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OPTIMIZING CONTROL OF OPER-
ations in a municipal water-distribution sys-
tem can reduce electricity costs and realize
other economic benefits. However, optimal
control requires an ability to precisely predict
short-term water demand so that minimum-
cost pumping schedules can be prepared. One
of the objectives of our project to develop an
intelligent system for monitoring and con-
trolling municipal water-supply systems is to
ensure optimal control and reduce energy
costs. Hence, prediction of water demand is
essential. In this article, we present an appli-
cation of a rough-set approach for automated
discovery of rules from a set of data samples
for daily water-demand predictions. The data-
base contains 306 training samples, covering
information on seven environmental and soci-
ological factors and their corresponding daily
volume of distribution flow.

The problem domain

The problem domain is typical of a water-
distribution system of moderate-sized cities
in North America. The sources of water are a
lake and several underground wells. Water is
first pumped to reservoirs at various locations
in the city and then from the reservoirs to the
distribution system, or to another reservoir
when it is necessary to adjust water levels.

Pumps and valves, housed in pumping sta-
tions, control the system’s pressures and flow
rates. Human operators control the distribu-
tion system’s operations at a central pumping
station. The operators use heuristics or rules
of thumb to minimize the cost of power used
by pumps, to make demand forecasts, and to
keep the water level of reservoirs within rea-
sonable ranges. These heuristics depend on
several economic, environmental, and socio-
logical factors. A sample heuristic is,

If the weather in the last three days is hot and
dry, and the weather in the next three days is
expected to be hot and dry, and the time before
high demand is expected to be less than or equal
to eight hours, then use a large pump and run it
for a short time.

Because several operators control the sys-
tem, standardizing and optimizing the distri-

bution system’s operations is difficult. Doc-
umenting the heuristics of the most experi-
enced operator in an intelligent system is one
way to reduce operating costs in the supply
and distribution of purified water.

To develop our expert system, we con-
ducted knowledge acquisition through struc-
tured and unstructured interviews with human
experts, and we obtained heuristics for cost-
effective water-utility operations. Analysis of
these heuristics indicates that accurately esti-
mating short-term (daily) forecasts of water
demand is important so that energy-saving
pumping schedules can be derived. However,
the prediction of water demand is poorly
understood—even by the experts, who ap-
proximate daily water demand based on their
experience. The often inaccurate estimations
result in inefficient operation of the water-dis-
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tribution system. The lack of knowledge
about water-demand prediction translates to
a gap in the expert system’s knowledge base.
In other words,manual knowledge acquisi-
tion by itself is inadequate for handling all the
situations that can arise in a complex engi-
neering application.

The relevant studies on demand prediction
have focused on developing mathematical
models based on statistical studies of historical
data.1 In our project, we focused on using
machine-learning techniques for generating
rules on water-demand prediction,because
mathematical modeling focuses on quantita-
tive information alone. But in automated learn-
ing from observed data,both quantitative as
well as qualitative variables are considered.

Because the database’s training samples are
incomplete and possibly ambiguous,exact
decision rules cannot be derived by standard
methods.2–5We propose a method for gener-
ating classification rules from incomplete
information. This method extends the rough-
set model,6 and uses statistical information to
define the positive and negative regions of a
concept. Each classification rule generated by
our learning system is characterized by an
uncertainty factor,which is the probability that
an object matching the condition part of the
rule belongs to the concept.

Data collection and
representation

We obtained data on the water domain
from the municipal water department in
Regina, Saskatchewan,Canada,and Envi-
ronment Canada. The former provided us
with historical data on water consumption,
and the latter on weather conditions.

Characteristics of water demand. The
instantaneous consumption of water in an
urban distribution system depends on the
many industrial, commercial, public, and
domestic consumers distributed throughout
the area supplied. Factors such as weather
conditions,seasonal variation, day of the
week,and whether a particular day is an
observed holiday can all influence this con-
sumption. We have found that expert opera-
tors base their water-demand predictions pri-
marily on weather-related considerations and
day of the week. Therefore, in this article, we
use weather conditions and day of the week
as the condition attributes,and consumer
water demand as the decision attribute.

Condition attr ibutes. Seven factors can
affect the daily consumption of water in a city
(see Table 1). The first factor is day of the
week,which we chose because of the obser-
vation that on weekends the daily total-
distribution flows are usually less than on
weekdays. The city also has
the power, through bylaws,
to restrict watering of lawns
on Wednesdays. Further-
more, Mondays are days of
high water usage, because
many people do their laun-
dry on Mondays and be-
cause, in the summer, peo-
ple water their lawns on the
day after returning from a
weekend at their cottages.
The remaining factors are
weather conditions:tem-
perature, humidity, precipi-
tation, and wind. We ob-
tained the values of these
factors from monthly meteorological sum-
maries printed by Environment Canada.

Decision attr ibute. The total amount of
water consumed by the city each day is cal-
culated by summing the daily distribution
flows metered at each pumping station of the
city. The operator at the central control sta-
tion records this number every day. The value
varies from 50 megaliters in the coldest win-
ter days to 180 megaliters in the summer.

Inf ormation systems.We assume that the
given set of training samples represents the
knowledge about the domain. In our ap-
proach, the training set is described by an
information system.4The objects in a universe
U are described by a set of attribute values.

Formally, an information system S is a
quadruple <U, A, V, f>, where U = {x1, x2,
…, xN} is a finite set of objects,and A is a
finite set of attributes. The attributes in Aare
further classified into two disjoint subsets:
the condition attributesC and the decision
attributeD, such that A = C ∪ D and C ∩ D
= . V = Ua∈ AVa is a set of attribute values,
where Va is the domainof attribute a (the set
of values of attribute a). f : U × A → V is an
information function that assigns particular
values from domains of attributes to objects,
such that f(xi, a) ∈ Va for all xi ∈ U and a ∈ A.

The 306 training samples in our informa-
tion system for water-demand prediction are
objects that include daily information on the
condition attributes and the decision attribute

for 10 months,from March to December
1994. Table 2 lists eight of these objects. For
the purpose of rough-set-based data analy-
sis,we have generalized the information sys-
tem by replacing the original attribute values
with some discrete ranges—for example, we
have discretized attribute a2 (minimum tem-
perature) into 10 categories,denoted as 0,1,
2, 3, 4, 5, 6, 7, 8, and 9. For instance, cate-
gories 7 and 8 for a2, which appear in Table
2, stand for the ranges (6.46,10.34] and
(10.34,14.22],respectively. (The unmatched
brackets stand for a half-open and half-closed
range. For example, 6.46 does not belong to
the range (6.46,10.34],but 10.34 does.)

The question of how to optimally dis-
cretize the attribute values is a subject of
ongoing research; the method of discretiza-
tion we have adopted is just one of many pos-
sibilities. Our experimental results are based
on the whole set of training samples (the 306-
object information system).

Data analysis

In what follows,we present the basics of
an extended rough-set model,referred to as
the probabilistic model of rough sets. The
probabilistic model underlies the rule-extrac-
tion technique adopted in our research.

Indiscernibility r elation. An information
system provides only partial information of
the universe. That is, the objects described

/0
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Table 1. Condition factors for water-demand prediction.

LABEL CONDITION ATTRIBUTES

a0 Day of the week
a1 Maximum temperature
a2 Minimum temperature
a3 Average humidity
a4 Rainfall
a5 Snowfall
a6 Average wind speed

Table 2. Information system for water-demand prediction.

C

OBJECTS a0 a1 a2 a3 a4 a5 a6 D

obj1 6 6 7 8 1 0 3 0
obj2 1 5 7 9 0 0 1 0
obj3 6 6 7 8 1 0 3 0
obj4 3 6 7 4 0 0 1 1
obj5 3 5 7 3 0 0 1 1
obj6 3 6 7 4 0 0 1 1
obj7 6 6 8 3 0 0 6 2
obj8 3 6 7 4 0 0 1 2

.



by the fixed set of selected attributes might be
insufficient for characterizing the objects
uniquely. Any two objects are indistinguish-
able from each other whenever they assume
the same attribute values. This means we
might not be able to distinguish all the
objects solely by means of the admitted
attributes and their values.

Given an information system <U, A, V,
f>, let B be a subset of A, and let xi and xj be
members of U. A binary relation R(B),
called an indiscernibility relation, is defined
as R(B) = {(xi, xj) ∈ U2 | ∀ a ∈ B, f(xi, a) =
f(xj, a)}. We say that xi and xj are indis-
cernible to the set of attributes B in Sif f(xi,
a) = f(xj, a) for every a ∈ B. For example,
in the information system shown in Table 2,
obj1 and obj3 are indiscernible to the set of
attributes C ∪ D, and obj4, obj6, and obj8
are indiscernible to the set of condition attri-
butes C.

R(B) is an equivalence relation on U for
every B ⊆ A. Thus,we can define two nat-
ural equivalence relations,R(C) and R(D),
on U for an information system S. A concept
Y is an equivalence class of the relation R(D).
Without loss of generality, we can consider D
as a singleton set. Our objective is to con-
struct decision rules for each concept. Given
a concept Y, the partition of U with respect
to this concept is defined as R*(D) = {Y, U −
Y} = { Y, ¬Y}.

Based on the set of condition attributes C,
an object xi specifies the equivalence class
[xi]R of the relation R(C):

[xi]R = {xj ∈ U | ∀ a ∈ C, f(xj, a) = f(xi, a)}

We say that xi ∈ U definitely belongsto a
concept Y if [xi]R ⊆ Y, and that xi ∈ U possi-
bly belongsto the concept Y if [xi]R ∩ Y≠ 0/.

We define conditional probabilities as 

where P(Y | [xi]R) is the probability of
occurrence of event Yconditioned on event
[xi]R. That is, P(Y | [xi]R) = 1 if and only if
[xi]R ⊆ Y; P(Y | [xi]R) > 0 if and only if [xi]R

∩ Y ≠ 0/; and P(Y | [xi]R) = 0 if and only if
[xi]R ∩ Y = 0/.

Example 1.Let us consider the given infor-
mation system in Table 2. The concepts in
this information system,the equivalence
classes on the relation R(D), are

Y0 = {obj1, obj2, obj3}
Y1 = {obj4, obj5, obj6}
Y2 = {obj7, obj8}

The equivalence classes on the relation R(C)
are

X1 = [obj1]R = [obj3]R = {obj1, obj3}
X2 = [obj2]R = {obj2}
X3 = [obj4]R = [obj6]R = [obj8]R

= {obj4, obj6, obj8}
X4 = [obj5]R = {obj5}
X5 = [obj7]R = {obj7}

Because X4 ⊆ Y1, obj5 definitely belongs to
concept Y1. The objects obj4, obj6, and obj8
possibly belong to concept Y1, because the
intersection of their equivalence class,X3,
with Y1 is not empty. Other objects do not
belong to Y1.

The conditional probability of each equiv-
alence class is

P(Y1 | X1) = 0
P(Y1 | X2) = 0
P(Y1 | X3) = 2/3 = 0.667
P(Y1 | X4) = 1
P(Y1 | X5) = 0

β-probabilistic approximation classifica-
tion. Given an information system S = {U,
A, V, f} and an equivalence relation R(C) (an
indiscernibility relation) on U, an ordered
pair AS = <U, R(C)> is called an approxi-
mation space4 based on the condition attri-
butes C. The equivalence classes of the rela-
tion R(C) are called elementary setsin AS,
because they represent the smallest groups
of objects that are distinguishable in terms of
the attributes and their values. Let Y ⊆ U be
a subset of objects representing a concept,
and R*(C) = {X1, X2, …, Xn} = {[ x1]R, [x2]R,
…, [xn]R} be the collection of equivalence
classes induced by the relation R(C). In the
standard rough-set model,the lower and
upperapproximations of a set Yare defined
by

and

The above definitions do not use the statisti-
cal information in the boundary region,

For this reason,several extensions to the orig-
inal rough-set model have been pro-
posed.6–9,11In our approach,we try to rectify
this limitation by introducing a β-approxi-
mation space.

A β-approximation space ASP is a triple
<U, R(C), P>,where P is a probability mea-
sure and β is a real number in the range (0.5,
1]. The β-approximation space ASP can be
divided into the following regions:

β-positive region of the set Y:

β-negative region of the set Y:

The β-positive region of the set Y corre-
sponds to all elementary sets of U that can
be classified into the concept Y with condi-
tional probability P(Y | Xi) greater than or
equal to the parameter β. Similarly, the neg-
ative region of the set Y corresponds to all
elementary sets of U that can be classified
into the set ¬Y.

Let xi ∈ U be an object; POSC(Y) and
NEGC(Y) are the positive and negative
regions of the concept Y. The object xi is clas-
sified as belonging to the concept Y if and
only if xi ∈ POSC(Y), or to the complement
¬ Y of the concept Y if and only if xi ∈
NEGC(Y). We want to decide whether xi is in
the concept Yon the basis of the set of equiv-
alence classes in ASP rather than on the basis
of the set Y. This means we deal with
POSC(Y) and NEGC(Y) instead of the set Y.
If xi ∈ U is in POSC(Y), it can be classified
into the concept Ywith the conditional prob-
ability P(Y | Xi) greater than or equal to the
parameter β.

Example 2.Following from Example 1,
recall that Y1 = {obj4, obj5, obj6}. If w e let β
= 1,then the β-positive region of the set Y1 is
POSC(Y1) = {obj5}, and the β-negative region
of the set Y1 is NEGC(Y1) = {obj1, obj2, obj3,
obj4, obj6, obj7, obj8}. If w e let β = 0.6,then
the β-positive region of the set Y1 is POSC(Y1)
= {obj4, obj5, obj6, obj8}, and the β-negative
region of the set Y1 is NEGC(Y1) = {obj1, obj2,
obj3, obj7}.

Reduction of condition attr ibutes. An
information system often includes some con-
dition attributes that do not provide any addi-
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tional information about the objects in U.
Eliminating those attributes can reduce the
complexity and cost of the decision process.
We use the concept of a reductin rough sets
to describe the method of condition-attributes
reduction.

Given an attribute-value system S = <U, C
∪ { d}, V, f>, an attribute a is dispensable in
C with respect to {d} if POSC–{a} (Y) =
POSC(Y); otherwise a is an indispensable
attribute in C with respect to {d}. A subset
of condition attributes B ⊆ C is a dependent
setin S with respect to {d} if a proper subset
K ⊂ B exists such that POSB(Y) = POSK(Y);
otherwise, B is an independent setwith
respect to {d}. A reduct C′ of attributes C is
a maximal independent subset of condition
attributes with respect to {d}. 4

The procedure for finding a single reduct
is very straightforward. Consider a condition
attribute a ∈ C. If the β-positive region
POSC–{a} (Y) of the set Y is the same as
POSC(Y), then the attribute a is marked as
being redundant and is removed from the set
of condition attributes C. Other superfluous
condition attributes can be removed in the
same manner. The remaining set of condition
attributes is a reduct. More than one reduct
can exist for a given attribute-value system.
Selection of a bestreduct depends on the
optimality criterion associated with the
attributes. We can also assign significance
values to attributes and base the selection on
those values.

Example 3.The condition attributes Cof the
information system in Table 2 has a total of
seven reducts. Table 3 shows a reduced infor-
mation system based on the reduct {a1, a3}
with respect to the concept Y1. The objects
with value 1 for attribute Y1 belong to the β-
positive region of the concept Y1; the objects
with value 0 for attribute Y1 belong to the β-
negative region of concept Y1. Here, β = 0.6.

Generating decision rules

Rule generation is a crucial task in any
learning system. We now describe how deci-
sion rules are generated based on the reduct
obtained in the previous section.

Probabilistic decision rules.Let R*(RED)
= {X1, X2, …, Xn} be the collection of equiv-
alence classes of the relation R(RED),where
RED is a reduct that is a reduced set of con-
dition attributes C in S, and let R*(D) = {Y,

¬Y} be the partition induced by the decision
attribute. Each equivalence class Xi of the
equivalence relation R(RED) is associated
with a unique combination of values of attrib-
utes belonging to RED. This combination of
values is called the description of the equiv-
alence class Xi ∈ R*(RED). We can express
the description of Xi as

where ∧ denotes the conjunction operator,
and xi is an object in the equivalence class Xi.
Similarly, the descriptions of Yand ¬Yare

Des(Y) = (D = f(xi, D)), and 
Des(¬Y) = (D ≠ f(xi, D))

where D is the decision attribute and xi ∈ Y.
The following decision rules describe the

relationship between the partition R*(RED)
and the partition R*(D):

for Xi ∈ R*(RED),

where ci is the uncertainty factor, which is
equal to P(Y | Xi) in the first case and 1 – P(Y
| Xi) in the second. This means that if an
object xi satisfies the description Des(Xi) and
if P(Y | Xi) ≥ β, then the object xi definitely
belongs to Ywith uncertainty ci. Similarly, if
P(Y | Xi) < β, then the object xi possibly
belongs to the complementary concept ¬Y
with uncertainty ci.

Example 4.Following from Example 3,let
RED denote the reduct {a1, a3}. The collec-
tion R*(RED) of the equivalence classes of
the relation R(RED) is

R*(RED) = {X1, X2, X3, X4, X5} = {{ obj4,
obj6, obj8}, { obj5}, { obj1, obj3}, { obj2},
{ obj7}}

The descriptions of these equivalence classes
are

Des(X1) = (a1 = 6) ∧ (a3 = 4)
Des(X2) = (a1 = 5) ∧ (a3 = 3)
Des(X3) = (a1 = 6) ∧ (a3 = 8)
Des(X4) = (a1 = 5) ∧ (a3 = 9)
Des(X5) = (a1 = 6) ∧ (a3 = 3)

The descriptions of Y1 and ¬Y1 are

Des(Y1) = (D = 1)
Des(¬Y1) = (D ≠ 1)

Because Y1 = {obj4, obj5, obj6}, we calcu-
late the condition probabilities as

P(Y1 | X1) = 2/3 = 0.67
P(Y1 | X2) = 1
P(Y1 | X3) = 0
P(Y1 | X4) = 0
P(Y1 | X4) = 0

We then obtain the decision rules with
respect to the concept Y1 as follows:

r1
+: (a1 = 6) ∧ (a3 = 4) → 0.67(D = 1)

r2
+: (a1 = 5) ∧ (a3 = 3) → 1 (D = 1)

r1
–: (a1 = 6) ∧ (a3 = 8) → 1 (D ≠ 1)

r2
–: (a1 = 5) ∧ (a3 = 9) → 1 (D ≠ 1)

r3
–: (a1 = 6) ∧ (a3 = 3) → 1 (D ≠ 1)

Rule generalization. As indicated in the
previous subsection,we can obtain decision
rules directly from the reduced information
system. We obtain one rule for each equiv-
alence class of the partition R*(RED). How-
ever, rules might contain attributes whose
values are irrelevant for determining the tar-
get concept. Furthermore, we can general-
ize rules further by inspecting which con-
ditions in a rule can be removed without
causing any inconsistency. A decision rule
obtained by dropping the maximum possi-
ble number of conditions is called a maxi-
mally general rule. By construction,maxi-
mally general rules contain a minimum
number of conditions. We use the decision
matrix technique to find all the maximally
general rules.10

Let Xi
+, i = (1,2,… γ), denote the equiva-

Des Des ifX Y Y Xi i

Ci

( ) → ¬( ) ( ) <, P β

Des Des ifX Y Y Xi i

Ci

( ) → ( ) ( ) ≥, P β

Des
RED

X a f x ai
a

i( ) = = ( )( )
∈
∧ ,
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Table 3. Reduct table with respect to Y1 after reduction from Table 2.

C NUMBER OF NUMBER OF

OBJECTS a1 a3 Y1 OBJECTS IN Y1 OBJECTS IN ¬Y1

obj4, obj6, obj8 6 4 1 2 1
obj5 5 3 1 1 0
obj1, obj3 6 8 0 0 2
obj2 5 9 0 0 1
obj7 6 3 0 0 1

.



lence classes of the relation R*(RED) such
that Xi

+ ⊆ POSRED(Y); and let Xj
–, j = (1,2,

…, ρ), denote the equivalence classes of the
relation R*(RED) such that Xj

− ⊆
NEGRED(Y). We define a decision matrix M
= (M ij)γ×ρ as

M ij = {(a, f(Xi
+, a)) : a ∈ RED, f(Xi

+, a) ≠
f(Xj

–, a)}

where a is a condition attribute belonging to
RED. That is,M ij contains all attribute-value
pairs whose values are not the same between
the equivalence class Xi

+ and the equivalence
class Xj

–.
We obtain the set of decision rules com-

puted for a given equivalence class Xi
+ by

treating each element of M ij as a Boolean
expression and constructing the following
Boolean function:

where ∧ and ∨ are the usual conjunction and
disjunction operators.

We can show that the prime implicants of
the Boolean function Bi are the maximally
general rules for the equivalence class Xi

+

belonging to the positive learning region
POSRED(Y). Thus, by finding the prime
implicants of all the decision functions Bi (i
= 1,2, …, γ), we can compute all the maxi-
mally general rules for the positive learning
region POSRED(Y).

Example 5.Following from Example 4,the
equivalence classes of the relation R(RED)
are

X1
+ = X1 = {obj4, obj6, obj8}

X2
+ = X2 = {obj5}

X1
– = X3 = {obj1, obj3}

X2
– = X4 = {obj2}

X3
– = X5 = {obj7}

Table 4 shows the decision matrix

We then obtain the Boolean functions for
each Xi

+ (i = 1,2) as follows:

B1 = (a3 = 4) ∧ ((a1 = 6) ∨ (a3 = 4)) 
∧ (a3 = 4) = (a3 = 4)

B2 = ((a1 = 5) ∨ (a3 = 3)) ∧ (a3 = 3) 
∧ (a1 = 5) = (a1 = 5) ∧ (a3 = 3)

Therefore, the maximally general rule for the
equivalence class X1

+ is

(a3 = 4) → 0.67(D = 1)

and the maximally general rule for the equiv-
alence class X2

+ is

(a1 = 5) ∧ (a3 = 3) → 1 (D = 1).

Given the set of all maximally general
rules for an information system S, our sys-
tem provides the options to find the set of
minimal rulesand the set of minimal cover-
ing rules. The support set of a rule ri, denoted
as supp(ri), is the collection of rows of the
original table satisfying the condition part of
ri. A collection of rules RUL′ is a set of min-
imal rules if, for every ri ∈ RUL′,

A collection of rules RUL″ is a set of mini-
mal covering rules if, for every ri ∈ RUL″,

Example 6.As shown in Example 5,we can
use a decision matrix to calculate the maxi-
mally general rule for the concept Y1. Simi-
larly, we can obtain the maximally general
rules for concepts Y0 and Y2. The set of all
maximally general rules for the information
system in Table 2 are

r1: (a3 = 8) → 1 (D = 0)
r2: (a3 = 9) → 1 (D = 0)
r3: (a3 = 4) → 0.67(D = 1)
r4: (a1 = 5) ∧ (a3 = 3) → 1 (D = 1)
r5: (a1 = 6) ∧ (a3 = 3) →1 (D = 2)

where r1 and r2 are for the concept Y0, r3 and
r4 are for the concept Y1, and r5 is for the con-
cept Y2.

The support sets of these rules are

supp(r1) = {obj1, obj3}
supp(r2) = {obj2}
supp(r3) = {obj4, obj6, obj8}
supp(r4) = {obj5}
supp(r5) = {obj7}

Because these support sets are not overlap-
ping, the rules are both minimal rules and
minimal covering rules.

Experimental results

We have implemented this method in the
KDD-R (Knowledge Discovery in Databases,
Rough Sets Approach) system developed at
the University of Regina.9 The system per-
forms data analysis,database mining, pattern
recognition and validation,and expert-system
building. We tested the proposed method by
applying the KDD-R system on the data for
water-demand prediction. Our objective is to
analyze the set of training data and generate a
set of decision rules to predict a city’s daily
water demand. As we mentioned, the set of
training samples consists of 306 objects col-
lected over a period of 10 months and includes
information on day of the week,weather con-
ditions,and daily water consumption.

In our experiment,we divided the values of
decision attributes into nine ranges so that the
information system has nine concepts. The
KDD-R system generated a total of 188 rules.
Table 5 lists the number of rules generated for
different concepts; NCstands for the number
of training samples covered by the rules.

The most general rule for the concept D =
(60 – 70] is

(–13.80 < a2 ≤ –1.40) ∧ (81.60 < a3 ≤
93.00) → 1 (60 < D ≤ 70)

This rule covers 12.37% of the training
objects concluding the concept. The rule
states that

If the maximum temperature is within the range
(–13.80°C,–1.40°C] and the average humidity
is within (81.60%,93%],then the water demand
is between 60 megaliters and 70 megaliters,
with an uncertainty factor of 1.

The most general rule for the concept D =
(70 – 80] is

(a0 = M) ∧ (–31.50 ≤ a2 ≤ –13.80) 
→ 1 (70 < D ≤ 80)

 
supp supp

RUL
r ri j r r rj i j

( ) /⊆ ( ) ∈ ′′ ≠
U

,

supp supp
RUL ,
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j
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Table 4. The decision matrix for the rules with respect to concept Y1.

X1
− X2

– X3
–

X1
+ (a3, 4) (a1, 6), (a3, 4) (a3, 4)

X2
+ (a1, 5), (a3, 3) (a3, 3) (a1, 5)

.



This rule covers 4.17% of the training
objects concluding the concept. It states that

If the day of the week is Monday and the 
minimum temperature is within the range
[–31.50°C, –13.80°C], then the water demand
is between 70 megaliters and 80 megaliters,
with an uncertainty factor of 1.

The most general rule for the concept D =
(80 – 90] is

(a0 = F) ∧ (6.70 < a1 ≤ 34.10) ∧ (4.50 ≤
a6 ≤ 8.70) → 1(80 < D ≤ 90)

This rule covers 7.90% of the training
objects concluding the concept. It states that

If the day of the week is Friday and the maxi-
mum temperature is within the range (6.70°C,
34.10°C] and the average wind speed is within
[4.50 km/hr., 8.70 km/hr.], then the water
demand is between 80 megaliters and 90 mega-
liters,with an uncertainty factor of 1.

The most general rule for the concept D =
(100 – 110] is

(a0 > SU) ∧ (47.40 < a3 ≤ 53.10) ∧
(17.10 < a6 ≤ 21.30) → 1(100 < D ≤ 110)

This rule covers 22.22% of the training
objects concluding the concept. It states that

If the day of the week is Sunday and the aver-
age humidity is within (47.40%,53.10%] and
the average wind speed is within (17.10 km/hr.,
21.30 km/hr.], then the water demand is
between 100 megaliters and 110 megaliters,
with an uncertainty factor of 1.

To evaluate the rules derived by our
method, we conducted a leave-ten-out
experiment by using 90% of the data for
training and the remaining 10% for testing.
The error rate depends on the selection of
training samples. We conducted the exper-
iment 10 times. The best error rate of pre-
diction was 6.67%,and the average error
rate of prediction was 10.27%.

WE HAVE SUGGESTED A METHOD
for generating prediction rules from a given
set of training examples. The method is an
extension of the rough-set model. The salient
feature of the proposed method is that it uses
the statistical information inherent in the

knowledge system. Thus,our method can
derive decision rules from incomplete knowl-
edge. This capability is important,because
we seldom have complete and consistent
information when designing intelligent sys-
tems.

Application of this knowledge-discovery
method for water-demand prediction com-
plements manual knowledge-acquisition
techniques (see the sidebar, “The intelligent

system”). It offers the advantage of describ-
ing important relationships between condi-
tion factors and water consumption in terms
of simple if-then rules that users can easily
understand. The experimental results indi-
cate that the proposed algorithm can gener-
ate rules for water-demand prediction,pro-
viding more precise information than is
available through knowledge acquisition
from human experts.

Our proposed method for machine induc-
tion is general and can be applied to other
domains,such as general consumer-demand
prediction, fault diagnosis,and process 
control. For water-demand prediction,we
have also tried different sets of causal vari-
ables with the rule-induction method to fur-
ther improve predictive accuracy. The
results show that adding time-series data,
such as yesterday’s and the day before yes-
terday’s water consumption,as conditional
variables gives better results than using
weather factors alone. In terms of the
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Table 5. Number of rules for different concepts.

CONCEPTS NUMBER OF RULES NC

[53 – 60] 3 3
(60 – 70] 43 97
(70 – 80] 67 120
(80 – 90] 32 38
(90 – 100] 16 18

(100 – 110] 8 9
(110 – 120] 6 7
(120 – 130] 4 5
(130 – 140] 3 3
(140 – 176] 5 6

The intelligent system
The knowledge-discovery module for water-demand prediction is one component of the

intelligent system for monitoring and controlling the water-distribution system. The intel-
ligent system consists of five modules:

• the expert-system module,
• the energy-management module,
• the water-demand prediction module,
• the pipeline-network-simulation module, and
• the scheduling and planning module.

The expert system consists of a knowledge base for detecting faults and recommending a
series of adjustments on equipment at a given state of operations.

The energy-management module informs users of the most cost-effective combination of
pumps and valves among the possible configurations suggested by the expert system.

The prediction module forecasts water demands. It has been implemented using various AI
techniques,including neural networks,fuzzy sets,case-based reasoning, and knowledge dis-
covery from databases.

The work presented in the main text of the article describes the knowledge-discovery com-
ponent of the prediction module. The forecast on water usage, along with the recommenda-
tions on pumps and valve adjustments provided by the expert system,becomes input to the
simulation module, for verif ication purposes.

The simulation program uses an extended period simulation to represent the dynamic
behavior of flows,pressures,and water levels. The operational procedure of pumps and valves
suggested by the expert system are satisfactory if the simulation module shows that 

• the pressure at the outlet of each pumping station is within the set-point limit,
• the water level remains within the range allowable for the reservoirs,and
• the combination of pumps and valves does not cause any reservoir to overflow or deplete

within a short period of time.

The project began in May 1994,and we have completed the prototype of the expert system,
the simulation program,the prediction module, and the energy-management module. We are
working on the scheduling and planning module, and on integrating the different components
into an intelligent system. We expect to complete the project this fall.

.



machine-induction method, we have devel-
oped a new algorithm that integrates rule
induction with case-based reasoning to
improve case retrieval and problem solving.
We have applied this integrated method to
numeric-prediction domains. Experimental
results show that case-based reasoning with
rule induction performs better than case-
based reasoning by itself, in terms of pre-
dictive accuracy.
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