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OPTIMIZING CONTROL OF OPER-
ations in a municipal water-distribution sy,
tem can reduce electricity costs and real

other economic benefits. However, optim

control requires an ability to precisely pred
short-term water demand so that minimu
cost pumping schedules can be prepared.
of the objectives of our project to develop
intelligent system for monitoring and cor
trolling municipal water-supply systems is
ensure optimal control and reduce ene
costs. Hence, prediction of water demang
essential. In this article, we present an ap
cation of a rough-set approach for automa
discovery of rules from a set of data samp
for daily water-demand predictions. The da
base contains 306 training samples, cov

e
information on seven environmental and sﬂ

ological factors and their corresponding d
volume of distribution flow.

The problem domain

The problem domain is typical of a wate
distribution system of moderate-sized citi
in North America. The sources of water ar
lake and several underground wells. Wate
first pumped to reservoirs at various locatig
in the city and then from the reservoirs to t
distribution system, or to another reservi
when it is necessary to adjust water leve
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L. A ROUGH-SET METHOD GENERATES PREDICTION RULES
ize FROM OBSERVED DATA, USING STATISTICAL INFORMATION
il INHERENT IN THE DATA TO HANDLE INCOMPLETE AND
m- AMBIGUOUS TRAINING SAMPLES. EXPERIMENTAL RESULTS
;? © INDICATE THAT THIS METHOD PROVIDES MORE PRECISE
n- INFORMATION THAN IS AVAILABLE THROUGH KNOWLEDGE
t
gy ACQUISITION FROM HUMAN EXPERTS.
is
pli-
teflumps and valves, housed in pumping stdution system’s operations is difficult. Doc-
lesons, control the system'’s pressures and flowmenting the heuristics of the most experi-
tarates. Human operators control the distribuenced operator in an intelligent system is one

ingpn system’s operations at a central pumpjngay to reduce operating costs in the supp

cistation. The operators use heuristics or ruleand distribution of purified water.

iof thumb to minimize the cost of power used To develop our expert system, we con
by pumps, to make demand forecasts, and thucted knowledge acquisition through struc
keep the water level of reservoirs within reatured and unstructured interviews with humal
sonable ranges. These heuristics depend erperts, and we obtained heuristics for cos
several economic, environmental, and sogiceffective water-utility operations. Analysis of
logical factors. A sample heuristic is, these heuristics indicates that accurately es

= If the weather in the last three days is hot ng}atlng Short-term (daily) forecasts of Wat.e
ES dry, and the weather in the next three days igémand is important so that energy-savin
e a expected to be hot and dry, and the time beforpumping schedules can be derived. Howeve
ris high demand is expected to be less than or efugle prediction of water demand is poorly
ns [0 eighthours, then use a large pump and run ff jerstood—even by the experts, who ag
for a short time. . .
he proximate daily water demand based on the
0ir Because several operators control the syexperience. The often inaccurate estimation
2Igem, standardizing and optimizing the distri+esult in inefficient operation of the water-dis-
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tribution system.The lak of knowledge
about waterdemand pediction tanslaes to
a ggp in the epett systems knavledge base
In other words, marual knavledge acquisi
tion by itself is inadequ for handling all the
situdions tha can aise in a compbe eng-
neeing goplication.

The elevant studies on demandegliction
have focused on desloping m#hemaical
models based on $itdical studies of histaal
daal In our poject, we focused on using
madine-leaning tetiniques ér geneeting
rules on veter-demand pediction,because
mahemadical modeling bcuses on quantita
tive information alone But in automted lean-
ing from obseved daa, both quantittive as
well as qualitéive variables ae considexd

Because the tlabases training samples ar
incomplete and posdip ambiguousexact
decision ules cannot be deed ly standad
methods:->We piopose a methoaf gener
ating dassification rules flom incomplete
information. This method &ends thegugh-
set modef,and uses stistical information to
define the positie and ngative regions of a
concet. Eat dassifcation rule genested Ly
our leaning system is ltaracteized by an
uncetainty factor which is the pobability that
an object meching the condition paiof the
rule belongs to the conge

Data collection and
representation

We obtained da on the wter domain
from the nunicipal water depatment in
Regina, Saskéchewan, Canadaand Ervi-
ronment Canaddlhe former povided us
with histoiical d&a on vater consumption,
and the lgter on weaher conditions.

Characteristics of water demand. The
instantaneous consumption oéter in an
urban distibution system deends on the
mary industral, commecial, pubic, and
domestic consumerdistibuted thoughout
the aea suppliedFactos sud as veaher
conditions,seasonal aration, day of the
week,and whether a pdicular dgy is an
obseved holidg can all infuence this con
sumptionWe have found thaexpett opea-

tors base their eter-demand pedictions pi-

maiily on weaherrelated consideations and
day of the week.Therefore, in this aticle, we

use veaher conditions and gaof the week
as the condition t&ributes,and consume
water demand as the decisidtridute

Condition attr ibutes. Seven factos can
affect the daif consumption of ater in a city
(seeTable 1).The frst factor is d§ of the
week,which we chose because of the obser
vation tha on weelends the dajl total-
distribution flows ae usualy less than on
weekdgs.The city also has
the paver, through lylaws,
to restict watering of lavns
on Wednesdgs. Futher

Table 1. Condition factors for water-demand prediction.

LaBeL CONDITION ATTRIBUTES

a Day of the week

a Maximum temperature
a Minimum temperature
a3 Average humidity

ay Rainfall

as Snowfall

as Average wind speed

Table 2. Information system for water-demand prediction.

more, Mondays ae das of c

high weter usae, because

mary people do their laun Osiects @y @ & a a a & D

dry on Mondgs and be .

cgjsein the sgmmerpeo oby 6 6 7 8 103 0
; obpb 1 5 7 9 0 0 1 0

ple weter their lavns on the ob 6 6 7 8 1 0 3 0

day after etuming from a oby 3 6 7 4 0 0 1 1

weelend 4 their cottaes. obp 3 5 7 3 0 0 1 1

The remaining &ctors ae ZZ/.G g g ; g g g 2; ;

weaher conditions:tem- obg 3 6 7 4 0 0 1 9

perature, humidity, precipi
tation, and wind We ob
tained the ®lues of these
factos from monthy meteoological sum
maiies pinted ty Ervironment Canada.

Decision dtribute. The total amount of
water consumedybthe city eab da is cat
culated by summing the dayl distribution
flows meteed d@ eath pumping stéon of the
city. The opeator & the cental contol sta
tion recods this mmber gery day. The \alue
vaiies fom 50 mealiters in the coldest win
ter days to 180 mgaliters in the summer

Information systemsWe assume thahe
given set of @ining samplesepresents the
knowledge eout the domain. In ourpa
proad, the trmining set is desitred ky an
informétion systent The objects in a unérse
U are desabed ty a set of tribute \alues.
Formally, an information systemSis a
quaduple U, A, V, f>, where U = {Xy, X,,
..., X\} is a finite set of objectsandAis a
finite set of &ributes.The dtributes inAare
further dassifed into two disjoint subsets
the condition atributesC and thedecision
attributeD, sudhhtha A=CODandCn D
= 0.V =UaaVais a set of eiribute \alues,
whereV, is thedomainof atributea (the set
of values of #ributea).f: UxA - Vis an
information function thaassigns paicular
values fom domains oftéributes to objects
sud tha f(x;, a) 0V, for allx, O U andadA.
The 306 taining samples in our infma
tion systemdr water-demand pediction ae
objects thainclude daiy information on the
condition dtributes and the decisiottiébute

for 10 monthsfrom March to December
1994 .Table 2 lists eight of these objectsrF
the pupose of ough-set-based tlanay-
sis,we hare genealized the inbrmation sys
tem ly replacing the dginal atribute \alues
with some dis@te anges—br example we
have discetized dtributea, (minimum tem
perature) into 10 ctegories,denoted as @,
2,3,4,5,6,7,8,and 9. ler instancecae-
gories 7 and 8dr a, which gppear inTable
2, stand br the anges (6.46,10.34] and
(10.34,14.22] respectiely. (The unmé&hed
bradets standdr a half-open and haltased
range. For example 6.46 does not belong to
the mnge (6.46,10.34],but 10.34 does.)

The question of he to optimally dis-
cretize the #tribute \alues is a subject of
ongoing reseach; the method of disetiza
tion we hare adopted is just one of mapos
sibilities. Our &pelimental esults ae based
on the vhole set of @ining samples (the 306-
object inbrmation system).

Data analysis

In wha follows, we present the basics of
an tended ough-set modelefered to as
the pobabilistic model of bugh setsThe
probabilistic model unddies the vle-extrac
tion tedinique adopted in oueseach.

Indiscernibility r elation. An information
system povides ony patial information of
the unverse Tha is, the objects desitred
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by the fxed set of selectedtabutes might be
insufficient for chamacteizing the objects
uniquel. Any two objects a indistinguish
able from eab other vhen&er theg assume
the same tiribute \alues.This means w
might not be ble to distinguish all the
objects solgl by means of the admitte
attributes and theiralues.

Given an inbrmation system &, A, V,
>, letB be a subset d%, and let; andx; be
membes of U. A binary relation R(B),
called arindiscenibility relation, is defned
asR(B) = {(x;, ) O U?|Da OB, f(x, a) =
f(x;, a)}. We sy tha x; andx; are indis
cemible to the set oftéributesB in Sif f(x;,
a) =f(x, a) for every a [0 B. For example
in the information system shen in Table 2,
obj; andobjz are indiscenible to the set of
attributesC O D, andobj,, objs, andobijg
are indiscenible to the set of conditiorttai-
butesC.

R(B) is an equialence elaion onU for
every B 0 A. Thus,we can defie two na-
ural equialence elaions,R(C) andR(D),
onU for an inbrmation systen® A concept
Yis an equialence tass of theelaion R(D).
Without loss of gneality, we can considdD
as a singleton set. Our objeiis to con
stuct decisionules br ead concgt. Given
a concet Y, the patition of U with respect
to this concpt is defned aR*(D) ={Y, U -
Yi={Y,=V}.

Based on the set of conditiottributesC,
an objectx; specifes the equwialence tass
[x]g of the elaion R(C):

d

[x]e={x 0 U |0a0C, f(x, a) =f(x, )}

We sg tha x; 0 U defnitely belongso a

concet Yif [x]r O Y, and thax; O U possi

bly belonggo the concpt Yif [x]gn YZO.
We defne conditional pobabilities as

Y| [X; :P(Ym[xi]R):|Yn[Xi]R|
| [x],) )

where P | [x]r) is the pobability of
occurence of gentY conditioned onent
[X]r That is, P(Y| [x]r) = 1 if and ony if
[X]rOY; P(Y| [xi]r) > O if and ony if [X]r
n Y#0 and PY | [x]g) = 0 if and ony if
[X]lrn Y=0.

Example 1Let us consider theen infor-
mation system irTable 2. The concets in
this information system.the equalence
classes on theefation R(D), are

Yo = {Obj:l, Obj:z, Obj:g}
Y, = {ob!4, Ob!5, objg}
Y, = {obj, objg}

The equialence tasses on thestation R(C)
are

X1 = [0bj]r = [0bjz]r = {0bjy, Obja}
Xo = [0bj]r = {obj}
X3 = [0bjs]r = [0bjg]r = [0bjg]r
= {obj,, objs, Objg}
X4 = [0bjs]r = {0bjs}
X5 = [obj;]r = {obj7}

Because, [0 Yy, objs definitely belongs to
concet Yq. The objectobj,, objs, andobjg
possilly belong to congat Y;, because the
intersection of their equalence tass, X3,

with Y; is not empty Other objects do not

belong taY;.
The conditional pybability of ead equv-
alence tass is

P(Y1|X) =0
P(Y1|X) =0
P(Y, | X3) = 2/3 =0.667
P(Y1[Xg) =1
P(Y1|Xs) =0

[B-probabilistic approximation classifica-
tion. Given an inbrmation systenS= {U,
AV, f} and an equialence elaion R(C) (an
indiscemnibility relation) onU, an odered
pair AS= <U, R(C)> is called arapproxi-
mation spacé based on the conditiorta-
butesC. The equialence tasses of thesta
tion R(C) are calledelementay setsn AS
because therepresent the smallestaups
of objects theare distinguishble in tems of
the dtributes and theiralues. Lety J U be
a subset of objectepresenting a congs,
ande(C) = {Xll X21 SERE) Xn} = {[ X]JR! [XZIRl
..., [X:]r} be the collection of equalence
classes inducedytthe eldaion R(C). In the
standad rough-set modelthe lower and
upperapproximations of a seY are defned

by

The dove defnitions do not use the disti-
cal information in the boundarregion,

RC)Y) - RE)Y)

For this easongereral extensions to the @-
inal rough-set model h& been po-
posecf-211n our gproad, we tiy to rectify
this limitation by introducing aB-approxi-
maion space

A [-approximation spaceASs is a tiple
<U, R(C), P>,where P is a prbability mea
sure andBis a eal umber in theange (0.5,
1]. The B-approximation spaceéAS: can be
divided into the éllowing regions:

[B-positive region of the sel:
POS.(Y) = UP(Y\X,-)z B{ X, OR*(C)}
[B-negative region of the sev:

NEG((Y) = Usfvie)< 1% OR*(C)}

The B-positive region of the setY corre-
sponds to all elementasets ofU tha can
be dassifed into the conge Y with condk
tional probability P(Y | X;) greaer than or
equal to the pameterB. Similaly, the ng-
ative region of the setY coresponds to all
elementay sets ofU tha can be [assifed
into the set Y.

Let x; O U be an object; PQ®Y) and
NEGc(Y) are the positie and ngative
regions of the conga Y. The objeck; is das
sified as belonigg to the conget Y if and
only if x, 0 POS(Y), or to the complement
=Y of the concpt Y if and only if x; O
NEGc(Y). We want to decide wethelx; is in
the concpt Y on the basis of the set of egui
alence tasses iAS: rather than on the basis
of the setY. This means w deal with
POS(Y) and NEG(Y) instead of the séf.

If x, O Uisin PO%(Y), it can be tassifed
into the concpt Y with the conditional pb-
ability P(Y | X|) greaer than or equal to the
pammeters.

Example 2.Following from Example 1,
recall tha Y, = {obj,, objs, objg}. If we letf3
=1,then theB-positive region of the seY; is
POS(Y;) ={objs}, and theB-negative region
of the setY; is NEG(Y;) = {obj, obj,, 0bjs,
obj,, 0bjs, 0bj;, objg}. If we let3=0.6,then
theB-positive region of the seY; is PO%(Y1)
={obj,, objs, objs, objg}, and theB-negative
region of the seY; is NEG(Y;) ={obj;, obj,
objs, objz}.

Reduction of condition atributes. An
information system often inades some cen
dition dtributes thado not povide ary addi-
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tional information aout the objects itJ.
Eliminating those #ributes caneduce the
complity and cost of the decisiongrress.
We use the congt of areductin rough sets
to desdbe the method of conditiorttabutes
reduction.

Given an #ribute-value systen$=<U, C
0 {d}, V, f>, an dtributea is dispenséale in
C with respect to {} if POSc_(4(Y) =
POS(Y); otherwisea is anindispensale
attribute in C with respect to §l}. A subset
of condition dributesB [0 C is adependent
setin S with lespect to §} if a proper subset
K O B exists sut tha PO%(Y) = POK(Y);
otherwise B is anindependent setvith
respect to §i}. A reductC’ of attributesC is
a maximal indpendent subset of conditio
attributes with espect to @}. 4

The pocedue for finding a single educt
is very straightforward. Consider a condition
attribute a O C. If the B-positive region

Table 3. Reduct table with respect o ¥, after reduction from Table 2.

C NumBER oF NuMBER OF
OBJeCTS a as Y; 0BJECTS IN Y; OBJECTS IN 1 Y,
obj,, objs, objs 6 4 1 2 1
objs 5 3 1 1 0
obyj;, objs 6 8 0 0 2
obj, 5 9 0 0 1
obj; 6 3 0 0 1

=Y} be the patition induced ly the decision
attribute. Eac equvalence tassX; of the
equivalence elaion R(RED) is associad
with a unique combirten of values of #rib-
utes beloniopg to RED This combinéon of
values is called théesciption of the equi-
alence tassX; [0 R*(RED). We can gpress
the desdption of X; as

Deg(X;)= [J (a: f(xi,a))

alRED

n

where O denotes the conjunction oo,

PO (4(Y) of the setY is the same as andx is an object in the eqealence tassX;.

POS(Y), then the #ributea is maked as
being edundant and i€moved from the set
of condition dtributesC. Other supehfious
condition atributes can beemoved in the
same mannerhe iemaining set of condition
attributes is aeduct. Moe than oneeduct
can «ist for a gven dtribute-value system.
Selection of abestreduct deends on the
optimality ciiterion associted with the
attributes.We can also assign sigiténce
values to #iributes and base the selection
those alues.

Example 3The condition #ributesC of the
information system ifTable 2 has a total o
sev/en reductsTable 3 shavs a educed inbr-
mation system based on theduct {y, ag}
with respect to the conpeY;. The objects
with value 1 6r atributeY; belong to the3-
positive region of the concgt Y;; the objects
with value 0 br atributeY; belong to thg3-
negative region of concetY;. Here, 3= 0.6.

Generating decision rules

Rule geneation is a cucial task in an
leaming systemWe nav descibe haw deck
sion wles ae genested based on theduct
obtained in the @wious section.

Probabilistic decision rules.Let R*(RED)
={Xy, Xy, ..., X} be the collection of equt
alence tasses of thestaion R(RED),where
RED is a educt thais a educed set of cen
dition atributesC in S and letR*(D) = {Y,

Similady, the desdptions ofY and-Y are

Des(Y) = (D =f(x, D)), and
DestY) = (D #f(x, D))

where D is the decisiontiribute andx, O Y.

The following decision ules desdbe the
relationship betveen the pdition R*(RED)
and the paition R*(D):

orfior X; O R*(RED),
Deg(X;) - " Deg), i PAY[x)=B
Deg(X;) - " Deg(=Y),if PY[X)<B

where ¢; is the uncdrinty factor which is
equal to PY | X;) in the frst case and 1 —¥P(
| Xi) in the secondThis means thaif an
objectx; sdtisfies the desgption Desk;) and
if P(Y | X;) = B, then the objecx; definitely
belongs tor with uncetaintyc;. Similady, if
P(Y | X)) < B, then the objeck; possiby
belongs to the complemenyaconcet - Y
with uncetainty c;.

Example 4Following from Example 3let
RED denote theaduct {4, ag}. The collee
tion R*(RED) of the equialence tasses of
the elaion R(RED) is

R*(RED) = { Xy, Xz, X3, X4, Xs} = {{ 0bjs,
objg, objg}, {objs}, {objs, objs}, {obj},
{obj7}}

The desdptions of these equalence asses
are

Des(X;) = (@, =6)0(azg=4)
Des(X5) = (& =5)d(az3=3)
Desa) = (a1 =6)U(az = 8)
DesiXy) = (@1 =5)0(a3=9)
DesXs) = (a1 =6)O(ag=3)

The desdptions ofY; and-Y; are

Des(fy) =(D=1)
DestY) =(D#1)

Becausey; = {obj,, objs, objg}, we calcu
late the condition phbabilities as

P(Y1| Xy =2/3=0.67
PV1[X) =1
P(Y1|X3) =0
P(Y1|X) =0
P(Y1|X) =0

We then obtain the decisionles with
respect to the conpeY; as bllows:

rn*t (a=6)0(a=4)- %"(D=1)
r;Y: (@=5)0(a=3) - *(D=1)
r— (=6)0(,=8)-1(D#1)
r;m (=5)0(=9) - 1(D#1)
rs- (=6)0(a=3) - 1(D#1)

Rule generalization. As indicaed in the
previous subsectionwe can obtain decision
rules diectly from the educed inbrmation
systemWe obtain oneule for eat equv-
alence tass of the paition R*(RED). How-
ever, rules might containt&ributes vhose
values ag irelevant for detemining the tar
get concet. Futhemore, we can gneal-
ize wules futher by inspecting vhich con
ditions in a wle can be emoved without
causing ay inconsistenyg. A decision ule
obtained l dropping the maximm possi
ble number of conditions is calledraaxi
mally geneal rule. By constuction,maxk
mally genearl rules contain a minimm
number of conditionsWe use thelecision
matrix technique to ind all the maximaif
geneal rules10

LetX*,i=(1,2,... ), denote the equix
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Table 4. The decision matrix for th

e rules with respect to concept ¥;.

X~ X" X
X (as, 4) (a, 6), (a3, 4) (as, 4)
X" (a4, 5), (a3, 3) (a3, 3) (a,9)

lence tasses of theelaion R*(RED) suct
that X;* O POSep(Y); and letX—, j = (1,2,
..., p), denote the equalence tasses of the
reladion R*(RED) sud tha X~ O
NEGge(Y). We defne a decision ntex M
= (Mij)wp as

M; ={(a, f(X*, @) a0 RED, f(X*, a) #
f(4~ a)}

wherais a condition #ribute belongng to
RED. Tha is, M;; contains all tiribute-\value
pairs whose alues ag not the same beégn
the equialence tassX;* and the equilence
classX.

We obtain the set of decisionles com
puted br a gven equwialence tassX;* by
treding ead element oM;; as a Boolean
expression and conastcting the bllowing
Boolean function:

o =ciow,)

where JandOare the usual conjunction an
disjunction opesators.

We can she tha the pime implicants of
the Boolean functio; are the maximaif
geneal rules or the equialence tassX*
belongng to the positie leaning region
POSep(Y). Thus, by finding the pime
implicants of all the decision functioms (i
=1,2,..., ), we can compute all the max
mally geneal rules br the positie leaning

region POSep(Y).

Example 5Following from Example 4the
equialence tasses of thealation R(RED)
are

Xi* =X, = { obj,, objs, objs}
Xt =X, = {objs}

X~ = X5 = {obj;, objs}
X=X, ={obj}

X5 =Xs={obj}

Table 4 shavs the decision max

M= (Mij )2x3

We then obtain the Boolean functiorw f
eah X* (i =1,2) as bllows:

Bi=(@=4)0((=6)0(az=4))
O(@as=4)=@z=4)

By=(@=5)U(az=3))U(as=3)
O@&=5=@=50(@s=3)

Therefore, the maximaly geneal rule for the
equialence tassX;"is

(ag=4) - *¥(D=1)

and the maxima}i geneal rule for the equi-
alence @assX," is

(a,=5)0(az=3) - 1 (D=1).

Given the set of all maximallgeneal
rules br an inbrmation systensS, our sys
tem povides the options tarfd the set of
minimal mlesand the set ahinimal coer-
ing rules The suppdrset of auler;, denoted
as supp(), is the collection ofaws of the
original teble sdisfying the condition paof
r;i. A collection of ules RJL' is a set of min
imal rules if, for every r; 0 RUL',

supp(r;) 7 supp(r, )

Dl'j [RUL", il’j

A collection of ules RJL" is a set of mini
mal covering rules if, for every r; 0 RUL",

supp(r,) 7 U supp(r; )

T CRUL", #rj

Example 6As shavn in Example 5we can
use a decision niédx to calculde the maxi

mally geneel rule for the concpt Y;. Simi-

larly, we can obtain the maximglgenesl

rules Pr concts Yy andY,. The set of all
maximally geneal rules br the inbrmation

system inTable 2 ae

ri:(as=8) - *(D=0)
r(@=9) -~ *(D=0)

r3: (@g=4) - %57(D=1)
ry(@=5)0(a=3)~1(D=1)
rs: (@ =6)0(ag=3) -1 (D=2)

wherer, andr, are for the concpt Yy, r;and
r, are for the concpt Yy, andrs is for the con
cept Yo

The suppadrsets of thesautes ae

supp(1) = {objy, objs}
supp(2) = {objz}

supp(s) = {objs, objg, Objg}
supp(4) = {objs}

supp(s) = {objz}

Because these suppsets a& not werap-
ping, the wles ae both minimal ules and
minimal corering rules.

Experimental results

We hare implemented this method in the
KDD-R (Knowledge Discovery in Databases,
Rough Set#\pproac) system desloped &
the University of Regina® The system per
forms daa anaysis,daabase miningpatem
recaynition and alidaion, and &peit-system
building. We tested the pposed methodyb
applying the KDD-R system on the t@afor
water-demand pediction. Our objecte is to
anal/ze the set of &ining dda and gneste a
set of decisionules to pedict a citys daily
water demandAs we mentionedthe set of
training samples consists of 306 objects co
lected @er a peind of 10 months and ihales
information on dg of the week weaher con
ditions,and day water consumption.

In our expeiiment,we divided the alues of
decision &ributes into nineanges so thethe
information system has nine cors. The
KDD-R system gneeted a total of 188ules.
Table 5 lists the amber of ules gneeted for
different concpts;NC stands ér the rumber
of training samples a@red ty the wles.

The most gneal rule for the concpt D =
(60-70]is

(~13.80< a, < —1.40)[1(81.60< a3 <
93.00) - 1 (60 <D < 70)

This mle covers 12.37% of the #&ining
objects conluding the concpt. The ule
stees tha

If the maxinum tempegture is within the ange

(-13.80C,—1.40C] and the eerage humidity
is within (81.60%93%)],then the vater demand
is between 60 maaliters and 70 mgaliters,

with an uncetainty factor of 1.

The most gneel rule for the concpt D =
(70-80]is

(3 =M) 0(-31.50< a, < —13.80)
- 1(70<D <80)
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This rle covers 4.17% of the #ining
objects conluding the congat. It stdes tha

If the dgy of the week is Mondg and the
minimum tempeature is within the ange

[-31.50C, -13.80C], then the vater demand
is between 70 mealiters and 80 mgaliters,

with an uncetainty factor of 1.

The most gneal rule for the concptD =
(80-190]is

(a0 =F) 0(6.70< &, < 34.10)0] (4.50<
a<8.70) » (80<D < 90)

This mle corers 7.90% of the #&ining
objects conluding the congat. It stdes tha

If the deay of the week is Fiday and the maxi
mum tempegture is within the ange (6.70C,
34.10C] and the gerage wind speed is within
[4.50 km/hr, 8.70 km/hi], then the wter
demand is beteen 80 mealiters and 90 mge-
liters, with an unceainty factor of 1.

The most gneal rule for the concptD =
(100-110]is

(80> SU) 0(47.40< a3 < 53.10)01
(17.10< ag < 21.30)  1(100< D < 110)

This le corers 22.22% of the &ining
objects conluding the conggt. It stdes tha

If the day of the week is Sundaand the eer-
age humidity is within (47.409%3.10%)] and
the average wind speed is within (17.10 km/hr
21.30 km/hj, then the waeter demand is
between 100 mgaliters and 110 ngaliters,
with an uncetainty factor of 1.

To evaluae the wles deived by our
method we conducted deave-ten-out
experiment by using 90% of the da for
training and theemaining 10%dr testing
The eror rate dgpends on the selection of
training samplesiNe conducted thexper
iment 10 timesThe best aor rate of pre-
diction was 6.67%and the werage eror
rate of pediction was 10.27%.

WE HAVE SUGGESTEDA METHOD

for genesting prediction wles flom a gven
set of taining xkamples.The method is an
extension of theaugh-set modeThe salient
feaure of the poposed method is th&iuses
the staistical information inheent in the

Table 5. Number of rules for different concepts.

Concerts  NUMBER OF RULES NC
[53 - 60] 3 3
(60-70] 43 97
(70-80] 67 120
(80-90] 32 38
(90-100] 16 18

(100-110] 8 9
(110-120] 6 7
(120 -130] 4 5
(130 -140] 3 3
(140-176] 5 6

knowledge systemThus,our method can
deiive decisionules flom incomplete knol-
edee. This caability is important,because
we seldom hee complete and consiste
information when designing intellignt sys
tems.

Applicaion of this knevledge-discaery
method br water-demand pediction com
plements mamal knavledge-acquisition
techniques (see the sidar, “T he intelligent

system”). It ofers the aglantaye of desdb-

ing impotant elaionships betwen condi

tion factos and veter consumption in tems
of simple if-then ules tha uses can easjl

undestand The epelimental esults indi

cate thd the poposed algrithm can gner

ate ules br water-demand pediction, pro-

viding more precise inbrmaion than is
available through knavledge acquisition
from human gpetts.

Our poposed methodf madine indue
tion is generl and can bepplied to other
domainssud as gneal consumedemand
prediction, fault diagnosis,and pocess
control. For water-demand pediction,we
have also tied different sets of causahui-

ntables with the ule-induction method to fur

ther impove predictive accuacy. The
results she tha adding time-seies dda,
sud as esteday’s and the dabefore yes
terday’s water consumptiomas conditional
variables gves better esults than using
wedher factois alone In tems of the

The intelligent system

ligent system consists af& modules:

¢ the expert-system module
» the enegy-mangement module
» the waterr-demand pediction module

» the steduling and planning module

covery from ddabases.

simulation module for verification puiposes.

within a shot peiiod of time

The knavledge-discavery module br water-demand pediction is one component of the
intelligent systemdr monitoing and conwlling the water-distribution systemThe inte}

 the pipeline-netark-simulation module and

The pett system consists of a kwéedge basedr detectingdults andecommending a
seies of adjustments on equipmehgajven stie of opeations.

The enegy-mangiement module idrms uses of the most cost-&fctive combin&on of
pumps and alves among the poss$#bconfgurations sugested § the expert system.

The pediction moduledrecasts \&ter demands. It has been implemented usaigwsAl
techniquesjncluding neual networks, fuzzy setscase-basedrnsoningand knevledge dis

The work presented in the mainxeof the aticle descibes the knaledge-discaery com
ponent of the mdiction moduleThe forecast on ater usae, along with the @commenda
tions on pumps andalve adjustments prided by the expert systempecomes input to the

The simulation program uses amnxéended peod sirmulation to represent the yhamic
behaior of flows, pressues,and vater levels.The opeational pocedue of pumps andalves
suggested ly the expett system & sdisfactoy if the simulation module shws tha

» the pessue d the outlet of edtpumping stion is within the set-point limit,
» the water level remains within theange allavable for the esevoirs,and
» the combintion of pumps andalves does not causeyaresevoir to overflow or deplete

The poject bgan in May 1994,and we hare completed the ptotype of the xpert system,
the sinulation program,the pediction moduleand the engly-manaement moduléNe ae
working on the seeduling and planning modylend on intgrating the diferent components
into an intelligent system\We expect to complete the pject this &ll.
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madine-induction methodve have devel-
oped a n& algorithm tha integrates ule
induction with case-baseceasoning to
improve caseetrieval and poblem solving
We hare gpplied this intgrated method to
numeic-prediction domains. Expenental
results shw tha case-baseaasoning with
rule induction perdrms better than case
based easoning ¥ itself, in tems of pe-
dictive accuagy.
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