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TABLE II
ROBUSTNESS OFFILTERS

TABLE III
FILTERING RESULTSUSING FILTERS DESIGNED BY IDEAL TRAINING

better visual performance than the other filters. We can also recognize
that the 3� 3 window size is insufficient for such image processing.

C. Robustness of M-LWOS Filters

Both canonical LWOS and M-LWOS filters are designed by training.
In practical cases, the original images of corrupted images (i.e., input
images) are not available. Thus, training images are different from cor-
rupted images. It is necessary to assess the robustness of filters designed
by training. Both the canonical LWOS filter and the M-LWOS filter
(P = 9) are designed by using Lena which is corrupted by mixed noise
with (�2, p) = (400,8). We process six corrupted images as listed in
Table II by using these two filters. Table III shows the results for filters
which are designed ideally (using corrupted images and corresponding
original images).

The M-LWOS filter is superior to the canonical LWOS filter for all
of the images. M-LWOS filters are robust against changing the noise
condition. Moreover, the designed filters achieve an almost ideal per-
formance, as can be seen from the results for Woman, if we choose
training images which are similar to the corrupted images. On the basis
of these results, M-LWOS filters are considered robust against the se-
lection of training images.

V. CONCLUSIONS

The M-LWOS filter was introduced. The optimization of the
M-LWOS filter under the MSE criterion is investigated. From ex-
perimental results, we can believe the effectiveness of the optimal
M-LWOS filter. The M-LWOS filter gives almost the same per-
formance at the same window size of the canonical LWOS filter.
However, the number of parameters of the M-LWOS filter is superior
to that of the canonical LWOS filter. The M-LWOS filter has fewer
parameters than aLl filter that gives the same performance.
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A Modified Shuffle-Free Architecture for
Linear Convolution

A. Elnaggar, M. Aboelaze, and A. Al-Naamany

Abstract—This paper presents a class of modified parallel very large
scale integration architectures for linear convolution in shuffle-free forms.
The proposed algorithms show that for 1-D convolution, the number of
lower-order convolutions can be reduced from three to two allowing a hard-
ware saving without slowing down the processing speed. The proposed par-
titioning strategy results in a core of data-independent convolution compu-
tations. Such computations can be overlapped in software pipelines, super
pipelines, or executed concurrently on multiple functional units in a DSP
chip.

I. INTRODUCTION

Convolution is a very important operation in signal and image
processing with applications to digital filtering, and video image
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Fig. 1. The original realization of the 1-D convolution algorithm. (a) Direct
realization. (b) RDS permutations.

processing. Thus, abundant approaches have been suggested to achieve
high speed processing for linear convolution and to design efficient
convolution architectures [1]–[6].

The proposed work is based on a nontrivial modification of the 1-D
convolution algorithm presented in [1] and shown in Fig. 1. We show
that using an alternative (permutation-free) construction, the number of
lower-order parallel convolutions (Stage #2 in Fig. 1) can be reduced
from three to two only, while keeping the regular topology and simple
data flow of the original very large scale integration (VLSI) architec-
ture. Our methodology employs tensor product decompositions and
permutation matrices as the main tools for expressing DSP algorithms.
Tensor products (or Kronecker products) have proven to be useful in
providing a unified decomposable matrix formulations for multidimen-
sional transforms, convolutions, matrix multiplication, and other fun-
damental computations [1], [4]–[6]. Some of the tensor product and
permutation matrices properties that will be used throughout this paper
are [6]: If n = n1n2n3, then

Pn; n Pn;n = Pn;n n : (1)

Commutative property

(A 
B)
 C = A 
 (B 
 C): (2)

Parallel Operations: ifn = n1n2 then

An 
Bn = Pn;n (In 
 An )Pn;n (In 
Bn ): (3)

If n = n1n2then

Pn;n Pn;n = In (4)

where,Pn; s is ann � n binary matrix specifying ann=s-shuffle (or
s-stride) permutation.

II. REPLICATED DILATED SHUFFLE (RDS) PERMUTATIONS

For the purposes of this paper, the class of RDS permutations needs
to be introduced. This class of shuffle is very effective for network
partitioning and for deriving modular VLSI interconnection networks
for convolution as will be shown in the following sections.

A shuffle permutation with dilationd operates on subvectors of size
d rather than single elements. For example, the permutationP 2

4; 2 op-
erates on subvectors of size two. To illustrate this effect, consider the
two operationsP 1

4; 2X4 andP 2
4; 2X8, respectively,

P 1
4; 2X4 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

x0

x1

x2

x3

=

x0

x2

x1

x3

P 2
4; 2X8 =

I2 0 0 0

0 0 I2 0

0 I2 0 0

0 0 0 I2

~x0

~x1

~x2

~x3

=

~x0

~x2

~x1

~x3

where,III2 is the identity matrix of size 2, and

~xi =
x2i

x2i+1
:

The main power of RDS permutations stems from the fact that stan-
dard shuffle permutations can be constructed from smaller RDS per-
mutations in a simple recursive fashion. This is very useful property
for enabling the modularization of VLSI networks that employ shuffle
networks. For example, the permutationsP 1

16; 8 realized in Fig. 2(a)
can be represented in RDS permutations as

P 1
16; 8 = I4 
 P 1

4; 2 I2 
 P 2
4; 2 I1 
 P 4

4; 2

=

2

i=0

(I2 
 P4; 2 
 I2 ) :

The realization ofP 1
16; 8 in RDS permutation is shown in Fig. 2(b).

III. 1-D SHUFFLE-FREE CONVOLUTION ALGORITHM

For n = 2�, where� is an interger, the recursive form of Toom’s
linear convolution algorithm is given by [1]

C(n) = Rn(I3 
 C(n=2))Qn (5)

where

Qn = P3(2 ); 3(2 )
��1

(I2 
 A)P2 ; 2 (6)

Rn =R(�) P3(2 �1); 3 (I2 �1 
B)P3(2 �1)(2 �1) (7)

A,B, andR(�) are special matrices of 1’s and 0’s only and can be re-
alized using simple adders [1]. The realization of the original algorithm
is shown in Fig. 1. Observe that, we have drawn our networks such that
data flows from right to left. We chose this convention to show the di-
rect correspondence between the derived algorithms and the proposed
VLSI networks.

A. Shuffle-Free Algorithm

The shuffle permutations can be removed from the tensor forms
of Qn andRn in (6) and (7) that represent the pre-additions and the
post-additions, respectively. In this case, the effect of the shuffle per-
mutations is implicitly embedded in the tensor expression.

First, recall that the (� � 1) permutations in the term
(P3(2 ); 3(2 ))

��1contained in (6) can be simplified by
first using property (1), we have

P3(2 ); 3(2 ) = P3(2 ); 3

��2

i=1

P3(2 ); 2: (8)
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(a) (b)

Fig. 2. Fig. 2 The realization ofP . (a) Direct realization. (b) RDS permutations.

(a) (b)

Fig. 3. The realization ofQ . (a) Original realization. (b) Shuffle-free realization.

Therefore, using property (2)

P3(2 ); 3(2 )
��1

= P3(2 ); 3

��2

i=1

P3(2 ); 2 P3(2 ); 3(2 )
��2

= P3(2 ); 3 P3(2 ); 3(2 )
��2

: (9)

But from property (4),

P3(2 ); 2:P3(2 ); 3(2 ) = I3(2 ): (10)

Hence,

P3(2 ); 3(2 )
��1

= P3(2 ); 3: (11)

Therefore, we can writeQn as

Qn = P3(2 ); 3 (I2 
 A)P2 ; 2 : (12)

By decomposing the two termsP3(2 ); 3 andP2 ; 2 in (12) into
their RDS permutations and applying properties (2) and (4) repetitively,
Qn can be simplified to

Qn = A
 I2 : (13)

Note that the above expression forQn does not include any (explicit)
permutations. The realization ofQ8 (n = 23) using the original form
of (6) and the modified shuffle-free representation of (13) are shown in
Fig. 3(a) and (b), respectively.

Even though the resulting circuits in Fig. 3(a) and (b) are topolog-
ically equivalent, removing the shuffle-permutations from the tensor
formulations can simplify data movement. Moreover, the resulting

shuffle-free networks are suited for implementation using CAD tools
that employ automatic partitioning, placement, and routing.

Similarly, substitutingI2 �1 forAn in (7) and applying properties
(1)–(4), gives

Rn =R(�) P3(2 �1); 3 (I2 �1 
B)P3(2 �1); (2 �1)

=R(�)(B 
 I2 �1): (14)

The permutation-free recursive realization of the 8-point convolution
using three 4-point convolutions is shown in Fig. 4(a). We assume that
each addition requires one unit of time.

B. Multiplexed Architecture of the 1-D Convolution

A careful scrutiny of the realization shown in Fig. 4(a) reveals that
the data movement through the computational stages encounters dif-
ferent amounts of delays. In particular, the computations involved in
theQ8 matrix affect only the middle 4-point convolution in the center
stage. Thus, the top and the bottom 4-point convolutions can be com-
puted one addition cycle ahead of the middle 4-point convolution. This
means that only two 4-point convolvers are needed at a time. Therefore,
through the use of a multiplexer, either the top or the bottom 4-point
convolver can be removed from the architecture as shown in Fig. 4(b).
A multiplexer is used to multiplex the top and middle parts of the signal
flow. Input data are read from the host computer and are executed in a
pipeline fashion. The top part of the signal flow will pass through the
bottom 4-point convolver first; while the middle part will first perform
signal additions with the bottom part, then pass through the bottom
4-point convolver. It can be verified that succeeding sets of input data
can enter the hardware and can be executed in a pipeline fashion. In
addition, lower order convolution will be at full utilization.
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(a) (b)

Fig. 4. Realization of 8-point convolution. (a) Shuffle-free architecture. (b) Multiplexed architecture.

TABLE I
COMPARISON OF THENUMBER OF ADDITIONS REQUIRED BY THE PROPOSEDALGORITHM WITH OTHER APPROACHES

TABLE II
COMPARISON OF THENUMBER OF MULTIPLICATIONS REQUIRED BY THE PROPOSEDALGORITHM WITH OTHER APPROACHES

It should be mentioned that, it would not be possible to observe the
resource sharing shown in Fig. 4(a) without the modified shuffle-free
architecture. This is evident by comparing the realizations ofQ8 in the
original form shown in Fig. 3(a) and the modified shuffle-free form
shown in Fig. 3(b).

C. Computation Complexity of the Proposed 1-D Convolution
Algorithm

The number of additions needed to compute the pre-additions stage
is given by (n = 2�)

��1

i=0

(3��i�1)(2i) = 3��1
��1

i=0

(3�i)(2i) = (3� � 2�): (15)

The number of additions needed to compute the post-additions stage is
given by

2

�

i=1

3i�1(2��i � 1) + 2

�

i=1

3i�1(2��i+1 � 1)

= 2 + 4(3)� � 6(2)�: (16)

Therefore, the total number of additions needed to computen-point
(n = 2�) convolution is given by

(3� � 2�) + 2 + 4(3)� � 6(2)� = 5(3�)� 7(2�) + 2: (17)

In the multiplexed architecture this number is reduced to

5(3�)� 7(2�)� 5 3��1 + 7 2��1 = 10 3��1 � 7 2��1 :

(18)
The total number of multiplications required is equal to3�. In the mul-
tiplexed architecture, this number is reduced to be2(3��1) multipli-
cation only. Tables I and II show the number of additions and multipli-
cations required by the proposed algorithm, respectively. For example,
although the number of additions of the proposed algorithm is nearly
twice that of the FFT, the number of multiplications is less by 70% for
the casen = 1024.

IV. CONCLUSIONS

In this brief, we presented a class of modified parallel VLSI archi-
tectures for linear convolution in shuffle-free forms. The proposed al-
gorithms showed that for 1-D convolution, we use two smaller order
convolutions only allowing a hardware saving without slowing down
the processing speed. It should be also emphasized that our partitioning
and combining method does not make any assumption about how the
core convolution is computed. Indeed, any suitable convolution method
can be used. This makes the proposed method very flexible and realiz-
able over a wide range of hardware and software platforms.
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A Low-Power Array Multiplier Using Separated
Multiplication Technique

Chang-Young Han, Hyoung-Joon Park, and Lee-Sup Kim

Abstract—This brief proposes a separated multiplication technique that
can be used in digital image signal processing such as finite impulse re-
sponse (FIR) filters to reduce the power dissipation. Since the 2-D image
data have high spatial redundancy, such that the higher bits of input pixels
are hardly changed, the redundant multiplication of higher bits is avoided
by separating multiplication into higher and lower parts. The calculated
values of the higher bits are stored in memory cells,caches, such that they
can be reused when a cache hit occurs. Therefore, the dynamic power is
reduced by about 14% in multipliers by using the proposed separated mul-
tiplication technique (SMT) and in a 1-D 4-tap FIR filter by about 10%.

Index Terms—FIR filter, low power, LRU, multiplier.

I. INTRODUCTION

Digital signal processing (DSP) is the technology at the heart of the
next generation of personal mobile communication systems. Most DSP
systems incorporate a multiplication unit to implement algorithms such
as convolution and filtering. In many DSP algorithms, the multiplier
lies in the critical delay path and ultimately determines the performance
of the algorithm. Present technologies possess computing capacities
that allow the realization of computationally intensive tasks such as
speech recognition and real-time digital video. However, the demand
for high-performance portable systems incorporating multimedia ca-
pabilities has elevated design for low power to the forefront of design
requirements in order to maintain reliability and provide longer hours
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of operation. As a result, a great deal of effort has been invested to
reduce the energy dissipation in multipliers in various research fields
[1]–[6].

In this brief, we exploit the spatial redundancy of images to reduce
the energy dissipation in multipliers and apply this novel multiplier
implementation technique to decimated FIR filters by factor 2, which
are popularly used in discrete wavelet transform (DWT).

Differential coefficients method (DCM) [7]–[9] is a similar algo-
rithm, which uses highly correlated data. DCM uses differential co-
efficients to multiply inputs, and compensates for the effect of differ-
ential coefficients by adding the previously computed partial product.
However, the use of DCM necessitates careful consideration when co-
efficients are determined in the FIR filter design process. Furthermore,
this method is not adequate for a sub-block based 2-D image due to the
large memory requirement. Therefore, this brief proposes a new power
reduction method for 2-D image processing using the separated multi-
plication technique.

The remainder of this brief is organized as follows. Section II briefly
introduces the motivations for finding a new power reduction in the
multiplier. The key idea for reducing power in the multiplication is de-
scribed in Section III. The proposed idea is simulated and optimal solu-
tions are applied to the decimated FIR filter module in Section IV. The
proposed architecture is described in Section V and the results are ana-
lyzed in Section VI. Finally, conclusions are presented in Section VII.

II. M OTIVATIONS

A. Review of DCM Algorithm and Its Drawbacks

The direct form of the FIR filter uses coefficients and inputs directly.
The DCM computes partial products with difference coefficients first,
and then adds the previously computed partial products. We can rewrite
the general FIR filter outputsYj+1 with the first-order difference DCM
algorithm and obtain (1). The graphical descriptions of direct form and
DCM form are shown in Fig. 1.

Yj+1 =C0Xj+1 + C1Xj + � � �+ CN�1Xj�N+2

=C0Xj+1 + ((C1Xj � C0Xj) + C0Xj) + � � �

+ (CN�1Xj�N+2 � CN�2Xj�N+2) + CN�2Xj�N+2

=C0Xj+1 + (dC1
1Xj + C0Xj) + � � �

+ (dC1
N�1Xj�N+2 + CN�2Xj�N+2) (1)

where

dC
1
k = Ck � Ck�1; k = 1 to (N � 1):

The DCM needs small bit-width coefficients to reduce the power
consumption in computing the partial products. However, power reduc-
tion cannot be expected if the bit-width of the coefficient differences
is not significantly shorter than the original coefficient bit-width. This
scheme cannot be applied to a system if the system uses the existing FIR
filter and its coefficient difference is not small. Another drawback of
the DCM is that it is not a suitable technique for sub-block based image
processing using overlapping memory. After the last data of a certain
row is filtered, the data contained in the registers, shown in Fig. 1(b),
must be flushed to process the next row. Since the new row processing
requires the previous sub-block pixels rather than the current, it requires
additional logic to handle the flushing scheme. As a result, the latency
increases if DCM is used in sub-block based image processing. There-
fore, a new method is needed for efficiently handling sub-block based
2-D image processing.
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