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TABLE 1l

ROBUSTNESS OFFILTERS

V. CONCLUSIONS

The M-LWOS filter was introduced. The optimization of the

Image o?,p | Canonical M-LWOS M-LWOS M-LWOS filter under the MSE criterion is investigated. From ex-
’ perimental results, we can believe the effectiveness of the optimal
LWOS 3x3 5x5 M-LWOS filter. The M-LWOS filter gives almost the same per-
formance at the same window size of the canonical LWOS filter.
Lena 4004 | 138.7 130.8 117.6 However, the number of parameters of the M-LWOS filter is superior
1506 343 to that of the canonical LWOS filter. The M-LWOS filter has fewer
Lena 400,12 | 201.3 : ’ parameters thani filter that gives the same performance.
Lena 200,8 115.8 109.5 100.4
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A Modified Shuffle-Free Architecture for
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better visual performance than the other filters. We can also recognize

that the 3x 3 window size is insufficient for such image processing. ~ Abstract—This paper presents a class of modified parallel very large
scale integration architectures for linear convolution in shuffle-free forms.

The proposed algorithms show that for 1-D convolution, the number of
lower-order convolutions can be reduced from three to two allowing a hard-
ware saving without slowing down the processing speed. The proposed par-

Both canonical LWOS and M-LWOS filters are designed by traininqi_tioning strategy results in a core of data-independent convolution compu-
ations. Such computations can be overlapped in software pipelines, super

!n practical cases, t_he original 'mage_s Of_ corrupted |mages (i.e., 'n%ﬁelines, or executed concurrently on multiple functional units in a DSP
images) are not available. Thus, training images are different from cefip.

rupted images. Itis necessary to assess the robustness of filters designed
by training. Both the canonical LWOS filter and the M-LWOS filter
(P = 9) are designed by using Lena which is corrupted by mixed noise
with (o2, p) = (400,8). We process six corrupted images as listed in Convolution is a very important operation in signal and image
Table Il by using these two filters. Table Il shows the results for filterprocessing with applications to digital filtering, and video image
which are designed ideally (using corrupted images and corresponding
original images).

The M-LWOS filter is superior to the canonical LWOS filter for all Manuscript received August 5, 1999; revised August 8, 2001. This paper was
of the images. M-LWOS filters are robust against changing the noiggommended by Associate Editor R. Geiger.
condition. Moreover, the designed filters achieve an almost ideal perA. Elnaggar and A. Al-Naamany are with the Department of Informa-
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training images which are si.milar tothe Co_rrUpted images. O_n the ba%\(#;l]ézbose?:z'z |g\?vr|]tqh ?ﬁ:ggggrtn?gr?t.%f%gm)buter Science, York University,
of these results, M-LWOS filters are considered robust against the $8ronto, ON M3J 1P3, Canada (e-mail: aboelaze@cs.yorku.ca).
lection of training images. Publisher Item Identifier S 1057-7130(01)10422-2.
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R A shuffle permutation with dilatiod operates on subvectors of size
0 . :
n it [ a2 n d rather than single elements. For example, the permutaprp op-
-1 = C(n/21 . erates on subvectors of size two. To illustrate this effect, consider the
. ] & two operations’; , X, and P} , X, respectively,
Convolution 01 ni2 n ’
= con} &
g | S 4E rt 0 0 0 Zo o
3 3
OUTPUT || 5 B ., | 8| | INPUT 001 0||m 2o
& Lo Poyp s M @ Pl ,X,= -
4,2 4
= ' 010 0|z 21
Stage # 3 Stage #2 Stage # 1 00 0 1 s 3
C(n) 1-D Convolution 'L 0 0 07 [ Fo
_ 0 0 L 0 T 9
Fig. 1. The original realization of the 1-D convolution algorithm. (a) Direct P2 Xs = 0 I, 0 O Fo = #1
realization. (b) RDS permutations.
LO 0 0 I T3 a3

processing. Thus, abundant approaches have been suggested to aci{fé&ke Iz is the identity matrix of size 2, and

high speed processing for linear convolution and to design efficient o

convolution architectures [1]-[6]. B = ‘
The proposed work is based on a nontrivial modification of the 1-D [ }

convolution algorithm presented in [1] and shown in Fig. 1. We shoxiy

. . : . e main power of RDS permutations stems from the fact that stan-
that using an alternative (permutation-free) construction, the number .
) P rd shuffle permutations can be constructed from smaller RDS per-
lower-order parallel convolutions (Stage #2 in Fig. 1) can be reduce

. ; . utations in a simple recursive fashion. This is very useful property

from three to two only, while keeping the regular topology and simp : A
- . . .. for enabling the modularization of VLSI networks that employ shuffle
data flow of the original very large scale integration (VLSI) architec- . . ST
" networks. For example, the permutatioR§ ¢ realized in Fig. 2(a)
ture. Our methodology employs tensor product decompositions an : . ’
. . . . _can be represented in RDS permutations as

permutation matrices as the main tools for expressing DSP algorithms.

Tensor products (or Kronecker products) have proven to be useful in Pl 4
providing a unified decomposable matrix formulations for multidimen- K
sional transforms, convolutions, matrix multiplication, and other fun-

T2i41

(I4 & P41,2) (I‘Z ® Pf,?) (I1 ® Pf,Q)

2

damental computations [1], [4]-[6]. Some of the tensor product and = H (I3i @ Py o @ Ihz—i).
permutation matrices properties that will be used throughout this paper =0
are [6]: If n = ninans, then The realization o  in RDS permutation is shown in Fig. 2(b).
ProniPoing = Paning. 1) Ill. 1-D SHUFFLE-FREE CONVOLUTION ALGORITHM
Forn = 2%, wherec is an interger, the recursive form of Toom’s

Commutative property linear convolution algorithm is given by [1]

C(n)=Rn(I3 2 C(n/2))Qn (5)

where
a—1 o

Parallel Operations: ik = nin» then Qn = [Pyza-1,320-2)) [(I20-1 © A) Pya pa-1] ©

R, = R(«a) [P3(2ﬂ71),3 (Ina—1 ® B) P3(2ﬂ71)(2ﬂ71)] )

Apy @ By = Po oy (Iny, @ An ) Po ny(Iny @ Bny). (3) A, B, andR(«) are special matrices of 1's and 0's only and can be re-
alized using simple adders [1]. The realization of the original algorithm
is shown in Fig. 1. Observe that, we have drawn our networks such that
data flows from right to left. We chose this convention to show the di-
rect correspondence between the derived algorithms and the proposed
PonyPong = In (4)  VLSI networks.

Ifn= 'ﬂ]ﬂqthen

where, P, s is ann x n binary matrix specifying am/s-shuffle (or A. Shuffle-Free Algorithm

s-stride) permutation. The shuffle permutations can be removed from the tensor forms

of (), and R,, in (6) and (7) that represent the pre-additions and the
post-additions, respectively. In this case, the effect of the shuffle per-
mutations is implicitly embedded in the tensor expression.
Il. REPLICATED DILATED SHUFFLE (RDS) FERMUTATIONS First, recall that the  — 1) permutations in the term
) ) (P. (znq),S(anz))“"lcontained in (6) can be simplified by
For the purposes of this paper, the class of RDS permutations nemﬁ using property (1), we have
to be introduced. This class of shuffle is very effective for network os
partitioning and for deriving modular VLSI interconnection networks Pya-1y 3za—2) = Pyza1y 3 H Pypa-1y o @8)

for convolution as will be shown in the following sections. iy
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Fig. 2. Fig. 2 The realization dP{, ;. (a) Direct realization. (b) RDS permutations.
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Fig. 3. The realization of?s. (a) Original realization. (b) Shuffle-free realization.

Therefore, using property (2) shuffle-free networks are suited for implementation using CAD tools
that employ automatic partitioning, placement, and routing.

a—1
(Paze1) 3e2)) Similarly, substitutinglo«_; for A,,, in (7) and applying properties

a—2 N (1)-(4), gives
= <1—)3(2(\1)73 lj[l P3(2(\1)72> (Pg(zafl),:s(zﬂfz)) R, :R(a) [1’13(2(\71)’,J (Ino_1 @ B) P;s(zﬂfl),(zafl)]
a—2 = ‘B Ioa_1).
= 3(2(‘—1)’3 (P;;(zafl),;;(za*Z)) . (9) B(OZ)(B IZ 1) (14)

The permutation-free recursive realization of the 8-point convolution

But from property (4), . . . . N
property (4) using three 4-point convolutions is shown in Fig. 4(a). We assume that

Pyaa-1y 2. Py2a-1y g(2a-2) = I3(2a-1y. (10) each addition requires one unit of time.
Hence, B. Multiplexed Architecture of the 1-D Convolution
(Pg(gafl)_, 3(2(‘72))“71 = P320-1y,3- (11) A careful scrutiny of the realization shown in Fig. 4(a) reveals that
the data movement through the computational stages encounters dif-
Therefore, we can writ§),, as ferent amounts of delays. In particular, the computations involved in
_ the Qs matrix affect only the middle 4-point convolution in the center
Qn = Pygay 3 (a1 @ A) Pyo ga1. 12) the@s y P

stage. Thus, the top and the bottom 4-point convolutions can be com-
By decomposing the two termfg ;o -1y 5 and e 50—1 in (12) into  puted one addition cycle ahead of the middle 4-point convolution. This
their RDS permutations and applying properties (2) and (4) repetitivelyieans that only two 4-point convolvers are needed at atime. Therefore,
Q). can be simplified to through the use of a multiplexer, either the top or the bottom 4-point
On = A Lyoor. (13) convolyer can be removed f_rom the architectur_e as shown in Fig: 4(b).
’ A multiplexer is used to multiplex the top and middle parts of the signal
Note that the above expression fgr, does not include any (explicit) flow. Input data are read from the host computer and are executed in a
permutations. The realization ¢fs (n = 2*) using the original form pipeline fashion. The top part of the signal flow will pass through the
of (6) and the modified shuffle-free representation of (13) are shownlmttom 4-point convolver first; while the middle part will first perform
Fig. 3(a) and (b), respectively. signal additions with the bottom part, then pass through the bottom
Even though the resulting circuits in Fig. 3(a) and (b) are topolog-point convolver. It can be verified that succeeding sets of input data
ically equivalent, removing the shuffle-permutations from the tensoan enter the hardware and can be executed in a pipeline fashion. In
formulations can simplify data movement. Moreover, the resultirgddition, lower order convolution will be at full utilization.
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Fig. 4. Realization of 8-point convolution. (a) Shuffle-free architecture. (b) Multiplexed architecture.

TABLE |
COMPARISON OF THENUMBER OF ADDITIONS REQUIRED BY THE PROPOSEDALGORITHM WITH OTHER APPROACHES
Method Formula Used n=_8 n=256 n=1024
Direct n(n-1) 56 | 65,280 1.047x10°
FFT 12nlog2n 384 | 27,648 0.135x10°
The proposed Algorithm s(3loeny _7ologny o 81 | 31,015 | 0.288x10°

TABLE I
COMPARISON OF THENUMBER OF MULTIPLICATIONS REQUIRED BY THE PROPOSEDALGORITHM WITH OTHER APPROACHES
Method Formula Used n=_8 n=256 n=1024
Direct n? 64 65,536 1.048x10°
FFT 12nlog2n+8n 448 29,696 0.143x10°
The proposed algorithm 3log 27 6561 59,049

It should be mentioned that, it would not be possible to observe thethe multiplexed architecture this number is reduced to
resource sharing shown in Fig. 4(a) without the modified shuffle-free
architecture. This is evident by comparing the realizatior@ointhe ~ 5(3%) = 7(2*) =5 (3 ") +7(2* ") =10(3* 1) =7 (2*71).
original form shown in Fig. 3(a) and the modified shuffle-free form (18
shown in Fig. 3(b). The total number of multiplications required is equadto In the mul-
tiplexed architecture, this number is reduced t@b ') multipli-
C. Computation Complexity of the Proposed 1-D Convolution  cation only. Tables | and Il show the number of additions and multipli-
Algorithm cations required by the proposed algorithm, respectively. For example,
The number of additions needed to compute the pre-additions st&§0ugh the number of additions of the proposed algorithm is nearly
is given by @ = 2%) twice that of the FFT, the number of multiplications is less by 70% for
the caser = 1024.

a—1 a—1
Do ETTHE) =3 ETHER) =320, (15)
1=0 1=0
The number of additions needed to compute the post-additions stage is IV. CONCLUSIONS

given by In this brief, we presented a class of modified parallel VLSI archi-
s N it it tectures for linear convolution in shuffle-free forms. The proposed al-
23 3T - +2) 372 -1 gorithms showed that for 1-D convolution, we use two smaller order
=1 =1 convolutions only allowing a hardware saving without slowing down

=2+4(3)" —6(2)". (16) the processing speed. It should be also emphasized that our partitioning
Therefore, the total number of additions needed to comptpeint and comb|n|n_g methOd does not make any a_lssumptlon ab_out how the
core convolution is computed. Indeed, any suitable convolution method

(n = 27) convolution is given by can be used. This makes the proposed method very flexible and realiz-
(3% =27)4+244(3)" = 6(2)" =5(37) = 7(2")+ 2. (17) able over a wide range of hardware and software platforms.
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A Low-Power Array Multiplier Using Separated Il. MOTIVATIONS
Multiplication Technique A. Review of DCM Algorithm and Its Drawbacks
Chang-Young Han, Hyoung-Joon Park, and Lee-Sup Kim The direct form of the FIR filter uses coefficients and inputs directly.

The DCM computes partial products with difference coefficients first,
o o _ and then adds the previously computed partial products. We can rewrite
Abstract—This brief proposes a separated multiplication technique that  pe general FIR filter outpufs; , with the first-order difference DCM

can be used in digital image signal processing such as finite impulse re- - . . L -

sponse (FIR) filters to reduce the power dissipation. Since the 2-D image algorithm and obtain (]j)' T.he graphical descriptions of direct form and
data have high spatial redundancy, such that the higher bits of input pixels DCM form are shown in Fig. 1.

are hardly changed, the redundant multiplication of higher bits is avoided ; R , R

by separating multiplication into higher and lower parts. The calculated Yit1 =CoXjp + C1X; + -+ O XN

values of the higher bits are stored in memory cellsgaches such that they ~ ~

can be reused when a cache hit occurs. Therefore, the dynamic power is =CoXjt1 + ((C1X; — CoX;) + CoXj) + -+
reduced by about 14% in multipliers by using the proposed separated mul-

tiplication technique (SMT) and in a 1-D 4-tap FIR filter by about 10%. +(COn—1Xjong2 — On—2 XjonNg2) + On—2 XNy
Index Terms—FIR filter, low power, LRU, multiplier. =CoXj41 + (chHlXj + Co X))+ - -
+ (dCL’l\f—lXjfl\"+2 + COn_2X; Ny2) (1)
I. INTRODUCTION
. ) ) ) where
Digital signal processing (DSP) is the technology at the heart of the
next generation of personal mobile communication systems. Most DSP dC} = Ce — Cr_1, k=140 (N —1).

systems incorporate a multiplication unit to implement algorithms such
as convolution and filtering. In many DSP algorithms, the multiplier The DCM needs small bit-width coefficients to reduce the power
liesin the critical delay path and ultimately determines the performancensumption in computing the partial products. However, power reduc-
of the algorithm. Present technologies possess computing capacities cannot be expected if the bit-width of the coefficient differences
that allow the realization of computationally intensive tasks such @&snot significantly shorter than the original coefficient bit-width. This
speech recognition and real-time digital video. However, the demascheme cannot be applied to a system if the system uses the existing FIR
for high-performance portable systems incorporating multimedia diter and its coefficient difference is not small. Another drawback of
pabilities has elevated design for low power to the forefront of desighe DCM is that it is not a suitable technique for sub-block based image
requirements in order to maintain reliability and provide longer houpgocessing using overlapping memory. After the last data of a certain
row is filtered, the data contained in the registers, shown in Fig. 1(b),
must be flushed to process the next row. Since the new row processing
Manuscript received May 10, 2000; revised September 13, 2001. This papegjuires the previous sub-block pixels rather than the current, it requires
Wa_?h':Z?J?;rgr‘;”gr‘zdvﬁ%’hﬁﬁzo&ﬁtt?mi‘é'itgrv\fs?‘:‘_’ng ratory, Korea Advanced 2dditional logic to handle the flushing scheme. As a result, the latency
stitute of Science and Technology (KAIST), Taejon, 305-701 Korea (e—ma'iﬂCreases IfDCM is Psed In sub-bloc.k .based Image processing. There-
quark@mvisi.kaist.ac.kr). fore, a new method is needed for efficiently handling sub-block based
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