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One common problem in association rule mining is that often a very large number of rules
are generated from the database. The sheer volume of these rules makes it difficult, if not

impossible, for human users to analyze and make use of the rules. In this article, we propose
two algorithms for grouping and summarizing association rules. The first algorithm
recursively groups rules according to the structure of the rules and generates a tree of clusters

as a result. The second algorithm groups the rules according to the semantic distance between
the rules by making use of a semantic tree-structured network of items. We propose an
algorithm for automatically tagging the semantic network so that the rules can be represented

as directed line segments in a two-dimensional space and can then be grouped according to the
distance between line segments. We also present an application of the two algorithms, in which
the proposed algorithms are evaluated. The results show that our grouping methods are
effective and produce good grouping results.

Keywords: Data-mining; Real-world application; Grouping association rules

1. Introduction

The problem of association rule mining that discovers
an interesting class of database regularities was first

introduced in Agrawal et al. (1993). Today, a variety

of efficient association rule mining algorithms exist
(Agrawal and Srikant (1994), Han et al. (2000) and

Savasere et al. (1995)). However, these algorithms
often produce considerable amounts of rules or patterns

and create another data-mining problem. The amount of
rules produced by the algorithms is often so huge that it

is virtually impossible for human users to analyze these
rules in order to identify useful ones. Some solutions

have been proposed to overcome this problem. One
line of research is constraint-based data-mining,

in which only patterns that satisfy certain constraints

are generated. For example, Srikant et al. (1997)
integrated user-specified constraints that are boolean
expressions over the presence or absence of items into
candidate generation process of the a priori algorithm.
Pei et al. (2001) incorporated constraints into the
frequent pattern generation process of the FP-tree
algorithm. These constraint-based mining algorithms
not only reduce the number of generated rules, but
also speed up the algorithm dramatically. Another way
to reduce the number of discovered patterns is to post-
prune rules according to rule structures or statistical
tests. Shah et al. (1999) proposed a set of pruning rules
to eliminate structurally and semantically redundant
rules from the set of mined patterns. Toivonen et al.
(1995) computed a subset of rules, called a structural
rule cover, to reduce the number of rules and further
grouped the rules in the cover using clustering.
Cristofor and Simovici (2002) defined another type
of rule cover, called informative cover, to group and*Corresponding author. Email: aan@cs.yorku.ca
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summarize related rules. Liu et al. (1999) applied the �2

test to remove insignificant associations and then found
a subset of unpruned rules, called direction setting rules,
to form a summary of the discovered association rules.
To prune uninteresting rules, researchers have used
different measures of interestingness to assess the
significance of a rule. For example, Piatetsky-Shapiro
(1991) proposed to use a measure, called RI (Rule
Interestingness), to measure the interestingness of a
rule. Tan and Kumar (2000) defined a measure, called
IS, derived from statistical correlation between the
antecedent and consequent of a rule. Blanchard et al.
(2005) used information-theoretic measures to assess
association rule interestingness. Hilderman and
Hamilton (1999) gave a survey of various interestingness
measures used for association rules. By ranking the
discovered rules according to their degree of interesting-
ness, only interesting rules are presented and non-
interesting ones are pruned.
In our previous work (Huang et al. 2002), we con-

ducted an empirical study on learning association rules
from a Web log data set. A huge number (tens of
thousands or millions) of rules are generated and
many of them are not interesting. To reduce the
number of rules and identify the interesting ones, we
applied some pruning rules proposed in Shah et al.
(1999) to remove some structurally or semantically
redundant rules, and used some statistical interesting-
ness measures to identify interesting rules. However,
the number of interesting rules resulting from these
two steps is still large. Further organization or grouping
of rules is necessary in order for human users to digest
and make use of the rules. In this article, we propose
two algorithms for grouping association rules. The
algorithms can take as input, the rules resulting from
other rule-pruning methods and further group the
rules into clusters according to some criteria. The first
algorithm, called the objective grouping algorithm
(the OG algorithm), is based on the concept of rule
covers of rules and groups the rules according to the
syntactic structure of the rules. The second algorithm,
referred to as the subjective grouping algorithm
(the SG algorithm), incorporates domain knowledge
and groups the rules according to the semantic informa-
tion of the objects in the rules. Both algorithms group
similar rules together and thus provide users with a
high-level overview of the rules and with the capability
of the exploratory top–down analysis of the rules,
which helps the user to better understand the rules.
The article is organized as follows: in section 2,

we give a literature review on the topic of grouping asso-
ciation rules: in section 3 and 4, we give the
necessary details of the proposed algorithms, the
objective grouping algorithm and the subjective
grouping algorithm, respectively: section 5 presents an

application in which we empirically evaluate the two
proposed algorithms and we conclude the article in
section 6.

2. Related work

One of the first approaches to clustering association
rules was presented in Lent et al. (1997), where
discovered rules in the 2D space are clustered using
heuristic methods based on geometric properties of 2D
grids. The problem of the approach is that it is limited
to only the rules with two fixed attributes in their
antecedents. Another approach presented in Wang
et al. (1998) considers association rules with any
number of numeric and categorical attributes in their
bodies, and groups rules with similar structures by
merging adjacent intervals of numeric values in
a bottom-up manner. The approach lifts the 2D restric-
tion, but grouping is only based on numeric attributes.

Toivonen et al. (1995) presented another approach to
grouping association rules, in which rules are grouped
into clusters according to a distance measure. In their
approach, the distance between two association rules is
defined as the number of transactions on which the
two rules differ. A limitation of this approach is that
rules that belong to the same cluster may have substan-
tially different structures, and thus it is difficult to
describe the rule cluster to the user. Adomavicius and
Tuzhilin (2001) described another similarity-based
approach to grouping association rules. In their
approach, the similarity measure is based on the concept
of attribute hierarchies. The attribute hierarchy is a tree
structure provided by the human expert. The leaves of
the tree consist of all the attributes of the data set and
the non-leaf nodes in the tree are specified by the
human expert and are obtained by combining several
lower-level nodes into one parent node. By specifying
a rule aggregation level, the rules are generalized using
the non-leaf nodes at the aggregation level, and the
rules with the same aggregated rule are grouped
together. The benefit of this approach is that each
group can be described by the aggregated rule.
However, this approach requires the intensive user
interaction during the grouping process. The user must
specify the aggregation level. When the attribute
hierarchy is huge, the user may not have a clear idea
about what would be the appropriate aggregation level.

In the next two sections, we present two association
rule-clustering algorithms. The two algorithms require
little intervention from the user during the rule-
grouping process and result in clusters that are
descriptive. The algorithms can be applied to association
rules that are derived from a database containing a large
number of different items or attributes.
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3. Grouping rules: an objective approach

The first algorithm that we present groups association
rules according to only the structure of the rules
(without domain knowledge or user interaction), and is
therefore called the objective grouping (OG) algorithm.
In the absence of any domain knowledge, a reasonable
way to cluster rules is to group together those rules
that share an item in the antecedent and an item in the
consequent. We use this idea in the OG algorithm to
group rules. Next, we first formally define some concepts
used in the algorithm and then describe the algorithm.

3.1 Definitions

Let I be a set of all items in a domain and D be a set of
transactions over I. A transaction is a subset of I. The
association rule is an implication of the form A ! B,
where A � I, B � I, and A \ B ¼ ;. The rule holds on
the transaction set D with support s and confidence c
if s% of the transactions in D contains A [ B, and c%
of the transactions that contain A also contain B. A is
called the antecedent of the rule and B is called the
consequent of the rule.
Let R be a set of association rules over I. Let a, b 2 I

and � ¼ fag ! fbg. Note that � may or may not be in R.
The cover of � in R, coverRð�Þ, is defined as{

coverRð�Þ ¼ fr 2 Rjr ¼ A ! B, a 2 A, b 2 Bg:

Intuitively, coverRð�Þ contains all the rules in R that have
a in their antecedent and b in their consequent. Again,
note that � 62 coverRð�Þ when � 62 R. The seed rule of
the cover of � in R is defined to be �. The size of the
cover of � in R, sizeRð�Þ, is the number of rules in
coverRð�Þ, i.e., sizeRð�Þ ¼ jcoverRð�Þj, where jXj is the
cardinality of the set X.
Using these concepts, we next present our OG

algorithm.

3.2 The objective grouping algorithm

The basic idea of the OG algorithm is to recursively
group rules with common items in their antecedents
and consequents until some criteria are satisfied. The
result of the algorithm is a tree-structured hierarchy of
clusters, in which each leaf node is a rule and each
non-leaf node is a cluster that contains all the rules in
its children. In addition, each cluster has a unique
label or group name, which is the ancestor rule of the
cluster. For example, given a set of association rules

fab ! cd, bcd ! ae, abe ! d, ac ! d, b ! a, d ! cg,

the OG algorithm can generate a tree of clusters shown

in figure 1, where non-leaf nodes denote clusters.

For example, the node labeled ab ! d denotes the

cluster that contains all the rules with a and b in its

antecedent and d in its consequent. The cluster that

has ‘other’ in its label means that it is the remaining

set by taking out the rules in its siblings from its parent.
The OG algorithm is a recursive algorithm. Given

a set of association rules R, in each step the OG

algorithm searches for a seed rule � whose cover has

the largest size in R and then groups the rules in the

cover of �. We allow both the cases in which � may or

may not be in R. The algorithm is presented in figure 2.
The OG algorithm takes four inputs, which are a set

of items (I), a set of association rules over I (R), an

integer that denotes the maximum number of rules

in a group or cluster (threshold) and an integer that

denotes the depth of recursive call (depth). The depth

parameter should be 1 when the algorithm is first

called. The algorithm works as follows. As long as the

number of ungrouped rules is greater than a certain

predefined limitz, it tries to group the rules in the follow-

ing manner. First, it searches for a seed rule �
(with single item antecedent and single item consequent)

that has the depth’th largest size of cover in R by

enumerating over all possible combinations. Here,

rather than considering the largest cover, we search for

the depth’th largest cover to avoid grouping items

using the same seed rule over and over again, in a

recursive call. The reason behind this is that we have

already classified the largest cover into one group in

one of the upper levels of recursion. After a seed rule

� is selected, the cover of � in R is computed and all

the rules in the cover are grouped into a single cluster,

labeled as group �.
Next, if coverRð�Þ has more than threshold elements,

we recursively group them. To reduce the complexity

{Our definitions of over and seed rule are recast from the definitions of coverage list and ancestor rule in Sahar (1999).

zIn the algorithm, we reuse the threshold to define this limit. Another threshold can be used for this purpose.

Figure 1. A sample output of the OG algorithm.
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of the process, when we recursively call the OG
algorithm, we reduce the size of the itemset I by keeping
only the items that appear in coverRð�Þ. For the rest
of the rules in R, i.e., for R� coverRð�Þ, we repeat this
procedure until the number of leftover rules is less
than threshold. Finally, we group and label these

leftovers as the ‘other’ group and terminate the
procedure.

Note that the OG algorithm is a greedy algorithm.
In each level of recursion, it selects a seed with the
locally largest cover, groups the rules in this largest
cover together, and removes the rules in the cover
from R to avoid further consideration. Therefore, the
sibling clusters (which have the same parent in the
final cluster tree) do not overlap. For example, if
rule fa, bg ! fc, dg is clustered into, say, group
fag ! fcg, it won’t be in group fbg ! fdg because the
first group is larger. This design choice is for the
efficiency reason. If efficiency is not an issue, we can
easily modify the algorithm to allow overlapping clusters
at the same level. The advantage of the OG algorithm is
that it produces a hierarchy of clusters by doing
recursive grouping. This provides the user the capability
to perform top–down analysis of rules. In addition,
it groups rules according to only the structure of the
rules and thus requires little user intervention.

4. Grouping rules: a subjective approach

The OG algorithm does not incorporate domain knowl-
edge. However, domain knowledge can often provide
better insight into the discovered rules. In this section,
we introduce an algorithm, called the SG algorithm,
that makes use of domain knowledge. The algorithm
groups the rules according to the semantic distance
between the rules. It uses a taxonomy or a special
type of semantic network to calculate the distance
between two rules. Before we present the SG algorithm,
we discuss the structure and properties of the semantic
network used by this algorithm.

4.1 Labeled semantic network

The domain knowledge used in our SG algorithm is
a tagged semantic network, which is a special type of
taxonomy or is-a-hierarchy. The semantic network is
defined or provided by the domain experts and has the
following properties:

1. The taxonomy is a tree-like structure. It can contain
one or more trees. Each node in a tree represents
an object or entity. The upper-level nodes represent
generalization of their children while the lower-level
nodes are specialization of their parents.

2. Both leaf and non-leaf nodes of the taxonomy can be
present in the antecedent and the consequent of a
rule. This applies to the cases where some items
in the rule have been generalized according to the
taxonomy (in order to reduce the number of rules).
It also applies to some Web mining applications

Figure 2. The objective grouping algorithm.
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where rules or patterns involve ‘folder’ pages that
contain links to its children pages.

3. Each node of the taxonomy is associated with a pair
of numbers, which represents the relative position
of the node in the taxonomy. We call this pair of
numbers the relative semantic position (RSP) of the
node. Generally, if two objects are closer to each
other in terms of their semantic distance, the RSPs
assigned to them are also closer and vice versa.
RSPs can be either specified by the domain experts,
or automatically generated by our algorithm.

4. A tree in the taxonomy can be an unbalanced tree.

Figure 3 illustrates an example of a taxonomy tree in an
electronic store. Next, we describe a procedure to assign
an RSP to each node in the taxonomy. Then we explain
how the elements of this semantic network can be used
to group similar rules.

4.2 Assigning relative semantic positions

As we have mentioned previously, a RSP represents the
semantic position of the object in the network. Hence,
two objects that are semantically closer to each other
(e.g., tea and coffee) should be assigned two closer
RSPs than two objects that represent two very different
concepts (e.g., tea and baseball). A RSP can be assigned
in one of the two ways. The first and probably the more
accurate but costly method is to take help from a
domain expert to assign an RSP to each of the nodes
of the tree(s). Unfortunately, this process is highly
user-intensive. Moreover, domain experts are often not
readily available or are extremely costly. To come

around with this problem, we propose a second way
that automatically determines an RSP for each node
by exploiting the structure of the semantic network.
This procedure requires that, at a minimum, the user
provide the semantic network as an input.

We define the RSP of a node to consist of two num-
bers, denoted as ðhpos, vposÞ, where hpos represents the
horizontal position of the node in the tree and vpos
represents the vertical position of the node in the tree.
We use the level of the node in the tree to represent
the vertical position of the node. For example, the
vpos for the root of a tree is 1, the vpos for each of the
children of the root is 2, and so on. The hpos value is
designed to be unique for the node. We use the position
of the node in the tree’s in-order traversal sequence to
represent the hpos of the node. For example, a tree
with the hpos value for each node is shown in figure 4.
The benefit of this method for assigning RSPs is that
the tree can be easily visualized using the RSP values
in a 2D space. For example, the example tree in figure
4 can be visualized using the RSPs in a 2D space,
which is shown figure 5. We later represent association
rules in this same space.

Figure 6 describes our algorithm for assigning RSPs
for a single tree. If the semantic network is a forest
(i.e., it contains multiple trees), we can either make the
forest a single tree by adding a root node on top of all
the trees, or assign RSPs for each tree individually
but with different value ranges. As we can see in
figure 6, determining an RSP for each node automati-
cally is a fairly straightforward procedure. The idea is
to create a completely balanced tree by adding artificial
nodes to the tree, do an in-order traversal of the

Figure 3. An example of semantic networks.
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balanced tree, and then remove the artificial nodes. The
reason for creating a balanced tree is to maximize the
distance between nodes in different subtrees. While
creating a balanced tree, we assign ‘level’ to each node
as its vpos value. While performing in-order traversal
of the tree, we assign gradually monotonically increasing
integers to the nodes of the tree as their hpos values.
Figure 7 illustrates an unbalanced tree with its RSPs
assigned by our algorithm. Its balanced version of
the tree is the one in figure 4. Though we only
illustrate the case of binary tree here, this also works
for trees where each node can have an arbitrary
number of children.

4.3 The subjective grouping algorithm

Having discussed a method for assigning an RSP to each
node of the taxonomy, we now have our ground set for

the SG algorithm. In the SG algorithm, we first use
RSPs to represent the objects or items in each associa-
tion rule. We then calculate the average RSP of all the
elements in a rule’s antecedent and the average RSP of
all the elements in the rule’s consequent. The rule is
then represented by two mean RSPs. Since each of the
two mean RSPs corresponds to a point in a 2D space,
the rule can be further represented by a directed line
segment (pointing from the antecedent mean to the
consequent mean) in the 2D space. For example,
consider the following rule described by the RSPs of
its objects: fð2, 3Þ, ð4, 2Þg ! fð9, 4Þ, ð10, 3Þg. We can
represent the rule using the mean RSPs of its antecedent
and consequent as f3, 2:5g ! fð9:5, 3:5Þg and further
depict the rule using a directed line segment, as shown
in figure 8.

Once the rules are represented using line segments,
the problem of grouping association rules is converted

Figure 4. An example tree with hpos values.
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Figure 5. The example tree visualized using RSPs.
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to the problem of clustering line segments. We can use a

standard clustering algorithm to cluster the line seg-

ments, and modify the distance function used in the clus-

tering algorithm to measure the distance between two

line segments. The objective of clustering line segments

in our case is to group segments that are close to each
other and have similar length and orientation. For this
purpose, we define a distance function that takes into
account the angle between the two lines, the distance
between the center points of two segments and the
difference between the lengths of the two segments.
The distance function is defined as:

Distanceðs1, s2Þ ¼ w1 � ð1� cosðs1, s2ÞÞ þ w2

�NDistðc1, c2Þ þ w3

�NDiffðlengthðs1Þ, lengthðs2ÞÞ

where s1 and s2 are two line segments, cosðs1, s2Þ takes
the cosine of the angle between s1 and s2, c1 and c2
are the center points of s1 and s2, respectively,
NDistðc1, c2Þ represents normalized distance between c1
and c2, NDiffðx1, x2Þ denotes the normalized difference
between x1 and x2, length(x) computes the length of
segment x, and w1, w2, and w3 are weights representing
the relative importance of the three factors.{ Using
this distance function, we can group together lines

Figure 6. Algorithms for assigning RSPs.

Figure 7. An unbalanced tree with RSP values.

Figure 8. A rule represented by a line segment in the space

showing the taxonomy of objects.

{The values of weights can be adjusted according the application need. In the experiments reported in this article, we assign value 1 to all the three

weights, assuming the three factors (the angle between the two lines, the distance between the center points of the two line segments and the difference

between the lengths of the segments) are equally important.
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with similar starting points and similar end points.
Figure 9 illustrates some possible clusters of rules
resulting from the use of this distance function.
The SG algorithm is presented in figure 10. It groups

together rules with similar antecedents and similar
consequents, and labels each group by the mean RSPs
of the rules in the group, which indicate the position
of the group in the semantic network. Depending on
the clustering method used for grouping line segments,
the algorithm can generate a hierarchy of clusters if
a hierarchical clustering method is used.

5. Evaluation in a real-world application

We have applied the OG and SG algorithms to group
association rules discovered in a Web mining applica-
tion. The data set used in the application is the Web
log data produced by a commercial product, named
Livelink{. Livelink is a Web-based system that provides
automatic management and retrieval of a wide variety of
information objects (such as a pdf file, a power point file,
a page for a project description, and so on) over an
intranet or extranet. The log data set that we used in
our experiments describes more than 3,000,000 requests
made to a Livelink server from around 5000 users during
a period of 2 months. Each request corresponds to a log
entry in the log file, which records the information
objects being requested, the time the request was
made, where the request came from, etc. The objective
of our application is to discover interesting Livelink
usage patterns so that these patterns can be used to
improve the organization of the information managed
by Livelink and to test hypotheses about the effects
of different design variables on Livelink user behavior.

To extract interesting patterns from the Livelink log
data, we applied an association rule-mining algorithm
that generates a complete set of association rules satisfy-
ing a minimum support and a minimum confidence.
Depending on the threshold values, the number of
discovered rules varies from a few to billions. If the
thresholds are high, the small number of generated
rules are obvious patterns which are not interesting to
our domain experts. Only when the support threshold
is low can interesting rules be generated. However,
the total number of rules is huge. For example, for a
support threshold of 0.0025 and a confidence threshold
of 0.5, 74,565 rules are generated from the association
rule-mining program. In order to identify interesting
rules and better understand the discovered patterns,
we conduct the following steps to post-process the
discovered rules:

1. identify interesting rules according to an interesting-
ness measure;

2. post-prune the rules according to the rule structure;
3. grouping the interesting rules using the OG and

SG algorithms.

5.1 Ranking and post-pruning rules

To identify interesting rules, we use an interestingness
measure to assign an interestingness value to each
rule and then rank the rules according to the value.
The interestingness measure that we use is called MD
(Measure of Discrimination), which has been evaluated

Figure 9. Clustered line segments.

Figure 10. The subjective grouping algorithm.

{Developed and sold by Open Text Corporation (http://www.opentext.com).
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to be one of the best measures for ranking association
rules in our previous study Huang et al. (2002). Given
an association rule A ! B, where A and B are a set of
items, the MD measure is defined as

MD ¼ log
PðAjBÞð1� PðAjBÞÞ

PðAjBÞð1� PðAjBÞÞ
,

where P denotes probability.
The interestingness measure can help identify

interesting rules by putting the interesting rules at the
top-ranking list. However, there are many redundant
rules in the top-ranking list. By redundant rules we
mean that multiple rules contain the same semantic
information and hence some of them are redundant.
To remove redundant rules, we adopt two pruning
rules from Shah et al. (1999) and adapt the rules to
use with interestingness measures. Our pruning rules
are as follows:

. Pruning Rule 1: If there are two rules of the form
A ! C and A ^ B ! C, and the interestingness
value of rule A ^ B ! C is not significantly better
than rule A ! C, then rule A ^ B ! C is redundant
and should be pruned.

. Pruning Rule 2: If there are two rules of the form
A ! C1 and A ! C1 ^ C2, and the interestingness
value of rule A ! C1 is not significantly better than
rule A ! C1 ^ C2, then rule A ! C1 is redundant
and should be pruned.

A rule R1 is significantly better than rule R2 if
ðIVðR1Þ � IVðR2Þ=IVðR2ÞÞ >5%, where IV(R1) and
IV(R2) are the interestingness values for R1 and R2,
respectively.
The use of pruning rules is effective. The number of

rules was reduced significantly as the result of pruning.
For example, for the rules generated with the support
threshold of 0.0025 and confidence threshold of 0.5,
the number of rules was reduced from 74,565 to 997.
However, the number of rules is still too large
for human users to analyze and understand them.
To further reduce the number of rules, we only take
the first 100 rules ranked high by the interestingness
measure and present them to the domain experts.

5.2 Grouping rules

By analyzing the top 100 rules, our domain experts
identify that many of these rules have similar structures
or close to each other semantically in the context of the

taxonomy of the information objects. They suggest
that these rules should be grouped and summarized.
To achieve this purpose, we applied the OG and SG
algorithms to the rules. Next, we present the results
from these two algorithms, and compare the results
with the grouping result from our domain experts.

5.2.1 Grouping results by human expert. Our domain
expert groups the 100 rules into 15 groups. The smallest
group contains only one rule and the largest group has
26 rules. The distribution of the group size is shown
in table 1. As we can see from the table, there are
three big groups in the 100 rules and other groups are
much smaller. Each of the groups is about a subject
and the rules within a group often have information
objects in common.

5.2.2 The results of objective grouping. Given a set of
association rules, the only input to the OG algorithm
that is needed from the user is the maximum number
of rules that a cluster can contain. In our experiment,
we set this threshold to be two different numbers. The
results of these two runs (together with the SG result)
are shown in table 2. Each run of the OG algorithm
produces a tree of clusters. The table shows the
number of levels of the cluster tree, the number of
clusters at the lowest non-leaf level{ (shown in the
table as ‘No. of clusters’), the number of lowest
non-leaf level clusters that are completely the same as
a cluster from the expert (No. of compl. cor. clusters)z
and the grouping accuracy.

The grouping accuracy is calculated as follows: for
each pair of rules, we know whether they should
belong to the same group based on the grouping result
from the domain expert. If two rules that should
belong to the same group are clustered into the same
group or if two rules that should not belong to the
same group are clustered into different groups, we call
it a ‘match’; otherwise, it is a mismatch. The grouping
accuracy is defined as

accuracy ¼
Number of matches

Total number of rule pairs
:

The number of rule pairs can be easily calculated
based on the number of rules. For example, if
we have 100 rules, the number of possible pairs
of rules is ð100� 100� 100Þ=2 ¼ 4500. The number of
matches can also be calculated by a program using

{The lowest non-leaf level is the level right above leaves. The leaf level contains the rules. For example, the number of lowest non-leaf level clusters

in the cluster tree in figure 1 is 4.

zNote that a cluster is not considered to be ‘completely correct’ even though a single rule is misgrouped or it misses a single rule. This may be

a too strict measure.
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a triangle matrix. As an example, the number of matches

for the OG-1 run is 3655, and thus its grouping accuracy
is 81:2%, as shown in the table.
We observe that the two runs of the OG algorithm

have different performance in terms of the measures in
table 2. This is because the performance is evaluated at

the lowest non-leaf level. By setting the threshold
(which is the maximum of rules allowed for the lowest

non-leaf level cluster) to be 26, we do not break the
two largest clusters specified by the expert. However,

if the threshold is 20, the two largest clusters are
broken into smaller ones. This causes the grouping
accuracy to decrease. If we look at the small clusters,

both runs give the same results. Since the OG algorithm
produces a tree of clusters, the user can always look

at higher levels if they think the lower level is in too
much detail due to the low setting of the threshold.

5.2.3 The results of subjective grouping. The informa-
tion objects in the Livelink environment are organized
into a structure that contains over 2000 trees. The leaf

level objects are files or documents, and the objects at
non-leaf levels are ‘folders’ that contain some informa-

tion and links to its children objects. The association
rules can contain objects at both the leaf and non-leaf

levels. To use the SG algorithm, we first tag the trees
with RSP values using our automatic algorithm

for assigning RSPs. To distinguish the objects in
different trees, we use different RSP value ranges for

different trees.
After the trees are tagged, we run our SG program on

the 100 rules used in our experiments. The results are

shown in table 2. We use a hierarchical agglomerative
clustering algorithm to cluster the line segments within

the SG program. The program generates a dendrogram
that shows the levels of nested merging. When we

evaluate the performance, we cut the dendrogram at
the level where there are 15 clusters, and based on

these clusters we calculate the grouping accuracy.
Due to the use of hierarchical clustering, the result

of grouping is also a tree of clusters. The number of
levels shown in table 2 for the SG run is the level

of the tree produced on top of the 15 clusters. In general,
the program can do k-way clustering. Here we set k to be

15, which is the actual number of groups produced
by the expert. From table 2, we can see that the SG

algorithm produces more accurate results than the
OG algorithm.

5.3 Scaleup experiments

To evaluate the scalability of the two algorithms, we run
our programs on several sets of rules with increasing rule
numbers. Figure 11 shows that the running time of the
two programs increases almost linearly with the size of
the rule set. The time for the SG program does not
include the time for tagging the trees because this can
be done off-line. Between the two programs, the OG
program is faster. We notice that the reason for the
SG program to be slower is mainly due to the time
taken for loading the tagged trees. Since there are over
2000 trees in our application and the total number of
objects is over 300,000, the total size of the trees
is large. Based on the results, we can say that both
algorithms are scalable.

6. Conclusions

We have presented two new algorithms for grouping
a large number of (interesting) association rules. The
first algorithm, the objective grouping (OG) algorithm,
groups the rules by recursively selecting seed rules with
largest cover size. It groups the rules according to only
the structures of the rules and generates a tree of clusters
as a result. The tree of clusters provides the user with the
capability of conducting a top–down analysis of rules.
The second algorithm, the subjective grouping (SG)
algorithm, groups the rules according to the semantic
distance between the rules. It is an offline interactive
(or subjective) process that takes input from domain
experts by asking them to specify a semantic network.
Specifying a semantic network is an easy process
for domain experts, since it represents the general
knowledge or common sense about the domain.
The novel feature of the SG algorithm is that we auto-
matically tag the nodes of the semantic network
(which is a tree or a forest) with RSPs, represent a rule
with its antecedent and consequent mean RSPs, which
leads to a graphical representation of rules with directed

Table 2. Results of the OG and SG algorithms.

Run Threshold
No. of
levels

No. of
clusters

No. of compl.
cor. clusters. Accuracy

OG-1 26 3 11 6 81.2%

OG-2 20 4 13 4 71.5%
SG 15 9 15 12 93.7%

Table 1. Size distribution of the groups (from experts).

Group size 1 2 3 4 5 20 25 26

No. of groups 4 4 1 1 2 1 1 1
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line segments, and finally, group the line segments with a
special designed distance function. In addition, both OG
and SG algorithms provide a summary description for
each group. With the OG algorithm, we can use the
seed rule of each group to describe the rules, while
with the SG algorithm we can use the ‘mean rule’
which is described by two RSP means (one for the
antecedent and the other for the consequent).
We also presented an application in which we

evaluated the two algorithms by grouping a set of
interesting association rules discovered from the
Livelink log data. Our experiment shows that both
methods are effective and produce good grouping
result with respect to the expert grouping result.
Between the OG and SG algorithms, we showed
that the SG algorithm produces more accurate results
than the OG algorithm. This is because it groups
the rules according to the semantic ‘positions’ of the
rules, which is closer to the way of grouping by
the expert. Our experiment results also showed that
both algorithms scale well with an increasing number
of rules.
We also found from our experiments that some rules

that were grouped together by our expert (because the
expert thinks the two rules are semantically related)
were clustered into different groups by the SG
algorithm. This is because the objects in the two rules
are far away from each other in the trees. This indicates
that the semantic trees that we have for this application
do not exactly reflect the semantic relationship of the
objects. Some type of network structures which are
not trees would be more accurate to describe the
domain knowledge. For example, consider three
items, ‘books’, ‘glasses’ and ‘sunglasses’. Usually,
‘books’ is under a different category from ‘glasses’

and ‘sunglasses’. However, semantically, ‘books’
and ‘glasses’ are close to each other, ‘glasses’ and
‘sunglasses’ are also close to each other, but ‘books’
and ‘sunglasses’ are far way. Thus, similarity is
not transitive. The tree structure cannot represent this
intransitivity.

In the future, we will look into solutions to this
problem. We will also conduct experiments on more
data sets to test the two algorithms.
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