 59 62 65 68 71 86 97 

F i g .  1 1 b .  S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  o f  t h e  r o b o t  e l b o w .  

s y s t e m :  1 3 x 1 3 × 8 ,  r ~ 1 0 / 1 ,  T p A  R : 3 3 0 4  ] 

Processor  To ta l  (%) Ut i l i za t ion  Modules 

id u t i l iza t ion  (%) assigned 

1 12.95 12.38 1 27 30 61 

2 42.02 40.16 2 6 12 18 

3 89.93 88.03 3 9 39 41 

4 26.63 25.31 4 10 16 46 

5 26.63 25.31 5 11 17 47 
6 67.40 65.20 7 8 14 15 
7 25.24 24.76 13 43 57 63 

8 70.87 69.60 19 20 21 22 

9 34.28 33.29 25 28 55 66 
10 71.08 70.70 38 44 50 73 

11 74.82 74.00 40 52 76 77 
12 65.33 64.37 58 59 62 65 

13 51.72 51.17 58 64 70 81 

67 

37 49 60 87 

45 51 53 75 79 83 89 91 94 i00 

24 29 36 42 48 54 78 

69 
23 26 31 32 33 34 35 

72 92 98 104 

74 82 88 93 102 105 

80 84 90 95 101 

68 71 86 97 103 

85 96 

F i g .  1 1 c .  S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  o f  t h e  r o b o t  e l b o w  m a a i p u I a t o r .  
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s y s t e m :  n o  s y s t e m ,  r ~ -  1 / 1 0 ,  TpAR ~ 3880  I 

Processor Total [%) Utilization Modules 
id utilization (%) assigned 

1 8.78 2.34 1 13 25 43 57 63 69 
2 16.38 4.45 2 7 24 36 37 42 48 49 54 78 87 
3 13.12 4.82 3 9 58 64 70 81 85 96 
4 13.37 2.15 4 10 16 45 
5 13.37 2.15 5 11 17 47 
6 13.39 2.27 6 12 18 60 
7 13,73 2.25 8 14 15 29 
8 16.69 5.92 19 20 21 22 23 26 31 32 33 34 35 
9 11.24 6.04 27 28 61 66 67 72 73 92 93 98 99 100 101 102 103 104 105 

I0 25.97 6.20 30 39 45 51 55 75 79 82 83 89 94 
11 15.76 3.11 38 44 50 74 88 
12 20.24 8.05 40 41 52 53 76 77 80 84 90 91 95 
13 12.55 5.06 56 59 62 65 68 71 86 97 

Fig .  12. S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  o f  t h e  r o b o t  e l bow m a n i p u l a t o r .  

F r o m  t h e  a v a i l a b l e  d a t a ,  one  c a n  c a l c u l a t e  p e r f o r m a n c e  m e a s u r e s  s u c h  as  s p e e d  u p  a n d  

ef f ic iency [SIEG82], w h e r e  

e l a p s e d  t i m e  in u n i p r o c e s s o r  s y s t e m  
s p e e d  u p  = 

e l a p s e d  t i m e  in m u l t i p r o c e s s o r  s y s t e m  

a n d  if t h e r e  a r e  k p r o c e s s o r s  in t h e  m u l t i p r o c e s s o r  s y s t e m  t h e n  

ef f ic iency = s p e e d  up  
k 

O n  t a b l e s  1,2 s p e e d u p s  a n d  ef f ic iency m e a s u r e s  a r e  g iven  for t h e  d i f f e ren t  s y s t e m  a r c h i t e c -  

t u r e s .  

1 3 × 1 3 x l  m u l t i p l e  

b u s  s y s t e m  

a r c h i t e c t u r e  

r ~ - - I  

S p e e d  u p  Ef f i c iency  

5.308 .408 

1 
r - -  .525 .040 

10 

10 
r - -  6.441 .495 

1 

T a b l e  1: S p e e d  u p  a n d  ef f ic iency d a t a  for  t h e  s c h e d u l e s  of  F ig .  10a ,b ,c .  
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13×13×8 multiple 
bus system 
architecture 

r = = l  
Speed up Efficiency 

5.510 .423 

1 
r - -  .548 .042 

10 

10 
r - -  6.443 .495 

1 

Table 2: Speed up and efficiency data for the schedule of Fig. l la,b,c.  

Step (a) was also applied when the parallel system has a Banyan interconnection net- 
work. The results are shown in Fig. 13a,b,c. 12 or 13 parallel clusters have been obtained. 
The number of clusters depends primarily on the parallelism of the application, (np), and the 

system involved in the scheduling decision. Our observation has been that  for symmetric 
graphs or almost symmetric graphs, [HOUS87a], the number of clusters obtained is equal to 
the of parallelism of the graph. When the application graph does not possess any symmetry, 
like the one we used here, the numbers of clusters is greater or equal to the graph's parallel- 
ism. This is due to the mechanism of module merging which satisfies the parallelism and 
time frame constraint. It can be regarded as a limitation of our heuristic algorithm since it 
does not exhaust all possible schedules (NP complete). 

t system: 8 processor, Banyan Interconnection, r = 1/1, TpA R ~ 2212 ] 

Processor Total (%) Utilization Modules 
id utilization (%) assigned 

1 49.54 45.20 1 57 61 63 
2 74.22 72.99 2 37 49 59 

3 40.67 26.44 3 6 9 12 

4 31.62 20.79 4 10 16 46 

5 31.62 20.79 5 i i  17 47 

6 71.65 53.56 7 8 14 15 

7 28.82 22,60 13 30 43 56 

8 67.58 57.18 19 20 21 22 

9 60.56 52.20 25 39 45 51 

10 46.79 32.32 27 38 44 50 

11 55.60 46.55 28 55 58 64 

12 87.66 78.64 40 41 52 53 

66 67 69 72 92 98 104 
65 71 73 82 86 87 93 97 99 102 103 105 
18 60 

24 29 36 42 48 54 78 

62 68 
23 26 31 32 33 34 35 

75 79 83 89 94 100 

74 

70 81 85 96 

76 77 80 84 90 91 95 101 

Fig. 13a. Schedule of module assignments of the robot elbow manipulator. 
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s y s t e m :  8 p r o c e s s o r ,  B a n y a n  I n t e r c o n n e c t i o n ,  r z 1 /10 ,  TpA R --~ 3883 

Processor  To ta l  (%) Uti l izat ion 
id u t i l iza t ion (%) 

1 8.79 2.34 1 13 25 43 
2 16.39 4.45 2 7 24 36 
3 13.38 2.15 4 10 16 46 
4 13.38 2.15 4 10 16 46 
5 13.38 2.15 5 11 17 47 
6 13.40 2.27 6 12 18 60 
7 13.75 2.25 8 14 15 29 
8 t6.71 5.92 19 20 21 22 
9 11.24 6.20 30 39 45 51 

10 26.00 6.20 30 39 45 51 
11 15.77 3.11 38 44 50 74 
12 20.26 8.05 40 41 52 53 
13 12.56 5.06 56 59 62 65 

Modules 
ass igned 

57 63 69 
37 42 48 49 54 78 87 

23 26 31 32 33 34 35 
55 75 79 82 83 89 94 
55 75 79 82 83 89 94 
88 
76 77 80 90 91 95 
68 71 86 97 

Fig .  13b. S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  of  t h e  r o b o t  e lbow m a n i p u l a t o r .  

s y s t e m :  8 p r o c e s s o r s ,  B a n y a n  I n t e r c o n n e c t i o n ,  r ~ 10 /1 ,  Tp  --~ 3306 

Processor Total  (%) Utilization Modules 
id utilization (%) assigned 

1 12.95 12.37 1 27 30 61 67 
2 42.00 40.14 2 6 12 18 37 49 60 87 
3 89.88 87.99 3 9 39 41 45 51 53 75 79 83 89 91 94 100 
4 26.62 25.30 4 10 16 46 
5 26.61 25.30 5 11 17 47 
6 67.36 65.17 7 8 14 I5 24 29 36 42 48 54 78 
7 25.23 24.75 13 43 57 63 69 
8 70.83 69.57 19 20 21 22 23 26 31 32 33 34 35 
9 34.27 33.27 25 28 55 66 72 92 98 104 

10 71.05 70.67 38 44 50 73 74 82 88 93 99 102 105 
11 74.79 73.96 40 52 76 77 80 84 90 95 101 
t2 65.30 64.34 56 59 62 65 68 71 86 97 103 
13 51.69 51.14 58 64 70 81 85 96 

F ig .  13e. S c h e d u l e  o f  m o d u l e  a s s i g n m e n t s  o f  t h e  r o b o t  e l b o w  m a n i p u l a t o r .  

5.  R E D U C T I O N  O F  P A R A L L E L I S M  

I n  [HOUS87c]  a n u m b e r  o f  h e u r i s t i c  a l g o r i t h m s  h a v e  b e e n  d i s c u s s e d  for  t h e  r e d u c t i o n  o f  

p a r a l l e l i s m ,  s t e p  (b). H e r e  we  a p p l y  o n e  o f  t h e s e  h e u r i s t i c s  a n d  p e r f o r m  s t e p  (b). 

P a r a l l e l i s m  r e d u c t i o n  in n e c e s s a r y  w h e n  t h e  n u m b e r  o f  p a r a l l e l  c l u s t e r s  o b t a i n e d  in  s t e p  

(a) is h i g h e r  t h a n  t h e  p a r a l l e l  p r o c e s s o r s  in t h e  s y s t e m .  In  g e n e r a l ,  t h e  n u m b e r  of  c l u s t e r s  

d e p e n d s  to  a g r e a t  e x t e n d  on  t h e  p a r a l l e l i s m  of  t h e  a p p l i c a t i o n ,  a n d  it  is u n l i k e l y  t h a t  i t  is 
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equal  to the number  of avai lable processors. There  are mul~iprocessor system archi tectures  

where the number  of processors can easily be adjus ted  to equal  the number  of clusters 

obtained.  Multiple bus interconnect ion archi tectures  present such feasibili ty as discussed in 

the previous section. In such case step (a) is sufficient. 

In this work we are interested to test  the performance of our method  for a Banyan inter- 

connected archi tecture.  Since the number  of parallel  clusters Obtain in Fig. 13a,b,c are 12 or 

13 it is cost effective to assume tha t  an 8 processor system is avai lable  and thus we need to 

reduce the number  of clusters from 12 or 13, to 8. In the reduct ion of parallelism, step (b), 

we use the same heuristic a lgor i thm as in step (a) with a simple modification, which is to 

e l iminate  the parallel ism constraint .  This is feasible since the input  to the heuristic algo- 

r i thm for the reduct ion step is the number  of paral lel  clusters ob ta ined  in step (a). Each  of 

these clusters is regarded as a single module and the communicat ion  between clusters forms 

the  communicat ion be tween modules. Thus,  we s ta r t  with a new graph which is the ou tpu t  

of step (a). The communica t ion  cost is found as in step (a) by using the Queueing Delay vs 

Uti l izat ion of an 8 processor Banyan  interconnected network as shown in Fig. 7. Since paral-  

lelism between the modules of the new graph is eliminated,  it is always feasible to cluster the 

modules into a predetermined number  of processors (in this case 8), by adjust ing appropri-  

ately the t ime frame T constraint .  The processor uti l izations in step (a) are low and because 

of that ,  in order to get 8 clusters, we have to increase or decrease T until  the desired number  

of clusters are obtained.  The  results in every case corresponding to step (a) are presented in 

Fig. 14a,b,c. Note tha t  module 1 of Fig. 14 corresponds to d u s t e r  1 of Fig. 13 and so on for 

the  rest of the modules. We also note, t h a t  processor uti l izations are much higher than  in 

step (a) which results in a lower t ime frame in every case. 

system: 8 processors, Banyan  Interconnection,  r = 1/1, TpA R = 2528 ] 

Processor To ta l  (%) Uti l izat ion 
id ...... ut i l izat ion .... [%) 

1 43.34 39.54 1 
2 64.94 63.86 2 
3 82.49 59.51 3 
4 62.68 46.86 6 
5 75.82 65.44 7 
6 59.12 50.02 8 
7 40.93 28.27 10 
8 62.66 54.76 12 

Modules 
_ _  assigned 

Fig. 14a. Paral le l ism reduction for the schedules shown in Fig. 13a. 
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system: 8 processor, Banyan  Interconnection,  r z 1/10, TpAR z 1083 j 
1 

Processor Tota l  (%) Uti l izat ion Modules 

id ut i l izat ion (~o) assigned 

1 85.16 29.63 1 

2 81.49 48.77 2 

3 89.81 25.01 3 

4 74.58 15.86 5 

5 50.97 8.06 7 

6 86.10 22.24 10 

7 74.40 28.88 12 

8 46.12 18.13 13 

11 

Fig. 14b. Reduct ion paral lel ism for the  schedules shown in Fig. 13b. 

system: 8 processor, Banyan  Interconnection,  r ~- 10/1, TpA R ~ 3706 l 

Processor Tota l  (%) Uti l izat ion Modules 

id uti l ization (%) assigned 

1 74.25 73.10 1 

2 83.97 80.94 2 

3 80.18 78.49 3 

4 89.75 87.81 6 

5 88.92 88.06 7 

6 63.38 63.04 10 

7 58.25 57.40 12 

8 46.11 45.62 13 

9 

11 

Fig. 14c. Reduct ion  paral lel ism for the schedules shown in Fig. 13c. 
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system: 8x8xl ,  r ---- 1, TpA R ~ 2421 

Processor To ta l  (%) Uti l izat ion Modules 

id ut i l izat ion (%) assigned 

1 82.02 78.66 1 13 

2 89.42 72.26 2 8 

3 71.30 54.71 3 

4 79.46 58.01 4 5 

5 65.54 48.93 7 

6 61.79 52.23 9 

7 89.07 76.18 10 12 

8 50.84 42.53 11 

Fig. 15a. Reduct ion  of paral lel ism for the schedule shown in Fig. 10a. 

system: 8×8×1, r ~- 1/10, TpA R ~ 1207 ] 

Processor To ta l  (~Vo) Uti l izat ion Modules 

id ut i l izat ion (%) assigned 

1 89.60 33.44 1 12 

2 56.68 14.31 2 

3 84.05 22.44 3 4 
4 70.06 14.23 5 6 

5 48.02 7.23 7 

6 57.31 19.05 8 

7 87.81 49.40 9 10 

8 42.88 16.27 13 

11 

Fig. 15b. Reduct ion  of parallel ism for the schedules shown in Fig. 10b. 
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Processor Tota l  ( ~ )  Ut i l izat ion Modules 

id ut i l izat ion (%) assigned 

1 72.34 71.22 1 

2 81.81 78.86 2 

3 78.12 76,47 3 

4 87.44 85.56 6 

5 86.64 85.79 7 

6 61.75 61.42 10 

7 56.76 55.92 12 

8 44.93 44.45 13 

9 

11 

Fig. 15c. Reduct ion  of paral lel ism for schedules shown in Fig. I0c. 

system: 8×8×8, r = 1, TpA R = 2421 ] 

Processor To ta l  (~o) Ut i l izat ion Modules 

id ut i l izat ion ( ~ )  assigned 

1 82.00 78.66 1 13 
2 89.32 72.26 2 8 

3 71.20 54.71 3 

4 79.34 58.01 4 5 

5 65.44 48.93 7 

6 61.73 52.23 9 

7 89.00 76.18 10 12 

8 50.79 42.53 11 

Fig, 16a. Reduct ion  of paral lel ism for schedules shown in Fig, l l a .  
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Processor Tota l  ( ~ )  Uti l izat ion Modules 

id ut i l izat ion (9~) assigned 

1 80.11 28.30 1 8 

2 56.81 15.23 2 

3 84.99 24.21 3 7 

4 46.46 7.37 4 

5 69.94 15.15 5 6 

6 84.27 41.92 9 10 

7 54.74 10.66 11 

8 56.74 22.16 13 

Fig. 16b. Reduc t ion  of paral lel ism for schedules shown in Fig. l l b .  

SYstem: 8×8x8, r = 10/1, TpA R ---~ 3804 

Processor To ta l  (%) Uti l izat ion Modules 

id uti l ization ( ~ )  assigned 

1 72.34 71.22 1 

2 81.81 78.86 2 

3 78.12 76.47 3 

4 87.44 85.56 6 

5 86.64 85.79 7 

6 61.75 61.42 10 

7 56.76 55.92 12 

8 44.93 44.45 13 

8 
4 5 

9 

11 

Fig. 16c. Reduct ion  of parallel ism for schedules shown in Fig. 11c. 

For  comparison purposes we reduced the 13 cluster obta ined  in the case of the mult iple bus 

archi tec ture  to 8 assuming an 8 processor system. The results are shown in Fig. 15 and Fig. 

16. We compare  the two archi tectures  in Fig. 17 by showing t ime frames and average to ta l  

t Note tha t  the best ma tch  between the appl icat ion we studied and processor uti l izations up. 

the two sys tems considered depends on  the ratio r. 
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Banyan  In te rconnect ion  Mult iple 

Bus In te rconnec t ion  

(8 processor system) 

r z 1/1 TpA R -~ 2529 

t 67.07 Up 

r ~- 1/10 TpA R ~ 1083 

up t ~ 74.83 

r ~- 10/1 Tpk R --- 3706.3 
t Up ==:= 73.10 

(8x8xl) 
TpA R = 2421 

t 73.68 Up--- 

(8×8×8) 
Tp&t~ ~ 2421 

u t ~ 73.70 

(8×8xl) 

TpA R ~--- 1207 

Up t ~- 1134 

(8×8×8) 
TpA R ~ 1134 

u~ ~ 71.35 

(8x8×1) 

TpA R ~ 3804 
u t ~ 71.22 

(8×8×8) 
TpA R -~ 3804 

u t ~-= 71.22 

Fig. 17. Per formance  compar ison of mult ibus  and Banyan  a rch i tec ture  for the robot  elbow 

manipu la to r  appl icat ion.  

The smallest  t ime f rame and  the  highest  processor  u t i l iza t ion were ob ta ined  for r ~ 1 / t0 ,  

and a Banyan  in terconnect ion  system. The 8xSx8 mult iple  bus sys tem has a higher 

bandwid th  t h a n  the  Banyan  network,  and yet  the  schedule produced  when a Banyan  sys tem 

was considered results  in bes t  performance.  F r o m  this we conclude the  usefulness of the  

mapping  methodology in match ing  appl ica t ion  to  a rchi tec tures .  Speed ups and  efficiency fac- 

tors for the 8 processor systems are p resen ted  in Fig. 18. 
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Speed up Efficiency 

(8 processor systems) 

Banyan Multiple bus Banyan Multiple bus 

(1 bus) 4.836 (1 bus) .604 
r : 1/1 4.630 (8 busses) 4.836 .578 (8 busses) .604 

r = 1 / io  i.965 (i bus) i.763 .245 (i bus) .220 
(8 busses) 1.877 (8 busses) .234 

r = 10/1 5.744 (1 bus) 5.596 .718 (1 bus) .699 
(8 busses) 5.596 I (8 busses) .699 

Fig. 18. Comparison of speedups and efficiency for 8 processor Banyan and multiple bus 
interconnected systems. 

7. CONCLUSIONS 

The mapping of applications to multiprocessor systems provides a very good indication 
of how well the application is matched to the system. We have examined a robot elbow 
manipulator application which was partitioned into communicating modules at the equation 
level. A precedence graph representation was used. We have approximated different parti- 
tions of the same application by changing the ratio of processing to communication on a per 
module basis. Two classes of multiprocessor systems have been examined, the multiple bus 
systems and the Banyan multistage networks. They have been represented by their 
specification and their Queueing Delay vs. Utilization of their interconnection networks. A 
fast heuristic algorithm was used for the two different steps of the mapping method. In the 
first step, schedules of modules for every processors were produced. A full advantage of the 
application's parallelism was taken and the available system could match that. In the 

second step, a reduction of parallelism of the application was used to reduce the number of 
clusters to the number of available processors. For this step, new schedules were aIso pro- 
duced. In the third step, the layout of the clusters to the processors is required. For the 
multiprocessor systems we have used it is a simple assignment of clusters to processors, since 
all processors are equally distant. 

Our results indicated that the best match between an application and a system depends 
on the partition used, i.e., depends on r. The highest speed up was obtained when r was the 
highest and the parallelism of the application was fully exploited. This was possible only in 
the case of the multiple bus architecture systems. The processor utilization obtained were 
low. Thus, for the particular application studied best speed ups were obtained at the expense 
of underutilizing the system. 

When the parallelism reduction step was applied (one less constraint) then the speed ups 
were lower but the processor utilizations were higher. After the application of this step it 
was possible to compare the match of the two different classes of systems to the application. 
Our results indicated again a dependence or r. For r : l  the multiple bus system produced 
the best speed up and at the same time highest average processor utilization while for r : . l ,  



541 

10 the Banyan network produced best speed ups and the highest average processor utiliza- 
tions. 

Our results indicate the usefulness of the applied methodology to the solution of the 
mapping problem. It provides performance measures which closely agree with our initiation 
and at the same time it provides the assignments of modules to processors which are not at 
all obvious. 
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