
T H E M A P P I N G O F A P P L I C A T I O N S T O M U L T I P L E BUS A N D B A N Y A N
I N T E R C O N N E C T E D M U L T I P R O C E S S O R S Y S T E M S : A C A S E S T U D Y

C a t h e r i n e E. Hous t i s *
M o k h t a r A b o e l a z e
E l e c t r i c a l E n g i n e e r i n g D e p a r t m e n t
P u r d u e U n i v e r s i t y

A b s t r a c t

We study the mapping of a robot elbow manipulator application, to two different classes
of multiprocessor systems the multiple bus and Banyan interconnected systems. A compara-
tive performance analysis of the two systems is performed. The application is parti t ioned
into communicating computational modules and three different part i t ions of it are approxi-
mated. Fas t heuristic algorithms are used to produce assignments of modules to processors.
A number of performance measures are also employed to evaluate the matching of
applicat ion/archi tecture pairs.

1. I N T R O D U C T I O N

In previous work [HOUS83], [HOUS87a], we have outlined a mapping methodology which
has been applied to the computations involved in the solution of par t ia l differential equa-
tions. We continue this study here for a different application, a robot arm elbow manipula-
tor and two different system architectures, multiple bus and banyan interconnected parallel
multiprocessor systems.

The mapping problem arises when the number of computational modules required by the
application exceeds the number of processors availab]e or when the interconnection structure
of the application's computational modules, differs from the interconnection structure of the
parallel machine [BERM84]. In [BOKH81], the mapping problem is defined as the assignment
of modules to processors and the problem of maximizing the number of pairs of connnunicat-
ing modules tha t fall on pairs of directly connected processors. It is also shown, that the
mapping problem is equivalent to a graph isomorphism problem, or to a bandwidth reduction
problem. In either case, an exact algorithm for the mapping problem is unlikely to be found.
Research in this area has concentrated on efficient heuristics which give good solutions in
most cases, [BERM85], [BOKH81], IJENN77], [ABRA86], [GILB87].

The application we consider here, is the solution of the Newton Euler equation for the
motion of a six degree of freedom manipulator whose joints are all rotational, i.e., an elbow
manipulator. The computations involved are modelled by a precedence graph, where each
node in the graph represents a computational module's computation and memory require-
ments and each link represents communication requirements between modules. The decom-
position of the applications computation is given in [KASA85], and it is broken down in such
a way tha t parallelism is used to maximum advantage.

*This research was supported by NSF grant DMC-8508684A1.

515

The paratlel multiprocessor system architectures, are composed of processors each hav-
ing a local memory and shared memory modules and they are interconnected via multiple
busses or a Banyan switch. The systems are homogeneous, i.e., they have identical processors
and identical local or shared memories. The processors are assumed uniprogrammed. Com-
munication is performed via message passing between the processors by using common access
to shared memories and the interconnection network. The communication network of the
multiprocessor system is represented by its performance characteristic which is the communi-
cation Queueing Delay vs its Utilization. This requires its performance analysis. We have
used one of the multiples bus interconnection models presented in [MARS831, and performed
a similar performance analysis. We have also performed a comparable analysis for the
Banyan interconnection network.

The solution of the mapping problem, involves a number of steps which can be per-
formed somewhat independently [HOUS87a]. (a) Schedule the computational modules into
parallel clusters, (b) reduce the number of parallel clusters to the number of parallel proces-
sors in the machine then (c) imbed the application into the machine. VVe concentrate on a
heuristic algorithm, that is used in step (a) and also in step (b) with a simple modification.

Step (c) for the interconnection architectures used and homogeneous systems is trivial since
there is a communication link between all processors, or processors can be considered equally
distant. An arbitrary assignment of clusters obtained in step (b) to processors is sufficient.
We have discussed this step (c) in [HOUS87c]. Thus we shall concentrate on steps (a), and
(b).

In [HOUS83], [HOUSS7a] only step (a) of this approach has been demonstrated for appli-
cations whose precedence graphs had no more than 50 communicating modules and a bus
interconnected system architecture. In this work, a much larger graph is considered that has
105 nodes and two different system architectures are tested. The architectures are chosen so
that the parallelism reduction, (step (b)), can be evaluated. We consider on one hand, a mul-
tiple bus architecture where the number of processors can be increased (or decreased) by one.
In this case, the application's parallelism can be fully exploited since the number of proces-
sors can always be adjusted to equal the number of paralIel clusters obtained in step (a).
Then step (u) is a sufficient solution to the mapping problem. If the system has a fixed
number of processors which are less than the clusters obtained, then the parallelism reduc-
tion step (b) is necessary. In a Banyan interconnected system, the number of processors can
be increased (or decreased) only in powers of 2. Thus, if the number of clusters obtained is
not a power of 2 then it is cost effective to use a system where the number of processors is
the highest power of 2 and less than the number of clusters. In this case, the parallelism

reduction, step (b), is unavoidable.

In a number of heuristic algorithms dealing with step (a) [CHUB0] [EFE82], [JENN77],
[STO78], [GYL76], [BERM87] an assignment of computational modules to processors is pro-
duced by minimizing the communication required among processors. We assign a cost to this
communication which is the interconnection system's Queueing Delay. We claim that a
different schedule is produced when the system's Queueing Delay is involved and that it is a
more realistic schedule. We demonstrate this in Section 4.2. The use of Queueing Delay
models simplifies the complexity of the mapping problem. A number of performance meas-
ures are also calculated which indicate how good applications/architecture pairs are matched.

In Section 2, the performance analysis of two interconnection networks is given. In Sec-
tion 3, the application is presented and how different partitions of the application are

516

obtained. In Section 4, step (a) of the mapping problem is summarized and the results
obtained using the two systems and the considered application are given. In Section 5, the
parallelism reduction, step (b), is performed and the resulting schedules are presented. A
comparison of the performance of the two systems is also demonstrated. In Section 6, conclu-
sions about this methodology, application and systems are discussed.

2. C O M P A R A T I V E P E R F O R M A N C E ANALYSIS OF
I N T E R C O N N E C T I O N N E T W O R K S

In steps (a) and (b) of the mapping problem, the objective is to exploit the parallelism of
the multiprocessor system and that of the application in order to obtain optimal speed ups
for the application. For this, two conditions must be met. (1) The application's computa-
tions must be decomposed into smaller sub-computations that can run in parallel, and at the
same time the amount of data transfer between these sub-computations must be kept at a
minimum. We further discuss this problem in the next section. (2) The system overhead
must also be kept at a minimum. Our work has concentrated on the second condition. The
system overhead comes mainly from the communication conflicts of the processors at the
different memory modules or at the interconnection network.

In the systems we consider, processors have approximately comparable capabilities. All
processors share access to a common memory module, I /O channels, and peripheral devices.
Most importantly, the entire system is controlled by a single integrated operating system pro-
viding interactions between processors and their programs at various levels. Besides the
shared memories and I/O devices, each processor has its own local memory. Interprocessor
communications can be done via the shared memories. In this mode of operation, each pro-
cessor executes a program stored in its local memory, on a set of data stored in the same
local memory. When processor i wants to communicate with another processor j, either
requesting a set of data or provldlng to the other processor with some needed data, processor
i forms a message and sends it to the common memory module of processor j, via the inter-
connection network.

There are many physical configurations for the interconnection network. The simplest

form is the single bus, where a single bus is used by all the processors to access any memory
module. The single bus is very inexpensive, but the bandwidth of such a network is usually
low, since only one processor can use the bus at any time, and thus it is inadequate even for
a small number of processors. At the other end of the spectrum is the crossbar switch. In a
crossbar interconnection, any processor can access any memory module, given that no other
processor is accessing the same memory module. Although the crossbar interconnection offers
the highest possible bandwidth, it is very expensive, and considering todays technology, it is
the most expensive part in the system. Moreover, it will be very hard to justify its use espe-
cially for large systems.

In this paper, we study two classes of interconnection networks. The multiple bus net-
work and the multistage banyan network. Notice that the single bus and the crossbar net-

work are both a special case of the multiple bus network.

517

2.1 Banyan network

The banyan networks have been proposed mainly for SIMD "Single Instruction Multil~le
Data" machines, where more than one processor executes the same instruction on a different
set of data. However, they have been used successfully in MMD "Multiple Instructions Mul-
tiple Data" machines. They can be divided into two main categories, Single stage and Mul-
tistage networks.

Single s tage, also called recirculating networks, because data may have to circulate
through more than one processor to reach their final destination. Fig. 1, shows the different
configurations for the single stage cube network.

Fig. 1. Single Stage Cube Network.

Mul t i s tage ne tworks , connec t k processors , v ia logk stages and allow communica-
tion between any two processors to take place in logk steps. The multistage networks can be
characterized by three parameters, [SIEG85], interchange box, topology and control struc-
ture.

Interchange box is a two input two output switch, used as the basic building block for
the multistage interconnection network. Fig. 2, shows an interchange box with two inputs
marked a I and a 2 and two outputs marked b 1 and b 2. There are four configurations for the

interchange box (1) straight, where a i ~ bi, a 2 ~ b2; (2) exchange, where a i ~ b2, a 2 --*

bi; (3) upper broadcast, where a I --* hi, a 2 --~ bi; and (4) lower broadcast, where a i -+ b2,

a 2 ---* b 2. A two function interchange box can only take the configdration of straight and

exchange, while a four function interchange box can take any one of the four configurations

[SIEG78].

Topology is the actual connection between the different interchange boxes in the
different stages. One topology is the indirect binary /c-cube, shown in Fig. 3, for k--8. The
input to the first stage is numbered 0 through 7. Any interchange box in stage i is connected
to two inputs that differ in the fih bit of their binary representation. Straight configuration
for an interchange box will connect two numbers having the same i th bit, while exchange
configuration will connect two numbers that are different in their i th bit. The indirect

518

a l ~ bl
a 2 b 2

Fig. 2. I n t e r c h a n g e box.

b i n a r y k cube ne twork is used in the s t a r a n ne t w ork [BATC76]. A n o t h e r ne twork is the

Omega ne twork , [LAWR75], shown in Fig. 4. T he omega ne twork is bused on the perfect

shuffle in t e rconnec t ion ne twork , which routes d a t a f rom posi t ion i whose b i n a r y represen ta -

t ion is i~_ 1 • • • i l l o to posi t ion s (i) whose b i n a r y r e p r e s e n t a t i o n is ik_ 2 • ' ' i l ioik_ ~.

C o n t r o l s t r u c t u r e . The cont ro l s t r u c t u r e of t he ne twork can be e i the r indiv idual s tage

control or ind iv idual box control . In the indiv idual s tage control , t he same control signal is

used to set all t he boxes in the s tage, so all the boxes in one s tage should have the same

configurat ion. I t is c lear t h a t the indiv idual box cont ro l is more efficient, however, it will

require every message to have a heade r to de t e rmine its des t ina t ion . The individual boxes

should have cont ro l c i rcui t ry to in t e rp re t the des t i na t i on heade r and set its own

configurat ion. In the res t of th is paper , when we m e n t i o n a b a n y a n ne twork we m e a n a mul-

t i s t age ne twork w i th indiv idual box control .

2 .2 M o d e s o f o p e r a t i o n

We first in t roduce the o rgan iza t ion of the sys tem. The sys tem is composed of k proces-

sors and k memory modules, (a l though we are a s suming t h a t the n u m b e r of processors is the

same as the n u m b e r of memory modules, the same analys is can be appl ied when the n u m b e r

of processors is less t h a n the n u m b e r of the memory modules) . E a c h processor has its own

p r iva te memory module, where the p r o g r a m a n d t he d a t a are s tored. If processor i w a n t s to

commun ica t e wi th processor j , it p repares a message a n d sends it to the memory module

n u m b e r j where th is memory can be accessed by processor j. We are assuming an asynchro-

nous communica t ion , so any processor can be in any one of th ree s ta tes .

1) The processor is execut ing a p r o g r a m in its local memory;

2) The processor is send ing a message to a n o t h e r processor;

3) The processor is b locked wai t ing for the i n t e r connec t ion ne twork to deliver a mes-

sage to a n o t h e r processor.

Processors in the first s tage are considered ac t ive processors, i.e., processors doing useful

work not b locked or c o m m u n i c a t i n g wi th o the r processors. W e do no t accoun t for the t ime

t a k e n by any processor to r ead a message sent. by a n o t h e r processor to i ts memory module,

since th is is considered to be p a r t of the p r og r am execu ted by the processor.

We are assuming t h a t the t ime be tween the gene ra t ion of messages is exponent ia l ly dis-
1

t r i b u t e d r a n d o m va r i ab l e w i th m e a n -~, a n d the length of the message is an exponent ia l ly

1
d i s t r ibu ted r a n d o m var i ab le wi th m e a n - - . We are also assuming t h a t an access request

f rom processor i is d i rec ted to memory module j w i th p robab i l i ty Pij = l / m where m is the

519

Fig. 3. Binary k-cube network (k=8).

number of memory modules (rn~-k). If any processor needs to send a message to another pro-
cessor, it stops executing its program. Then, if the interconnection network can establish a
path from the source processor to the destination module it will do so instantaneously with

no delay and the sending processor will begin to send its message. When the message is com-
pleted the sending processor will return to its active state. If there is contention at the inter-
connection network or destination module the processor is put in queue, "blocked", waiting
for the contention to be resolved and then transmits its message.

2.3 P e r f o r m a n c e A n a l y s i s of a B a n y a n N e t w o r k

There have been some atterapts to analyze the banyan network, IPATE791 [KRUS83].

However, in their analysis they considered the system to be synchronized. At the beginning
of each cycle, every processor generates a message with a certain probability and they calcu-
lated the probability of message acceptance. In this paper, we assume the system to be asyn-

chronous. The length of the message generated by any processor is an exponentially distri-
buted random variable, and the time interval between the generation of two consecutive mes-
sages by the same processor is also an exponentially distributed random variable. We shall
calculate the expected number of active processors, and the average delay encountered by an

average message.

We are representing the system as an M / M / c / K / K queueing system "Machine repair
model with K machines and c repairmen", [ALLE78]. This model, assumes a population of k
identical devices (processors), each of which has an operating time of O time units between

520

Fig. 4. Omega network.

1
breakdowns, O having a exponential distribution with average value of -~. The repairman

(communicatioin network) repairs the machines with an average repair time of 1__ time units.

Fig. 5, shows the state transition diagram for the M / M / c / K / K queueing system with a ser-
vice rate c i at state i. Notice that the service rate will depend upon how many customers

(processors) are requesting service.

k ;L (k-1) X (k-2) X X

IJ, C 1 [.iC 2 #O k

Fig. 5. State transition diagram for the M / M / c / K / K queueing system.

To calculate % we have to know how many requests will go through the network if i

processors request to send messages at the same time. Consider the first stage of the banyan
k

network as shown in Fig. 3, or 4, where there are - - switches, each switch connected to 2
2

inputs. If one input is active, i.e., it is requesting to send a message and the other input is

521

idle, then the average throughput of this switch is 1. If two inputs are active at the same
time, then the average throughput of this switch is 1.5 [PATE79]. Thus, the expected
nmnber of messages to go through one stage of the banyan network given tha t there are i
requests equals the expected number of switches with one active input × 1 ÷ the expected
number of switches with two active inputs x 1.5. The probabi l i ty tha t any switch chosen at
random has one active input is p i, where

2 q k - - i)

vl = k(k-1))

The probabil i ty tha t any switch chosen at r andom has two active inputs is P2, where

q i - i)
v2 = k (k - i)

Since the number of switches in one stage is k/2, then the expected number of messages to go
through one stage given i requests is ¢(i) , where

¢(i) = (pi+l.Sp2)~ i >_ 1

¢(i) = i

In a banyan network with k inputs we have logk stages. We can calculate the average
number of messages to go through the network in a recursive manner . If c(i) is the average
number of messages to go through the network given tha t there are i requests, then let f¢(i)
= expected number of messages tha t wilI go through the ~-th stage given tha t the input in

the first stage will be i. Then,

fo(i) = (~(f0_l(i))

~(2k-0.si-i.s)
with fl(i) = ¢(i) = (pl+1.5P2) = 2 (k -1)

and c(i) = flogk(i)

After obta ining the service rate for the different states of the t rans i t ion d iagram in Fig. 5,

the probabi l i ty of being at s tate i is, Pi, where

= ~ k ! __ 1
Pi Po (a--):n" :,,

C(,]) y-i

with P0

The expected number of processors wait ing in a queue is Lq, where

k
Lq = 2 u(i-c(i))Pi

i=1

and

P0 =

The actual request rate is X, where

0 x > 0 u(x) =
x < O

522

k

where Wq is the average time a processor spends in the queue. After applying Little's for-

mula, we obtain

Lq 1 W 1 L q
wq - × - q+Tj-T

solving for Wq, we obtain

1 1 Lq(+ 7)
Wq = k--Lq

By normalizing the time with respect to i and noticing that the total delay is the sum of

the waiting time and the service time, we obtain

k+Lqp k
D - , where # :

k--Lq p

D is the average delay per message. The interconnection network utilization, U is

U = I - - P o

and the number of Active Processors (AP) is

k
A P = E jPj

2.4 P e r f o r m a n c e ana lys i s of a m u l t i p l e b u s s y s t e m

In a multiple bus system, we assume k processors and m memory modules connected

through a b bus interconnection network, as shown in Fig. 6. When processor i needs to
access memory module j, processor i will check to see if there is an available bus. If one is

found and memory module j is free (no other processor is accessing it), then a path from pro-
cessor i to memory module j is established immediately with zero delay. If there is no avail-
able bus or there is another processor accessing memory module j, then processor i is blocked
in a queue waiting for a bus, or for memory module j, or for both. Marsan and Gerla,
[MARS83], analyzed the Markov chain of such a system. They concluded that the exact
Markov chain is not easy to handle, because the number of states will increase very rapidly
with the system size. They introduced four approximations with moderate computational
complexity. In this work, we use an approximation which is very similar to approximation
C2 in their work, which gives a lower bound for the average number of active processors. We
analyze the system using this approximate model, and we use Pi, where Pi is the probability

of having i processors requesting access to the memory (either accessing a memory module or
waiting in a queue). Using the machine repairman model with k servers, [ALLE78], the
expected number of processors waiting in a queue is lq, where

k
lq = E

i=0

P~ is given in [MARS83] and is

523

and

and

where

[__~]k--i k! k- i~ lp k

[k-x
b-1 q-b
E jpy(l))+b 2 [Pb(J+b)Pm-b(Q--2b--j+m)]

/~9 = j=~ y=o Q>o
b - - 1 ~ - b ~ - -

pj(9)+ 2 [Pb (j+b)Pm-b (i)--2b - - j+m)]
i=J i=o

p/(~) = py(Q-j)+pi_l(Q-j)+...+pl(~)-j)+po(~-j)
with initial conditions

pj(9)=0 ~<y
po(~)=o 9>o
pf(i)) = 1 j~O

In Fig. 7, 8 the performance of the two systems is plotted for 8 processor systems.

Fig. 6. A kxrnxb multiple bus system.

bus 1
bus 2

b~s b

8. A R O B O T E L B O W M A N I P U L A T O R A P P L I C A T I O N

The representation of an applications computations by a precedence graph requires a
proper partitioning of the application into computational modules. Partitioning techniques
via a system's compiler are presented in [SARK86]. There are applications which are amen-
able to mathematical decomposition techniques [OLEAR85], [BOKHS1], [MA.RI871. In the
applications we have studied, [HOUS87a], knowledge of the application allow the use of
mathematical decomposition to partition it and identify potential parallelism among modules.
An integration of compiler techniques and decomposition techniques are needed for an
appropriate partition.

524

3.0-

.-$
a

2 .5 "

2.0-

1,5-

1.0

0.0

8-

0

£

1 bu >~
o <

"* "8 busses

o:4 0:6 0;8 10

6.

4,

2,

~ 8

1 bus/

0:2 0 o o 0:2 0:, o;6 o'8 t o
Utilization Utilization

Fig. 7. Queueing delay vs. Utilization of
interconnection networks.

busses

Fig. 8. Active Processors vs. Utilization
of interconnection nets.

Once a partition is decided, the execution times of modules and communication times
among modules have to be determined. In [HOUS87a] a parallel simulation language,
SIMON, [FUJI85], was used to obtain these times along with the synchronization delay of
each module. Since synchronization delay is an attribute of the application, it has been
included in the graph by adding it to the processing time of its corresponding module. If
communication paths among modules are not a priori known, then the partition is modeled
by a stochastic logic graph {HOU87b]. A stochastic analysis of this graph results in a pre-

cedence graph as described above.

In [KASA85] a partitioning of the robot elbow manipulator computations is given at the
equation level, i.e., computational modules represent the solution of an equation. We use this
partition with slight modifications. In Fig. 9, a precedence graph of the application is shown.
The numbers assigned to the modules are to simply identify them. Modules are grouped on
different levels and parallel modules are shown by being drawn at the same level. The execu-
tion times of modules are given on IKASA851 in #sec for an Intel 8087 processor. The parti-
tion given in [KASA851 is such that very little communication is required among modules and
it is considered negligible. We have modified this by assuming that the execution time, re, of

a module, includes both processor's processing time and communication time. If t x (#sec) is

the processing time and ty (#sec) is the communication time of a module, then tx+ty=t e. We

assume that synchronization delay is included in t~. We assign ty according to a uniform dis-

tribution to the outgoing links of its corresponding module. Thus, we have been able to
investigate the effect of varying the ratio, r, between the amount of processing and communi-
cation of a module, where r = tJty. Three values of r have been used r = 1, .1, 10. We note

at this point that by using r in this way, we only approximate what actually happens to a
partition when the communication increases and processing decreases or vice versa. Usually,
more communication is present when a partition is finer, i.e., module size (processing time)
gets smaller but at the same time the number of modules is increased. By changing r, we

525

?3

/ 6 7 '

~s

5~

o;

Fig. O. The precedence graph of the robot elbow manipulator.

change the partition grain but without increasing or decreasing the number of modules.

From the communication requirements between a pair of modules, Cij , w e calculate the

corresponding utilization of the interconnection network U, where

U -- cij
CxT

where C is the capacity of the interconnection network and T is the time frame during which
each parallel processor is running. This time frame will be described in the following section

526

and it represents a time constraint within which the application is required to complete exe-
cution.

4. S C H E D U L I N G T O M I N I M I Z E C O M M U N I C A T I O N D E L A Y

The first step of the mapping problem deals with the scheduling of modules into parallel
clusters. A heuristic algorithm is used which is based on the minimization of communication
delay between modules. The algorithm's input is the information represented in the
application's precedence graph, the multiprocessor system specifications (processor speed,
memory availability, bandwidth) and the Queueing Delay vs Utilization characteristic of the
interconnection network. A detailed presentation of the algorithm's parameters and heuristic
technique used is presented in [HOUS87b]. Here we summarize for completion purposes. The
merit of this heuristic is that it is fast, that is, its computational complexity increases only
linearly with the number of links in the application. The scheduling problem is a constraint
minimization problem as follows:

(i) r esource c o n s t r a i n t s :

- - Every computational module must fit into the memory assigned.

- - Computations must have enough processor time.

(ii) pa ra l l e l i sm c o n s t r a i n t :

- - parallel modules cannot be assigned to the same processor.

(iii) ar t i f ic ia l c o n s t r a i n t

- - Processing time on each processor is limited to T (a parameter).

ob jec t ive func t ion :

- - minimize the queueing delay of the multiprocessor system interconnection network,
due to the application's communication requirements.

The time frame T is used to calculate the utilization of the interconnection network accord-
ing to equation (1), for every cij. The corresponding queueing delay is then found from Fig. 7

depending on which interconnectlon network architecture is used. T is also used to calculate
the processor's utilization every time a pair of candidate modules is merged, (see next sec-
tion), and check if constraint (i) is satisfied. After the module assignment to processors is
completed, the final processor utilizations are calculated using the final value of T.

4.1 The heur i s t i c a l g o r i t h m

For a specified time frame value of T
Start

Assign one processor per module.
Iteration

(a) make up a list of eligible pairs of modules which are ordered according to longest
amount of required communication and thus queueing delay among them.

(b) If no constraints are violated merge the pair of modules which will result in the max-
imum reduction of the objective function. If there is more than one pair then merge the

527

pair that results in the least processor loading; if there is still more than one, select a
pair at random.

If we define by np the potential number of parallel modules in the application graph, and

by cp the number of parallel clusters obtained by the algorithm, then cp>np. The initial

value of T is large since the assignments of one module per processor represents the worst
possible queueing delay in the systems. The value of T is decreased until T = TpAR where

TpA R is the shortest time for which the allocated processors can run the application in paral-

lel. It turns out that TpAR is a close upper bound of the elapsed time of the application when

synchronization delay for each module is incorporated as part of the processing time of
modules [HOUS87a]. TpAR is the optimal time frame. Further reduction of T results in more

and more processors to be used.

4.2 Resu l t s

The robot elbow manipulator application, shown in Fig. 9, was allocated to a lexmxb
parallel multiple bus system architecture, where k is the number of processors, m is the
number of common memory modules (m-~k), and b is the number of common busses. In our
application np ~ 11 and cp : 12 or 13. A 13×13×1 and a 13×13×8 systems have been used.

An 8 processor Banyan interconnected system was also used. In the case of a multiple bus
architecture the number of parallel clusters obtained is equal to the number of processors in
the system. Outputs of the heuristic algorithm for different values of the ratio r, (r ~ pro-
cessing time/communication time per module), and the two multiple bus systems are shown
in Figures 10a,b,c and Figures 11a,b,c. A schedule of assigned modules to each processor, its

utilization and the optimal the frames TpAR obtained are given. We are also showing the

total processor utilization which includes the processing and communication delay required
by all modules assigned cluster to a processor. A number of observations can be made by
comparing Fig. 10 and Fig. 11.

First, we observe that optimal time frames are shorter in the case of an 8 bus system as
compared to the 1 bus system, for r ~ 1, 1/10. This is expected, since the 8 bus system has
higher bandwidth and thus Iess delay and there is enough communication between modules to
affect the scheduling decision. Note that in both cases, different processor schedules have
been obtained. In the case r : 10/1, communication delay does not play a significant role in
scheduling (only total utilizations are slightly different when we compare the output of the 8
busses system, to the output of the 1 bus system). As a result identical schedules have also
been obtained. From Fig. 7, one can see that unless communication between modules is such
that it results in over 50~ utilization of the interconnection network there is no significant
difference in queueing delay between the 1 bus and the 8 busses system. We note that pro-
cessor utilizations are low. This is due to the parallelism constraint of modules that limits
their scheduling possibilities.

In Fig. 12, a schedule is shown which is based on minimizing the communication among
modules without assigning a cost to it, namely, its corresponding queueing delay (no system is
assumed). Note that the schedule produced is different as compared to the same case
schedule in Fig. 10b (1 bus system). Thus, involving queueing delay in the scheduling deci-
sion instead of simply the amount of communication among modules produces different
results. If we compare Fig. 12 to its corresponding case in Fig. l l b (8 busses system), then
one observes that the same schedule has been obtained. This is due to the fact that a
13×13×8 system is practically a crossbar switch unless the communication between parallel

528

m o d u l e s is v e r y h i g h a n d t h u s r e s u l t i n g in i n t e r c o n n e c t i o n u t i l i z a t i o n v a l u e s g r e a t e r t h a n

8 0 % , w h i c h is n o t t h e c a s e in t h i s a p p l i c a t i o n . O n e s h o u l d n o t f o r g e t t h a t if t h e r e a r e

m o d u l e s w i t h h i g h c o m m u n i c a t i o n a m o n g t h e m t h e y a re s c h e d u l e d i n t o t h e s a m e p r o c e s s o r

un l e s s t h e y a r e p a r a l l e l m o d u l e s . T h i s e l i m i n a t e s m o s t of t h e h i g h c o m m u n i c a t i o n b e t w e e n

m o d u l e s .

s y s t e m : 13x13x1 , r ~-- 1 /1 , TpA R 2206]

Processor Total (%) Utilization Modules
id utilization (%) assigned

1 51.13 45.33 1 57 81 83 66 67 69 72 92 98 104
2 70.31 68.67 2 37 49 59 65 71 73 86 87 93 97 99 100 101 102 103 105
3 50.50 36.49 3 7 9 24 36 42 48 54 78
4 35.34 20.85 4 I0 16 46

5 35.34 20.85 5 11 17 47
6 36.35 21.98 6 12 18 60
7 36.60 21.76 8 14 15 29
8 51.65 38.30 13 41 43 53 56 62 68 91
9 71.26 57.34 19 20 21 22 23 26 31 32 33 34 35

10 83.36 64.59 25 30 40 52 76 77 80 84 90 95
11 51.77 32.41 27 38 44 50 74 88
12 58.79 46.69 28 55 58 64 70 81 85 96
13 75.02 55.52 39 45 51 75 79 82 83 89 94

Fig . lOa. S c h e d u l e of m o d u l e a s s i g n m e n t s of t h e r o b o t e l b o w m a n i p u l a t o r .

s y s t e m : 13×13×1, r -~ 1 /10 , T p ~ ~ 4054]

Processor Total (%) Utilization Modules
id utilization (%) assigned

1 10.88 3.05 1 27 28 61 66 67 72 92 98 104
2 18.94 4.26 2 7 24 36 37 42 48 49 54 78 87
3 14.82 4.62 3 9 58 64 70 81 85 96

4 15.86 2.06 4 10 16 46
5 15.86 2.06 5 11 17 47
6 15.86 2.17 6 12 18 60
7 16.29 2.15 8 14 15 29
8 10.16 2.24 13 25 43 57
9 18.93 5.87 19 20 21 22 23 26 31 32 34 35

10 18.93 5.40 30 39 45 51 55 75 79 83 89 94 100
11 9.80 5.76 38 44 50 73 74 82 88 93 99 102 105
12 19.29 7.80 40 41 52 53 76 77 80 84 90 91 95 101
13 15.31 5.25 56 59 62 65 68 71 8B 97 103

Fig . 10b. S c h e d u l e of m o d u l e a s s i g n m e n t s of t h e r o b o t e l b o w m a n i p u l a t o r .

system: 13×13×1, r z 10/1, TpA R - ~ 3 3 0 4

529

Processor T o t a l (%) Ut i l iza t ion Modules
id u t i l iza t ion (%) assigned

1 12.97 12.38 1 27 30 61 67

2 42.08 40.16 2 6 12 18 37 49 60 87
3 89.98 88.03 3 9 39 41 45 51 53 75 79 83 89 91 94 100

4 26.67 25.31 4 10 16 46

5 26.67 25.31 5 11 17 47
6 67.46 65.20 7 8 14 15 24 29 36 42 48 54 78

7 25.25 24.76 13 43 57 63 69
8 70.90 69.60 19 20 21 22 23 26 31 32 33 34 35

9 34.31 33.29 25 28 55 66 72 92 98 104
10 71.10 70.70 38 44 50 73 74 82 88 93 99 102 105

11 74.85 74.00 40 52 76 77 80 84 90 95 101

12 65.36 64.37 56 59 62 65 68 71 86 97 103
13 51.73 51.17 58 64 70 81 85 96

F i g . l O c . S c h e d u l e o f m o d u l e a s s i g n m e n t s o f t h e r o b o t e l b o w m a n i p u l a t o r .

system: 13x13×8, r z 1/1, TpA R z 2125

Processor T o t a l (%) Ut i l iza t ion Modules
id u t i l i za t ion (%) assigned _ _

1 58.87 58.35 1 61 66 67 72 73 87 92 93 98 99 100 101 102 103 104 105

2 44.27 30.12 2 27 37 41 49 53 91

3 81.15 62.35 3 9 39 45 51 75 79 82 83 89 94

4 32.92 21.65 4 i0 16 46

5 32.92 21.65 5 11 17 47
6 34.00 22.82 6 12 18 60
7 74.58 55.76 7 8 14 15 24 29 36 42 48 54 78

8 61.06 52.24 13 43 56 59 62 65 68 71 86 97
9 70.36 59.53 19 20 21 22 23 26 31 32 33 34 35

10 27.30 22.12 25 57 63 69

11 57.89 48.47 28 55 58 64 70 81 85 96

12 76.96 64.71 30 40 52 76 77 80 84 90 95

13 44.00 31.29 38 44 50 74 88

F i g . l l a . S c h e d u l e o f m o d u l e a s s i g n m e n t s o f t h e r o b o t e l b o w m a n i p u l a t o r .

f s y s t e m : 1 3 × 1 3 × 8 , r ~ 1 / 1 0 , T p A R : 3 8 8 1 I

530

Processor T o t a l (%) Ut i l iza t ion Modules
id u t i l iza t ion (%) ass igned

1 8.86 2.34 1 13 25 43 57 63 69

2 15.53 4.45 2 7 24 36 37 42 48 49 54 78 87
3 13.22 4.82 3 9 58 64 70 81 85 96

4 13.51 2.15 4 10 16 46

5 13.51 2.15 5 11 17 47
6 13.53 2.27 6 12 18 60
7 13.88 2.25 8 14 15 29
8 16.83 5.93 19 20 21 22 23 26 31 32 33 34 35

9 11.30 6.04 27 28 61 66 67 72 73 92 93 98 99 100 101 102 103 104 105
10 26.23 6.21 30 39 45 51 55 75 79 82 83 89 94

11 15.92 3.12 38 44 50 74 88
12 20.40 8.06 40 41 52 53 76 77 80 84 90 91 95
13 12.65 5.06 56 59 62 65 68 71 86 97

F i g . 1 1 b . S c h e d u l e o f m o d u l e a s s i g n m e n t s o f t h e r o b o t e l b o w .

s y s t e m : 1 3 x 1 3 × 8 , r ~ 1 0 / 1 , T p A R : 3 3 0 4]

Processor To ta l (%) Ut i l i za t ion Modules

id u t i l iza t ion (%) assigned

1 12.95 12.38 1 27 30 61

2 42.02 40.16 2 6 12 18

3 89.93 88.03 3 9 39 41

4 26.63 25.31 4 10 16 46

5 26.63 25.31 5 11 17 47
6 67.40 65.20 7 8 14 15
7 25.24 24.76 13 43 57 63

8 70.87 69.60 19 20 21 22

9 34.28 33.29 25 28 55 66
10 71.08 70.70 38 44 50 73

11 74.82 74.00 40 52 76 77
12 65.33 64.37 58 59 62 65

13 51.72 51.17 58 64 70 81

67

37 49 60 87

45 51 53 75 79 83 89 91 94 i00

24 29 36 42 48 54 78

69
23 26 31 32 33 34 35

72 92 98 104

74 82 88 93 102 105

80 84 90 95 101

68 71 86 97 103

85 96

F i g . 1 1 c . S c h e d u l e o f m o d u l e a s s i g n m e n t s o f t h e r o b o t e l b o w m a a i p u I a t o r .

531

s y s t e m : n o s y s t e m , r ~ - 1 / 1 0 , TpAR ~ 3880 I

Processor Total [%) Utilization Modules
id utilization (%) assigned

1 8.78 2.34 1 13 25 43 57 63 69
2 16.38 4.45 2 7 24 36 37 42 48 49 54 78 87
3 13.12 4.82 3 9 58 64 70 81 85 96
4 13.37 2.15 4 10 16 45
5 13.37 2.15 5 11 17 47
6 13.39 2.27 6 12 18 60
7 13,73 2.25 8 14 15 29
8 16.69 5.92 19 20 21 22 23 26 31 32 33 34 35
9 11.24 6.04 27 28 61 66 67 72 73 92 93 98 99 100 101 102 103 104 105

I0 25.97 6.20 30 39 45 51 55 75 79 82 83 89 94
11 15.76 3.11 38 44 50 74 88
12 20.24 8.05 40 41 52 53 76 77 80 84 90 91 95
13 12.55 5.06 56 59 62 65 68 71 86 97

Fig . 12. S c h e d u l e o f m o d u l e a s s i g n m e n t s o f t h e r o b o t e l bow m a n i p u l a t o r .

F r o m t h e a v a i l a b l e d a t a , one c a n c a l c u l a t e p e r f o r m a n c e m e a s u r e s s u c h as s p e e d u p a n d

ef f ic iency [SIEG82], w h e r e

e l a p s e d t i m e in u n i p r o c e s s o r s y s t e m
s p e e d u p =

e l a p s e d t i m e in m u l t i p r o c e s s o r s y s t e m

a n d if t h e r e a r e k p r o c e s s o r s in t h e m u l t i p r o c e s s o r s y s t e m t h e n

ef f ic iency = s p e e d up
k

O n t a b l e s 1,2 s p e e d u p s a n d ef f ic iency m e a s u r e s a r e g iven for t h e d i f f e ren t s y s t e m a r c h i t e c -

t u r e s .

1 3 × 1 3 x l m u l t i p l e

b u s s y s t e m

a r c h i t e c t u r e

r ~ - - I

S p e e d u p Ef f i c iency

5.308 .408

1
r - - .525 .040

10

10
r - - 6.441 .495

1

T a b l e 1: S p e e d u p a n d ef f ic iency d a t a for t h e s c h e d u l e s of F ig . 10a ,b ,c .

532

13×13×8 multiple
bus system
architecture

r = = l
Speed up Efficiency

5.510 .423

1
r - - .548 .042

10

10
r - - 6.443 .495

1

Table 2: Speed up and efficiency data for the schedule of Fig. l la,b,c.

Step (a) was also applied when the parallel system has a Banyan interconnection net-
work. The results are shown in Fig. 13a,b,c. 12 or 13 parallel clusters have been obtained.
The number of clusters depends primarily on the parallelism of the application, (np), and the

system involved in the scheduling decision. Our observation has been that for symmetric
graphs or almost symmetric graphs, [HOUS87a], the number of clusters obtained is equal to
the of parallelism of the graph. When the application graph does not possess any symmetry,
like the one we used here, the numbers of clusters is greater or equal to the graph's parallel-
ism. This is due to the mechanism of module merging which satisfies the parallelism and
time frame constraint. It can be regarded as a limitation of our heuristic algorithm since it
does not exhaust all possible schedules (NP complete).

t system: 8 processor, Banyan Interconnection, r = 1/1, TpA R ~ 2212]

Processor Total (%) Utilization Modules
id utilization (%) assigned

1 49.54 45.20 1 57 61 63
2 74.22 72.99 2 37 49 59

3 40.67 26.44 3 6 9 12

4 31.62 20.79 4 10 16 46

5 31.62 20.79 5 i i 17 47

6 71.65 53.56 7 8 14 15

7 28.82 22,60 13 30 43 56

8 67.58 57.18 19 20 21 22

9 60.56 52.20 25 39 45 51

10 46.79 32.32 27 38 44 50

11 55.60 46.55 28 55 58 64

12 87.66 78.64 40 41 52 53

66 67 69 72 92 98 104
65 71 73 82 86 87 93 97 99 102 103 105
18 60

24 29 36 42 48 54 78

62 68
23 26 31 32 33 34 35

75 79 83 89 94 100

74

70 81 85 96

76 77 80 84 90 91 95 101

Fig. 13a. Schedule of module assignments of the robot elbow manipulator.

533

s y s t e m : 8 p r o c e s s o r , B a n y a n I n t e r c o n n e c t i o n , r z 1 /10 , TpA R --~ 3883

Processor To ta l (%) Uti l izat ion
id u t i l iza t ion (%)

1 8.79 2.34 1 13 25 43
2 16.39 4.45 2 7 24 36
3 13.38 2.15 4 10 16 46
4 13.38 2.15 4 10 16 46
5 13.38 2.15 5 11 17 47
6 13.40 2.27 6 12 18 60
7 13.75 2.25 8 14 15 29
8 t6.71 5.92 19 20 21 22
9 11.24 6.20 30 39 45 51

10 26.00 6.20 30 39 45 51
11 15.77 3.11 38 44 50 74
12 20.26 8.05 40 41 52 53
13 12.56 5.06 56 59 62 65

Modules
ass igned

57 63 69
37 42 48 49 54 78 87

23 26 31 32 33 34 35
55 75 79 82 83 89 94
55 75 79 82 83 89 94
88
76 77 80 90 91 95
68 71 86 97

Fig . 13b. S c h e d u l e o f m o d u l e a s s i g n m e n t s of t h e r o b o t e lbow m a n i p u l a t o r .

s y s t e m : 8 p r o c e s s o r s , B a n y a n I n t e r c o n n e c t i o n , r ~ 10 /1 , Tp --~ 3306

Processor Total (%) Utilization Modules
id utilization (%) assigned

1 12.95 12.37 1 27 30 61 67
2 42.00 40.14 2 6 12 18 37 49 60 87
3 89.88 87.99 3 9 39 41 45 51 53 75 79 83 89 91 94 100
4 26.62 25.30 4 10 16 46
5 26.61 25.30 5 11 17 47
6 67.36 65.17 7 8 14 I5 24 29 36 42 48 54 78
7 25.23 24.75 13 43 57 63 69
8 70.83 69.57 19 20 21 22 23 26 31 32 33 34 35
9 34.27 33.27 25 28 55 66 72 92 98 104

10 71.05 70.67 38 44 50 73 74 82 88 93 99 102 105
11 74.79 73.96 40 52 76 77 80 84 90 95 101
t2 65.30 64.34 56 59 62 65 68 71 86 97 103
13 51.69 51.14 58 64 70 81 85 96

F ig . 13e. S c h e d u l e o f m o d u l e a s s i g n m e n t s o f t h e r o b o t e l b o w m a n i p u l a t o r .

5. R E D U C T I O N O F P A R A L L E L I S M

I n [HOUS87c] a n u m b e r o f h e u r i s t i c a l g o r i t h m s h a v e b e e n d i s c u s s e d for t h e r e d u c t i o n o f

p a r a l l e l i s m , s t e p (b). H e r e we a p p l y o n e o f t h e s e h e u r i s t i c s a n d p e r f o r m s t e p (b).

P a r a l l e l i s m r e d u c t i o n in n e c e s s a r y w h e n t h e n u m b e r o f p a r a l l e l c l u s t e r s o b t a i n e d in s t e p

(a) is h i g h e r t h a n t h e p a r a l l e l p r o c e s s o r s in t h e s y s t e m . In g e n e r a l , t h e n u m b e r of c l u s t e r s

d e p e n d s to a g r e a t e x t e n d on t h e p a r a l l e l i s m of t h e a p p l i c a t i o n , a n d it is u n l i k e l y t h a t i t is

534

equal to the number of avai lable processors. There are mul~iprocessor system archi tectures

where the number of processors can easily be adjus ted to equal the number of clusters

obtained. Multiple bus interconnect ion archi tectures present such feasibili ty as discussed in

the previous section. In such case step (a) is sufficient.

In this work we are interested to test the performance of our method for a Banyan inter-

connected archi tecture. Since the number of parallel clusters Obtain in Fig. 13a,b,c are 12 or

13 it is cost effective to assume tha t an 8 processor system is avai lable and thus we need to

reduce the number of clusters from 12 or 13, to 8. In the reduct ion of parallelism, step (b),

we use the same heuristic a lgor i thm as in step (a) with a simple modification, which is to

e l iminate the parallel ism constraint . This is feasible since the input to the heuristic algo-

r i thm for the reduct ion step is the number of paral lel clusters ob ta ined in step (a). Each of

these clusters is regarded as a single module and the communicat ion between clusters forms

the communicat ion be tween modules. Thus, we s ta r t with a new graph which is the ou tpu t

of step (a). The communica t ion cost is found as in step (a) by using the Queueing Delay vs

Uti l izat ion of an 8 processor Banyan interconnected network as shown in Fig. 7. Since paral-

lelism between the modules of the new graph is eliminated, it is always feasible to cluster the

modules into a predetermined number of processors (in this case 8), by adjust ing appropri-

ately the t ime frame T constraint . The processor uti l izations in step (a) are low and because

of that , in order to get 8 clusters, we have to increase or decrease T until the desired number

of clusters are obtained. The results in every case corresponding to step (a) are presented in

Fig. 14a,b,c. Note tha t module 1 of Fig. 14 corresponds to d u s t e r 1 of Fig. 13 and so on for

the rest of the modules. We also note, t h a t processor uti l izations are much higher than in

step (a) which results in a lower t ime frame in every case.

system: 8 processors, Banyan Interconnection, r = 1/1, TpA R = 2528]

Processor To ta l (%) Uti l izat ion
id ut i l izat ion [%)

1 43.34 39.54 1
2 64.94 63.86 2
3 82.49 59.51 3
4 62.68 46.86 6
5 75.82 65.44 7
6 59.12 50.02 8
7 40.93 28.27 10
8 62.66 54.76 12

Modules
_ _ assigned

Fig. 14a. Paral le l ism reduction for the schedules shown in Fig. 13a.

535

system: 8 processor, Banyan Interconnection, r z 1/10, TpAR z 1083 j
1

Processor Tota l (%) Uti l izat ion Modules

id ut i l izat ion (~o) assigned

1 85.16 29.63 1

2 81.49 48.77 2

3 89.81 25.01 3

4 74.58 15.86 5

5 50.97 8.06 7

6 86.10 22.24 10

7 74.40 28.88 12

8 46.12 18.13 13

11

Fig. 14b. Reduct ion paral lel ism for the schedules shown in Fig. 13b.

system: 8 processor, Banyan Interconnection, r ~- 10/1, TpA R ~ 3706 l

Processor Tota l (%) Uti l izat ion Modules

id uti l ization (%) assigned

1 74.25 73.10 1

2 83.97 80.94 2

3 80.18 78.49 3

4 89.75 87.81 6

5 88.92 88.06 7

6 63.38 63.04 10

7 58.25 57.40 12

8 46.11 45.62 13

9

11

Fig. 14c. Reduct ion paral lel ism for the schedules shown in Fig. 13c.

536

system: 8x8xl , r ---- 1, TpA R ~ 2421

Processor To ta l (%) Uti l izat ion Modules

id ut i l izat ion (%) assigned

1 82.02 78.66 1 13

2 89.42 72.26 2 8

3 71.30 54.71 3

4 79.46 58.01 4 5

5 65.54 48.93 7

6 61.79 52.23 9

7 89.07 76.18 10 12

8 50.84 42.53 11

Fig. 15a. Reduct ion of paral lel ism for the schedule shown in Fig. 10a.

system: 8×8×1, r ~- 1/10, TpA R ~ 1207]

Processor To ta l (~Vo) Uti l izat ion Modules

id ut i l izat ion (%) assigned

1 89.60 33.44 1 12

2 56.68 14.31 2

3 84.05 22.44 3 4
4 70.06 14.23 5 6

5 48.02 7.23 7

6 57.31 19.05 8

7 87.81 49.40 9 10

8 42.88 16.27 13

11

Fig. 15b. Reduct ion of parallel ism for the schedules shown in Fig. 10b.

system: 8×8×1, r ~ 1//10, TpA R --~ 3804

537

Processor Tota l (~) Ut i l izat ion Modules

id ut i l izat ion (%) assigned

1 72.34 71.22 1

2 81.81 78.86 2

3 78.12 76,47 3

4 87.44 85.56 6

5 86.64 85.79 7

6 61.75 61.42 10

7 56.76 55.92 12

8 44.93 44.45 13

9

11

Fig. 15c. Reduct ion of paral lel ism for schedules shown in Fig. I0c.

system: 8×8×8, r = 1, TpA R = 2421]

Processor To ta l (~o) Ut i l izat ion Modules

id ut i l izat ion (~) assigned

1 82.00 78.66 1 13
2 89.32 72.26 2 8

3 71.20 54.71 3

4 79.34 58.01 4 5

5 65.44 48.93 7

6 61.73 52.23 9

7 89.00 76.18 10 12

8 50.79 42.53 11

Fig, 16a. Reduct ion of paral lel ism for schedules shown in Fig, l l a .

system: 8x8xS, r 1/10, Tph R ~ 1134 [

538

Processor Tota l (~) Uti l izat ion Modules

id ut i l izat ion (9~) assigned

1 80.11 28.30 1 8

2 56.81 15.23 2

3 84.99 24.21 3 7

4 46.46 7.37 4

5 69.94 15.15 5 6

6 84.27 41.92 9 10

7 54.74 10.66 11

8 56.74 22.16 13

Fig. 16b. Reduc t ion of paral lel ism for schedules shown in Fig. l l b .

SYstem: 8×8x8, r = 10/1, TpA R ---~ 3804

Processor To ta l (%) Uti l izat ion Modules

id uti l ization (~) assigned

1 72.34 71.22 1

2 81.81 78.86 2

3 78.12 76.47 3

4 87.44 85.56 6

5 86.64 85.79 7

6 61.75 61.42 10

7 56.76 55.92 12

8 44.93 44.45 13

8
4 5

9

11

Fig. 16c. Reduct ion of parallel ism for schedules shown in Fig. 11c.

For comparison purposes we reduced the 13 cluster obta ined in the case of the mult iple bus

archi tec ture to 8 assuming an 8 processor system. The results are shown in Fig. 15 and Fig.

16. We compare the two archi tectures in Fig. 17 by showing t ime frames and average to ta l

t Note tha t the best ma tch between the appl icat ion we studied and processor uti l izations up.

the two sys tems considered depends on the ratio r.

539

Banyan In te rconnect ion Mult iple

Bus In te rconnec t ion

(8 processor system)

r z 1/1 TpA R -~ 2529

t 67.07 Up

r ~- 1/10 TpA R ~ 1083

up t ~ 74.83

r ~- 10/1 Tpk R --- 3706.3
t Up ==:= 73.10

(8x8xl)
TpA R = 2421

t 73.68 Up---

(8×8×8)
Tp&t~ ~ 2421

u t ~ 73.70

(8×8xl)

TpA R ~--- 1207

Up t ~- 1134

(8×8×8)
TpA R ~ 1134

u~ ~ 71.35

(8x8×1)

TpA R ~ 3804
u t ~ 71.22

(8×8×8)
TpA R -~ 3804

u t ~-= 71.22

Fig. 17. Per formance compar ison of mult ibus and Banyan a rch i tec ture for the robot elbow

manipu la to r appl icat ion.

The smallest t ime f rame and the highest processor u t i l iza t ion were ob ta ined for r ~ 1 / t0 ,

and a Banyan in terconnect ion system. The 8xSx8 mult iple bus sys tem has a higher

bandwid th t h a n the Banyan network, and yet the schedule produced when a Banyan sys tem

was considered results in bes t performance. F r o m this we conclude the usefulness of the

mapping methodology in match ing appl ica t ion to a rchi tec tures . Speed ups and efficiency fac-

tors for the 8 processor systems are p resen ted in Fig. 18.

540

Speed up Efficiency

(8 processor systems)

Banyan Multiple bus Banyan Multiple bus

(1 bus) 4.836 (1 bus) .604
r : 1/1 4.630 (8 busses) 4.836 .578 (8 busses) .604

r = 1 / io i.965 (i bus) i.763 .245 (i bus) .220
(8 busses) 1.877 (8 busses) .234

r = 10/1 5.744 (1 bus) 5.596 .718 (1 bus) .699
(8 busses) 5.596 I (8 busses) .699

Fig. 18. Comparison of speedups and efficiency for 8 processor Banyan and multiple bus
interconnected systems.

7. CONCLUSIONS

The mapping of applications to multiprocessor systems provides a very good indication
of how well the application is matched to the system. We have examined a robot elbow
manipulator application which was partitioned into communicating modules at the equation
level. A precedence graph representation was used. We have approximated different parti-
tions of the same application by changing the ratio of processing to communication on a per
module basis. Two classes of multiprocessor systems have been examined, the multiple bus
systems and the Banyan multistage networks. They have been represented by their
specification and their Queueing Delay vs. Utilization of their interconnection networks. A
fast heuristic algorithm was used for the two different steps of the mapping method. In the
first step, schedules of modules for every processors were produced. A full advantage of the
application's parallelism was taken and the available system could match that. In the

second step, a reduction of parallelism of the application was used to reduce the number of
clusters to the number of available processors. For this step, new schedules were aIso pro-
duced. In the third step, the layout of the clusters to the processors is required. For the
multiprocessor systems we have used it is a simple assignment of clusters to processors, since
all processors are equally distant.

Our results indicated that the best match between an application and a system depends
on the partition used, i.e., depends on r. The highest speed up was obtained when r was the
highest and the parallelism of the application was fully exploited. This was possible only in
the case of the multiple bus architecture systems. The processor utilization obtained were
low. Thus, for the particular application studied best speed ups were obtained at the expense
of underutilizing the system.

When the parallelism reduction step was applied (one less constraint) then the speed ups
were lower but the processor utilizations were higher. After the application of this step it
was possible to compare the match of the two different classes of systems to the application.
Our results indicated again a dependence or r. For r : l the multiple bus system produced
the best speed up and at the same time highest average processor utilization while for r : . l ,

541

10 the Banyan network produced best speed ups and the highest average processor utiliza-
tions.

Our results indicate the usefulness of the applied methodology to the solution of the
mapping problem. It provides performance measures which closely agree with our initiation
and at the same time it provides the assignments of modules to processors which are not at
all obvious.

8. R E F E R E N C E S

[ABRA86] Abraham, S. G., Davidson, E. S., "Task assignment using Network flow methods
for minimizing communication in n-processor systems," Technical Report, CSRD
Rpt. No. 598, Center of Supercomputlng Research and Development, National
Center of Supercomputing Applications, University of Illinois at Urbana-
Champaign, September 1986.

[ALLE78] Allen, A. O., Probability Statistics and Queueing Theory, Academic Press, 1978.

[BATC76] Batcher, K. E., "The Flip Network in STARAN," 1976 Int~l. Conf. on Parallel
Processing, Aug. 1976, pp. 65-71.

[BERM84] Berman, F. Snyder, L., "On mapping parallel algorithms in parallel architectures,"
Proceedings of the International Conference on Parallel Processing, 1984, pp. 307-
309.

[BERM85] Berman, F., Goodrich, M., Koelbel, C., Robinsor;, III, W. J. Showell, K., "Prep-p:
A mapping preprocessor for chip computers," Proceedings of the International
Conference on Parallel Processing, 1985, pp. 731-733.

[BERM87] Berman, F., Haden, P., "A compartive study of mapping algorithms for an
automated parallel programming environment," Computer Science Technical
Report Number CS-088, Uni'~-ersity of California, San Diego, La Jolla, CA 92093.

[BOKHS1] Bokhari, Shamid, H., "On the Mapping Problem," IEEE Transactioir~s on Comput-
ers, Vol. C-30, No. 3, 1981, pp. 207-214.

[CHUS0] W . W . Chu, L. J. Holloway, M. T. Lan, K. Ere, "Task Allocation in Distributed
Data Processing," Computer, November 1980, pp. 57-69.

[EFE82] K. Ere, "Heuristic Models of Task Assignment Scheduling in Distributed Systems,"
Computer, Vol. 15, No. 6, June 1982, pp. 50-56.

[FUJI85] Fujimoto, R. M., "The SIMON simulation and development system," Summer
Computer Simulation Conference, 1985 (Univ. of Utah).

[GILB87] Gilbert, J. R., Zmijewski, E., "A parallel graph Partitioning Algorithm for a
Message-Passing Multiprocessor," Technical Report, TR 87-803, Department of
Computer Science, Cornell University, Ithaca, N.Y., January 1987.

542

tG~76] V.B. Gylys, J. A. Edwards, "Optimal Partitioning of Workload for Distributed
Systems," Proceeding Compcon, Fail 1976, pp. 353-357.

[HOUS83] Houstis, C. E., Houstis, E. N., Rice, J., "Partitioning and Allocation of PDE Com-
putation to Distributed Systems," PDE Software: Modules Interfaces and Sys-
tem.s, Edited by B. Enguist and T. Smedsass, North Holland, 1983.

[HOUS87a] Houstis, C. E., Houstis, E. N., Rice, J. J., "Partitioning PDE Computation:
Methods and Performance Evaluation," invited paper, Journal of Parallel Com-
puting, No. 4, 1987.

[HOUS87b]Houstis, Catherine, "Allocation of Real-Time Applications to Distributed Sys-
tems," accepted for presentation in the 1987 International Conference on Parallel
Processing, August 1987.

[HOUS87c] Houstls, C. E., "Distributed Processing Performance Evaluation," accepted for
presentation to the Third International Conference on Data Communication Sys-
tems and Their Performance, Rio di Janeiro, Brazil, June 22-25, 1987.

[JENN77] Jenny, C. J., "Process Partitioning on Distributed Systems," Digest of paper
National Telecommunications Conference, 1977, pp. 31:1-31:10.

[KASA85] Kasahara, H., Narita, S., "Parallel Processing of Robot-Arm Control Computation
on a Multiprocessor System," IEEE Journal of Robotics and Automation~ Vol.
RA-1, No. 2, June 1085, pp. 104-113.

[KLEI85] Kleinrock, Leonard, "Distributed Systems," Communications of ACM, Vol. 28,
Number 11, 1985, pp. 1200-1213.

[KRUS83] Kruskal, C., Snir, M., "The performance of multistage Interconneetion Nets for
multiprocessing," IEEE Transactions on Computersp Vol. C-32, No. 12, 1983, pp.
1091-198.

[LAWR75] Lawrie, D., "Access and Alignment of Data in an Array Processor," IEEE Tran-
sactions on Computers, Vol. C-24, No. 12, Dec. 1975, pp. 1145-1155.

[MARS831 Marsan, M. A., Gerla, M., "Markov models for Multiple Bus Multiprocessor Sys-
term%" IEEE Transactions on Computers, Vol. C-32, No. 3, 1983, pp. 239-248.

[OrLEA85] O'Leary, D. P. and G. W. Stewart, "Data-flow algorithms for parallel matrix com-
putations," Communication of ACM~ Vol. 28, 1985, pp. 840-853.

[PATE79] Patel, J. H., "Processors-Memory Interconnections for Multiprocessors," in Proc.
6th Ann. Syrup. Computer Arch., pp. 168-177, Apr. 1979.

[MARI87] Marinescu, D., Rice, J., "Domain oriented analysis of DOE splitting algorithms,"
to appear in the Journal of Information Science, July 1987.

[SARK86] Sarkov, V., Hennessy, J., "Compile-time Partitioning and Scheduling of Parallel
Programs," Proceedings of the SIGPLAN 1986 Symposium on Compiler Instruc-
tions, June 1986, pp. 17-36.

543

[SmG78]

[SmGT8]

[sma82]

[SmGsSJ

[STO78 i

Siegel, H. J. and Smith, H. D., "Study of Multistage SIMD Interconnection Net-
works," 5th Annual Symposium on Computer Architecture, Apr. 1978, pp. 223-229.

Siegel, H. J., McMillen, R. J., and Mueller, P. T., Jr., "A Survey of Interconnection
methods for Reconfigurable Parallel Processing Systems," 1978 Int'l Conf. on
Parallel Processing, Aug. 1978, pp. 9-17.

Siegel, L., Siegel, H. J., Swain, P. H., "Performance Measures for evaluating algo-
rithms for SIMI) machines," IEEE Trarasaetion on Software Engineering, Vol. SE-
8, No. 4, July 1984, pp. 319-331.

Siegel, H., Interconnection Networks for Large-Scale Parallel Processing, Heath
and Company, 1985.

Stone, H. S., Bokhari, S. H., "Control of Distributed Processes," Computer, VoI.
11, No. 7, July 1978, pp. 97-106.

