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Abstract. We present ELEM2, a new method for inducing classification
rules from a set of examples. The method employs several new strategies
in the induction and classification processes to improve the predictive
performance of induced rules. In particular, a new heuristic function for
evaluating attribute-value pairs is proposed. The function is defined to
reflect the degree of relevance of an attribute-value pair to a target con-
cept and leads to selection of the most relevant pairs for formulating
rules. Another feature of ELEM2 is that it handles inconsistent training
data by defining an unlearnable region of a concept based on the prob-
ability distribution of that concept in the training data. To further deal
with imperfect data, ELEM2 makes use of the post-pruning technique to
remove unreliable portions of a generated rule. A new rule quality mea-
sure is proposed for the purpose of post-pruning. The measure is defined
according to the relative distribution of a rule with respect to positive
and negative examples. To show whether ELEM?2 achieves its objective,
we report experimental results which compare ELEM2 with C4.5 and
CN2 on a number of datasets.

1 Introduction

Induction is a process that reasons from specific cases to general principles. Rule
induction covers a special, and prevalent, case of induction, in which the results
of induction are expressible as condition-action rules. A number of rule induction
systems, such as C4.5 [15], AQ15 [12] and CN2 [4], have been constructed and
applied to discover knowledge from collected data in different applications, yet
many suffer from poor performance in prediction accuracy in many practical
domains. It has been shown repeatedly that each method works best in some,
but not all [2, 7]. While it seems unlikely to have an algorithm to perform best
in all the domains of interest, it may well be possible to produce learners that
perform better on a wide variety of real-world domains.

Our objective is to work towards this direction by proposing ELEM2, a new
rule induction method that employs new strategies to enhance the induction
and classification processes. Similar to some other learning algorithms (such as
CN2 [4] and PRISM [3]), ELEM2 generates rules from a set of training exam-
ples by searching for a hypothesis in a general-to-specific manner in which an
attribute-value pair is selected at each specification step. However, ELEM2 dif-
fers from other algorithms in several aspects. First, to select an attribute-value



pair, ELEM2 employs a new heuristic function for evaluating attribute-value
pairs. Various evaluation criteria have been used in different learning algorithms.
For example, ID3 [14] employs an entropy-based information gain to find the
most relevant attribute to grow decision trees. PRISM [3] uses another form of
information gain which can be characterized in terms of apparent classificatory
accuracies on the training set to measure the relevance of attribute-value pairs
with respect to a target concept. LEM2 [8] basically considers as the most rel-
evant selector the attribute-value pair that has the largest coverage over the
positive examples. We argue that both coverage and information gain should
be considered when measuring the relevance of selectors. Selectors that cover a
large number of positive examples may also cover negative examples well. On
the other hand, when only considering information gain, no matter whether the
consideration is in terms of entropy or apparent classificatory accuracies, such
consideration can lead to generation of rules covering few examples [15]. Such
rules tend to have higher predictive error rates [10]. We propose an alternative
evaluation function. The new function is defined in terms of both an classifica-
tion gain and the coverage of an attribute-value pair over a set of the training
data and also reflects the degree of relevance of the attribute-value pair to a
target concept with regard to the training data.

Secondly, ELEM2 addresses the issue of handling inconsistent examples. In-
consistent examples in the training set usually confuse a learning system when
the system tries to identify common properties of a set of objects. One way to
handle this problem is to remove all or part of the inconsistent examples to reduce
confusion. This may not be a good idea, especially in very noisy environments
in which most of the examples may need to be eliminated. Also, inconsistent ex-
amples may provide useful information for probability analysis during induction.
To handle this problem, ELEM?2 defines an unlearnable region for each concept
based on the probability distribution of the concept over the training data. The
unlearnable region of a concept is used as a stopping criterion for the concept
learning process: if the positive examples that are not yet covered by the already
generated concept descriptions fall into the unlearnable region of the concept,
the process for learning that concept stops.

Thirdly, ELEM2 employs a new rule quality measure for the purpose of han-
dling imperfect data by post-pruning generated rules. Post-pruning is a tech-
nique that prevents a generated rule from owerfitting the data.! There have
been several post-pruning methods in the literature. For example, C4.5 [15] uses
an error-based technique called pessimistic pruning for pruning decision trees,
which estimates the predictive error rate of concept descriptions by adjusting the
apparent error rate on the training set. Another example is AQ15 [12], which
associates conjunctions in a generated rule with weights and the ones with the
least weights were removed to avoid overfitting the data. The weight is defined
as the number of training examples explained uniquely by the conjunction. A

! 'We say that a rule overfits the training examples if it performs well over the train-
ing examples but less well over the entire distribution of instances (i.e., including
instances beyond the training set).



problem with AQ15 is that it is hard to specify when to stop the pruning.
ELEM2 takes another route in doing post-pruning. It defines a rule quality mea-
sure based on the relative distribution of a rule with respect to the positive and
negative examples the rule covers. The rule quality formula is chosen from four
alternatives that represent different kinds of distributions. We choose from these
four alternatives the one with the most information and the best experimental
results.

The rest of the paper is organized as follows. In Section 2, we present the
strategies that ELEM?2 uses for selecting attribute-value pairs. In particular, we
describe how ELEM2 groups attribute-value pairs to formulate a search space
and how the evaluation function is defined. In Section 3, an unlearnable region
of a concept is defined which is used by ELEM2 for handling inconsistency in
the training data. In Section 4, we discuss the rule quality measure used by
ELEM2 for post-pruning generated rules. The ELEM?2 induction algorithm and
its classification strategy are presented in Sections 5 and 6. Section 7 reports
some experimental results for evaluating ELEM2. We conclude the paper with
a summary of ELEM2 and some suggestions for future work.

2 Selection of Attribute-Value Pairs

An attribute-value pair is a relation between the attribute and its values, which is
represented in the form (a rel v), where a is an attribute, rel denotes a relational
operator (e.g. =,#,<,>,---, or €) and v is a specific value or a set of values
of the attribute. Let ¢ denote an attribute-value pair. We use a;, rel; and vy to
denote the attribute, the relational operator and the value in ¢, respectively. We
define that the complement of an attribute-value pair t is the attribute-value
pair {a;, —rel,v;), where — is the negation of rel. For example, the complement
of (a =) is {(a # v).

ELEM2 induces rules for a target concept by selecting relevant attribute-
value pairs from a space of attribute-value pairs. This section addresses two
issues related to the attribute-value pair selection in ELEM2. First, we discuss
how ELEM?2 formulates the attribute-value pair space. Then we introduce the
evaluation function that ELEM2 uses to select an attribute-value pair from the
formulated space.

2.1 Grouping Attribute-Value Pairs

In formulating the space of attribute-value pairs, many induction algorithms con-
sider only single-valued attribute-value pairs. This consideration may cause the
learning algorithm to generate more rules that cover small portions of examples.
To overcome this problem, ELEM2 works with attribute-value pairs whose value
may be a disjunction or a range of values. We refer to the combination of values
as grouping attribute values. Since there are a large number of possible combi-
nations, ELEM2 considers only reasonable groupings that can be easily made
use of or refined by the learning algorithm. This strategy avoids producing an



exponentially large search space. In grouping values, we use different strategies
for different kinds of attributes.

Grouping discrete attribute values There are two kinds of discrete at-
tributes: nominal attributes and ordered discrete attributes. The values of a
nominal attribute do not show any inherent order among themselves, while an
ordered discrete attribute has an ordered set of values. For example, an at-
tribute colour with a set of values being {red, blue, yellow, orange} is a nor-
mal discrete attribute, while an attribute temperature with a value set being
{low, medium, high} is an ordered discrete attribute.

For a nominal attribute, ELEM2 uses a dynamic grouping strategy, i.e., the
value groups are determined after an attribute-value pair of this attribute is
chosen as a candidate selector during the induction process. The initial search
space of attribute-value pairs before induction is made of attribute-value pairs
with single values. Details about how to dynamically group these single-valued
attribute-value pairs will be described in the ELEM2 rule induction algorithm
in Section 5.

For an ordered discrete attribute, grouping of its values is carried out be-
fore the induction process commences. The grouping method is based on n — 1
binary splits, where n is the number of all possible values of the attribute. Let
{s1, $2, ..., $n} be the set of values of an ordered discrete attribute a, where s; <
Si+1 for i = 1,...,n — 1. For each value s;(i = 1,...,n — 1), two groups: {s1, ..., 8; }
and {s;y1,..., Sn }, are generated, i.e., two attribute-value pairs: (a € {s1, ..., 8;})
and (a € {si11,...,Sn}), are obtained. In this way, a total of 2(n — 1) pairs can
be obtained for an attribute with n possible values. We put half of these pairs
into the search space for the selection process. For each value s;(i = 1,...,n — 1),
only the first pair, (@ € {s1,...,8;}), is included in the search space. We drop
off the second pair because it is the complement of the first pair and its degree
of relevance to a target concept, measured by our evaluation function described
in the next section, is the additive inverse of the degree of relevance for the
first pair. We can use the evaluation information about one pair to judge the
other one. Therefore, in our method, only n — 1 attribute-value pairs need to be
examined during induction instead of 2™ — 2 possibilities.

Grouping continuous attribute values In ELEM2, continuous attributes
are discretized by using user-supplied discretization formulas or by applying one
of the automatic discretization methods[6]. Suppose {x1, x2, ..., T, } is the set of
cut-points for a discretized continuous attribute a. Our grouping method for this
kind of attributes is similar to the one for an ordered discrete attribute. For each
cut-point x;, (i = 1,...,n), two attribute-value pairs: (a < z;) and (a > x;), are
generated. The search space consists of only the first pairs in these binary splits.
Therefore, the search space has a total of n attribute-value pairs for a continuous
attribute with n cut-points.



2.2 Evaluating Attribute-Value Pairs

ELEM2 generates decision rules for a target concept by performing a general-to-
specific search in a hypothesis space. At each step of specialization, a heuristic
function is used to evaluate attribute-value pairs. The function assigns a signif-
icance value to each considered pair in order for the most significant attribute-
value pair to be selected. The significance function is defined according to the
relevance of an attribute-value pair to the target concept. An attribute-value
pair av is relevant to a concept ¢ with respect to a set, S, of examples if

P(av) > 0 and P(c|av) # P(c),

where P(av) denotes the probability that an example in S satisfies the relation
expressed by av, P(c) denotes the probability of the examples occurring in S
that belong to concept ¢, and P(c|av) is the probability that an example in S
belongs to ¢ given that the example satisfies av.? Under this definition, av is
relevant to the concept c if it can change the probability of ¢, or in other words,
if ¢ is conditionally dependent on awv.

In a set of training samples, there may exist more than one attribute-value
pair that are relevant to a concept. Some pairs may be strongly relevant, while
others may not be relevant. To measure the degree of relevance, we use an
evaluation function to assign a significance value to each attribute-value pair.
The function is defined as

SIG:(av) = P(av)(P(clav) — P(c)). (1)

According to this definition, if P(c|av) = P(c), i.e., av is not relevant to the
concept ¢, then the degree of relevance of av to ¢ is equal to 0; if P(c|av) # P(c),
i.e., av is relevant to c, then the degree of relevance is proportional to both the
difference between P(c|av) and P(c) and the coverage of av over the training
set currently being considered. The range of this function is (—1,1). If the value
stays positive, then the higher the value, the more relevant the attribute-value
pair av with respect to the target concept c; if the value is negative, the lower
the value, the more relevant the attribute-value pair —av (i.e., the complement
of pair av) with respect to c. We use P(av) as a coefficient of the function since
we believe that, say, a 95% accurate rule which covers 1000 training cases is
better than a 100% accurate rule that covers only one case. This helps avoid the
overfitting problem.

The significance function has a nice property, expressed as follows. Given a
concept ¢, it can be proved that [1]

SIG.(av;) = —SIG.(—av;). (2)

This means that the SIG values for a selector and its complement are additively
inverse. This observation allows us to narrow the search space of selectors by

2 The probabilities here are determined by analysing a set S of training examples.
Therefore, they can be considered as posterior probabilities.



half since the value for one of them can be obtained from the value for the other.
Therefore, using this evaluation function is more efficient in practice than using
other functions that do not have this feature.

3 Handling Inconsistency

In real-world applications, the set of training data may be inconsistent due to
incomplete or noisy information. Two examples are inconsistent if they have
identical attribute values for the condition attributes, but are labelled as be-
longing to different concepts. Inconsistent data in the training set may confuse
a learning algorithm and result in a failure in deriving decision rules. ELEM?2
handles the problem of inconsistency by computing an unlearnable region for
each concept, inspired by [9]. Let R = {X1, Xo, -, X}, where X; (1 <i < mn)
is a set of examples that are identical in terms of condition attribute values and
there are a total of n sets of this kind in the training set. We can predict that any
example that matches the condition part of the examples in X; belongs to the
concept ¢ with the probability P(c|X;), which is the probability that an example
belongs to ¢ given that the example is in X;. The classification gain of X; with
respect to a concept ¢ is defined as [9]:

CG.(X,) = P(c|X;) - P(e),

which measures how much is gained by classifying a new example into ¢ based
on the information of the probabilities of the set X; and the concept c. The
negative region of a concept c is defined as

NEG() = | X,
P(c|X;)<P(c)

which means, if CG.(X;) < 0, then X; belongs to the negative region of ¢. The
unlearnable region of a concept ¢, denoted as ULR(c), is defined as the set of
positive examples of ¢ that exist in NEG(c).

During ELEM2’s rule induction, if the positive members of the currently con-
sidered set of training examples belong to the unlearnable region of the target
concept, the induction process for this concept is stopped. This prevents ELEM?2
from learning from the inconsistent examples that do not provide positive clas-
sification gain.

4 Post-Pruning Induced Rules

Systems interacting with real-world data must address the issues raised by im-
perfect training data. The training data are imperfect when there is noise in the
data or when the number of training examples is too small to produce a represen-
tative sample of the true target function. The noise or coincidental regularities
within the training data can lead to serious problems for the learning task. One



problem is that learning algorithms can be misled by the imperfect data to pro-
duce long and distorted concept descriptions. By trying to fit every example into
the concept descriptions, faulty and noisy examples are included, leading to clut-
tered and complex concept descriptions which cover a small number of anomalous
examples in the training set. These descriptions are commonly known as small
disjuncts [10]. Generating these small disjuncts not only increases the induction
time and the complexity of the concept description but also decreases predictive
performance of the learned knowledge on unknown objects since the rules ap-
plied to the noisy examples may misclassify correct examples. Post-pruning is a
technique that rule induction algorithms use to handle the small disjunct prob-
lem. Post-pruning allows the induction process to run to completion (i.e., form
a concept description completely consistent with the training data or as nearly
consistent as possible if the complete consistency is impossible.) and then ‘post-
prunes’ the over-fitted concept description by removing the components deemed
unreliable. A criterion is needed in post-pruning to check whether a component
in a concept description should be removed.

Positive|Negative Total
Covered by r m n—m n
Not covered by r|/M —m |[N — M —n+m|N —n
Total M N-M N

Table 1. Example Distribution for Rule r

In ELEM2, a rule quality measure is used as a criterion for post-pruning. The
measure is defined according to the relative distribution of a rule with respect
to the positive and negative examples it covers. We consider several alternatives
when defining the rule quality measure. Given a set .S of training data and a
rule 7 learned from S, let N denote the number of examples in S, M be the
number of positive examples in S, n denote the number of examples covered
by r, and m be the number of positive examples covered by r. Consider the
contingency table of example distribution for  (See Table 1). We assume that
rule quality formulae have to in some way reflect the relative distribution of rules
with respect to positive and negative examples. Specifically, four formulae can
be derived from the table as follows:

e
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Informally, for the given rule r, ()1 represents the ratio of the proportion of
positive examples which r covers to the proportion of the entire training set .S
which r covers, while ()2 represents the ratio of the proportion of positive exam-
ples to that of negative examples. Q3 represents the ratio between the “positive
odds” for the rule (i.e. the ratio between the number of positive examples which
r covers and the number which it does not cover) and the “total odds” for r,
while Q4 represents the ratio between the rule’s positive odds and its “negative
odds”. Thus, Formulae Q1 and Q)2 are related by using proportions, while Q3
and @4 use odds; but Q1 and Q3 respectively are related by comparing the pos-
itive example distribution of a rule to its entire collection distribution, while Q>
and Q4 are related by comparing positive and negative distributions.

Analyze the formulae in another way. Given a training set and a concept
in it, N and M are independent with the rule generated from the set. Thus,
@1 is actually determined by the apparent accuracy of the rule, which is usu-
ally estimated as 7. Since the apparent accuracy does not usually reflect the
predictive accuracy, )1 is not a good choice for measuring rules’ quality be-
cause our objective is to learn rules that classify new examples well. Q2 has the
flavour of measuring both coverage and accuracy. It can be specified in terms of
probabilities as follows:

P(satisfy(r,e)|positive(e))
P(satisfy(r,e)|negative(e))

Q2 =

where P denotes probability, satisfy(r,e) means r is satisfied by example e,
positive(e) means that e is a positive example, and negative(e) means e is neg-
ative. Similarly, Q4 can be represented as:

Q1= P(satisfy(r,e)|positive(e))P(—satisfy(r,e)|negative(e))

P(satisfy(r,e)|negative(e))P(—satisfy(r,e)|positive(e))

(

Although P(-satisfy(r, e)|negative(e)) and P(—satisfy(r,e)|positive(e)) de-
pend on P(satisfy(r,e)|negative(e)) and P(satisfy(r,e)|positive(e)) respec-
tively, the distinction between the two formulae concerns explicit recognition
of rule unsatisfaction in calculation of probabilities. We argue that Q)4 is better
than @2 in the sense that Q4 explicitly contains more information than Q. A
similar conclusion can be drawn between ()1 and Q3 that Q3 explicitly contains
more information than Q1.

The difference between Q3 and @4 is that @3 compares the positive distri-
bution of a rule to its entire set distribution, while (), compares positive and
negative distributions. To see which one is a better measure for rule quality, we
conducted experiments. In the experiments, we run ELEM2 with measure Q3
and ELEM?2 with @4 for ten-fold evaluation on 14 randomly selected datasets.
The results (presented in [1]) show that the program with Q4 gives better pre-
dictive accuracy means and accuracy deviations than the one with Q3 on most of



the tested datasets Therefore, we choose @4, which represents the ratio between
the rule’s positive odds and its negative odds (see Formula 6 and Table 1), as
a criterion for measuring rule qualities and this criterion is used by ELEM2 to
decide when to stop post-pruning. The post-pruning process is as follows:

1. Sort the selected pairs in a rule in the reverse order to that in which they
were selected;

2. Check the pairs in this order to see if they can be removed without causing
the rule quality to decrease. If yes, remove them.

5 The ELEM2 Induction Algorithm

ELEM2 induces rules using the separate and conquer strategy, i.e., it induces
one rule at a time, removes the data covered by the rule and then iterates the
process. The learning algorithm is briefly described as follows. If the training set
contains examples of more than one concept, then for each concept c:

1. Compute the unlearnable region of the concept: ULR(c);
2. Let C'S be the current training set;
3. Calculate the significance value, STG(av;), of each attribute-value pair av;
in the attribute-value pair space with respect to C'S;
4. Select the pair av for which |SIG(av)]| is a maximum;
5. If the attribute a in the selected pair av is a nominal attribute and av’s SIG
value is positive, dynamic grouping is performed as follows:
(a) Let T'C'S be the set of examples in CS that are not covered by av;
(b) Compute the STG values of all other pairs of attribute a with respect to
TCS,
(¢) Group with the selected pair av the pairs with SIG value greater than
or equal to |STG(av)l;
. Remove from C'S the examples that are not covered by av;

7. Repeat Steps 3-6 until C'S contains only examples of the concept ¢ or the
positive examples it contains belong to ULR(c). The induced rule r is a
conjunction of all the attribute-value pairs selected;

8. Post-prune the induced rule r using the rule quality measure Q4(r);

9. Remove all the examples covered by this rule from the current training set;

10. Repeat Steps 2-9 until all the examples of ¢ have been removed or the re-
maining examples of ¢ belong to ULR(c).

=)

When the rules for one concept have been induced, the training set is restored
to its initial state and the algorithm is applied again to induce a set of rules
describing the next concept.

6 Classification Using Induced Rules

In general, rules induced from a set of data are used to classify new objects
into an appropriate concept. The central task of a classification algorithm is to



determine if an example satisfies a rule. This is also referred to as the example
matching a rule. Three cases are possible for matching an example with a set of
rules: there may be only one match (i.e., the example matches only one rule),
more than one match (i.e., the example matches more than one rules), or no
match (i.e., the example does not match any rules). We refer to these three
cases as single-match, multiple-match and no-match. The single-match is not a
problem since the example can be classified into the concept indicated by the
matched rule. In the multiple-match case, if the matched rules indicate the same
concept, then the example is classified into this concept. If the matched rules do
not agree on the concepts, then the system activates a conflict resolution scheme
for the best decision. The conflict resolution scheme computes a decision score
for each concept that the matched rules indicate. The decision score of a concept

¢ is defined as:
n

DS(c) = > RB(r:),
i=1
where r; is a matched rule that indicates ¢, n is the number of this kind of rules,
and RB(r;) is the reliability of rule r;, which is defined as

RB(ri) = log(Qa(r:))

After computing the decision scores for all the concepts indicated by the matched
rules, ELEM2 classifies the example into the concept with the highest decision
score.

In the case of no-match, partial matching is considered where some attribute-
value pairs of a rule may match the values of corresponding attributes in the
new example. A partial matching score between an example e and a rule r with
n attribute-value pairs, m of which match the corresponding attributes of e, is
defined as follows:

Yo RB(mavy)
M) = S BB

x RB(r),

where av; (j = 1,---,n) denotes a pair in r, mavy (k = 1,---,m) denotes a
matched pair in r, RB(r) is the reliability of rule r, RB(mavy) and RB(av;)
stand for the reliabilities of pairs mavy and av; respectively. The reliability of
an attribute-value pair av is defined similar to the definition of the reliability of
a rule as:

P(av|pos)P(—av|neg)

RB(av) = ZOQP(av|neg)P(—|av|pos)’

where P(av|pos) denotes the probability that an example satisfies av conditioned
on the example is positive, P(av|neg) denotes the corresponding probability for
negative examples, P(—av|pos) is the probability that an example does not sat-
isfy av conditioned on the example is positive, and P(—av|neg) is the corre-
sponding probability given that the example is negative. Based on the partial
matching scores of the partially-matched rules, ELEM2 assigns a decision score



to each concept indicated by these rules. The decision score of a concept c¢ is
defined as follows:

DS(c) = PMS(ry),

where ¢ = 0 to the number of partially matched rules indicating concept c. In
decision making, the new example is classified into the concept with the highest
value of the decision score.

7 Empirical Evaluation

ELEM2 has been implemented in C under Unix environments. To evaluate the
system, we have conducted experiments with ELEM2 on a number of actual data
sets taken from the UCI repository [13]. Our objective is to check the usefulness
of the rule sets generated by ELEM?2 in terms of their predictive accuracy. We
report the experimental results and compare them with the results from C4.5
and CN2.

7.1 Evaluation Methods

One method for evaluating a learning system is to artificially construct a training
and a test dataset so that the characteristics of the training data, such as the
complexity of concepts and the noise level of the training data, are available
for analyzing the learner’s capability. Three artificially designed domains, the
MONK’s problems, were obtained from the UCI repository to evaluate ELEM2
for this purpose. Each MONK’s problem contains a training and a test dataset.
The classification accuracy over the testing set is measured to show the learner’s
predictive performance.

Another evaluation method is z-fold cross validation. At the expense of com-
putational resources, this method gives a more reliable estimate of the accuracy
of a learning algorithm than a single run on a held-out test set. x-fold cross vali-
dation involves randomly partitioning the database into x disjoint data sets, then
providing the learning algorithm with x — 1 of them as training data and using
the remaining one as test cases. This process is repeated = times using different
possible test sets. Each time a classification accuracy is obtained. The mean of
the accuracies from the z runs and the standard deviation of the accuracy can
then be calculated to measure testing performance. Ten-fold cross validation is
used in our experiments to compare ELEM?2 with two other algorithms on actual
data sets.

7.2 Evaluation of ELEM2 on MONK’s Domain

MONK’s Problems The MONK’s problems are three artificially constructed
problems. They are derived from an artificial robot domain, in which robots



(examples) are described by six nominal attributes [16]. The sizes of the value
sets of the six attributes are 3, 3, 2, 3, 4 and 2, respectively as shown below:

head_shape € {round, square, octagon}
body_shape € {round, square, octagon}
is_smiling € {yes,no}
holding € {sword, balloon, flag}
jacket_color € {red,yellow, green, blue}
has_tie € {yes,no}

Consequently, the example space contains 432 (3 x 3 x 2 X 3 X 4 x 2) possible
examples. The three MONK'’s problems, referred to as M1, M2, and M3, are all
binary classification tasks defined over the same space. They differ in the type of
concept to be learned and in the amount of noise in the training examples. Each
problem is given by a logical description of a concept. Robots belong either to this
concept or not, but instead of providing a complete concept description to the
learning problem, only a subset of all 432 possible robots with its classification
is given. The learning task involves generalizing over these examples and, if
the particular learning technique at hand allows this, to derive a simple class
description. The three MONK’s problems are specially designed as follows:

e Problem M;: (head_shape = body_shape) OR (jacket_color = red)

From 432 possible examples (referred to as MonkTest 1, 216 positive and 216
negative), 124 (62 positive and 62 negative) were randomly selected for the
training set (referred to as MonkTrain 1). There were no misclassifications
in the training set.

e Problem Ms: exactly two of the sixz attributes have their first value
From 432 possible examples (referred to as MonkTest 2, 142 positive and
290 negative), 169 (64 positive and 105 negative) were randomly selected as
training examples (referred to as MonkTrain 2). Again, there was no noise
in Training Set 2.

e Problem Ms: (jacket_color = green) AN D (holding = sword) OR (jacket_color
is NOT blue) AN D (body_shape is NOT octagon) From 432 possible examples
(referred to as MonkTest 3, 228 positive and 204 negative), 122 (60 positive
and 62 negative) were selected randomly, and among them there were 5%
misclassifications, i.e. noise in the training set (referred to as MonkTrain 3).

Problem 1 is in standard disjunctive normal form and is supposed to be easily
learnable by a symbolic learning algorithm such as C4.5, CN2 and ELEM2. Con-
versely, problem 2 is similar to parity problems. It combines different attributes
in a way which makes it complicated to describe in DNF or CNF using the given
attributes only. Problem 3 is again in DNF and serves to evaluate the algorithms
under the presence of noise.

Performance Comparison with C4.5 and CN2 A performance comparison
of ELEM2 with C4.5 and CN2 has been conducted on the MONK’s problems.



All three systems provide the facilities for inducing rules from a training set and
evaluating the induced rules on a test set.? In the experiment on each prob-
lem M;, we presented each learning system with the training set MonkTrain 4,
recorded the number of rules generated from each algorithm, and examined the
performance of the induced rules on the test set MonkTest .

Algorithms|MonkTest 1{MonkTest 2|MonkTest 3
C4.5 100% 64.8% 94.4%
CN2 98.6% 75.7% 90.7%
ELEM2 100% 78.7% 96.3%

Table 2. Comparison in Predictive Accuracy

A comparison in terms of the percentage of the test examples correctly clas-
sified is illustrated in Table 2. In all cases, ELEM2 produces more accurate rules
than CN2. For the simple problem Mj, both C4.5 and ELEM2 gives 100% ac-
curate predictions. For the problem Ms, which is difficult to describe in CNF
or DNF using the given attributes only, all three algorithms do not produce
accurate classification rules since the concept description languages used by the
three algorithms do not fit the problem well. Nevertheless, ELEM2 has the best
classification accuracy among the three algorithms. Problem M3 is not difficult
for the three learners, but it involves noisy data. From the table, we can see that
ELEM2 better handles the noise in this problem than C4.5 and CN2.

7.3 Comparison of ELEM2 with C4.5 and CN2 on Actual Data Sets

To further compare ELEM2 with C4.5 and CN2, we have conducted experiments
with these algorithms on 14 real-world data sets from the UCI repository [13].
Description of these datasets in terms of their number of concepts, number of
condition attributes, number of examples and application domain is given in
Table 3. Table 4 shows the results of ten-fold evaluation of C4.5, CN2 and
ELEM2 on the 14 data sets. For each data set and each algorithm, we report
the average of accuracies from the ten runs and their standard deviation.* When
running C4.5, we used the option ‘-s’ to allow grouping of attribute values. Other

3 C4.5 can generate both decision trees and decision rules. We chose to use generation
of decision rules. The decision rules are generated from unpruned decision tree(s) and
are then generalized using pessimistic pruning technique. CN2 can generate both
ordered and unordered sets of rules. We used the default settings which generate
unordered sets of rules and use Laplacian error estimate as the search heuristic.

4 The standard deviation is calculated using the following formula:

n(n —1)

stdev =



No. of No. of No. of

Datasets Concepts|Cond. Attr.|Examples Domain

australia 2 14 690 Credit card application approval

balance-scale 3 4 625 Balance scale classification

breast-cancer 2 9 683  |Medical diagnosis

bupa 2 6 345 Liver disorder database

diabetes 2 8 768 Medical diagnosis

german 2 20 1000 |Credit database to classify people as
good or bad credit risks

glass 6 9 214  |Glass identification for criminological
investigation

heart 2 13 270  |Heart disease diagnosis

iris 3 4 150 Iris plant classification

lenses 3 4 24 Database for fitting contact lenses

segment 7 18 2310 |image segmentation database

tic-tac-toe 2 9 958  |Tic-Tac-Toe Endgame database

wine 3 13 178  |Wine recognition data

700 7 16 101 Animal classification

Table 3. Description of Datasets.

options in C4.5 were kept as default settings. For CN2, all runs used default
parameters so that Laplacian estimate was employed as the search heuristic and
unordered rules were generated, which means that the improved version of CN2
was used.

The best result for each problem is highlighted in boldface in the table.
Among the 14 problems, ELEM2 gives the best results in terms of predictive
accuracy for 10, C4.5 for 3 and CN2 for 1. In terms of standard deviation, on
7 out of 12 data sets, ELEM2 gives the smallest number; C4.5 does it on 5
data sets; and CN2 on 2. At the bottom of the table, the average of the accuracy
means or deviations of each algorithm over the 14 datasets indicate that ELEM?2
is generally able to learn more accurate and more stable representations of the
hidden patterns in the data than C4.5 and CN2.

8 Conclusions

We have presented ELEM2, a new method for inducing classification rules from a
set of examples. The method employs a number of new strategies to improve the
predictive performance of generated rules. We proposed a significance function
for evaluating attribute-value pairs based on the degree of their relevance to a
target concept. A new method for handling inconsistent training examples by

where z; (i = 1,2,---,n) is the accuracy from the ith run on a data set. Here, for
ten-fold cross validation, n = 10.



Accuracy Mean Accuracy Standard Deviation
Datasets C4.5 CN2 ELEM2|C4.5 CN2 ELEM?2
australian 82.9% 84.92% 86.52%5.45% 6.19% 3.55%
balance-scale |78.10% 79.05% 81.14%(5.63% 3.23% 5.29%
breast-cancer|95.6% 95.17% 96.19%|1.56% 2.77% 2.51%

bupa 68.4% 62.00% 69.24%|4.00% 9.53%  7.88%
diabetes 70.8% T1.21% 74.10%|5.53% 6.12% 4.82%
german 69.3% 74.30% 74.00% |3.40% 4.90% 4.62%
glass 68.7% 55.17% T72.88%|13.96% 12.11% 10.11%
heart 80.8% 77.85% 79.63% (6.93% 10.51% 7.46%
iris 95.3% 88.68% 94.67% |6.31% 8.34% 5.26%
lenses 73.3% 75.01% 76.67%|34.43% 22.56% 26.29%

segment 96.6% 86.24% 95.93% |0.84% 2.99% 2.14%
tic-tac-toe 96.8% 98.44% 99.17%|(1.79% 1.51% 1.28%
wine 92.8% 86.00% 97.78%7.44% 5.91% 3.88%
Z0O 92.1% 92.09% 98.00%(6.30% 7.87% 4.22%
AVERAGE [82.96% 80.43% 85.42%|7.39% 7.04% 6.38%

Table 4. Performance Comparison of ELEM2 with C4.5 and CN2.

determining the unlearnable region of each concept is also presented. To further
handle imperfect training data, post-pruning generated rules is used to prevent
rules from overfitting the training data. A new rule quality measure based on
example distribution is proposed as a criterion for stopping the post-pruning
process. We have conducted empirical evaluation of ELEM2 on a number of
designed and real-world databases. The results show that ELEM2 outperforms
C4.5 and CN2 in terms of predictive accuracies on most of the tested problems.
In future work, we will investigate how much each of the new ideas employed
in ELEM2 contributes to the performance improvement. We also plan to clarify
the bias of ELEM2. ELEM2 reduces the error rates on many data sets, but not
all. More studies need to be done to find out the relations between the algorithm
and the nature of problems.
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