
Abstract
Fast Fourier Transform (FFT) is one of the most widely
used algorithms in digital signal processing. It is used in
many signal processing and communication applications.
many of the FFT operations are performed in embedded
systems. Since Embedded systems is very small proces-
sors used in almost all type of appliances from microwave
ovens to cars, and many embedded systems are portable
and depend on small batteries for power; low energy de-
sign is extremely important in embedded systems design.
One of the major energy consumption sources in any pro-
cessor is memory access. Memory access requires more
energy than almost any operation in a DSP (Digital Sig-
nal Processor), or embedded processor, reducing memo-
ry access plays a very important role in reducing energy
consumption. In this paper we concentrate on the energy
consumption in memory in calculating FFT. we compare
between three different techniques in calculating FFT
with reference to energy consumption in memory access.
We also investigate the effect of the number of registers in
the CPU on reducing energy consumption in memory ac-
cess.

1. Introduction
Fast Fourier Transform (FFT) is probably one of the most
used signal processing algorithms in the world. FFT is
used in digital communication and in general in digital
signal processing and is widely used as a mathematical
tool in different areas. In the next few paragraphs, we
briefly mention some of the applications of FFT.

FFT is used to reduce the computational time required for
solving the problem of electromagnetic scattering from
wire antennas and conducting rectangular plates [18]. It is
also used in solving a system of Toeplitz normal equation
[19]. It is also used in optimal frequency acquisition and
measurements in Search and Rescue Satellite Aidded
Tracking (SARSAT) [12]. In interpolation techniques for
resampling of correlation pulse signals departing from a
small number of Nyquist samples [3].

FFT is also used in spectral estimation in [7] and [9], in
single tone detection and frequency estimation in [2], and
in increasing object detection in radar systems [17]. Also
FFT is used in Orthogonal Frequency Division Multi-
plexing (OFDM) which is the basis for Multi Carrier
Code Division Multiple access (MC-CDMA), and its di-
rect spread spectrum version MC-DS-CDMA [6] and [8].

Windowed FFT is used in electric power quality assess-
ment in [11]. While in [5] the authors introduced the gen-
eralized sliding FFT to efficiently implement the hopping
FFT. Then they showed how to use it to implement the
block LMS adaptive filter. Finally the FFT was used in 3-
D induction well logging probelm where it could be used
in characterization of oil reservoirs.

Power consumption is a very important factor in the de-
sign of special purpose as well as general purpose proces-
sors [14]. For wireless devices, power plays a crucial role
since the device operates on a battery with a limited pow-
er supply capability. Obviously that require hardware to
use as little power as it possibly could to perform the job
at hand. For general purpose processors, increasing pow-
er consumption leads to sophisticated cooling techniques
which both increase the price and reduce the reliability of
the processor.

One of that main sources of energy consumption in any
processor chip is the memory (or the cache if there is a
cache). It was reported in [16] that instruction cache ref-
erence amounts to 43% of the total power consumption of
the chip. For small embedded processors without cache,
and since the main memory consumes more energy than
cache, that figure could be higher in small processors
without cache. Minimizing the number of times the pro-
cessor goes to the memory, helps to reduce the energy
consumption in the chip. While there is nothing we can
do to reduce the memory access to get instructions (as-
suming a gernal purpose processor architecture); data ac-
cess can be reduced in two different ways. The first is
using algorithms that require less memory access (reusing
the accessed element as many times was possible before
discarding it, or reordering memory access). The second
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is by using a large set of registers, thus accessed elemenst
can be temprarily stored in registers for further processing
without memory access.

In this paper, we present a comparative study for the
memory access in calculating in place FFT. We consider
access to both data points and coefficients. We investigate
three different techniques to calculate the FFT and show
the number of memory references of the different tech-
niques which is an indication of the power dissipated in
the memory.

The organization of this paper is as follows. In Section 2,
we present a brief overview of FFT techniques. Section 3
discusses related work. In section 4, we present our com-
parative study for the number of memory references in
calculating in-place FFT using a variable number of regis-
ters. Section 5 is a conclusion and future work.

2. FFT Algorithm
The Discrete Fourier Transform (DFT) of an N data sam-
ples is defined by

(1)

Where , are the Nth root of unity, x is the
original sequence, and X is the FFT of x, k=0,1,2,...,N-1 In
general, both X, x and W are complex numbers. This can
be calculated using matrix-vector multiplication, where

 are arranged as N-by-N matrix. That method requires
O(N2)complex multiplications. A faster way to calculate
the DFT is the Fast Fourier Transform (FFT). FFT algo-
rithm works by dividing the input points into 2 sets (k sets
in general), calculate the FFT of the smaller sets (recur-
sively), and combining them together to get the Fourier
transform of the original set. That will reduce the number
of multiplications from O(N2) to O(N log N). Figure 1.
shows the 8-points decimation in time FFT. The 8 points
are divided into 2 sets of 4 points each, then caculating the
FFT for these 2 sets of 4 points each, then combining
these 2 sequences to produce the 8 points FFT. The 4-
points FFT is recursively done in the same way. The 2
points FFT is known as the butterfly operation, and is
shown at the bottom of Figure 1.

As we can see from Figure 1, Both data and coefficients
are accessed from the memory. Intermediate calculations
are done, then they are stored in the same memory loca-
tion they were accessed from (in place FFT calculation).
By the end of the calculations (the end of the log2N stag-
es), the memory contains the FFT sequence of the input

sequence. As we mentioned earlier, memory access car-
ries with it a heavy price from the energy consumption
point of view. Minimizing the number of memory access
goes a long way in reducing the energy consumed in cal-
culating the FFT.

For example, in the first stage, we access both x(0), and
x(4). That results in calculating new values for x(0), and
x(4). Then we proceed to access the rest of the data points.
Then at the beginning of the second stage, again, we ac-
cess x(0), and x(2). If the previous values calculated for
x(0), and x(2) are stored in a pair of registers, then we
don’t need to go to the memory in order to access them
again. If these values are not stored in registers, then we
have to go to the memory to fetch them. the same could be
said about the twiddle factor access.

Whether the required data will be in the memory or in reg-
isters depends on the number of registers in the CPU, the
architecture of the CPU, the instruction set of the CPU,
and the compiler used in generating the machine code.
Here we concentrate on the number of available registers
in the CPU, we also will make some assumptions regard-
ing the compiler.
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Figure 1. 8-points decimation in time FFT
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In this paper, we calculate the number of memory access
in calculating FFT for different algorithms, and for differ-
ent values of N. Some of these algorithms are designed
specifically in order to reduce the number of memory ac-
cess (by rearranging the calculations), while other are de-
signed to minimize the number of calculations, or to
simplify the code.

In the next section, we review some of the previous work
in minimizing power consumption for FFT calculations.
The power reduction falls in three main categories, reduc-
ing memory access for data reference, reducing memory
access for address generation, and reducing the number of
arithmetic calculations in order to save energy.

3. Related Work
Low power design for digital signal processing in general,
and FFT in particular has attracted a lot of attention. Low
power could be implemented on many levels. The algo-
rithm level, the architecture level, and the hardware level.

At the algorithm level, many attempts have been done to
minimize power consumption, higher radix FFT, mixed
radix FFT [20], Other attempts are made on both the ar-
chitecture level and the circuit level.

In [10], the authors considered the problem of coefficients
address generation for special purpose FFT processors.
They designed the hardware required for access of the
Fourier coefficients from the coefficients memory. They
showed that their scheme can result in power saving of
70-80% compared to Cohen’s scheme (note that saving in
the energy consumption of the address generation unit
only, not the entire processor power).

In [15], the authors proposed an address generation
scheme for FFT processors. Their proposed hardware
complexity is 50% less than Cohen’s scheme. Also their
scheme activate only half the memory (they used memory
banks) thus saving more energy than previously known
techniques.

A low-power dynamic reconfigurable FFT fabric was pro-
posed in [22]. The processor can dynamically be config-
ured for 16-points to 1024-points FFT calculation. The
overhead for dynamic configuration is minimal while the
power reduction compared to general purpose reconfig-
urable architecture is in the range 30-90%. 

In [13] the authors proposed a novel FFT algorithm to re-
duce the number of multiplications as well as the number
of memory accesses. Their algorithm depends on re-ar-
ranging the computation in the different stages of the
Cooley-Tukey algorithm in order to minimize the Twid-

dle factor access. Their algorithm clusters together all the
butterfly operations that use a certain Twiddle factor, ac-
cess that twiddle factor to perform the operations, and
never access it again. That result in 30% reduction in
twiddle factor access compared to the conventional DIF
FFT. They also implemented their algorithm on TI
TMS320C62x digital signal processor. Their implementa-
tion shows a significant reduction in the memory access
on the TI TMS320C62x digital signal processor.

4. Comparison
The number of memory access depends on many factors.
The first is the produced machine code. The machine code
depends of course on both the high level source code (if
written on high language source code; otherwise the as-
sembly code), and the compiler used. It also depends on
the instruction set of the target processor and the number
of available registers in the processor.

The compiler plays a very important role in the speed of
the executed code. An efficient use of the resources (in-
cluding the available registers) can speedup the execution. 

In this paper, we simulated three different algorithms for
FFT. We did not produce the assembly code, but rather
got the data access pattern from the C code. As mentioned
before there is no direct correspondence between the data
access pattern and the memory access pattern. data access
could be directed to memory if the data are in the memo-
ry, or a register if the requested data reside in a register.

Another important factor is writing to the memory. If a
data element is changed, we can proceed to write the
changes to the memory, or we can keep it in a register to
be used in the computations and written to the memory ei-
ther at the end of the code, or when we need to use the reg-
ister to store another data item.

In this paper, we assumed that the compiler uses the avail-
able registers to access and store the data. Once a data el-
ement is stored in a register, it stays there until the
compiler has to use the register to store new data. In that
case the registers are released in a FIFO fashion. We also
assumed a register-register architecture, in which the op-
erands are assumed to be in a register which is typical of a
RISC architecture. That puts an upper bound on the per-
formance, and depends to a great extent on the compiler to
produce an optimal code.

The first algorithm is the regular radix 2 DIF FFT, the
pseudo code in Figure 2. can be found in [1]. note that the
last stage is separated from the rest of the stages since we
do not need to multiply by the twiddle factors in that



stage, by separating the last stage from the rest of the stag-
es, we save on memory access as well as on multiplica-
tions.

Radix-4 FFT algorithm is shown in Figure 3. Also taken
from [1]. Note that in both figures, that is a pseudo code
where the elements of x are complex numbers. In reality it
will take more than a single addition/multiplications to
represent the addition or multiplications of a complex
number.

The third algorithm we considered is the one shown in
[13], that minimizes the Twiddle factor memory access.

Table 1. shows the number of memory access for the three
above mentioned algorithms for different number of reg-
isters ranging from 4 to 20. We also considered differnt
sizes for FFT sequences with length N = 2n points. One
can see that for architectures with a small number of reg-
isters, the regular Radix-2 FFT performs best over a wide
range of FFT sizes (from 16 to 1024). For architectures
with large number of registers, Radix-4 FFT performs the
best over the same range of sizes. For architecture with a
moderate number of registers (8,12,16) Radix-2 FFT and
the reduced memory access method perform equally good
with a slight edge for the simple radix-2.

In [13], the authors compared between their algorithm and
the Radix-2 FFT running on TI TMS320C62x and show
that their algorithm require less memory access than Ra-

dix-2. We believe that this may be because of the VLIW
architecture of the processor, the number of registers
available, or the compiler used. However, we our work
shows that with a very good compiler, radix-2 and 4 FFT
can outperform the reduced memory access algorithm.

fft_dif(x[],m)
n=2^m;
for(i=m; i>1; i--) {

m1=2^i;
mh=m1/2;
for(j=0;j<mh;j++) {

e=exp(2*PI*i*j/m1);
for(r=0; i<n; i=i+m1) {
 u=x[r+j]; v=x[r+j+mh];
 a[r+j]=u+v;
 a[r+j+mh]=(u-v)*e;
 }
}

}
for(r=0;r<n;r=r+2) {

x[r]=x[r]+x[r+1]; d a[r+1]=a[r]-a[r+1];
}

Figure 2. DIF FFT Algorithm

Table 1. The number of memory accesses for different number of 
registers, and FFT size =2n

# of Reg 4 8 12 16 20 n
Rad2 504 380 275 266 256

n=4Rad4 567 390 339 215 187
Reduced 645 364 279 253 248

Rad2 1312 988 711 676 672

n=5Rad4
Reduced 1681 942 731 673 668

Rad2 3232 2428 1731 1652 1648

n=6Rad4 3407 2350 2067 1351 1187
Reduced 4137 2352 1795 1657 1652

Rad2 7680 5756 4071 3892 3888

n=7Rad4
Reduced 9817 5600 4243 3913 3908

Rad2 17792 13308 9347 8948 8944

n=8Rad4 18175 12542 11091 7335 6483
Reduced 22713 12992 9779 9001 8996

Rad2 40448 30204 21095 20212 20208

n=9Rad4
Reduced 51577 29568 22131 20329 20324

Rad2 90624 67580 46979 45044 45040

n=10Rad4 90879 62718 55635 37031 32851
Reduced 115449 66304 49395 45289 45284

fft_rad4
n=2^ldn;
for(ldm=ldn; ldm>1;ldm=ldm-2) {

m=2^ldm; mr=m/4;
for(j=0;j<mr;j++) {

for(r=0;r<n;r=r+m) {
 u0=a[r+j]; u1=a[r+j+mr];
 u2=a[r+j+2*mr]; u3=a[r+j+3*mr];
 t0=u0+u2+u1+u3;
 t1=u0+u2-u1-u3;
 t2=u0-u2+(u1-u3)$
 t3=u0-u2-(u1-u3)$
 a[r+j]=t0;
 a[r+j+mr]=t2*W;
 a[r+j+2*mr]=t1*W
 a[r+j+3*mr]=t3*W
 }

}
}

Figure 3. Radix 4 DIF FFT



5. Conclusions 
In this paper, we compared between three different algo-
rithms in the number of memory access required for FFT
calculations. We generated data trace from the C code and
we use approximate measures to estimate the number of
memory access required to complete the computations as-
suming a variable number of registers available to the
compiler. We did not assume a specific compiler, just the
data trace and a FIFO register set to be used with the com-
piler. Our work shows that although the results depends
on the number of registers, and the problem size, however
the simpler Radix-2 FFT performs well compared to the
other 2.

6. References
[1] Arndt, J. “Algorithms for Programmers”, could be found at

www.jjj.de/joerg.html August 2005.
[2] Chan, Y.T.; Ma, Q.; Inkol, R.; “Evaluation of various FFT

methods for single tone detection and frequency estima-
tion”. IEEE Canadian Conference on Electrical and Com-
puter Engineering. Vol. 1 25-28 May 1997 pp 211-214

[3] Coenen, A.; De Vos, A. ““FFT-baed interpolation for mul-
tipath detection in GPS/GLONASS receivers”. Electronic
Letters, Vol. 29, No. 19. Sept. 1992 pp 1787-1788.

[4] Cohen, D. “Simplified control of FFT hardware”, IEEE
Transactions on Accousitc, Speech, and Signal Processing.
Vol. 24, No. 6, Dec. 1976 pp577-579

[5] Farhanq-Boroujeny, B.; and Gazor, S. “Generalized Slid-
ing FFT and its application to implementation of block
LMS adaptive filters”. IEEE Transactions on Signal Pro-
cessing. Vol. 42, Issue 3. March 1994. pp 532-538

[6] Frederiksen, F. B.; Prasad, R. “An Overview of OFDM and
related techniques towards development of future wireless
multimedia communications”. IEEE Radio and Wireless
Conference RAWCON2002. 11-14 Aug. 2002. pp 19-22

[7] Gan, R. Eman, K.; Wu S. “An extended FFT algorithm for
ARMA spectral estimation”, IEEE Transactions on
Accoustic Speech, and Signal Processing, Vol. 32, No. 1
Feb. 1984 pp 168-170.

[8] Ghorashi, S. A.; Allen, B.; Ghavami, M.; Aghvami, A. H.;
“An overview of MB-UWB OFDM”. IEE Seminar on
Ultra Wide Band Communications Technologies and Sys-
tem Design. * July 2004. pp 107-110.

[9] Gough, P. T. “A fast spectral estimation algorithm based on
the FFT”, IEEE Transactions on Accoustic Speech, and
Signal Processing, Vol. 44. No. 8. August 1996 pp 1317-
1322.

[10] Hasan, M.; Arslan, T. “Coefficients memory addressing
scheme for high performance processors” Electronic let-
ters. Vol. 37, No. 22. Oct. 2001 pp1322-1324

[11] Heydt, G. T.; Field, P. S.;, Pierce, D.; Tu, L.; and Hensley,
G. “Applications of the windowed FFT to electric power
quality assessment” IEEE Transactions on Power Delivery.

Vol. 14, Issue 4. Oct. 1999 pp 1411-1416
[12] Holm, S. “Optimum FFT-based frequency acquisition with

application to COSPAS-SARSAT” IEEE Transactions on
Aerospace and Electronic Systems. Vol. 29, No. 2 April
1993 pp 464-475

[13] Jiang, Y.; Zhou, T.; Tang, Y.; Wang Y. ““Twiddle-factor-
based FFT algorithm with reduced memory access” Proc.
of the 19th IEEE International Parallel and Distributed
Processing Symposium IPDPS2002 April 2002. pp 70-77.

[14] Lahiri, K.; Raghunathan, A.; Dey S.; Panigrahi, D.; “Bat-
tery-driven system desig: A new frontier in low power
design”. proceeding of the 7th Asia and South Passific
Design Automation Conference ASP-DAC 2002.7-11 jan.
2002, pp 261-267.

[15] Ma, Y.; Wanhammar, L. “A Hardware efficeint control of
memory addressing for high-performance FFT processors”
IEEE Transactions on Signal Processing Vol. 48, No. 3
March 2000 pp917-921

[16] Montanaro, J. et al “A 160-MHz, 32-b 0.5-W CMOS RISC
microprocessor” Proc. IEEE Intl. Solid-State Circuit Con-
ference., Feb. 1996 pp 214-229.

[17] Prasad, N.; Shameem, V.; Desai, U. B.; Merchant S. N.;
“Impreovement in target detection performance of pulse
codded Doppler radar based on multicarrier modulation
with fast Fourier Transform (FFT)”. IEE Proceedings on
Radar, Sonar, and Navigation. Vol. 151. No. 1 Feb. 2004
pp11-17.

[18] Sarkar T.; Arvas, E.; Rao, S. “Application of FFT and con-
jugate gradient method for the solution of electromagnetic
radiation from electrically large and small conduction bod-
ies,” in IEEE Transactions on Antennas and Propagation.
Vol. AP-34, No. 5, May 1986 pp 635-640.

[19] Yarlagadda, R.; Babu, B. “A note on the application of FFT
to the solution of a system of Toeplitz normal equation”,
IEEE Transactions on Circuits and Systems, Vol. 27, No. 2
Feb. 1980 pp 151-154

[20] Yeh, W.-C.; Jen, C.-W. “High-speed and low-power split
radix FFT” IEEE Transactions on Signal Processing. Vol.
51, No. 3 March 2003 pp 864-874.

[21] Zhang, Z. Q.; and Liu, Q.; H. “Applications of the BCGS-
FFT method to 3-D induction well logging problems. IEEE
Transactions on Geoscience and Remote Sensing. Vol. 41,
Issue 5. May 2003. pp 998-1004

[22] Zhao, Y.; Erdogan A.; Arslan T. “A low-power and
domain-specific reconfigurable FFT fabric for system-on-
chip applications” Proc. of the 19th IEEE International
Parallel and Distributed Processing Symposium IPDPS05
April 2005 pp 169a-172a


