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A rule quality measure is important to a rule induction system for determining when to stop gener-
alization or specialization. Such measures are also important to a rule-based classification procedure for
resolving conflicts among rules. We describe a number of statistical and empirical rule quality formulas
and present an experimental comparison of these formulas on a number of standard machine learning
datasets. We also present a meta-learning method for generating a set of formula-behavior rules from
the experimental results which show the relationships between a formula’s performance and the charac-
teristics of a dataset. These formula-behavior rules are combined into formula-selection rules that can
be used in a rule induction system to select a rule quality formula before rule induction. We will report
the experimental results showing the effects of formula-selection on the predictive performance of a rule
induction system.
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1. INTRODUCTION

A rule induction system generates decision rules from a set of training data. The
set of decision rules determines the performance of a classifier that exploits the rules to
classify unseen objects. It is therefore important for a rule induction system to generate
decision rules that have high predictability or reliability. These properties are commonly
measured by a function called rule quality.

A rule quality measure is needed in both the rule induction and classification pro-
cesses. A rule induction process is usually considered as a search over a hypothesis
space of possible rules for a decision rule that satisfies some criterion. The possible
rules, in this case, are those rules that are defined by a concept description language,
such as propositional rules. In the rule induction process that is based on general-
to-specific search (such as CN2 (Clark and Boswell 1991), HYDRA (Ali and Pazzani
1993)), a rule quality measure can be used as an evaluation heuristic to select attribute-
value pairs in the rule specialization process; and/or it can be employed as a significance
measure to stop further specialization. The main reason to focus special attention on
the stopping criterion can be found in the studies on small disjunct problems (Holte,
Acker, and Porter 1989; Ting 1994). The studies indicated that small disjuncts, which
cover a small number of training examples, are much more error prone than large
disjuncts that cover a large amount of training examples. To prevent small disjuncts,
a stopping criterion based on rule consistency (i.e., the rule is consistent with the train-
ing examples) is not suggested for use in rule induction. Other criteria, such as the G2
likelihood ratio statistic as used in CN2 (Clark and Niblett 1989) and the degree of
logical sufficiency as used in HYDRA (Ali and Pazzani 1993), have been proposed to
“pre-prune” a rule to avoid overspecialization of the rule. Some rule induction systems,
such as C4.5 (Quinlan 1993) and ELEM2 (An and Cercone 1998), use an alternative
strategy to prevent the small disjunct problem. In these systems, the rule specialization
process is allowed to run to completion (i.e., it forms a rule that is consistent with the
training data or as nearly consistent as possible) and “post-prunes” overfitted rules by

Address correspondence to the authors at University of Waterloo, Ontario N2L 3G1 Canada; e-mail:
{aan, ncercone}@uwaterloo.ca.

c© 2001 Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.



410 Computational Intelligence

removing components that are deemed unreliable. Similar to pre-pruning, a criterion is
needed in post-pruning to determine when to stop this generalization process.

A rule quality measure is also needed in the classification process. It is possible that
an unseen example satisfies multiple decision rules that are assigned to different classes.
In this situation, some conflict resolution scheme must be applied to assign the unseen
object to the most appropriate class. It is therefore useful for each rule to be associated
with a numerical factor which can represent its classification power, its reliability, etc.

This paper consists of three parts. First, we briefly survey a number of rule quality
measures that have appeared in the literature. The measures encompass statistical or
empirical formulas, most of which have been discussed by Bruha (1993, 1996) and
An and Cercone (1999). Second, we describe our experiments that evaluate these rule
quality formulas and report the evaluation results in terms of predictive accuracy of
a learning system that uses these formulas on a number of standard data sets. We
compare each pair of the formulas by indicating the significance level of the difference
between the two formulas. The learning system we used in our evaluations is ELEM2
(An and Cercone 1998) which induces decision rules from a set of training data and
uses the induced rules to classify (new) examples. In our earlier work (An and Cercone
1999), we evaluated some of these formulas on a smaller collection of data sets. One
contribution of this paper is to include more formulas in our experiments and the
tests also go beyond our earlier tests by including more data sets in the experiments.
Finally, we present a meta-learning method that discovers relationships between the
characteristics of a data set and the performance of a formula on the data set. For
each formula, the learned relationships are represented by a set of formula-behavior
rules. The formula-behavior rules for all the tested formulas are further screened and
combined into formula-selection rules. These formula-selection rules are a set of meta-
rules that can be employed by ELEM2 to select a rule quality formula before inducing
rules from a dataset. We report the experimental results showing the effects of formula-
selection on ELEM2’s predictive performance.

2. RULE QUALITY MEASURES

Many rule quality measures are derived by analyzing the relationship between a
decision rule R and a class C. The relationship can be depicted by a 2 × 2 contingency
table (Arkin and Colton 1990; Bruha and Kockova 1993) which consists of a cross-
tabulation of categories of observations with the frequency for each cross-classification
as shown in Table 1 where nrc is the number of training examples covered by rule R
and belonging to class C; nrc̄ is the number of training examples covered by R but not
belonging to C, etc.; N is the total number of training examples; nr� nr̄� nc and nc̄ are
marginal totals, e.g., nr = nrc+nrc̄, which is the number of examples covered by R. The

Table 1. Contingency Table with Absolute Frequencies

Class C Not class C

Covered by rule R nrc nrc̄ nr
Not covered by R nr̄c nr̄ c̄ nr̄

nc nc̄ N
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Table 2. Contingency Table with Relative Fre-
quencies

Class C Not class C

Covered by rule R frc frc̄ fr
Not covered by R fr̄c fr̄ c̄ fr̄

fc fc̄ 1

contingency table can also be presented using relative rather than absolute frequencies
as shown in Table 2 where frc = nrc

N
� frc̄ = nrc̄

N
, and so on.

2.1. Empirical Formulas

Some rule quality formulas represent an ad hoc approach to the definition of rule
quality. Bruha (1993) refers to these formulas as empirical formulas because they are
not necessarily backed by statistical or information theories, but rather by intuition.
We describe two empirical formulas that combine two basic characteristics of a rule:
consistency and coverage. Using the elements of the contingency table, the consistency
(also called apparent accuracy, i.e., accuracy over the training examples) of a rule R can
be defined as cons�R� = nrc/nr and its coverage as cover�R� = nrc/nc. Both consistency
and coverage are important indicators of a rule’s reliability. Rules that cover a large
number of positive examples of a class may also cover negative examples well. On the
other hand, only considering consistency may lead to generation of rules covering few
examples which in turn results in poor predictive performance since the rule may overfit
the data. Two formulas that are based on consistency and coverage are described below.

Weighted Sum of Consistency and Coverage. Michalski (1990) proposes to use the
weighted sum of the consistency and coverage as a measure of rule quality as follows:

QWS = w1 × cons�R� +w2 × cover�R��
where w1 and w2 are user-defined weights with their values belonging to (0, l) and
summed to 1. This formula is applied in an incremental learning system YAILS (1993).
The weights in YAILS are specified automatically as:

w1 = 0�5+ 1
4
cons�R� and w2 = 0�5− 1

4
cons�R��

The weights here are dependent on consistency. The larger the consistency, the more
influence consistency has on rule quality.

Product of Consistency and Coverage. Brazdil and Torgo (1990) propose to use a prod-
uct of consistency and coverage as rule quality:

QProd = cons�R� × f �cover�R���
where f is an increasing function. The authors conducted a large number of experiments
and chose to use the following form of f : f �x� = ex−1. This setting of f makes the
difference in coverage have smaller influence on rule quality, which results in the rule
quality formula to prefer consistency.
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2.2. Measures of Association

A measure of association indicates a relationship between the classification for the
columns and the classification for the rows in the 2× 2 contingency table. Two statistics
can be used to measure the association.

Pearson �2 Statistic. The �2 statistic is based on the assumption: if the classification
for the columns is independent of that for the rows, the frequencies in the cells of the
contingency table should be proportional to the marginal totals. The �2 value is given by

�2 = ∑ �no − ne�2
ne

�

where no is the observed absolute frequency of examples in a cell, and ne is the expected
absolute frequency of examples for the cell. For example, for the upper-left cell, no = nrc
and ne = nrnc/N . The value �no − ne�2/ne is computed for each cell of the table indi-
vidually and the values for all cells are added to yield the value of �2. A computational
formula for �2 can be obtained using only the values in the contingency table with
absolute frequencies (Bruning and Kintz 1997):

�2 = N�nrcnr̄c̄ − nrc̄nr̄c�2
ncnc̄nrnr̄

�

This value measures whether the classification of examples by the rule R and one by
the class C are related, i.e., whether the rule R does affect the class C. The lower the �2

value, the more likely it is that the correlation between R and C is due to chance.

G2 Likelihood Ratio Statistic. The G2 likelihood ratio measures the distance between
two distributions: the observed frequency distribution of examples among classes satisfy-
ing the rule R and the expected frequency distribution of the same number of examples
under the assumption that the rule R selects examples randomly. The value of this
statistic can be obtained using the absolute frequencies in the contingency table as
follows:

G2 = 2
(
nrc
nr

ln
nrcN

nrnc
+ nrc̄

nr
ln
nrc̄N

nrnc̄

)
�

The lower the G2 value, the more likely it is that the apparent association between the
two distributions is due to chance. Both the �2 and the likelihood ratio statistics are
distributed asymptotically as �2 with one degree of freedom.

2.3. Measures of Agreement

A measure of agreement concerns the association of the elements of a contingency
table on its main diagonal only (Bruha and Kockova 1993). The following two measures
of agreement are used in our experiments.

Cohen’s Formula. We can measure the actual agreement by simply summing up the
main diagonal using the relative frequencies: frc + fr̄c̄. A chance agreement occurs if
the row variable is independent of the column variable, which can be measured by
frfc + fr̄fc̄. Cohen (1960) suggests to compare the actual agreement with the chance
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agreement by using the normalized difference of the two which we can use as a rule
quality measure:

QCohen =
frc + fr̄c̄ − �frfc + fr̄fc̄�

1− �frfc + fr̄fc̄�
�

When both elements frc and fr̄c̄ are reasonably large, Cohen’s statistic gives a higher
value which indicates the agreement on the main diagonal.

Coleman’s Formula. Coleman (Bishop, Fienbehg, and Holand 1991; Bruha and
Kockova 1993) defines a measure of agreement that indicates an association between
the first column and any particular row in the contingency table. Bruha (1993) sug-
gests using a modified version of Coleman’s measure for the purpose of rule quality
definition, which actually responds to the agreement on the upper-left element of the
contingency table. The formula is also derived by normalizing the difference between
the actual and chance agreement as follows:

QColeman =
frc − frfc
fr − frfc

�

C1 and C2 Formulas. Both Coleman’s formula and Cohen’s formula can be repre-
sented using consistency and coverage of a rule (R) as follows:

QColeman =
cons�R� − fc

1− fc
� QCohen =

cons�R� − fc
1
2

(
1+ cons�R�

cover�R�
)
− fc

�

one can find that Coleman’s formula does not properly comprise the coverage (i.e,
completeness) of rule. On the other hand, Cohen’s statistic is more completeness-based.
Therefore, Bruha (1996) modified Coleman’s formula in two ways, which yields formulas
C1 and C2:

QC1 = QColeman ×
2 +QCohen

3
� QC2 = QColeman ×

1+ cover�R�
2

�

where the coefficients 2, 3 and 1, 2 are used for the normalization purpose.

2.4. Measure of Information

The measure of information is another statistical measure that can be used to define
rule quality. Given a class C, the amount of information necessary to correctly clas-
sify an instance into class C whose prior probability is P�C� is defined as − log2 P�C�
(Kononenko and Bratko 1991). Now given a rule R, the amount of information we
need to correctly classify an instance into class C is − logP�C|R�, where P�C|R� is the
posterior probability of C given R. Therefore, the amount of information obtained by
the rule R is

− logP�C� + logP�C|R��
Kononenko and Bratko (1991) call the value of this formula the information score,
which measures the amount of information the rule R contributes. Using frequencies
to estimate the probabilities, the formula can be written as

QIS = − log
nc
N

+ log
nrc
nr
�
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2.5. Measure of Logical Sufficiency

The logical sufficiency measure is a standard likelihood ratio statistic, which have
been applied to measure rule quality (Duda, Gaschnig, and Hart 1979; Ali and Pazzani
1993). Given a rule R and a class C, the degree of logical sufficiency of R with respect
to C is defined by

QLS =
P�R|C�
R�R|	C� �

where P denotes probability. A rule for which QLS is large means that the observation
of R is encouraging for the class C—in the extreme case of QLS approaching infinity, R
is sufficient to establish C in a strict logical sense. On the other hand, if QLS is much
less than unity, then the observation of R is discouraging for C. Using frequencies to
estimate the probabilities, the formula can be expressed as

QLS =
nrc/nc
nrc̄/nc̄

�

2.6. Measure of Discrimination

Another statistical rule quality formula is the measure of discrimination, which is
applied in the ELEM2 rule induction system (An and Cercone 1998). The formula was
inspired by a query term weighting formula used in the probability-based information
retrieval. The formula measures the extent to which a query term can discriminate
between relevant and non-relevant documents (Robertson and Sparck Jones 1976). If we
consider a rule R as a query term in an information retrieval setting, positive examples
of a class C as relevant documents, and negative examples as non-relevant documents,
then the following formula can be used to measure the extent to which the rule R can
discriminate between the positive and negative examples of the class C:

QMD = log
P�R|C��1− P�R|	C��
P�R|	C��1− P�R|C�� �

where P denotes probability. The formula represents the ratio between the rule’s posi-
tive and negative odds and can be estimated using the frequencies as

QMD = log
nrc/nr̄c
nrc̄/nr̄c̄

�

3. EXPERIMENTS WITH RULE QUALITY MEASURES

3.1. The Learning System

To evaluate rule quality measures, ELEM2 (An and Cercone 1998) is used as the
rule induction system in our experiments. Given a set of training data, ELEM2 sequen-
tially learns a set of rules for each of classes in the data set. To induce rules for a class C,
ELEM2 conducts general-to-specific heuristic search over a hypothesis space to gener-
ate a disjunctive set of propositional rules. ELEM2 uses a sequential covering learning
strategy; it reduces the problem of learning a disjunctive set of rules to a sequence of
simpler problems, each requiring that a single conjunctive rule be learned that covers a
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subset of positive examples. The learning of a single conjunctive rule begins by consid-
ering the most general rule precondition, i.e., the empty test that matches every training
example, then greedily searching for an attribute-value pair that is most relevant to the
class C according to the following attribute-value pair evaluation function:

SIGC�av� = P�av��P�C|av� − P�C���
where av is an attribute-value pair and P denotes probability.1 The selected attribute-
value pair is then added to the rule precondition as a conjunct. The process is repeated
by greedily adding a second attribute-value pair, and so on, until the hypothesis reaches
an acceptable level of performance. In ELEM2, the acceptable level is based on the
consistency of the rule: it forms a rule that is as consistent with the training data as
possible. Since this “consistent” rule may be a small disjunct that overfits the training
data, ELEM2 “post-prunes” the rule after the initial search for this rule is complete.

To post-prune a rule, ELEM2 first computes a rule quality value according to the
formula of measure of discrimination QMD (section 2.6). It then checks each attribute-
value pair in the rule in the reverse order in which they were selected to see if removal
of the attribute-value pair will decrease the rule quality value. If not, the attribute-value
pair is removed and the procedure checks all the other pairs in the same order again
using the new rule quality value resulting from the removal of that attribute-value pair
to see whether another attribute-value pair can be removed. This procedure continues
until no pair can be removed.

After rules are induced for all the classes, the rules can be used to classify new
examples. The classification procedure in ELEM2 considers three possible cases when
a new example matches a set of rules.

1. Single match. The new example satisfies one or more rules of the same class. In this
case, the example is classified to the class indicated by the rule(s).

2. Multiple match. The new example satisfies several rules that indicate at least two
different classes. In this case, ELEM2 activates a conflict resolution scheme for the
best decision. The conflict resolution scheme computes a decision score for each of
the matched classes as follows:

DS�C� =
k∑
i=1

QMD�ri��

where ri is a matched rule that indicates C, k is the number of this kind of rules,
and QMD�ri� is the rule quality of ri. The new example is then classified into the class
with the highest decision score.

3. No match. The new example is not covered by any rule. Partial matching is consid-
ered where some attribute-value pairs of a rule match the values of corresponding
attributes in the new example. If the partially-matched rules do not agree on the
classes, a partial matching score between an example e and a partially-matched rule ri
with n attribute-value pairs, m of which match the corresponding attributes of e, is
computed as PMS�ri� = m

n
×QMD�ri�. A decision score for a class C is computed as

DS�C� =
k∑
i=1

PMS�ri��

1See An and Cercone (1998) for discussion of this formula.
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where k is the number of partially-matched rules indicating class C. In decision mak-
ing, the new example is classified into the class with the highest decision score.

We can see that the rule quality measure QMD is used in both the post-pruning and
classification processes of ELEM2.

3.2. Experimental Design

We evaluate the rule quality formulas described in Section 2 by determining how
different rule quality formulas affect the predictive performance of ELEM2. In our
experiments, we run versions of ELEM2, each of which uses a different rule quality
formula. The formulas: QMD�QCohen, QColeman�QC1�QC2, QIS�QLS�QWS , and QProd are
used exactly as described in section 2, while the �2 and G2 likelihood statistics are
applied as follows. The �2 statistic is used in two ways, in both of which the �2 formula
is used as the ELEM2 rule quality measure. They differ in the method to post-prune a
generated rule.

1. Q�2 ·05 In post-pruning, the removal of an attribute-value pair depends on whether
the rule quality value after removing an attribute-value pair is greater than �2

·05 i.e.,
the tabular �2 value for the significance level of 0.05 with one degree of freedom.
If the calculated value is greater than tabular �2

·05, then remove the attribute-value
pair; otherwise check other pairs or stop post-pruning if all pairs have been checked.

2. Q�2
·05+

In post-pruning, an attribute-value pair is removed if and only if the rule
quality value Qafter after removing an attribute-value pair is greater than �2

·05 and
Qafter is no less than the rule quality value before removing the attribute-value pair.

The G2 statistic, denoted QG2·05+ , is used in the same way as Q�2
·05+

, i.e., a pair is removed
in post-pruning if and only if the value of QG2·05+ is greater than �2

·05 and the removal
does not cause the rule quality value to decrease.

Our experiments are conducted using 27 benchmark datasets obtained from the
UCI Repository of Machine Learning database. The datasets represent a mixture of
characteristics described in Table 3. The current version of ELEM2 removes all the
examples that contain missing values. For the datasets that contain missing values (such
as “crx” and “post-operative”), the number of examples shown in Table 3 is the number
of examples after the removal.

3.3. Results

On each dataset, we conduct the ten-fold evaluation of a rule quality measure using
ELEM2. The results in terms of predictive accuracy mean on each dataset for each
formula are shown in Figure 1. The average of the accuracy means for each formula
over the 27 datasets is shown in Table 4, where the rule quality formulas are listed in
decreasing order of average accuracy means. Whether a formula with a higher average
is significantly better than a formula with a lower average is determined by paired t-tests
using the S-Plus statistics software. The t-test results in terms of p-values are reported
in Table 5. A small p-value indicates that the null hypothesis (the difference between
the two formulas is due to chance) should be rejected in favor of the alternative at any
significance level above the calculated value. For example, the p-value from comparing
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Table 3. Description of Datasets

Number of
Class

Datasets classes attributes examples Distribution Domain

1 abalone 3 8 4177 Even Prediction of the age of
abalone from physical
measurements

2 australia 2 14 690 Even Credit card application
approval

3 balance-scale 3 4 625 Uneven Balance scale classifica-
tion

4 breast-cancer 2 9 683 Uneven Medical diagnosis
5 bupa 2 6 345 Uneven Liver disorder database
6 car 4 6 1728 Uneven Car evaluation
7 crx 2 15 653 Uneven Credit card applications
8 diabetes 2 8 768 Uneven Medical diagnosis
9 ecoli 8 7 336 Uneven Prediction of protein

localization sites
10 flag 8 28 194 Uneven National flags classifica-

tion
11 german 2 20 1000 Uneven Credit database to classify

people as good or bad
credit risks

12 glass 6 9 214 Uneven Glass identification for
criminological investi-
gation

13 heart 2 13 270 Uneven Heart disease diagnosis
14 ionosphere 2 33 351 Uneven Classification of radar

returns
15 iris 3 4 150 Even Iris plant classification
16 lenses 3 4 24 Uneven Database for fitting con-

tact lenses
17 optdigits 10 64 3823 Even Optical recognition of

handwritten digits
18 page-blocks 5 10 5473 Uneven page-blocks classification
19 pendigits 10 16 7494 Even Pen-based recognition of

hand-written digits
20 post-operative 3 8 87 Uneven Postoperative Patient

Data
21 segment 7 18 2310 Even image segmentation
22 spambase 2 57 4601 Uneven Email classification: spam

or non-spam
23 tae 3 5 151 Even Teaching performance

evaluation
24 tic-tac-toe 2 9 958 Uneven Tic-Tac-Toe Endgame

database
25 wine 3 13 178 Uneven Wine recognition data
26 yeast 10 8 1484 Uneven Prediction of protein

localization sites
27 zoo 7 16 101 Uneven Animal classification
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Figure 1. Accuracy means of different rule quality formulas on the 27 datasets.

QWS with QColeman is 0.047, which means that we would reject the null hypothesis at
the 5% significance level, but would not reject it at the 1% significant level. In Table 5,
the p-values that are smaller than 0.05 are underlined to indicate that the formula with
higher average is significantly better than the formula with the lower average at the 5%
significance level.

Generally speaking, we can say that, in terms of predictive performance, QC2�QWS ,
QC1�QLS and QMD are comparable even if their performance may not agree on a
particular dataset. The same for QColeman�QG2·05+ , QIS and QProd, and Q�2

·05+
and QCohen.

The performance of QG2·05+ and QIS are not only comparable, but also similar on each
particular dataset (seen from Figure l), which indicates that the two formulas have
similar trends with regard to nrc� nr� nc� and N in the contingency table.
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Table 4. Average of Accuracy Means for Each Formula over the Datasets

C2 WS C1 LS MD Coleman G2�05+ IS Prod �2
�05+ Cohen �2

�05

Average 81.89 81.71 81.61 81.38 80.95 80.65 79.94 79.87 79.59 78.44 78.08 72.42

Table 5. Significance Levels (p-values from Paired t-test) of Improvement

C2 WS C1 LS MD Coleman G2�05+ IS Prod �2
�05+ Cohen �2

�05

C2 NA 0.548 0.278 0.165 0.026 0.008 0.001 0.002 0.033 0.002 0.007 0.000
WS — NA 0.807 0.487 0.072 0.047 0.005 0.009 0.029 0.003 0.011 0.000
C1 — — NA 0.333 0.072 0.009 0.001 0.001 0.087 0.005 0.016 0.001
LS — — — NA 0.367 0.028 0.001 0.002 0.134 0.012 0.028 0.001
MD — — — — NA 0.544 0.091 0.104 0.223 0.012 0.034 0.001
Coleman — — — — — NA 0.038 0.063 0.357 0.061 0.091 0.002
G2�05+ — — — — — — NA 0.823 0.765 0.210 0.230 0.006
IS — — — — — — — NA 0.806 0.253 0.263 0.006
Prod — — — — — — — — NA 0.221 0.243 0.003
�2
�05+ — — — — — — — — — NA 0.625 0.007
Cohen — — — — — — — — — — NA 0.008
�2
�05 — — — — — — — — — — — NA
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4. META-LEARNING FROM THE EXPERIMENTAL RESULTS

From the experimental results, we posit that, even if on some datasets (such as the
breast cancer dataset) the performance of the learning system is not very sensitive to the
rule quality formula used, the performance greatly depends on the formula on most of
the other datasets. It would be desirable that we can apply a “right” formula that gives
the best performance among other formulas on a particular dataset. For example, even
though the formula Q�2

·05
is not a good formula in general, it performs better than other

formulas on some datasets such as heart and lenses. If we can find the conditions under
which each formula leads to a good performance of the learning system, we can select
“right formulas” for different datasets and can improve the predictive performance of
the learning system further.

To find out this regularity, we use ELEM2 to meta-learn “formula selection rules”
from the experimental results shown in the last section. The learning problem is divided
into (1) learning the rules for each rule quality formula that describe the conditions
under which the formula produces “very good,” “good,” “medium,” or “bad” results,
and (2) combining the rules for all the formulas that describe the conditions under
which the formulas produce the “very good” results. The resulting set of rules is the
formula-selection rules that can be used by the ELEM2 classification procedure to
perform formula selection. This meta-learning process is described in Figure 2.

Figure 2. The meta-learning process for generating formula-selection rules.
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Figure 3. Average of accuracy means of each formula on the 27 datasets.

4.1. Data Representation

For the purpose of learning formula-behavior rules, i.e., the rules that describe the
conditions under which a formula leads to “very good,” “good,” “medium,” or “bad”
performance, we construct training examples from Figure 1 and Table 3. First, on each
dataset, we decide the relative performance of each formula as “very good,” “good,”
“medium,” or “bad.” For example, on the balance-scale dataset, we say that the formulas
whose accuracy mean is above 85% produce “very good” results; the formulas whose
accuracy mean is between 80% and 85% produce “good” results; the ones with the
mean between 75% and 80% are “medium” and other formulas give “bad” results.
Then, for each formula, we construct a training data set in which a training example
describes the characteristics of a dataset and also a description in term of whether the
formula produces “very good,” “good,” “medium,” or “bad” result on this dataset. Thus,
to learn the rules for each formula, we have 27 training examples. The characteristics
of a dataset is described in terms of number of examples, number of attributes, number
of classes and the class distribution. A sample of training examples for learning the
behavior rules of the formula QIS is shown in Table 6.

4.2. The Meta-learning Results

ELEM2 with its default rule quality formula (QMD) is used to learn the “behavior”
rules from the training dataset constructed for each formula. Table 7 lists some of these

Table 6. Sample of Training Examples for Learning the Behavior of a Formula

Number of Class
Examples Attributes Classes Distribution Performance

4177 8 3 Even Very Good
690 14 2 Even Medium
625 4 3 Uneven Bad
683 9 2 Uneven Medium

1728 6 4 Uneven Good
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Table 7. Some Formula Behavior Rules

Rule No. of Support
Formula Condition Decision Quality Datasets

QC2 (768 < N ≤ 1728) Very Good 1.30 4
(N ≤ 653)and(NofA > 10)and(NofC ≤ 7) Good 1.36 5

QWS (625 < N ≤ 1728)and(NofA > 8)and(ClassDistr! = Even) Very Good 1.48 4
(N > 336)and(NofC > 5) Good 1.38 4

QC1 (N > 270)and(8 < NofA ≤ 15) Very Good 1.66 5
(15 < NofA ≤ 57 Good 1.43 7

QLS (N > 2310) Very Good 1.45 5
(N ≤ 87) Bad 2.41 2

QMD (N > 768)and(8 < NofA ≤ 16) Very Good 2.04 3
(351 < N ≤ 4601�and�NofA > 13) Good 1.23 6

QColeman (N > 958�and�NofC ≤ 5) Very Good 1.79 5
(N ≤ 87) Bad 1.51 2

QG2�05+ �N > 101�and�10 < NofA ≤ 18�and�NofC > 2� Very Good 2.04 3
�270 < N ≤ 690�and�NofA ≤ 15� Medium 2.25 6

QIS �N > 150�and�NofC > 2�and�ClassDistr = Even� Very Good 2.13 4
�N ≤ 101� Bad 1.50 3

QProd �N ≤ 214�and�NofA > 7�and�NofC ≤ 6� Very Good 1.80 3
�N > 768�and�8 < NofA ≤ 57� Medium 1.70 6

Qx2�05+
�N ≤ 178�and�NofA > 9� Very Good 1.67 2
�N ≤ 214�and�4 < NofA ≤ 9� Bad 1.39 3

QCohen �345 < N ≤ 1484�and�NofA ≤ 8� Very Good 1.80 3
�4 < NofA ≤ 6� Bad 1.63 3

Qx2�05
�9 < NofA ≤ 14�and�NofC ≤ 2�� Very Good 1.91 2
�N > 24� Bad 0.98 20

Table 8. Significance Levels of the Improvement of “Combine” over Individual Formulas

C2 WS C1 LS MD Coleman G2�05+ IS Prod �2
�05+ Cohen �2

�05

p-value 0.014 0.001 0.015 0.008 0.003 0.001 0.000 0.000 0.000 0.000 0.001 0.000
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behavior rules for each formula, where N stands for the number of examples, NofA is
the number of attributes, NofC is the number of classes, and “No. of Support Datasets”
means the number of the datasets that support the corresponding rule. These rules serve
two purposes. First, we can summarize the predictive performance of each formula in
terms of characteristics of datasets. Second, we can create a set of formula-selection
rules by combining all the “very good” rules, i.e., the rules that predicts “very good”
performance for each formula, and use them to select a “right” rule quality formula for
a (new) dataset. For formula selection, we can use the ELEM2 classification procedure
that takes formula-selection rules to classify a data set into a class of using a particular
formula.

5. CONCLUSIONS

We have described and experimented with various statistical and empirical formulas
for defining rule quality measures. All formulas are applicable to a rule induction system
for the purpose post-pruning and classification, but their performance varies among the
datasets. The empirical formulas, especially QWS , work very well even if they are not
backed by statistical theories. Among statistical formulas, QC2, QC1, QLS� and QMD

work the best on the tested dataset and are comparable with QWS .
To determine the regularity of the rule quality formula’s performance in terms of

dataset characteristics, we used our learning system to induce formula-behavior rules
from a dataset constructed from the experimental results for different formulas. These
rules provided ideas about the situations in which a formula leads to very good, good,
medium or bad performance. These rules can also be combined and used to automati-
cally select a rule quality formula before rule induction begins. Our experiment showed
that this selection of rule quality formula can lead to significant improvement over the
rule induction system using a single rule quality formula. Future work includes testing
our conclusions on more datasets to obtain more reliable formula-behavior rules. With
more datasets available, we will test the formula-selection rules on the datasets that are
different from the datasets used for generating the rules.
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