
Pergamon 
Engng Applic. Artif. Intell. Vol. 9, No. 6, pp. 645-653, 1996 

Copyright ~) 1996 IJCAI Inc. Published by Elsevier Science Ltd 
Printed in Great Britain. All fights reserved. 

PII: S 0 9 5 2 - 1 9 7 6 ( 9 6 ) 0 0 0 5 9 - 0  0952-1976/96 $15.00 + 0.00 

Contributed Paper 

Discovering Rules for Water Demand Prediction: 
An Enhanced Rough-set Approach 

A I J U N  A N  
University of Regina, Canada 

NING SHAN 
University of Regina, Canada 

CHRISTINE CHAN 
University of Regina, Canada 

NICK CERCONE 
University of Regina, Canada 

WOJCIECH ZIARKO 
University of Regina, Canada 

(Received April 1996) 

Prediction of  consumer demands is a pre-requisite for optimal control of  water distribution systems 
because minimum-cost pumping schedules can be computed if water demands are accurately estimated 
This paper presents an enhanced rough-sets method for generating prediction rules from a set of  
observed data. The proposed method extends upon the standard rough set model by making use of  the 
statistical information inherent in the data to handle incomplete and ambiguous training samples. It 
also discusses some experimental results from using this method for discovering knowledge on water 
demand prediction. Copyright (~ 1996 IJCAI Inc. Published by Elsevier Science Ltd 

Keywords: Water demand prediction, knowledge discovery, rough sets. 

1. INTRODUCTION 

The domain addressed is typical of a water distribution 
system of moderate-sized cities in North America. The 
sources of water are a lake and a number of underground 
wells. Water is pumped to reservoirs at a number of 
locations in the city, and is pumped from the reservoirs 
to the distribution system, or to another reservoir when it 
is necessary to adjust water levels. Pressures and rates of 
flow throughout the system can be controlled by means 
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of pumps and valves housed in pumping stations. Human 
operators currently control operations of the distribution 
system at a central pumping station. The operators use 
heuristics or rules of thumb to minimize the cost of 
power used by pumps, to make demand forecasts and 
to keep the water level of reservoirs within reasonable 
ranges. These heuristics are based on a number of eco- 
nomic, environmental and sociological factors. Since the 
system is now controlled by a number of operators, it 
is difficult to standardize and optimize operations of the 
distribution system. Documenting the heuristics of the 
most experienced expert operator in an expert system 
is one way to reduce operating costs in the supply and 
distribution of purified water. In order to develop an 
expert system for the monitoring and control of the wa- 
ter distribution system, knowledge acquisition was con- 
ducted through structured and unstructured interviews 
with human experts, and heuristics were obtained for 
cost-effective water utility operations. Analysis of these 
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heuristics indicates that it is important that daily fore- 
casts of water demand are accurately estimated, in order 
that minimum-cost pumping schedules may be derived. 
However, the prediction of water demand is currently 
poorly understood even by the experts, who approximate 
daily water demand based on their experience. The often 
inaccurate estimations result in inefficient operations of 
the water distribution system. The lack of knowledge 
on water demand prediction translates to a gap in the 
knowledge-base of the expert system. In other words, 
manual knowledge acquisition by itself is inadequate for 
handling all the situations that may arise in a complex 
engineering application. 

An alternative method for knowledge acquisition is 
automated discovery from observed data, that is, to design 
an algorithm which can learn and refine decision rules 
from a set of training samples, or observed data. This 
method is referred to as data mining or knowledge dis- 
covery. This paper presents an application of a rough-set 
approach for the automated discovery of rules from a set 
of data samples for daily water demand predictions. The 
database contains training samples that cover informa- 
tion on environmental and sociological factors, and their 
corresponding daily volume of distribution flow. Since the 
training samples are incomplete and possibly ambiguous 
due to the characteristics of water demand and partial 
selection of condition factors which are described in Sec- 
tion 2, exact decision rules cannot be derived by standard 
methods/-4 The objective in this paper is to suggest a 
method for generating classification rules from incom- 
plete information. The proposed method is based on an 
extension of the rough-set model. 5 Statistical information 
is used to define the positive and negative regions of a 
concept. Each classification rule generated by the learning 
system is characterized by a certainty factor which is in 
fact an estimate of the probability that an object matching 
the condition part of the rule belongs to the concept. 

In the rest of the paper, the characteristics of water 
demand and knowledge representation are discussed in 
Section 2. Theoretical aspects of the method of rough set- 
based data analysis and rule generation are introduced in 
Sections 3 and 4. Experimental results from applying the 
method to the set of data samples are given in Section 
5. The paper ends with a discussion of the method and 
future research issues. 

2. DATA COLLECTION AND REPRESENTATION 

2.1. Characteristics of water demand 

The instantaneous consumption of water in an urban 
distribution system is determined by a large number of 
industrial, commercial, public and domestic consumers, 
distributed throughout the area supplied. This consump- 
tion is influenced by factors such as weather conditions, 
seasonal variation, day of the week and whether a partic- 
ular day is a statutory holiday. Thus the total demand on 

Table 1. Condition factors for water demand prediction 

Label Condition attributes 
al 

a2 

a3 
a4 
a5 

a6 
a7 

a8 
a9 

al0 
al l  

a12 

a13 

a14 
a15 

al6 
a17 

a18 

Day of week 
Today's maximum temperature 
Today's minimum temperature 
Today's average humidity 
Today's rainfall 
Today's snowfall 
Today's average speed of wind 
Yesterday's maximum temperature 
Yesterday's minimum temperature 
Yesterday's average humidity 
Yesterday's rainfall 
Yesterday's average speed of wind 
Yesterday's bright sunshine hours 
The day before yesterday's maximum temperature 
The day before yesterday's average humidity 
The day before yesterday's rainfall 
The day before yesterday's average speed of wind 
The day before yesterday's bright sunshine hours 

an urban water distribution system is a time-varying, pe- 
riodic, and nonstationary series, the modelling of which 
is difficult through computational methods alone. 

2.2. Factor selection 

Eighteen of the many factors that may affect the water 
consumption of a city have been selected because they 
are considered the more important ones (see Table 1). 
The first factor is the day of the week, which is chosen 
based on the observation that on weekends the daily 
total distribution flows are usually less than those on 
weekdays. The city also has the power, through by-laws, to 
restrict watering of lawns on Wednesdays. Furthermore, 
Mondays are known to be days of high water usage 
because many people do their laundry on Mondays, and 
in the summer people water the lawns on that day after 
returning from a weekend at their cottages. The other 17 
factors are weather conditions on temperature, humidity, 
precipitation, wind and bright sunshine hours, grouped 
under three consecutive days. The values of these factors 
were obtained from a monthly meteorological summary 
from Environment Canada. 

On the decision side, the historical information about 
water consumption has been recorded by the city, which 
calculates the daily water consumption by summing the 
daily distribution flows metered at each pumping station 
of the city. The summation reflects the total amount 
of water the city uses per day, which is needed by the 
operator at the central control station every day. The total 
value varies from 50 Ml on the coldest winter days to 
180 Ml in summer. 

2.3. Data representation 

It is assumed that the given set of training samples 
represents the knowledge about the domain. In the ap- 
proach described here, the training set is described by a 
classification system, also referred to as an information 
system. 3 The objects in a universe U are described by a 
set of attribute values. 
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Table 2. Classification system for water demand prediction 

Objects C D 

a0 a! a2 a3 a4 a5 a6 a7 a8 a9 al0 all a12 a13 
objl 6 6 7 7 9 7 1 1 0 1 3 2 6 0 0 
oh j2 1 5 7 6 9 9 0 0 0 0 1 5 1 0 0 
oh j3 6 6 7 7 9 7 1 1 0 1 3 2 6 0 0 
obj4 3 7 7 7 5 2 0 0 0 0 1 3 1 2 1 
obj5 3 7 7 7 8 2 0 0 0 0 1 7 1 9 1 
obj6 3 7 7 7 5 2 0 0 0 0 1 3 1 2 1 
obj7 6 6 8 7 3 2 0 0 0 0 6 0 6 2 2 
obj8 3 7 7 7 5 2 0 0 0 0 1 3 1 2 2 
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Formally, a classification system S is a quadruple 
(U, A, V, f ) ,  where U = {xl, x2 . . . . .  XN} is a finite set 
of objects, which in this case are states of the environment; 
A is a finite set of attributes; the attributes in A are further 
classified into two disjoint subsets, condition attributes C 
and decision attributes D, such that A = C tAD and C n 
D = fO; V = Uaea Va is a set of attribute values and Va is 
the domain of attribute a (the set of values of attribute a); 
f : U × A ~ V is an information function which assigns 
particular values from domains of attributes to objects 
such that f(xg, a) E Va, for all xi E U and a E A. 

The classification system represents the classification 
of the states of the environment based on the values of at- 
tributes. The classification system for the set of observed 
samples for water demand prediction contains more than 
300 objects, which consist of daily information on the 
condition factors and the decision attribute for 10 months 
from March to December 1994. In order to illustrate 
the theory used in the following sections, Table 2 shows 
eight of  these objects projected on 14 condition attributes. 
For the purpose of rough-set-based data analysis, the 
classification system has been generalized by replacing 
the original attribute values with some discrete ranges, 
such as for example, attribute a2 (minimum temperature) 
has been discretized into ten categories 0, 1, 2, 3, 4, 5, 6, 
7, 8 and 9. The categories 7 and 8 for a2 which appear 
in Table 2 stand for the ranges (6.46,10.34] and (10.34, 
14.22] respectively *. It has to be emphasized at this 
point that the question of how to optimally discretize the 
attribute values is unsolved, and a subject of on-going 
research. Sections 3 and 4 will use Table 2 as an example 
of classification systems to illustrate the terminologies. 
The experimental results in Section 5 are based on the 
whole set of training samples. 

3. DATA ANALYSIS 

3.1. IndlscerniblUty relation 

A classification system provides only partial informa- 
tion for characterizing subsets of the universe. That is, 
the set of selected attributes may not be sufficient to 
characterize the subsets of the universe unambiguously. 

* The unmatched brackets stand for a half  open and half  closed range. 
For example, 6,46 does not  belong to the range (6.46,10.34], but 
10.34 does. 

Any two objects are indistinguishable from one another 
whenever they assume the same attribute values. This 
means that it may not be possible to distinguish all the 
objects solely by means of the admitted attributes and 
their values. 

Given a classification system (U, A, V, f ) ,  let B be 
a subset of A, and let xi and xj be members of U. A 
binary relation R(B),  called an indiscernibility relation, is 
defined as R(B) = {(xi, X/) E U 2 [ Va E B, f (x i ,  a) = 
f ( x j ,  a)}. xi and xj are said to be indiscernible by the 
set of attributes B in S if f (x i ,  a) = f ( x j ,  a) for every 
a E B. For example, in the classification system shown 
in Table 2, objl and obj3 are indiscernible by the set of 
attributes C u D; obj4, obj6 and oh j8 are indiscernible by 
the set of condition attributes C. 

Clearly, R(B) is an equivalence relation on U for every 
B _ A. Thus, two natural equivalence relations R(C) and 
R(D) can be defined on U for an information system 
S. A concept Y is an equivalence class of the relation 
R(D). The objective is to construct decision rules for 
each concept. Given a concept Y, the partition of U with 
respect to this concept is defined as R* (D) = { Y, U - 
Y} = {Y, ~Y}. 

Based on the set of condition attributes C, an object x~ 
specifies the equivalence class [xi]R of the relation R(C): 

[xi]R = {xj E U [ 'qa E C, f ( x j ,  a) = f (x i ,  a)}. 

It can be said that xi definitely belongs to a concept Y 
if [xi]R c_ y and that x~ possibly belongs to the concept 
Y if [xi]R (~ Y * ~ .  

The conditional probability of a concept Y on the 
equivalence class [xi]R can be estimated as 

[ Y N [xi]RI 
P(YI[xi]R) = 

[[Xi]RI 

where IY n [x/]nl and [[x/]RI denote the number of 
objects in Y n [xi]R and [xi]R respectively. Therefore, 
P(YI[xi]R) = 1 if and onlyif  [xi]R c_ y; P(Yl[xi]n)  > 0 
if and only if [xi]R n Y .  ~ ;  and P(YI[xi]R) = 0 if and 
only if [xi]R n Y = ~ .  

Example 3.1 
Consider the classification system given in Table 2. The 

concepts in this classification system, i.e. the equivalence 
classes on the relation R(D), are 
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Yo : {objl,  ob~,  obj3} 

YI = {obj4, objs, obj6} 

Y2 = {obj7, objs}. 

The equivalence classes on the relation R(C) are 

X1 = [objl]R = [obj3]l¢ = {objl, obj3} 

X2 = [obj2]g = {obj2} 

)(3 = [0bj411¢ = [obj6]l~ = [obj8]R = {obj4, obj6, objs} 

X4 = [objs]R = {objs} 

)(5 = [obj7]g = {objT}. 

Since X4 c_ Yl, obj5 definitely belongs to the concept Yi. 
The objects obj4, obj6, and obj8 possibly belong to the 
concept Y~ because the intersection of their equivalence 
class X3 and Yl is not empty. Other objects do not belong 
to I"1. 

The conditional probability of the concept YI on each 
equivalence class of R(C) is as follows: 

P( Y~ IX~ ) = 0  

P( Y~ IX2) = 0  

P(YIIX3) = _2 = 0.667 
3 

P(Yt IX4) = 1 

P(YI IXs) = 0. 

3.2. ~8-probabilistic approximation classification 
Given a classification system S = {U, A, V, f }  

and an equivalence relation R(C) (an indiscernibility 
relation) on U, an ordered pair AS = (U, R(C)) is 
called an approximation space 3 based on the condition 
attributes C. The equivalence classes of the relation R(C) 
are called elementary sets in AS  because they represent 
the smallest groups of objects which are distinguishable 
in terms of the attributes and their values. Let Y 
U be a subset of objects representing a concept, and 
R * ( C )  = {XI, Xz . . . . .  X.} = {[xl]R, [x2]R . . . . .  Ix.JR} 
be the collection of equivalence classes induced by the 
relation R(C). In the standard rough set model, the lower 
and upper approximations of a set Y are defined by: 

R(C) (Y)  = U {Xi E R*(C)} and 
P(Y[Xi)=I 

R(C)(r') = [..J {x~ e R*(c ) } ,  
P(YIXj)>0 

respectively. These definitions do not make use of the 
statistical information in the boundary region ~R(C) (Y) - 
R(C) (Y).  For this reason, an attempt is made to rectify 
this limitation by introducing a B-approximation space, 
which is essentially described in Refs 5 and 6. 

A [3-approximationspaceASe is a triple (U, R(C), P), 
where P is a probability measure described in Section 3.1 

and B is a real number in the range (0.5, 1]. The B- 
approximation of a set Y in the space ASe can be 
expressed in the following regions: 

(1) B-positive region of the set Y: POSBc(Y) = 
Ue(v)x,)>_~{X~ c R*(C)}.  

(2) B-boundary region of the set Y: BND~c(Y) = 
U~_~<p(vlx,)<~{x, c R*(C)}.  

(3) B-negative region of the set Y: NEGro(Y) = 
UP(rlX,)<l_~{X'i E R*(C)}. 

Clearly, the B-positive region of the set Y corresponds 
to all those elementary sets of U which can be classified 
into the concept Y with conditional probability P(Y[Xi) 
greater than or equal to the parameter B. Similarly, the 
negative region of the set Y corresponds to all those 
elementary sets of U which can be classified into the set 
-~Y with the probability P ( -  YIX,.) ->/3. 

Let xi E U be an object; POS~c(Y) and NEG~c(Y) 
are the positive and negative regions of the concept Y 
respectively. The object x~ is classified belonging to the 
concept Y if and only if xi E POS~c(Y) or classified 
belonging to the complement --Y of the concept Y if 
and only if xi E NEGro(Y). In fact, it is necessary to 
decide whether xi is in the concept Y on the basis of 
the set of equivalence classes in ASe rather than on the 
basis of the set Y. This means dealing with POS~(Y)  
and NEGro(Y) instead of the set Y. One can see that if 

xi is in POS~c(Y), it can be classified into the concept 
Y with conditional probability P( Y IX,.) greater than or 
equal to the parameter ft. If  x~ is in NEG~(Y) ,  then it 
can be classified into --Y with the probability P(-~ Y IX~-) 
greater than or equal to B. If the object is in the boundary 
region, then the classification can be made either into Y 
or ~ Y with the probability less than B. 

Example 3.2 
Following from Example 3.1, recall Yl 

{obj4, objs, obj6}. 

(1) Let B = 1. B-positive region of the set Yl: 

POS~c(YI) = {objs}; 

B-negative region of the set Yl : 

N E G~c( Yt ) = { ob jl, ob j2, ob j3, ob j7 } . 

B-boundary region of the set YI : 

BND~c(YI) = {obj4, objr, obj8}. 

(2) Let B = 0.6. B-positive region of the set YI: 

POSBc( YI ) = { obj4, objs, obj6, objs } ; 

/%negative region of the set YI: 

NEG~c(Yl) = {objb objz, obj3, obj7}. 

/%boundary region of the set Yl: 

BND~ ( YI ) = Q. 
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3.3. Reduction of condition attributes 

In a classification system there often exist some condi- 
tion attributes that do not provide any additional infor- 
mation about the objects in U. It is desirable to remove 
those attributes, since the complexity and cost of  a deci- 
sion process can be reduced if those condition attributes 
are eliminated. In this subsection, the concept of reduct 
in rough sets is used to describe the method of  condition 
attribute reduction. 

Given an attribute-value system S = (U, C 0 
D, V, f ) ,  an attribute a is said to be dispensable in C 

with respect to a concept Y if POS~_ {,} (Y) = POS~c( Y); 
otherwise a is an indispensable attribute in C with respect 
to Y. A subset of  condition attributes B ___ C is said to 
be a dependent set in S with respect to Y if there exists a 

proper subset K c B such that POS~(Y) = POSer(Y); 
otherwise B is an independent set with respect to Y. A 
reduct C' of  attributes C is a maximal independent subset 
of  condition attributes with respect to Y. 

The procedure for finding a single reduct is very 
straightforward. Consider a condition attribute a E C. 

If  the /3-positive region POS~c_(~}(Y) of  the set Y is 

the same as POS~(Y),  then the attribute a is marked as 
being redundant and is removed from the set of  condition 
attributes C. Other superfluous condition attributes can 
be removed in the same manner. The remaining set of  
condition attributes is a reduct. More than one reduct 
may exist for a given attribute-value system. Selection 
of a "best" reduct depends on the optimality criterion 
associated with the attributes. Significance values can be 
assigned to attributes, and the selection is based on those 
values. 

Example 3.3 
The condition attributes C of the information system in 

Table 2 has a total of  20 reducts. A reduced information 
system based on the reduct {a2, a3, a7} with respect 
to the concept Y1 is shown in Table 3. The objects with 
value '1' for column YI belong to /3-positive region of 
the concept ]11; the objects with value '0' for column YI 
belong to/3-negative region of  concept Yi. Here/3 = 0.6. 

4. RULE GENERATION 

Rule generation is a crucial task in any learning system. 
This section describes how decision rules are generated, 
based on the reduct obtained from Section 3. 

4.1. Generating probabilistic decision rules 

Let R* (RED) = {Xl, Xe . . . . .  X,} be the collection 
of  equivalence classes of  the relation R(RED) where 
RED is a reduct which is a reduced set of condition 
attributes C in S, and let R*(D) = {Y, ~Y} be 
the partition induced by the decision attribute. Each 
equivalence class Xi of  the equivalence relation R(RED) 

is associated with a unique combination of values of  
attributes belonging to RED. This combination of  values 
is referred to as the description of  the equivalence class 
Xi E R* (RED). The description of  Xi can be expressed 
as~ 

Oes(Xi) = A (a = f(xi ,  a)), 
aERED 

where A denotes the conjunction operator, and x; is an 
object in the equivalence class Xi. Similarly, the descrip- 
tions of Y and -~ Y are: 

and 

Des(Y) = (d = f(xi ,  d)) 

Des(~Y) = (d ~ f ( x i ,  d)), 

where d is the decision attribute in D and x i E Y. 
Without loss of  generality, D is considered as a singleton 
set. 

The relationship between the partition R* (RED) and 
the partition R* (D) can be described by the following 
decision rules: for Xi E R* (RED), 

(1) Des(X~) --.", Des(Y), ifP(YIX~) >__/3, 
(2) Des(Xi) __.c, Des(~Y),  ifP(YIX~.) < 1 - /3 ,  

where c; is a certainty factor, which is equal to P(YIX,.) 
in the first case and 1 - P(YIX,-) in the second. This 
means that if an object xi satisfies the description Des(X~) 
and if P(YIXi) > /3, then the object xi "belongs" to Y 
with certainty c~. Similarly, if P(YIX,.) --- 1 - /3 ,  then the 
object x~ "belongs" to the complementary concept -1Y 
with certainty c~. 

Example 4.1 
Following from Example 3.3, let RED denote the 

reduct {a2, a3, a7}. The collection R*(RED) of  the 
equivalence classes of  the relation R(RED) is 

R*(RED) = {Xi, X2, X3, S4} = 

{ {obj4, objs, obj6, objs}, 
{ objl, obj3 }, { obj2 }, { ob)7 } }. 

The descriptions of  these equivalence classes are as 
follows: 

Des(Xl) = (a2 = 7) A (a3 = 7) A (a7 = 0) 

Des(X2) = (al = 7) A (a3 = 7) A (a7 = 1) 

Des(X3) = (a2 = 7) A (a3 = 6) A (a7 = 0) 

Des(X4) = (a2 = 8) A (a3 = 7) A (aT = 0). 

The descriptions of  Yl and --, Yl are 

Des(Y1) = (d = 1) 

Des(-,Yi) = (d ~ 1). 

Since Yl = {obj4, objs, oh j6}, the condition probabili- 
ties are calculated as 
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Table 3. Reduct table with respect to YI after reduction from Table 2 

Objects C YI Number of Number of 
a2 a3 a7 objects in Yj objects in ~ 111 

oh j4, objs, objr, obj8 7 7 0 1 3 1 
objl,  obj3 7 7 1 0 0 2 
oh j2 7 6 0 0 0 1 
oh j7 8 7 0 0 0 1 

3 
P(Y~Ix~) = ~ = 0.75 

P( Y~ IX2) = 0  

P(Yt IX3) = 0  

P( Y~ IX4) =0.  

The decision rules with respect to the concept Yl are then 
obtained as follows: 

r~ "(a2 = 7) A (a3 = 7) /x (a7 = 0) 4075 (d = 1) 

r I : (a2 = 7) A (a3 = 7)/x (a7 = 1) ...,1 (d :~ 1) 

r 2 :(a2 = 7 )  A (a3 = 6 )  A (a7 = 0 ) - - ' l  ( d ~  1) 

r 3 :(a2 = 8) A (a3 = 7) A (aT = 0) __.,1 (d :¢ 1). 

4.2. Rule generalization 

As indicated in the previous subsection, decision rules 
can be directly obtained from the reduced information 
system. One rule is obtained for each equivalence class 
of  the partit ion R* (RED). However, they may contain 
attributes whose values are irrelevant for determining the 
target concept. Furthermore, the rules can be further 
generalized by inspecting which conditions in a rule can 
be removed without causing any inconsistency. A deci- 
sion rule obtained by dropping the maximum possible 
number of  conditions is called a "maximally general" 
rule. By construction, the maximally general rules contain 
a minimum number of  conditions. The decision matrix 
technique 7 is used here to find all the maximally general 
rules. 

Let X, .+, i = (1, 2 . . . . .  ¥), denote the equiva- 
lence classes of  the relation R* (RED) such that Xi + _c 

POSteD(Y),  and let X f ,  j = (1, 2 . . . . .  p), denote the 
equivalence classes of  the relation R* (RED) such that 

X f  c_ NEG~Eo(Y).  A decision matrix M = ( M i / ) y × p  is 
defined by: 

Mij = {(a, f (X i  +, a ) ) :  

a E RED, f(Xt. +, a) --# f ( X f ,  a)} 

where a is a condition attribute belonging to RED. That 
is, the entry Mij contains all attribute-value pairs whose 
values are not the same between the equivalence class Xi + 
and the equivalence class X f .  The set of decision rules 
computed for a given equivalence class Xi ÷ is obtained by 
treating each element of  Mij as a Boolean expression and 
constructing the following Boolean function, namely: 

s, = A ( V  M,,), 
.i 

Table 4. The decision matrix for the rules with respect 
to concept YI 

xl- x£ x f  
XI + (a7, 0) (a3, 7) (a2, $7) 

where/~ and V are the usual conjunction and disjunction 
operators. 

It can be shown that the prime implicants of the 
Boolean function Bi are in fact the maximally general 
rules for the equivalence class Xi + belonging to the 

positive learning region POS~eo(Y).  Thus, by finding 
the prime implicants of all the decision functions B~ 
(i = 1, 2 . . . . .  ¥), all the maximally general rules can be 

computed for the positive learning region POS~eo(Y).  

Example 4.2 
Following from Example 4.1, the equivalence classes 

of the relation R(RED) are listed as follows: 

Xl + = Xl  : {ob j4 ,  objs, obj6, obj8} 

Xj- = X2 = {obj ,  obj3} 

X£  = X3 = {obj2} 

X~- = )(4 = { o b j 7 } .  

The decision matrix M = (M/i)t×3 is shown in Table 4. 
The Boolean expression BI is then obtained as (a7 = 0) A 
(a3 = 7) A (a2 = 7). Since the prime implicants Of Bl is Bl 
itself, i.e. (aT = 0) A (a3 = 7) A (a2 = 7) ,  the maximally 
general rule for the equivalence class Xl + is 

(a7 = 0) A (a3 = 7) A (a2 = 7) 40"75 ( d  : 1) 

which is identical to the rule r~- in Example 4.1. 
Given the set of all maximally general rules for an infor- 

mation system S, the system provides the options of find- 
ing the set of minimal rules and the set of minimal covering 
rules. The support set of a rule ri, denoted as supp(ri), is 
defined as the collection of rows of the original table satis- 
fying the condition part of ri. m collection of  rules RUL' 
is said to be a set of minimal rules, if for every ri E RUL', 
supp(ri) ~ supp(r/)v,.jCRUL'r,~r ~. A collection of rules 

RUL" is said to be a set of minimal covering rules, if for 
e v e r y  r i E RUL", supp(ri) ~ U supp(r/)rj~1~UlJ'.,.,~,.j. 

Example 4.3 
As shown in Example 4.2, the maximally general rule 

for the concept Yl can be calculated through a decision 
matrix. Similarly, the maximally general rules for con- 
cepts Y0 and Y2 can be obtained. The set of  all maximally 
general rules for the information system in Table 2 are 
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rl : (a7 = 1) __,5 (d = 0) 

r2 :(a3 = 6) ---I (d = 0) 

r3 :(a2 = 7) A (a3 = 7) ^ (aT = 0) ._,0.75 (d = 1) 

r4 : (a2 = 8) _..,I (d = 2) 

where r l  and rE are for the concept Y0, r3 is for the concept 
Yl, and r4 is for the concept Y2. 

The support sets of  these rules are 

supp(r l )  = {objl, obj3} 

supp(r2) = {obj2} 

supp(r3) = {obj4, obj5, obj6, obj8} 

supp(r4) = {objT}. 

Since these support sets are not overlapping, the rules 
are both minimal rules and minimal coveting rules. 

5. EXPERIMENTAL RESULTS 

The method presented here has been implemented in 
the G R G  system 8 developed at the University of  Regina. 
The system addresses the multiple tasks of  data analysis, 
database mining, pattern recognition and validation, and 
expert-system building. The proposed method was tested 
by applying the G R G  system on a set of recorded data for 
water demand prediction. The objective is to analyze a set 
of  training data and generate a set of decision rules. Such 
decision rules can be used to predict a city's daily water 
demand. As discussed in Section 2, the set of  training 
samples consists of  more than 300 objects collected over 
a period of  ten months, and includes information on day 
of the week, weather conditions and daily consumption 
of water. 

In the experiment, the values of  the decision attribute 
were divided into ten ranges, so that the information 
system has ten concepts. Samples of  the generated rules 
are shown below. 

The most general rule for the concept D = [53 - 63] is 

( -6 .70  < a3 < -1.74)  A (< --6.70 < a9 < --1.74) A 

(11.86 < al4 < 17.42) __.1 (53 < D < 63). 

This rule covers 25% of  the training objects concluding 
the concept. The rule states that: if today's and yester- 
day's minimum temperatures are both between -6 .70 
and -1 .74°C and the day before yesterday's maximum 
temperature is between 11.86 and 17.420C, then the water 
demand is between 53 and 63 M1 with a certainty factor 
being 1. 

The most general rule for the concept D = (63 - 73] is 

(81 < al0 < 87) _..5 (63 < D < 73). 

This rule covers 12% of  the training objects concluding 
the concept. The rule states that: if yesterday's average 
humidity is between 81 and 87%, then the water demand 
is between 63 and 73 MI with a certainty factor being 1. 

The most general rule for the concept D = (73 - 84] is 

(8.7 < a7 -< 12.9) ^ ( -1 .74  < a9 -< 3.22) 

_,1 (73 < D _< 84). 

This rule covers 6.25% of  the training objects concluding 
the concept. It states that: if today's average speed of  wind 
is between 8.7 and 12.9 km/h and yesterday's minimum 
temperature is between - 1.74 and 3.22 ° C, then the water 
demand is between 73 and 84 Ml with a certainty factor 
being 1. 

A rule for the concept D = (94 - 104] is 

(47 < a4 -< 53) A (17.42 < a8 -< 22.98) A 

(3.22 < a9 --< 8.18) ~ !  (94 < D _< 104). 

This rule covers 17.6% of  the training objects concluding 
the concept. It states that: if today's average humidity 
is between 47 and 53% and yesterday's maximum tem- 
perature is between 17.42 and 22.98°C and yesterday's 
minimum temperature is between 3.22 and 8.18 ° C, then 
the water demand is between 94 and 104 M1 with a 
certainty factor being 1. 

The most general rule for the concept D = (104 - 114] 
is 

(22.98 < a2 < 28.54) A (53 < at5 < 58) A 

(4.5 < a57 < 8.7) __.5 (104 < D < 114). 

This rule covers 33.3% of  the training objects concluding 
the concept. It states that: if today's maximum tempera- 
ture is between 22.98 and 28.54°C and the day before yes- 
terday's average humidity is between 53 and 58% and the 
day before yesterday's average speed of  wind is between 
4.5 and 8.7 krn/h, then the water demand is between 104 
and 114 MI with a certainty factor being 1. 

The most general rule for the concept D = (114 - 124] 
is 

(36 < as0 < 41) A (36 < a55 < 41) I (114 < D < 124). 

This rule covers 33.3% of  the training objects concluding 
the concept. It states that: if yesterday's and the day before 
yesterday's average humidities are both between 36 and 
41%, then the water demand is between 114 and 124 MI 
with a certainty factor being 1. 

The most general rule for the concept D = ( 124 - 134] 
is 

(53 < an < 58) A (22.98 < a14 < 28.54) /x 

(13.30 < a18 < 15.20) I (124 < D < 134). 

This rule covers 66.7% of  the training objects concluding 
the concept. It states that: if today's average humidity 
is between 53 and 58% and the day before yesterday's 
maximum temperature is between 22.98 and 28.54°C 
and the day before yesterday's bright sunshine hours are 
between 13.30 and 15.20 hours, then the water demand is 
between 124 and 134 MI with a certainty factor being 1. 

In order to evaluate the rules derived by the new 
method, a Leave-Ten-Out experiment was conducted by 
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using 90% of  the data for training and the remaining 10% 
of  data for testing. The error rate depends on the selection 
of  training samples. The experiment was conducted ten 
times. The best error rate of  prediction is 6.67% and the 
average error rate of  prediction is 10.27%. 

6. C O N C L U S I O N  

of the prediction rules, validation of  the rules by human 
experts, and incorporating the rules into the knowledge 
base for monitoring and control of  the water distribution 
system. 
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This paper  has suggested a method for generating 
prediction rules from a given set of  training examples. 
The proposed method extends upon the standard rough- 
sets method,  and makes use of  the statistical informa- 
tion inherent in the knowledge system. In this way, the 
method is capable of  deriving imprecise decision rules 
with decision probabilities. This capability is important  in 
situations when complete and deterministic information 
in empirical data  is unavailable. 

Application of  this knowledge discovery method 
for water demand prediction has the advantage that 
important  relationships between condition factors and 
the decision variables of  water consumption are described 
in terms of  simple "if- then" rules, which can be easily 
understood by users. This method is general and can also 
be applied to other domains, such as general consumer 
demand prediction, fault diagnosis and process control. 
The results reported in Section 5 are based on an earlier 
recorded data set. Items on a future research agenda 
include collecting more data to improve the accuracy 
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