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Abstract—This paper presents modified parallel architectures for multi- OUTPUT g H g INPUT
dimensional ¢r-d) convolution. We show that for two-dimensional (2-d) Z Cw2,m/2) &
convolutions, with careful design, the number of lower-order 2-d convolu- Block 9
tions can be reduced from nine to six with a computation saving of 33%.
Moreover, the original speed of the computations is not affected. The pro- Stage # 3 Stage # 2 Stage # 1
posed partitioning strategy results in a core of data-independent convolu-
tion computations, and can be generalized to then-d convolution. The .
resulting very large scale integration networks have very simple modular C(n,m) 2-D Convolution
structure, highly regular topology, and use simple arithmetic devices.

Fig. 1. The original realization of the 2-d convolution algorithm.
|. INTRODUCTION

Multi-dimensional ¢»-d) convolution is a very important operation  Tensor Product Properties
in signal and image processing with applications to digital filtering and . .
video processing. Thus, abundant approaches have been suggested§8me of the properties of the tensor product that will be used
achieve high-speed processing for linear convolution, and to designt<l§'f'-°“gh°Ut this paper are [3], [6] as follows:
ficier_1t convolution architectures [3]-[6]. quever, the r_najorit_y of the Distributive property: AB © CD = (A@ C)(B® D) (1)
previous approaches focused on expressing a two-dimensional (2-d) ] B ) ) .
convolution in terms of two consecutive stages of one-dimensional Commutative property: (A @ B) @ C=A®(BoC) (2)
(1-d) convolutions. If n =ninons, thenP. ., Pung = Panyng- 3)

Our methodology employs tensor product decompositions and ) i )
permutation matrices as the main tools for expressing the convolutiodr@/lel Operations: For square matrices, andB..., if n = nin2
algorithm. We employ several techniques to manipulate such decoen
positions into suitable expressions that can be mapped efficiently ) . _ .y p
onto very large scale integration (VLSI) structures. Tensor products Ay @ By = P (Tng © Aua) Pavg (1 © Bra) - (4)
(or Kronecker products), when coupled with permutation matrice$,n = n,n-, then
have proven to be useful in providing a unified decomposable matrix,
formulations for multidimensional transforms, convolutions, matrix Pon i Pong = In. (5)
multiplication, and other fundamental computations [2], [3], [6].

The proposed algorithm is based on a nontrivial modification (%:f
the 2-d convolution algorithm recently proposed in [3] and realized 4 & 4, . =P (I, Au.)Pomn (Im @ Anm).  (6)
in Fig. 1. We show that, using the properties of tensor product and T ‘
permutation matrices [6], a large 2-d convolution computation can beéhereP, ; is ann x n binary matrix specifying am /s-shuffle (or
decomposed recursively into three cascaded stages. We show thattbgide) permutation, andl, is the identity matrix of size:.
number of lower-order convolvers at the core computations can be re-
duced from nine to six with a computation saving of 33%. It should ||. REDUCING THE COMPLEXITY OF THE m-d CONVOLUTION
be also emphasized that our partitioning and combining method does ALGORITHM
not make any assumption about how the core convolution is computed
Indeed, any suitable convolution method can be used. This makes the[
proposed method very flexible and realizable over a wide range of haPé(— 3]

ware and software platforms. 5 5
P On1,772 :Rn1,n2 (IQ ey Cnl/Z,nz/Z) Unq,no (7)

or nonsquare matrid., ..., we have

For ann; x n» input data image, the 2-d convolution output is given

where
Cnl/Z,nz/Z = 0(77’1 /2) @ C(n2/2)

is the lower order 2-d convolution matrix for an /2 x n2/2 input
image,
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Fig. 2. The proposed 2-d convolution for &nx 8 input image with a detailed realization(:ogﬁg.

Now, we will further manipulate (8) and (9) to exploit the re- 8 8
source sharing available and, consequently, realize the multiplexed =
architecture of the 2-d convolution using less number of lower-order ‘@I
convolvers. '_‘@: :

Applying property (4), we can writ),, inthe formQ,. = A®1,, /> 8
[3]. Consequently’;)nlynz can be written as @ @

in,nz = (P9(n1/2)73 (0 I"Z/Z) (in 53 Q"’Z)

= (P9(wz1/2),3 @ I712/2) [A @ Inl/Q QA® 1712/2] . (10)
Also, from properties (1) and (2), we have *i : &
Qs ny = (Potny 23 (A Ty g2 © A)) © (Tngj Ty 2)
o Fig. 3. The realization :
= (Patn1/28 (A @ Ly o @ A)) @ Ly o (1 9 o
Since the matrix Substituting (14) and (15) in (13), we have
10 .
A=11 1 Qg = (P9(7L1/2),3 (P9n1/2.3nl/2 (I;; QAR 1711/2) P3n1,3)
0 1 X (Psnyng (A@ Ing) Pany2)) @ 1y 0. (16)
is of dimensior x 2 [3], we have However, from property (5), we have
A=AL (I, 50 A) =15, o (L. /o @ A). 12
2 ( L/ ) S/ ( 12 ) (12) Py, y23 X Popyyoanis2 = Iony 2
Substituting (12) in (11) then using property (1), we have Psyy 3 X Payyny = Isng. a7)
Quing = (Potnyy2)3 (AL @ Iy y2) (Tny 2 @ A))) © Ly o Substituting (17) in (16), we can wri@ in the form
n1,M92
= (P9(n1/2),3 (A @ Ism/Q) (In, ® A)) @I, /0. (13) .

. . . nime = (U3 @ADL, /2) (AR L) Poany2) @ Ly
Using property (4), the parallel forid,,, @ A) in (13) can be modified Qnynz = (15 ) 1/2) f) n1.2) 2/2
to = ((IJ @)in)QZnIPan,Z)®1112/2- (18)

(I, ®A) = Payy o, (A@ L) Pony 2. (14) Using property (4), we can wriénlynz in the final form

Also, from property (4), we can write the tef & I5,, in the form z o
p p y( ) I( 3 1/2) Q7111n2 = P9n1/2'n2/2-,9n1/2 [In2/2 oz} ((IS @in)QZn1P2n1,2)]

(44 & I3n1/2) = ((44 & Inl/:z) @I'%) X Pnl«nz,nz/Z
- P97L1/2,3nl/2 (I3 & A ® IVLI/Q) P3n1,3- (15) - P9n1/2-nz/2.9nl/2 (IVL2/2 Y E) Pnl-nz,nz/Q (19)
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Fig. 4. The proposed 2-d convolution for &nx 8 input image with a multiplexed realizationégﬁg.

TABLE |
COMPARISON OF THENUMBER OF MULTIPLICATIONS REQUIRED FOR THE2-d CONVOLUTION (KERNEL OF DIMENSION 8 X 8)
nxn The direct method The FFT The original algorithm | The proposed algorithm
8x8 162 96 104 70
64 x 64 1147 144 140 94
128x128 4246 156 148 99

where,E = (I3 @ Qn, )Q2n, Pony 2. The detailed realization 6}818 which, using property (1), can be modified to
(for an8 x 8 input image) is shown in Fig. 2 in which the computations 3 _ o , o @ (B
involved in any of the four parallgt blocks are realized by the permu- Bnying = (R(on) @ B(a2)) (B @ Iny—1) @ (B @ Inz—1))
tation Pis,2, followed by the computation stage &fi¢, followed by X (PS(nl—l)‘B(nl—l) @ L7r2—1) .

three parallel blocks of the computatiof. The detailed realization Applying properties (1) and (2), we have

of Q16 is shown in Fig. 3. A careful scrutiny of the realizationgpfs
shown in Fig. 3 reveals that the data movement thradghencounters
different amounts of delays. In particular, the computations involved
in Q14 affect only the middi&)s in any of theE blocks (shown with = (R(a1) @ R(a2)) (B @ Isny—1)) (Ls(ny—1) @ B)
dotted lines in Fig. 2). Thus, the top and the bott@rcan be computed 22)
one addition cycle ahead of the middlg . This means that only two

of the three paralle)s blocks in the realization of are needed at a Which, using property (4), can be reformulated in the parallel form
time. Therefore, throug_h the use of_multlplexers_, the midHecan be Ruyony = (R(a1) @ R(22)) Po(ny 1) (mg—1).0(n1 1)

removed from the architecture &f without affecting the speed of the « (I (B . ) (I- - B)
computations as shown in Fig. 4, reducing number of the lower-order o=t DB (-1 Ua(n -1 ©

2-d convolvers from nine to six with a computation saving of 33%. X P9(n1—1),3(n1—1>) Py —1)(rz=1).(n2—1)

A multiplexed architecture aR,,, ., can be also derived using a = (R(o1) @ R(2))Po(ny—1)(ng—1),9(n1—1)
similar procedure. Applying property (4), we can writg in:the form X (Iny—1 @ K) Po(ny—1)(nom1),(na—1)
R, = R(a)(B @ I,,,—1) [3]. Consequently, we can wrif&, , .., in
the form

(21)

-ﬁnl,nz = (R(Ql) & R(O‘Q)) ((B & Inlfl & B) & Inzfl)
X (PQ(n1—1)‘3(n1—1) @ Inzfl)

X Po(ny—1)3(n,—1) @ Inz—l)

(23)
wherek’ = (B@I3(n,—1))(L3(n=1)@B) Po(ny =1 3(n, —1) - Equation
(23) represent®,,, .., in a multiplexed form similar to that of (19) for
in,nz' . . . .
We can extend the derivation of the multiplexed 2-d convolution
algorithm presented in this section to thed convolution algorithm

in [3]. Following the same steps that are used to mo@i;j){, and

Rnl,nz = (Rnl & an) (P9(n171),3(71171) & IVLZ—l)
=[(R(a1) (B® I, -1)) @ (R(a2) (B @ I, —1))]

X (PQ(:ILl—l),S(nl—l) @ Ing—]) (20)

ng
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R, n, for the 2-d convolution, we can exploit the resource sharing [2] A.Elnaggar, H. M. Alnuweiri, and M. R. Ito, “A new tensor product for-

available and derive multiplexed forms for thed pre—additiong@) mulgtion for Toom’s convolution algorithm[EEE Trans. Signal Pro-
and the post-additiong?) in [3], reducing the number of lower-order cessingvol. 47, Apr. 1999. A -
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[4] V. Hecht, K. Ronner, and P. Pirsch, “An advanced programmable 2-D-
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[5] X. Liuand L. T. Bruton, “High-speed systolic ladder structures for MD
recursive digital filters,”IEEE Trans. Signal Processingol. 44, Apr.
1996.

[6] R. Tolimieri, M. An, and C. LuAlgorithms for Discrete Fourier Trans-
form and Convolution New York: Springer-Verlag, 1989.

IIl. THE COMPUTATIONAL COMPLEXITY OF THE 2-d CONVOLUTION
ALGORITHM

For simplicity, assume that; = n, = n and the input image is
of sizen x n. From (19), the number of additions in the pre-additions

stagey,,, .., is given by

. 5 -
7%2 [3 (%) + nl] = inz. (24)
Using property (6), we can write the terRy,, @ R,,, in (20) as [2]
Rizn-1)x3(n—1) @ Rzn—1)x3(n-1) New Algorithm for Multidimensional Type-I1l1l DCT
= Po,_ 2n— I n—1) @ R) P n—1)3(n—1),(2n— .
(an-1)2,(2n-1) (Tzn=n) @ B) Plzn-nyagu=) czn-) Yonghong Zeng, Guoan Bi, and Alex C. Kot
X (13("_1) %9 R) . (25)
Therefore, the number of additions in the post-additions siage.., Abstract—New algorithms are proposed for the type-Ill multidimen-
is given by sional discrete cosine transform (MD-DCT-III). The polynomial transform
= ) is used to convert the type-lll MD-DCT into a series of one-dimensional
(2n — 1) (The number of additions i) type-Ill discrete cosine transforms (1-D-DCT-III). The algorithms achieve
o . ; considerable savings on the number of operations compared to the row-
+3(n — 1) (The number of additions if?) column method. For computing an»-dimensional DCT-III, the number of
= (5n — 4)(3n — 4). (26)  multiplications required by the proposed algorithm is only 1 /» times that

. B . needed by the row-column method, and the number of additions is also re-
It should be mentioned that the number of additions in both the pre-afliced. Compared to other known fast algorithms for two-dimensional- and

dition and post-addition stages remains unchanged in the proposedvi)-DCTs, the proposed one uses about the same number of operations.
gorithm. Moreover, the communication complexity is reduced by rélowever, a_dvanta_ges su_ch as pettercomputatipnal structure and flexibility
moving one of the thre@;s 1» blocks, as shown in Fig. 4, for the case® the choice of dimensional sizes can be achieved.
n = 8. Index Terms—Discrete cosine transform, fast algorithm, multidimen-
Since the multiplication stages are centered at the core lower-ordenal signal processing, polynomial transform.
parallel blocks [2], [3], removing one-third of these blocks in the pro-
posed algorithm guarantees a 33% saving in the number of multiplica-
tions. It should be mentioned that the computation complexity in our
proposed algorithm depends on the computations involved in the core®iscrete cosine transform has a wide range of applications, such as
computationsC,,, y2,n,72 = C(n1/2) @ C(n2/2). The number of data compression, feature extraction, image reconstruction and mul-
multiplications in our proposed algorithm based on [1] as a core, cofiiframe detection. For example, the three-dimensional discrete cosine
pared to the direct method and FFT method, is shown in Table I. Thansform (3-D-DCT) coding is an alternative approach to the motion
table shows a significant reduction of the number of multiplications @bmpensation transform coding technique used in video coding stan-
the proposed multiplexed algorithm over the direct and FFT methodgards [7]. The multidimensional transforms are also used in the areas
of computer vision, high definition television (HDTV), and vision tele-
1IV. CONCLUSION phone to process or analyze motion images (i.e., multiframe detection)
. . ) [6], [7]. For example, the four-dimensional DCT is generally required
In this paper, we presented modified parallel architecturesit@t fo o6 dimensional motion images. Although modern technologies
convolution. The proposed algorithm showed that for 2-d convolutiofaye increased computing speed dramatically over the recent years,
the number of lower-order convolutions is reduced from nine to Six Wit e e sill exist many difficulties in processing multidimensional sig-
a computation saving of 33%. The proposed partitioning strategy Igsis at a throughput required by most practical applications. A good
sultsin a core of data-mdependent convolution computations, and degs algorithm is extremely important to cope with the prohibitive com-
not make any assumptions on how the core convolutions are Compumational complexity of the multidimensional transform.
Indeed, any suitable convolution method can be used, which makes th%ecently, several fast algorithms (other than the well-known row-
proposed method very flexible and realizable over a wide range of hagdh,mn method) have been proposed for two-dimensional discrete co-
ware and software platforms. sine transform (2-D-DCT) or multidimensional discrete cosine (MD-
DCT). Among them, the polynomial transform (PT) based algorithms
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