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Abstract 

In this paper, we analyze the delay of an average message going through an arbitrary link 
of the N-cube. We view each link as an M/M/1 queue and find analytic recursive relations for 
the arrival rate of messages at an arbitrary link. Then, we calculate the delay per link as a func- 
tion of the message generation rate at the processor. We investigate two model of communica- 
tion. The first, uniform communication where each processor communicate with any other pro- 
cessor with the same probability. The second is clustered communication, where neighboring 
processors communicate more than distant processors do. Finally, we investigate the effect of 
adding one more link at each node of the cube (Folded Hypercube) on the delay and the max- 
imum number of hops. 

1. INTRODUCTION 
The N-cube multiprocessor is a highly parallel multiprocessor architecture consisting of 

2 N identical processors. Each processor has its own memory and is connected to N neighbors 
in the form of a binary N-cube network. The hypercube is a message-passing multiprocessor 
architecture that has the ability to exploit particular topologies of problems in order to minimize 
communication cost [Fox85], [Ncu86]. 

In this paper, we report on the performance of the N-cube from the point of view of the 
communication delay incurred by an average message crossing an arbitrary link of the machine. 
The analysis is based on simple probahilistic relations and the inherent symmetry of the N- 
cube. Analytical recursive relations have been obtained for the message rate of an arbitrary 
link. Then each link is treated as an M/M/1 queue and a number of performance measures are 
computed. We also investigate the architecture known as Folded Hypercube [La.E89]. 

Previous work in performance of hypercube [AbP89] concentrated a synchronized system 
(SIMD) [KuS82], [Bat80]. However, the situation is different in MIMD systems. Where them 
are N processors, controlled by a single operating system, which provide interaction between 
processors and their programs [HwB84]. In this ease them is no global clock controlling the 
different processors in the systems, and previous results will not be valid any more. 
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In Section 2 some basic properties of the N-cube are summarized and a theorem is proved 
which is used in the delay analysis. In Section 3 the delay analysis is presented. In Section 4 
the Folded Hypercube is analyzed and its perforrnance is compared to the N-cube. 

2. BASIC PROPERTIES OF THE N-CUBE 
The N-cube, is a graph with 2 N nodes numbered from 0 to 2N--1. A link connects two 

nodes if the binary representation of their two number differ by one and only one bit. The dis- 
tance between two nodes a and b is h (a,b), where h is the hamming distance. 
Let us consider for a moment a link 0 by its two incident nodes (c,d). Then 
Def in i t i on  : The distance d 1 between a node a and a link 0 with incident nodes (c ,d) is 

f 
dÂ = min~h (a , c ) ,  h (a ,d )}  

t .  . /  
The above definition is used in the following theorem. 
Theorem 1. 

In an N-cube the number of nodes at distance f from a link Q with incident nodes (c,d), is 
to (N'} N-1  o<_f <N. equa l  - j .  

of nodes at a hamming distance f from node c is equal to (N). Not all of P r o o f :  T h e  number 
d 

these nodes are at a distance f from the link (c ,d). Since there is one bit in the binary represen- 
tation of node c that is different from its corresponding bit in the binary representation of node 
d. Then, some of these nodes are at a distance f + l  from node d, and some are at a distance 
f - 1  from it. In the first group, the nodes that are at a distance f + l  from node d,  according to 
definition 3.2 are at a distance f from link (c,d). The rest of the nodes are at a distance f - 1  
from the same link. The question that remains to be answered is how many nodes are at a dis- 
tance f from node c and at a distance f - 1  from node d.  Assume that the binary representation 
of node c is c o , c 1 . . . . .  c N ,  and that of node d is d o , d 1 . .  • ,dN. Since these two nodes differ 
in one and only one bit, assume without loss of generality that they differ in the first bit i.e. 
c 0 ~  o, and they agree in the rest of the bits. Any node at a distance f from node c and a dis- 
tance f - 1  from node d must have the same first bit as node d and differ in f - 1  of the remain- 

is ( N - I ' ~  Therefore the number of nodes at a distance ing N-1  bits. The number of such nodes ~'f-1 "" 

f from (c ,d ) is (~ )  N -  I - ( f _ l  ) f"l 

3. DELAY ANALYSIS OF THE N-CUBE 
In our analysis we represent the links of the N-cube as servers in a queueing system 

[Al178], [Kle76a], [Kle76b]. The service rate of each link is its bandwidth. Communication 
between nodes is accomplished by exchanging messages. We assume that the time between 
two message generated by the same processor is exponentially distributed with mean 1/L. We 
also assume that the length of the message has an exponential distribution with mean 1St. 

Without loss of  generality let us assume that a source node is a o and that it sends a mes- 
sage to any node with equal probability. Starting at a 0 a message travels through a number of 
links. We pick an arbitrary link in the path from a 0 to a N. Let L i be this arbitrary link. The 
longest path is composed of a succession of N + I  nodes and N links, i.e., a 0, L0, a l, 
L 1 . . . . .  a i , L  i . . . . .  aN_ 1, LN_  1, a N . Notice that the numbering here does not correspond to the 
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binary numbering of the nodes in the N-cube, it simply means that a o is the first node in the 
path, L o is the first link in the path a 1 the second node in the path, etc. Figure 1.a shows a 4- 
cube, and Figure 1.b shows the longest path in the 4-cube 

a0 
(a) 

Co) 

Figure 1. A 3-D view of the 4-cube 

Next we proceed to define a number of terms pertinent to our analysis. Let 
Pi =prob(ailLof'V-qV'tLz('~ . . . . .  C'hLi-I) = the probability that a message originated at 

a 0 is destined to node a i given that it has traveled along the line containing the links L 0, L 1, 

L 2 . . . . .  Li-1. 
qi =prob(LilLo('~lfM-*2¢'~ . . . . .  ( '~ i -1)  = the probability that a message originated at a o 

will travel along link L i given it has traveled along the path containing the links L o, 

L 1 . . . . .  Li- i .  
Pi = probability that a message originated at node a0 will travel along the link Li, for 

0 < i  <_N-1 
Any message generated at node ao will be directed with equal probability to any node in 

the N-cube, by following any outgoing link of a 0. Since there are N links connected to node a 0 
then the probability of  this message to choose link L o is 1/N. Thus 

qo =prob(Lo)  = I lN (1) 

Now Pl  =prob(al lLo)  is the probability that this message is destined to a 1 given that it has 
traveled along link L 0. Thus 

prob (a f ' t L  o) 
P ] =prob (a l/L0) = (2) 

prob (L o) 

Since there is only one route from node ao to its neighbor a l  then 
prob(alf 'VLo) =prob(a  1)= 1/( 2N - 1 )  ( all the 2 N - 1  nodes are equally likely to receive a 
message from a 0) 

1/(2 N - 1) N 
= = ~ ( 3 )  P t IlN 2 N - 1 
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Next, we calculate q l  which is the probability that a message originated at node a 0 will travel 
along the link L b given it has already traveled along the link L o. This can occur only if the mes- 
sage destination is not a 1. The probability that the message destination is not a 1 is 1 - P v  
Notice also that a message leaving a 1 has N - 1 nodes to choose from (it can not be forwarded 
to the link it just arrived from). 

l -P1  (4) 
q l = prob (L1/Lo) = N --- -1 

We now need to calculate p 2 = prob (a21L 0: '~  1) which is the probability that the message ori- 
ginated at a 0 is designated to node a 2 given that it has traveled along the line containing the 
link L 0 and L 1. Thus 

prob (a 2F ' tLot '~  1) prob (a 2FV_,of"ff., 1)' 
P2 = prob (a2/Lo:'V_, 1) = = (5) 

prob(LoCYL 1) prob(Lo)prob(Ll lL o) 

Since node a z is at a hamming distance 2 from node a0, there are 2! possible paths between the 
two nodes. Thus the probability to go to a 2 using one such path and in particular the path con- 

1 
taining Lo, L t isprob (a2~LoCff ,  1) = 2!(2 N _ 1~'" Then 

J 

1 
2!(2 N - 1) 

P 2 = (6) 
q0ql  

In order to calculate q2 we apply similar thinking as for ql .  Thus, l - p 2  is the probability that 
the message will not have node a 2 as its destination node and since there are N - 2 paths out- 
bound from a 2, then 

1 - P 2  (7) 
q2= P r ° b ( L 2 1 L ° C ~ ) =  N - 2  

In general, to calculate Pi 

prob (a i : ' ~LoC~ 1 0  . . . . .  ("tLi_l) 
Pi =pr°b(ailLof'V-'lC~ . . . . .  ~Li -1 )  = prob(Lo: -~ l ( .  ~ . . . . .  (-V_,i_I) 

prob (a i ('V_,o('~ I('~ . . . . .  ('V_,i_l) 

p r o b  (L i_ l /L i_2(" l  . . . . .  ("~o)prob (Li_21Li_3 0 . . . . .  ('V_,O) . . . . .  prob (Lo) 
(8) 

Note that we apply the multiplication rule for the probability function in the denominator. Then 
equation (8) can be rewritten as 

1 

Pi = i l (2  N - 1) (9) 

qi-lqi-2 . . . . .  q o 

and 

qi = prob (L i/L o('V_, a ~ . . . . .  ('~Li-1) = 
1 --Pi 

(lo) 
N - i  

This completes the first step in our analysis. 
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In the second step, we calculate the probability Pi which is the probability that a message 
originated at node a o will travel along link L i . Since qi = p rob  (L i IL o ~ L 1 . . . . .  ~ Li-1)  is the 
conditional probability that this message will travel along the specific path containing 
Lo,  L l . . . . .  Li_  1 one can use the total probability formula and fred Pi by summing overall pos- 
sible paths from a 0 to ai through L i. This formula is 

P ( A ) =  ~ . P ( A / B i ) P ( B i ) =  Z P ( A C Y B i )  (11) 
a l l i  a l l i  

where the events A and B i correspond to the events 

A tB i = a message  traveling along L i /has  crossed  all  l inks LO("tLI¢% . . . . .  ( ' ~ i - z  

Because of the symmetry of the N-cube there are i! such paths between a 0 and a i , all with the 
same probability. Thus, 

Pi = ~ p r o b  [Li ('~{Li_l . . . Lo}] (12) 

the sum is over all the possible paths {Li_ 1 . . .  Lo}. since there are i [ such paths between L o 
and Li_ 1, then 

Pi = prob  [L i ('~{Li_ 1 . . .  Lo}] i I (13) 

P i = [ p r o b ( L i / L i _ l ( " ~  . . . . .  f h L o ) x p r o b ( L i _ l ( ' ~  . . . . .  ¢"~L0) ] i [ (14) 

Using the multiplication rule we obtain 

P i = [ q i  xprob(Li_ l lL i_2¢ '~  . . . . .  L o ) x p r o b ( L i _ f f " ~  . . . . .  ¢~L0) j it (15) 

and finally 

Pi = [qi qi-1 . . . . .  q0] i I for 0 <- i < N (16) 

Thus we have determined the probability that a message originated at node a 0 will travel along 
link L i , in other words we have determined the percentage of messages originated at a 0 that will 
travel across link L i for 0 _< i < N-1 .  

In the third step of our analysis, we have to determine the contribution of all nodes to L i, 

i.e., the total message traffic through L i .  The contribution of all nodes to link L i will depend on 
their distance from it. Because of the symmetry of the N-cube all nodes at the same distance, 
say distance j, 1 < j < N,  will contribute the same amount of traffic. We need to know how 
many such nodes exist at distance j from link L i . According to theorem 1 the number of nodes 

that are at a distancej from Z i are (IV) _ N - 1  ( j - 1 ) "  then, 

S = Z - - / - 1  (17) 
j=0 

Xi = Xp x S,  where ~,i is the effective arrival rate at any link, and Xp is the message generating 
rate at the processor. 

By treating any llnk as an M/M/1 queue [Al178], the queueing delay Tq,  and the total delay 
Ttota I are 

Tq = P , TtotaZ = 1 X..L.i = Xl' S 
It(l-p) It(l-p---"~ ' p= It It (18) 
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This completes our analysis under the assumption that a message is sent from any node to any 
other node with equal probability. 

Now we consider the assumption that a node sends a message to any node with a probabil- 
ity which depends on the hamming distance between the binary labels of the two nodes. Let 
f (i) be the probability that a message generated at any node will be directed to a node at a dis- 
tance i from the originating node. Notice that f (i) should be a decreasing function of i ,  i.e., 
the further the two processors, the less probable that they will exchange messages. We assume 
that f (i) will take the form,, f ( i )= k/i for i = 1,2 . . . . .  N where k is a constant, such that 
the sum of the probabilities that a message will be directed to any node is 1. The analysis is as 
before, except for the calculation of Pi. Since the probability that the message will be directed 
to a link at a distance i is f (i), then Pi is given by 

Pi = f ( i ) / i t  (19) 
q o q 1 . . . . .  qi-1 

The rest of the equations remain the same. This completes our analysis. 
To check the validity of our analytical work, we simulated the N-cube and compared our 

results with the simulation results. The difference between the analytical results and simulation 
results is less than 7%. Recall, ~.p represents the rate of message generation at any node. Figure 
2 shows the delay per link vs ~.p for both the equal probability case and the f (i) = k/i case. 

4 -  

3 -  4 :"" ..Y" 

Delay 2 - . . ." '" .  ...... "'" 1 

1 = Folded cube, clustered communication 

1 - 2 = cube, clustered communication 

3 = Folded cube, uniform communication 

4 = cube, uniform communication 

0 . . . . . . . . . .  ; I 1 I 
0 1 2 3 4 

Figure 3 
Delay vs ~.p for cube and folded hypercube 

4 .  F O L D E D  H Y P E R C U B E  

In N-cube the maximum distance between two nodes is N. A modified cube architecture 
known as Folded Hypercube was presented in [LaE89]. The basic differences between this 
modified cube and the ordinary hypercube architecture is the addition of some extra links 
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known as the complementary links. To derive the folded hypercube from the ordinary N-cube, 
it is sufficient to add N bi-directional links (known as complementary links) to connect two 
nodes that differ in all their bits, i.e., a link is added to connect node (aN-l,aN-2 . . . . .  ao) and 
node (EN_I,EN_ 2 . . . . .  rio)" The number of the added links is N. In the rest of this section we 
study the effect of the added links on the average message delay. 

4.1. Delay Analysis 
The basic idea of routing in the modified cube is as follows. Assume that a message is 

directed from node a to node b,  recall that the hamming distance between a and b is h (a ,b). 
Then, if  h(a,b) < rNI2] then the ordinary routing is used. If h(a,b) > rN/2] then the mes- 
sage is sent to the node that differs in all the bits in its binary representation from the source 
node via the complementary link, and then ordinary routing is used. Thus, the maximum 
number of steps to send messages between any two nodes is rNI21 . 

To calculate the delay at each link, it will be very hard to follow the individual messages 
from node to node as we did with the ordinary cube, henceforth a simpler approach is used. 
Since the added link is used once at the beginning of the routing if the hamming distance is 
greater than rNI2] and never used again we can calculate the effective arrival rate for the ordi- 
nary links and the added links separately as follows. If we define the arrival rate at the ordinary 
links as ~'ordlnary, then. 

~'ordlnary = Lp X number of nodes x Average number of hops per message (20) 
Total number of links 

Notice that, the nodes that are at a distance of i < rN/2] from the source node, require i hops. 
However, the nodes that are at a distance of i > rN/2] from the source node require one hop 
via the complementary link and N - i  hops via the ordinary links to reach its destination 

,.,, 

x , x ( ' 7 )  + s 
Average number of hops = i=i ..... i=Im21 +l (21) 

IN#z] N N 
z 0 + x 
i=1 i=IN/2] +1 

] i  x + ]~ (N- i )  x x 2  N 
/=rm21 +l 

r i(N)+ X (i)ixN2" 
I=FN/2I +l J 

For the complementary link, the traffic that crosses it is the part of the traffic directed to a node 
at distance greater that rN/2 ] 

= x 2 ( i )  (23) 
~Lc - 1 i--run1+: 

Table 1 shows the relation between 7~ordina,y (the arrival rate at the ordinary links in the 
Folded hypercube), ~.c (arrival rate at the complementary link for the folded hypercube), and L i 
(arrival rate for links in the hypercube) for different values of N. Figure 2 shows the delay vs 
Lp for the folded hypercube. 
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2 0.500 0.333 0.667 
3 0.500 0.143 0.571 
4 0.357 0.333 0.533 
5 0.400 0.194 0.516 
6 0.355 0.349 0.508 
7 0.389 0.228 0.504 
8 0.366 0.365 0.501 
9 0.392 0.254 0.501 
10 0.378 0.377 0.500 

Table 1. ~'ordinaO, ~'c, and ~'i (~'p = 1) 

5. CONCLUSION 
In this paper, we studied the average message delay per link in an N-cube. We assumed 

that the system is running asynchronously, the rate of message generation in each processor is 
Poisson and the length of the message is exponentially distributed. We established recursive 
relations for the rate of message arrival at each link. Knowing that, we calculated some perfor- 
mance measures such as the average message delay per link and the average queue length at 
each link. We also studied the delay in the Folded Hypercube, and we showed that the average 
message delay in the Folded Hypereube is much less than the average message delay in the 
ordinary cube. Simulation results were shown to validate our analysis, the difference between 
the simulation results and our analysis is less than 7%. 

6. REFERENCES 
[AbP89] S. Abraham and K. Padmanabhan, "Performance of the Direct Binary n-Cube Net- 

work for Multiprocessors," IEEE Transactions on Computers, Vol. 38, No. 7, July 
1989, pp. 1000-1011. 

[Al178] A.O. Allen, Probability, Statistics, and Queueing Theory, Academic Press, 1978. 
[BatS0] K.E. Batcher, "Design of a Massively Parallel Processor," Trans. on Computers, 

Vol. C-29,N 9, Sept. 1980, pp. 836-840. 
[Fox85] G. Fox, The Performance of the Caltech Hypercube in Scientific Calculations, Cal- 

tech Report CALT-68-1298, Caltech, 1985. 
[HwB84] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, 

McGraw-Hill, 1984. 
[Kle76a] L. Kleinrock, Queueing Systems, Volume 1: Theory, John Wiley and Sons, 1976. 
[Kle76b] L. Kleinrock, Queueing Systems, Volume 2: Computer Applications, John Wiley 

and Sons, 1976. 
[KuS82] D.J.  Kuck and R. A. Stokes, "The Burroughs Scientific Processor (BSP)," IEEE 

Transactions on Computers, Vol. C-31, May 1982, pp. 363-376. 
[LaE89] S. Latif and A. E1-Amawy, "On Folded Hypercubes," Proc. of International 

Conference on Parallel Processing, 1989. 
[Ncu86] NCUBE Corp., NCUBE Handbook, version 1.0, NCUBE Corp., Beaverton, Ore- 

gon, 1986. 


