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An Efficient Architecture for Multi-Dimensional
Convolution

A. Elnaggar and M. Aboelaze

Abstract—This paper presents modified parallel architectures for multi-
dimensional ( -d) convolution. We show that for two-dimensional (2-d)
convolutions, with careful design, the number of lower-order 2-d convolu-
tions can be reduced from nine to six with a computation saving of 33%.
Moreover, the original speed of the computations is not affected. The pro-
posed partitioning strategy results in a core of data-independent convolu-
tion computations, and can be generalized to the -d convolution. The
resulting very large scale integration networks have very simple modular
structure, highly regular topology, and use simple arithmetic devices.

I. INTRODUCTION

Multi-dimensional (m-d) convolution is a very important operation
in signal and image processing with applications to digital filtering and
video processing. Thus, abundant approaches have been suggested to
achieve high-speed processing for linear convolution, and to design ef-
ficient convolution architectures [3]–[6]. However, the majority of the
previous approaches focused on expressing a two-dimensional (2-d)
convolution in terms of two consecutive stages of one-dimensional
(1-d) convolutions.

Our methodology employs tensor product decompositions and
permutation matrices as the main tools for expressing the convolution
algorithm. We employ several techniques to manipulate such decom-
positions into suitable expressions that can be mapped efficiently
onto very large scale integration (VLSI) structures. Tensor products
(or Kronecker products), when coupled with permutation matrices,
have proven to be useful in providing a unified decomposable matrix,
formulations for multidimensional transforms, convolutions, matrix
multiplication, and other fundamental computations [2], [3], [6].

The proposed algorithm is based on a nontrivial modification of
the 2-d convolution algorithm recently proposed in [3] and realized
in Fig. 1. We show that, using the properties of tensor product and
permutation matrices [6], a large 2-d convolution computation can be
decomposed recursively into three cascaded stages. We show that the
number of lower-order convolvers at the core computations can be re-
duced from nine to six with a computation saving of 33%. It should
be also emphasized that our partitioning and combining method does
not make any assumption about how the core convolution is computed.
Indeed, any suitable convolution method can be used. This makes the
proposed method very flexible and realizable over a wide range of hard-
ware and software platforms.
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Fig. 1. The original realization of the 2-d convolution algorithm.

A. Tensor Product Properties

Some of the properties of the tensor product that will be used
throughout this paper are [3], [6] as follows:

Distributive property: AB 
 CD = (A
 C)(B 
D) (1)

Commutative property: (A
B)
 C = A
 (B 
 C) (2)

If n = n1n2n3; thenPn;n Pn;n = Pn;n n : (3)

Parallel Operations: For square matricesAn andBn , if n = n1n2
then

An 
Bn = Pn;n (In 
 An )Pn;n (In 
Bn ) : (4)

If n = n1n2, then

Pn;n Pn;n = In: (5)

For nonsquare matrixAn;m, we have

An;m 
An;m = Pn ;n(In 
 An;m)Pnm;n(Im 
 An;m): (6)

WherePn;s is ann � n binary matrix specifying ann=s-shuffle (or
s-stride) permutation, andIn is the identity matrix of sizen.

II. REDUCING THE COMPLEXITY OF THE m-d CONVOLUTION

ALGORITHM

For ann1�n2 input data image, the 2-d convolution output is given
by [3]

~Cn ;n =
~~Rn ;n I9 
 Cn =2;n =2

~~Qn ;n (7)

where

Cn =2;n =2 = C(n1=2)
 C(n2=2)

is the lower order 2-d convolution matrix for ann1=2 � n2=2 input
image,

~~Qn ;n = P9(n =2);3 
 In =2 (Qn 
Qn ) (8)

and
~~Rn ;n = (Rn 
Rn ) P9(n �1);3(n �1) 
 In �1 : (9)

are the 2-d pre- and post-additions, respectively.

1057–7130/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000 1521

Fig. 2. The proposed 2-d convolution for an8� 8 input image with a detailed realization of~~Q .

Now, we will further manipulate (8) and (9) to exploit the re-
source sharing available and, consequently, realize the multiplexed
architecture of the 2-d convolution using less number of lower-order
convolvers.

Applying property (4), we can writeQn in the formQn = A
In=2

[3]. Consequently,~~Qn ;n can be written as

~~Qn ;n = P9(n =2);3 
 In =2 (Qn 
Qn )

= P9(n =2);3 
 In =2 A
 In =2 
A
 In =2 : (10)

Also, from properties (1) and (2), we have

~~Qn ;n = P9(n =2);3 A 
 In =2 
A 
 In =2In =2

= P9(n =2);3 A 
 In =2 
A 
 In =2: (11)

Since the matrix

A =

1 0

1 1

0 1

is of dimension3 � 2 [3], we have

A = AI2 In =2 
A = I3n =2 In =2 
A : (12)

Substituting (12) in (11) then using property (1), we have

~~Qn ;n = P9(n =2);3 AI2 
 I3n =2 In =2 
A 
 In =2

= P9(n =2);3 A 
 I3n =2 (In 
A) 
 In =2: (13)

Using property (4), the parallel form(In 
A) in (13) can be modified
to

(In 
A) = P3n ;n (A
 In )P2n ;2: (14)

Also, from property (4), we can write the term(A
I3n =2) in the form

A
 I3n =2 = A
 In =2 
 I3

= P9n =2;3n =2 I3 
 A
 In =2 P3n ;3: (15)

Fig. 3. The realization ofQ .

Substituting (14) and (15) in (13), we have

~~Qn ;n = P9(n =2);3 P9n =2;3n =2 I3 
 A
 In =2 P3n ;3

� (P3n ;n (A
 In )P2n ;2))
 In =2: (16)

However, from property (5), we have

P9n =2;3 � P9n =2;3n =2 = I9n =2

P3n ;3 � P3n ;n = I3n : (17)

Substituting (17) in (16), we can write~~Qn ;n in the form

~~Qn ;n = I3 
 A
 In =2 (A
 In )P2n ;2 
 In =2

= ((I3 
Qn )Q2n P2n ;2)
 In =2: (18)

Using property (4), we can write~~Qn ;n in the final form

~~Qn ;n = P9n =2�n =2;9n =2 In =2 
 ((I3 
Qn )Q2n P2n ;2)

� Pn �n ;n =2

= P9n =2�n =2;9n =2 In =2 
 E Pn �n ;n =2 (19)
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Fig. 4. The proposed 2-d convolution for an8� 8 input image with a multiplexed realization of~~Q .

TABLE I
COMPARISON OF THENUMBER OF MULTIPLICATIONS REQUIRED FOR THE2-d CONVOLUTION (KERNEL OFDIMENSION 8� 8)

where,E = (I3 
Qn )Q2n P2n ;2. The detailed realization of~~Q8;8

(for an8�8 input image) is shown in Fig. 2 in which the computations
involved in any of the four parallelE blocks are realized by the permu-
tationP16;2, followed by the computation stage ofQ16, followed by
three parallel blocks of the computationQ8. The detailed realization
ofQ16 is shown in Fig. 3. A careful scrutiny of the realizations ofQ16

shown in Fig. 3 reveals that the data movement throughQ16 encounters
different amounts of delays. In particular, the computations involved
in Q16 affect only the middleQ8 in any of theE blocks (shown with
dotted lines in Fig. 2). Thus, the top and the bottomQ8 can be computed
one addition cycle ahead of the middleQ8. This means that only two
of the three parallelQ8 blocks in the realization ofE are needed at a
time. Therefore, through the use of multiplexers, the middleQ8 can be
removed from the architecture ofE without affecting the speed of the
computations as shown in Fig. 4, reducing number of the lower-order
2-d convolvers from nine to six with a computation saving of 33%.

A multiplexed architecture of~~Rn ;n can be also derived using a
similar procedure. Applying property (4), we can writeRn in the form
Rn = R(�1)(B 
 In �1) [3]. Consequently, we can write~~Rn ;n in
the form

~~Rn ;n = (Rn 
Rn ) P9(n �1);3(n �1) 
 In �1

= [(R(�1) (B 
 In �1))
 (R(�2) (B 
 In �1))]

� P9(n �1);3(n �1) 
 In �1 (20)

which, using property (1), can be modified to
~~Rn ;n = (R(�1)
R(�2)) ((B 
 In �1)
 (B 
 In �1))

� P9(n �1);3(n �1) 
 In �1 : (21)

Applying properties (1) and (2), we have
~~Rn ;n = (R(�1)
R(�2)) ((B 
 In �1 
B)
 In �1)

� P9(n �1);3(n �1) 
 In �1

= (R(�1)
R(�2)) B 
 I3(n �1) I3(n �1) 
B

� P9(n �1);3(n �1) 
 In �1 (22)

which, using property (4), can be reformulated in the parallel form
~~Rn ;n = (R(�1)
R(�2))P9(n �1)(n �1);9(n �1)

� In �1 
 B 
 I3(n �1) I3(n �1) 
B

� P9(n �1);3(n �1) P9(n �1)(n �1);(n �1)

= (R(�1)
R(�2))P9(n �1)(n �1);9(n �1)

� (In �1 
K)P9(n �1)(n �1);(n �1) (23)

whereK = (B
I3(n �1))(I3(n �1)
B)P9(n �1);3(n �1). Equation

(23) represents~~Rn ;n in a multiplexed form similar to that of (19) for
~~Q
n ;n

.
We can extend the derivation of the multiplexed 2-d convolution

algorithm presented in this section to them-d convolution algorithm
in [3]. Following the same steps that are used to modify~~Q

n ;n
and
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~~Rn ;n for the 2-d convolution, we can exploit the resource sharing
available and derive multiplexed forms for them-d pre-additions(Q̂)
and the post-additions(R̂) in [3], reducing the number of lower-order
m-d convolvers form3m to (2=3)3m.

III. T HE COMPUTATIONAL COMPLEXITY OF THE 2-d CONVOLUTION

ALGORITHM

For simplicity, assume thatn1 = n2 = n and the input image is
of sizen� n. From (19), the number of additions in the pre-additions
stage~~Qn ;n is given by

n2
2

3
n1
2

+ n1 =
5

4
n2: (24)

Using property (6), we can write the termRn 
Rn in (20) as [2]

R(2n�1)�3(n�1) 
R(2n�1)�3(n�1)

= P(2n�1) ;(2n�1) I(2n�1) 
R P(2n�1)3(n�1);(2n�1)

� I3(n�1) 
R : (25)

Therefore, the number of additions in the post-additions stage~~Rn ;n

is given by

(2n� 1) (The number of additions inR)

+ 3(n� 1) (The number of additions inR)

= (5n� 4)(3n� 4): (26)

It should be mentioned that the number of additions in both the pre-ad-
dition and post-addition stages remains unchanged in the proposed al-
gorithm. Moreover, the communication complexity is reduced by re-
moving one of the threeP48;12 blocks, as shown in Fig. 4, for the case
n = 8.

Since the multiplication stages are centered at the core lower-order
parallel blocks [2], [3], removing one-third of these blocks in the pro-
posed algorithm guarantees a 33% saving in the number of multiplica-
tions. It should be mentioned that the computation complexity in our
proposed algorithm depends on the computations involved in the core
computationsCn =2;n =2 = C(n1=2) 
 C(n2=2). The number of
multiplications in our proposed algorithm based on [1] as a core, com-
pared to the direct method and FFT method, is shown in Table I. The
table shows a significant reduction of the number of multiplications of
the proposed multiplexed algorithm over the direct and FFT methods.

IV. CONCLUSION

In this paper, we presented modified parallel architectures form-d
convolution. The proposed algorithm showed that for 2-d convolution,
the number of lower-order convolutions is reduced from nine to six with
a computation saving of 33%. The proposed partitioning strategy re-
sults in a core of data-independent convolution computations, and does
not make any assumptions on how the core convolutions are computed.
Indeed, any suitable convolution method can be used, which makes the
proposed method very flexible and realizable over a wide range of hard-
ware and software platforms.
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New Algorithm for Multidimensional Type-III DCT

Yonghong Zeng, Guoan Bi, and Alex C. Kot

Abstract—New algorithms are proposed for the type-III multidimen-
sional discrete cosine transform (MD-DCT-III). The polynomial transform
is used to convert the type-III MD-DCT into a series of one-dimensional
type-III discrete cosine transforms (1-D-DCT-III). The algorithms achieve
considerable savings on the number of operations compared to the row-
column method. For computing an -dimensional DCT-III, the number of
multiplications required by the proposed algorithm is only1 times that
needed by the row-column method, and the number of additions is also re-
duced. Compared to other known fast algorithms for two-dimensional- and
MD-DCTs, the proposed one uses about the same number of operations.
However, advantages such as better computational structure and flexibility
on the choice of dimensional sizes can be achieved.

Index Terms—Discrete cosine transform, fast algorithm, multidimen-
sional signal processing, polynomial transform.

I. INTRODUCTION

Discrete cosine transform has a wide range of applications, such as
data compression, feature extraction, image reconstruction and mul-
tiframe detection. For example, the three-dimensional discrete cosine
transform (3-D-DCT) coding is an alternative approach to the motion
compensation transform coding technique used in video coding stan-
dards [7]. The multidimensional transforms are also used in the areas
of computer vision, high definition television (HDTV), and vision tele-
phone to process or analyze motion images (i.e., multiframe detection)
[6], [7]. For example, the four-dimensional DCT is generally required
for three-dimensional motion images. Although modern technologies
have increased computing speed dramatically over the recent years,
there still exist many difficulties in processing multidimensional sig-
nals at a throughput required by most practical applications. A good
fast algorithm is extremely important to cope with the prohibitive com-
putational complexity of the multidimensional transform.

Recently, several fast algorithms (other than the well-known row-
column method) have been proposed for two-dimensional discrete co-
sine transform (2-D-DCT) or multidimensional discrete cosine (MD-
DCT). Among them, the polynomial transform (PT) based algorithms
for 2-D-DCT in [2] and [3], the algorithms in [4] and [5], and the algo-
rithm for MD-DCT in [1] are reported to offer savings on the required
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