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Abstract. Discovering association rules is one of the important tasks in data mining. While
most of the existing algorithms are developed for efficient mining of frequent patterns, it has been
noted recently that some of the infrequent patterns, such as indirect associations, provide useful
insight into the data. In this paper, we propose an efficient algorithm, called HI-mine, based on a
new data structure, called HI-struct, for mining the complete set of indirect associations between
items. Our experimental results show that HI-mine’s performance is significantly better than that
of the previously developed algorithm for mining indirect associations on both synthetic and real
world data sets over practical ranges of support specifications.
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1. Introduction

Since it was first introduced by Agrawal et al. [3] in 1993, association rule mining
has been studied extensively by many researchers. As a result, many algorithms
have been proposed to improve the running time for generating association rules and
frequent itemsets. The latest includes FP-growth [10, 11], which utilizes a prefix-
tree structure for compactly representing and processing pattern information, and
H-mine [16], which takes advantage of a novel hyper-linked data structure and
dynamically adjusts links in the mining process.

While most of the existing algorithms are developed for efficient mining of frequent
patterns, it has been noted recently that some of the infrequent patterns may
provide useful insight into the data. In [22], a new class of patterns called indirect
associations has been proposed and its utilities have been examined in various
application domains.

Consider a pair of items, x and y, that are rarely present together in the same
transaction. If both items are highly dependent on the presence of another itemsets
M, then the pair (x, y) is said to be indirectly associated via M. Figure 1 illustrates
a high-level view of an indirect association.

There are many advantages to mining indirect associations in large data sets. For
example, an indirect association between a pair of words in text documents can be
used to classify query results into categories [22]. For instance, the words coal and
data can be indirectly associated via mining. If only the word mining is used in a
query, documents in both mining domains are returned. Discovery of the indirect
association between coal and data enables us to classify the retrieved documents



2

 

 

infrequent 

 
M 

 
x y 

frequent frequent 

Figure 1. Indirect association between x and y via the mediator M

into coal mining and data mining. There are also potential applications of indirect
associations in many other real-world domains, such as competitive product analysis
and stock market analysis [22].

An algorithm for mining indirect associations between itempairs, called INDI-
RECT algorithm, was presented in [22], and will be fully described in the next
section of this paper. There are two phases in the algorithm:

1. Extract all frequent itemsets using standard frequent itemset mining algorithms
such as Apriori [4] or FP-growth [10];

2. Discover valid indirect associations by checking all the candidate associations
generated from the frequent itemsets.

In this paper, we propose a new data structure, HI-struct, and develop a new
mining algorithm, HI-mine, for finding indirect associations in large databases.
We show that they can be used as a formal framework for discovering indirect
associations directly, with no need to generate all frequent itemsets as the first
step. Empirical evaluations comparing HI-mine to two versions of the algorithm
described above show that HI-mine performs significantly better on both synthetic
and real world data sets.

The remaining of the paper is organized as follows. Section 2 reviews related
work and briefly exhibits the contribution of the paper. Next, we present the HI-
struct data structure and the HI-mine algorithm in Section 3. Our empirical results
are reported in Section 4. Finally, we conclude with a summary of our work and
suggestions for future research in Section 5.

2. Related Work

Let I = {i1, i2,. . . , im} be a set of m items. A subset X ⊆ I is called an itemset.
A k -itemset is an itemset that contains k items.
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Table 1. Summary of notations and their meaning

D a database of transactions
TDB an example transaction database

sup(I) the support of itemset I
dep(X, Y ) dependence between itemsets X and Y
〈x, y | M 〉 an indirect association between x and y via M

ts itempair support threshold
tf mediator support threshold
ts mediator dependence threshold

IIS(D) indirect itempair set of D
MSS(i) mediator support set of item i

Let D = {T1, T2,. . . , Tn} be a set of n transactions, called a transaction database,
where each transaction Tj (j ∈ {1, 2, . . . , n}) is a set of items such that Tj ⊆ I.
Each transaction is associated with a unique identifier, called its TID. A transaction
T contains an itemset X if and only if X ⊆ T.

The support of an itemset X is the percentage of transactions in D containing
X : sup(X )=‖{t | t ∈ D, X ⊆ t}‖ / ‖{t | t ∈ D}‖, where ‖S‖ is the cardinality of
set S.

An itemset X in a transaction database D is called as a frequent itemset if its
support is equal to, or greater than a user-specified minimum support threshold,
min sup. Accordingly, an infrequent itemset is an itemset that does not satisfy the
user-specified minimum support threshold.

Table 1 summarizes the notations that will be used throughout this paper and
their meaning.

2.1. Negative association rules

An association rule is an implication of the form X ⇒ Y, where X ⊂ I, Y ⊂ I,
and X ∩ Y = ∅. Here, X is called the antecedent and Y is called the consequent
of the rule. The confidence of an association rule r : X ⇒ Y is the conditional
probability that a transaction contains Y, given that it contains X. The support of
rule r is defined as: sup(r)=sup(X ∪ Y ).

The importance of extending the current association rule framework to include
negative association was first pointed out by Brin et al. in [6]. Since then, many
techniques for mining negative associations have been developed [18, 22, 26].

In the case of negative associations we are interested in finding itemsets that
have a very low probability of occurring together. That is, a negative association
between two itemsets X and Y, denoted as X ⇒ Y or Y ⇒ X, means that X and
Y appear very rarely in the same transaction.

Mining negative association rules is computational intractable with a naive ap-
proach because billions of negative associations may be found in a large database
while almost all of them are extremely uninteresting. This problem was addressed
in [18] by combining previously discovered positive associations with domain knowl-
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edge to constrain the search space such that fewer but more interesting negative
rules are mined.

A general framework for mining both positive and negative association rules of
interest was presented in [26], in which no domain knowledge was requires, and
the negative association rules were given in more concrete expressions to indicate
actual relationships between different itemsets. However, although the sets of the
positive and negative itemsets of interest in the database were minimized in this
framework, the search space for negative itemsets of interest was still huge. Another
problem was that it tended to produce too many negative association rules, thus
the practical application of this framework remained uncertain.

2.2. Indirect association and INDIRECT algorithm

Indirect association is closely related to negative association, they are both dealing
with itemsets that do not have sufficiently high support. Indirect associations
provide an effective way to detect interesting negative associations by discovering
only “infrequent itempairs that are highly expected to be frequent” without using
negative items or domain knowledge.

Definition 1 (Indirect Association). An itempair {x, y} is indirectly associated via
a mediator M, if the following conditions hold:

1. sup({x, y}) < ts (Itempair Support Condition)

2. There exists a non-empty set M such that:

(a) sup({x} ∪ M ) ≥ tf , sup({y} ∪ M ) ≥ tf ; (Mediator Support Condition)

(b) dep({x}, M ) ≥ td, dep({y}, M ) ≥ td, where dep(P, Q) is a measure of the
dependence between itemsets P and Q. (Mediator Dependence Condition)

The thresholds above are called itempair support threshold (ts), mediator support
threshold (tf ), and mediator dependence threshold (td), respectively. In practice, it
is reasonably to set tf ≥ ts.

In the database and probability theories, an indirect association is a well-known
property of embedded multi-valued dependency (EMVD) and probability condi-
tional independence, where it is sometimes called an “induced dependence”. [25]
includes a comprehensive discussion on an independence in a small context becom-
ing a dependence in a larger context in both database and probability settings.

In this paper, the notation 〈x, y | M 〉 is used to represent the indirect association
between x and y via M. And the IS measure [19] is used as the dependence measure
for Condition 2(b). Given a pair of itemsets, say X and Y, its IS measure can be
computed using the following equation:

IS(X,Y) =
P(X,Y)

√

P(X)P(Y)
(1)
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1. Extract frequent itemsets, L1, L2,…Ln, using frequent itemsets generation 
algorithm, where Li is the set of all frequent i-itemsets. 

2. P = ∅ (set of indirect associations) 
3. for k = 2 to n do 
4.     Ck+1 = join(Lk, Lk) 
5.     for each < x, y , M> ∈ Ck+1 do 
6.         if (sup({ x, y}) < ts and dep({ x}, M) ≥ td and dep({ y}, M) ≥ td) 
7.             P = P ∪ {<  x, y , M>} 
8.         end 
9.     end 
10. end 

Figure 2. The INDIRECT algorithm

where P denotes the probability that the given itemset appears in a transaction.
An algorithm for mining indirect associations between pairs of items is given

in [22] and [20], which is shown in Figure 2. There are two major phases in this
algorithm:

1. extract all frequent itemsets using Apriori ; (step 1)

2. discover all indirect associations by

(a) candidate generation (step 4);

(b) candidate pruning (steps 5 - 9).

In the candidate generation step, frequent itemset Lk is used to generate candidate
indirect associations for pass k+1, i.e., Ck+1. Each candidate in Ck+1 is a triplet,
〈x, y, M 〉, where x and y are the items that are indirectly associated via the
mediator M. Ck+1 is generated by joining the frequent itemsets in Lk. A pair of
frequent k -itemsets, {x1, x2,. . . , xk} and {y1, y2,. . . , yk} are joined together if
the two itemsets have exactly k -1 items in common; and thus produce a candidate
indirect association 〈x, y, M 〉, where x and y are the distinct items, one from each
k -itemset, and M is the set of common items. For example, two frequent itemsets,
{a, b, c, d} and {a, b, d, e}, can be joined together to produce a candidate indirect
association, 〈c, e, {a, b, d}〉. Since the candidate associations are created by joining
two frequent itemsets, they all satisfy the mediator support condition. Therefore,
in the steps for candidate pruning, only itempair support condition and mediator
dependence condition are checked.

There are two join steps in the INDIRECT algorithm. One is in the first phase
for generating all the frequent itemsets with Apriori. In Apriori, the join operation
is used to generate candidate frequent itemsets for pass k+1 based on the frequent
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itemsets in Lk. The other join operation is for generating candidate indirect asso-
ciations, Ck+1, from Lk. Both candidate generation steps can be quite expensive,
because each of them requires at most O(

∑

k|Lk| × |Lk|) join operations.
The join operation for generating indirect association candidates is more expen-

sive than that in Apriori because the items in an indirect itempair, x and y, do not
have to be the last item in each frequent itemset, whereas Apriori only combines
itemsets that have identical k -1 prefix items, assuming that all the items in an
itemset are sorted in lexicographic order.

Moreover, no matter what implementation technique is applied, an Apriori-like
algorithm may still suffer from nontrivial costs in situations with prolific frequent
patterns, long patterns, or quite low minimum support thresholds.

Is there any other way that we may reduce these costs in indirect association
mining? Can we avoid generating all the frequent itemsets and a huge set of can-
didates, and derive indirect association directly using some novel data structure or
algorithm?

2.3. Our solution

Our answers to the above questions are based on the following two strategies.

1. Instead of joining two frequent itemsets {a, b, c, d} and {a, b, d, e} to produce
a candidate indirect association 〈c, e, {a, b, d}〉, we first generate the mediator
support sets (defined in the next section) of item c and item e. Thus, if itemset
{a, b, d} can be found in these two sets, then 〈c, e, {a, b, d}〉 must be a valid
indirect association.

2. In order to avoid costly candidate generation, we use a divide-and-conquer strat-
egy to build the indirect itempair set (defined in the next section) and mediator
support sets by partitioning each set into disjoined subsets and generating each
subset in turn.

In the next section, we introduce our solution. The solution is based on the
HI-struct data structure and the HI-mine algorithm, which were inspired by a
novel hyper-linked data structure, H-struct, and an efficient algorithm, H-mine,
presented in [16]. H-struct and H-mine are designed for the purpose of mining
frequent patterns. We modify both of them for learning indirect association. With
HI-struct and HI-mine, we do not need to generate all the frequent itemsets before
mining indirect associations nor we need to do any join operation for candidate
generation. Instead, we generate two new sets: indirect itempair set and mediator
support set by recursively building the HI-struct data structures for the database.
Then indirect associations are discovered from these two sets directly and efficiently.

3. Mining Indirect Associations Using HI-mine

In this section, we first define Indirect Itempair Set and Mediator Support Set. We
then present the HI-mine (Hyper-structure Indirect-association Mining) algorithm
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and illustrate the mining process of the algorithm using the two sets with an ex-
ample.

3.1. Indirect Itempair Set and Mediator Support Set

Given a transaction database D and three thresholds: itempair support threshold
(ts), mediator support threshold (tf ), and mediator dependence threshold (td). The
Indirect Itempair Set and Mediator Support Set can be defined as follows.

Definition 2 (Indirect Itempair Set). Let L1 be the set of 1-itemset of D. We
define the indirect itempair set (IIS ) of D as:

IIS(D) =
{

< x, y >
∣

∣{x} ∈ L1 ∧ {y} ∈ L1 ∧ sup({x}) ≥ tf

∧sup({y}) ≥ tf ∧ sup({x, y}) < ts
}

Definition 3 (Mediator Support Set). Let L be the set of itemsets of D, and L1

be the set of 1-itemset of D. The mediator support set (MSS ) of x ({x} ∈ L1 ∧
sup({x}) ≥ tf ) is defined as:

MSS(x) =
{

M
∣

∣M ∈ L ∧ sup(M ∪ {x}) ≥ tf ∧ dep(M, {x}) ≥ td
}

Based on the definition of indirect association (Definition 1) and the above two
definitions (Definition 2 and 3), it’s trivial to prove the following two Lemmas:

Lemma 1 If 〈x, y | M〉 is an indirect association of D, then: (1 ) 〈x, y〉 ∈ IIS (D);
and (2 ) M ∈ MSS (x ) and M ∈ MSS (y).

Proof:

If 〈x, y | M 〉 is an indirect association of D, then from Definition 1 we can get
that:

(1) sup({x}) ≥ tf , sup({y}) ≥ tf , and sup({x, y}) < ts. By Definition 2, 〈x, y〉
∈ IIS (D).

(2) sup({x} ∪ M) ≥ tf , dep({x} ∪ M) ≥ td, and sup({y} ∪ M) ≥ tf , dep({y}
∪ M) ≥ td. By definition 3, M ∈ MSS (x ) and M ∈ MSS (y).

Lemma 2 Let {x}, {y} and M be three itemsets of D. If: (1 ) 〈x, y〉 ∈ IIS (D); and
(2 ) M ∈ MSS (x ) and M ∈ MSS (y), then 〈x, y | M〉 must be an indirect association
of D.

Proof:

(1) If 〈x, y〉 ∈ IIS (D), then from Definition 2, we can get that sup({x}) ≥ tf ,
sup({y}) ≥ tf , and sup({x, y}) < ts.

(2) If M ∈ MSS (x ) and M ∈ MSS (y), then from Definition 3, we can get that
sup(M ∪ {x}) ≥ tf , dep(M ∪ {x}) ≥ td, and sup(M ∪ {y}) ≥ tf , dep(M ∪ {y})
≥ td.
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Table 2. The transaction
database TDB

TID List of itemIDs

T001 A, B, C, D
T002 A, B, E, F
T003 G, H
T004 B, C
T005 A, B, D, E, I
T006 B, C, D
T007 J, K
T008 L, M, N

Therefore, by Definition 1, 〈x, y | M 〉 must be an indirect association of D.

Theorem 1 Given IIS(D) and all the MSS(x)s where x is a frequent item in D
with respect to tf , the complete set of indirect associations of D can be derived by
intersecting MSS(x) and MSS(y) for each 〈x, y〉 in IIS(D) to generate the set of
mediators for itempair 〈x, y〉.
Proof:

If IIS (D) = ∅ or for each {x} ∈ L1, MSS (x ) = ∅, then the complete set of indirect
associations of D is empty.

Suppose IIS (D) 6= ∅, and 〈x, y〉 ∈ IIS (D). Let MS = MSS (x ) ∩ MSS (y) 6= ∅,
and M ∈ MS. By Lemma 2, 〈x, y | M 〉 is an indirect association of D.

We now show that any indirect association 〈x, y | M 〉 of D can be obtained by
intersecting MSS (x ) and MSS (y), where 〈x, y〉 ∈ IIS (D). Suppose an indirect
association 〈x′

, y
′ | M ′〉 of D cannot be generated in this way. Then, there are two

possibilities:
(1) 〈x′

, y
′〉 cannot be found in IIS (D). That is, 〈x′

, y
′〉 /∈ IIS (D). From Lemma 1,

we have 〈x′

, y
′〉 ∈ IIS (D). This is a contradiction.

(2) M
′

cannot be generated by intersecting MSS (x
′

) and MSS (y
′

). That is M
′

/∈
MSS (x

′

) ∩ MSS (y
′

). From Lemma 1, we have M
′ ∈ MSS (x

′

) and M
′ ∈ MSS (y

′

).
This is a contradiction.

Therefore, all indirect associations of D can be derived from IIS (D) and all the
MSS (x )s, where {x} ∈ L1.

3.2. HI-struct: Design and Construction

The design and construction of HI-struct for efficient indirect association mining
are illustrated in the following example. The example transaction database TDB is
shown in Table 2. The HI-struct of TDB is a dynamic data structure that changes
during the process of recursively generating IIS (D) and MSS s.

The initial HI-struct is constructed in the following steps.

1. Scan the transaction database TDB once. Collect the set of frequent items F
(with respect to tf ) and their supports. Sort F in support descending order as
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Header Table of 
TDB 

Item Count Link 
B 5  

A 3  

C 3  

D 3  

E 2  

 

Index 

01 

02 

03 

04 

05 

 

Frequent-Item 
Projection 

Index Frequent Items 

01 B,A,C,D 

02 B,A,E 

03 B,C 

04 B,A,D,E 

05 B,C,D 

 

Figure 3. The initial HI-struct of TDB

L, the list of sorted frequent items. For the example database, L is {B, A, C, D,
E}. Then a header table H is created, where each frequent item has an entry
with three fields: an item-id, a support count, and a pointer to a queue.

2. For each transaction T in TDB, select and sort the frequent items in T according
to the order of L. Let the sorted frequent item list in T be [t |T ], where t is
the first element and T is the remaining list. [t |T ] is called the frequent-item
projection of T . Add [t |T ] to a frequent-item projection array, and append
[t |T ]’s index of the array to t’s queue. Thus, all indexes of the frequent-item
projections with the same first item (in the order of L) are linked together as a
queue, and the entries in the header table H act as the heads of the queues.

The initial HI-struct of the example database is shown in Figure 3. Since all
frequent item projections in our example database start with B, the queues for
other items than B are empty at the moment1. After the initial HI-struct is con-
structed, the remaining mining process is performed on the HI-struct only, without
referencing any information in the original database.

The subsequent mining process involves building IIS (TDB) and MSS of each
frequent item. We use a divide-and-conquer strategy to build these sets by par-
titioning each set into disjoined subsets and generating each subset in turn (see
Figure 4). Following the support descending order of frequent items: B, A, C,
D, E, the complete IIS (TDB) and MSS s of all the frequent items in our example
database can be partitioned into 5 subsets as follows:

(1) those containing item B;

(2) those containing item A but no item B;

(3) those containing item C, but no item B nor A;

(4) those containing item D, but no item B nor A nor C;

(5) those containing only item E.
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<x, y | M> 

IIS(TDB) and all  MSSs in TDB 
(frequent items: B-A-C-D-E) 

IISs and MSSs 
having item B 

IISs and MSSs  
not having item B 

IISs and MSSs 
having item A 

IISs and MSSs  
not having item A 

IISs and MSSs 
having item C 

IISs and MSSs  
not having item C 

IISs and MSSs 
having item D 

IISs and MSSs  
not having item D 

MSSs only having item E 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 11 

Figure 12 

Figure 13 

Figure 14 

Figure 4. Divide-and-conquer strategy to build IIS(TDB) and all MSSs

 

Header Table of 
TDB 

Item Count Link 
B 5  

A 3  

C 3  

D 3  

E 2  

 

Index 

01 

02 

04 

 

03 

05 

 

Frequent-Item 
Projection 

Index Frequent Items 

01 B,A,C,D 

02 B,A,E 

03 B,C 

04 B,A,D,E 

05 B,C,D 

 

Figure 5. HI-struct of TDB after mining B-projected database

Clearly, all the frequent-item projections containing item B, referred to as the
B-projected database, are already linked in the B-queue in the initial header table,
which can be traversed efficiently.

In the next section, we will show that, by mining the B-projected database re-
cursively, HI-mine can find IIS (TDB) and MSS s that contain item B. And then,
each index in B-queue is moved into the queue for the next item in header table H
following item B in the order of L to mine IIS (TDB) and MSS s containing item A
but not B.

The HI-struct after this adjustment is shown in Figure 5. For instance, the first
item after item B of index 01 is item A, so index 01 is moved into A-queue, while
index 03 is moved into C-queue since item C is the first item after item B of index
03. After the subsets containing item A but not B are mined, other subsets of
IIS (TDB) and MSS s are mined similarly.
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3.3. HI-mine Algorithm

There are two phases in the algorithm. In the first phase, we construct HI-struct
and generate itempair support set of the database and mediator support set of
each frequent item. In the second phase, we generate the complete set of indirect
associations based on the itempair support set and the mediator support sets. The
algorithm is described as follows.

Algorithm: HI-mine. (Mine indirect associations using an HI-struct)

Input:

A transaction database (D), itempair support threshold (ts), mediator sup-
port threshold (tf ) and mediator dependence threshold (td).

Output:

The complete set of indirect associations between itempairs.

Method:

1: build the initial HI-struct for D which includes a header table H and the
frequent-item projection array.

2: for each i such that item i is in the header table of HI-struct do

3: create header table Hi by scanning i-projected database in the same way as
building header table H except that item i is not considered (see Figures 6,
11 - 14)

4: call hi mine(Hi)
5: append all the indexes in i-queue to the proper queues2 in H (see Figure 5)
6: end for

7: if IIS (D) 6= ∅ then

8: for all itempair 〈x, y〉 in IIS (D) do

9: MS ← MSS (x ) ∩ MSS (y)
10: if MS 6= ∅ then

11: for all mediator M in MS do

12: output 〈x, y | M 〉
13: end for

14: end if

15: end for

16: else

17: output “Indirect associations do not exit in this database”
18: end if

procedure hi mine(Hm)
(Recursively mine the header table of itemset m and update IIS (D) and MSS (j ),
j /∈ m)

1: for each item j in the header table Hm do

2: if the size of m is 1 and j ’s count < minimum itempair support count then
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3: add 〈m, j 〉 to IIS (D)
4: else if j ’s count > minimum mediator support count then

5: if IS (j,m) > td then

6: add m to MSS (j )
7: end if

8: create header table Hmj by scanning j -queue in Hm (i.e., mj -projected
database) in the same way as building H except that item j and items in
m are not considered (see Figure 8)

9: call hi mine(Hmj)
10: end if

11: append all the indexes in j -queue to the proper queues3 in Hm (see Figure 7)
12: end for

Let L = “x1, x2, ..., xn” be the list of frequent 1-itemsets of D (with respect to
tf ) in frequency-descending order. After build the initial HI-struct for D in step 1,
the HI-mine algorithm first constructs the header table of item x1 in step 3, using
the x1-queue in HI-struct, and calls procedure hi mine(x1) in step 4 to find IIS (D)
and MSS s that contain item x1.

In procedure hi mine(x1), it tries to find those indirect itempairs that contain item
x1, and check whether {x1} can be added to the mediator support sets. Moreover,
it further partitions the subsets of MSS s and does recursive mining when item x1

is locally frequent with respect to tf .
After IIS (D) and MSS s that contain item x1 are found, all the indexes in x1-

queue are moved to the proper queues in header table H to mine all the IIS (D)
and MSS s that contain item x2 but not x1.

Similarly, we can find the complete sets of IIS (D) and MSS (x ), where x ∈ L.
Following Theorem 1, we can generate all the indirect associations of D from these
sets. This task is carried out from step 7 to step 18 in the algorithm.

3.4. Example

Figure 6 to Figure 14 show the execution of the algorithm on the transaction
database TDB given in Table 2. The itempair support threshold ts and media-
tor support threshold tf are set to be 25% (minimum support count and minimum
mediator support count are both 2)4, and the minimum dependence threshold td is
0.5.

First, to find IIS (TDB) and MSS s that contain item B, a B-header table HB

(shown in Figure 6) is created by traversing the B-queue in the header table H
(shown in Figure 3) once. In HB, every frequent item, except for B itself, has an
entry with the same fields as H, i.e., item-id, support count and a pointer to a
queue.

The support count in HB records the support of the corresponding item in the B-
queue. For example, since item A appears 3 times in the frequent-item projections
of B-queue, the support count in the entry for A in HB is 3. And all indexes of
the frequent-item projection with the same first two items are linked together as
a queue, and the entries in the header table HB act as the heads of the queues.
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Header Table of 
{ B:5} 

Item Count Link 
A 3  

C 3  

D 3  

E 2  

Index 

01 

02 

04 

 

03 

05 

IIS(TDB) =  ∅∅∅∅ 
MSS(A) = { {B}} 
MSS(C)  = {{B}} 
MSS(D) = {{B}} 
MSS(E) = {{B}}  

Figure 6. Header table HB and mining result

 

Header Table of 
{ BA:3} 

Item Count Link 
C 1  

D 2  

E 2  

 

Header Table of 
{ BA:3} 

Item Count Link 
C 1  

D 2  

E 2  

 

Index 

01 

 

04 

 

02 

 

MSS(D)= + {B,A} 
MSS(E) = + {B,A} 

Index 

04 

01 

 

02 

Figure 7. Header table HBA and mining result

For instance, the C-queue in HB stores all indexes of the frequent-item projections
with the same first two items BC.

Since all the items in HB are locally frequent, there is no indirect itempair contains
item B, and IIS (TDB) is empty after this scan. Then we compute the IS measure
between B and each item in HB:

IS(B, A) = 3/
√

3× 5 = 0.77 (2)

IS(B, C) = 3/
√

3× 5 = 0.77 (3)

IS(B, D) = 3/
√

3× 5 = 0.77 (4)

IS(B, E) = 2/
√

2× 5 = 0.63 (5)

They all pass the minimum dependence threshold 0.5. Therefore, {B} should be
in the MSS of each of these items. The result is shown in Figure 6.

After {B} is appended into MSS s, a header table HBA is created by examining
A-queue in HB in the same manner as in generating HB from the B-queue in H. The
header table HBA is shown in the most left part of Figure 7. Then, the algorithm
recursively exams the BA-projected database to determine whether {B,A} belongs
to the MSS s of items C, D and E.



14

 

Header Table of 
{ BC:3} 

Item Count Link 
D 2  

E 0  

A 1 ∆ 
 

Header Table of 
{ B:5} 

Item Count Link 
A 3  

C 3  

D 3  

E 2  

Index 

03 

05 

01 

 

04 

 

02 

Index 

05 

01 

 

MSS(D) = + {B,C} 

Figure 8. Adjusted header table HB , header table HBC and mining result

 

Header Table of 
{ BD:3} 

Item Count Link 
E 1  

A 2 
�

 

C 2 
�

 

 

MSS(A) = + {B,D} 
MSS(C) = + {B,D} 

Index 

04 

 

Figure 9. Header table HBD and mining result

Since the local support count of C is less than 2, {B,A} is not added to MSS (C)
and the search along path BAC completes. Thus the index in the C-queue of
HBA is moved into the D-queue of HBA because D follows C in the projection
corresponding to the index, which is the first projection B, A, C, D. The resulting
header table after this adjustment is shown in the middle of Figure 7.

Since D is locally frequent and passes the dependence threshold, {B,A} is added
to MSS (D). Then a header table HBAD(not shown here) is created, which contains
no local frequent items, and thus search along path BAD completes.

Similarly, {B,A} is added to MSS (E) and the process of mining the header table
HBA finishes. Then each index in the A-queue in table HB is moved to proper
queues as shown in the most left part of Figure 8.

After the above adjustment, the C-queue in HB(also referred to as BC-queue)
collects the complete set of frequent-item projections containing items B and C.
Thus, by further creating a header table HBC(shown in the middle of Figure 8),
MSS s containing item B and C but not A can be mined recursively.

Please note that item A appears in HBC because it does not belong to B,C and
it appears in the frequent-item projections of BC-queue. However, its queue is
always empty, that is, we will not append any index to its queue after D-queue or
E-queue in HBC has been mined since it has been considered in the mining of the
BA-queue. Thus, the A-queue in HBC is marked with “△”. We need an entry
for A here because we need to output the correct support mediators in MSS (A) if
the local count of A is above the minimum mediator support count. The result is
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Header Table of 
{ BE:2} 

Item Count Link 
A 2 ∆ 

C 0 ∆ 

D 1 ∆ 

 

MSS(A) = + {B,E} 

Figure 10. Header table HBE and mining result

 

Header Table of 
{ A:3} 

Item Count Link 
C 1  

D 2  

E 2  

Index 

01 

 

04 

 

02 

IIS(TDB) = + <A,C> 
MSS(D) = + {A} 
MSS(E) = + {A} 

Figure 11. Header table HA and mining result

 

Header Table of 
{ C:3} 

Item Count Link 
D 2  

E 0  

A 1 � 

Index 

01 

05 

IIS(TDB) = + <C,E> 
MSS(D) = + {C} 

Figure 12. Header table HC and mining result

shown in Figure 8. And the header table HBD and HBE , and their corresponding
mining results are shown in Figure 9 and Figure 10 respectively.

In the next step, all the indexes in B-queue are moved into the proper queues in
H to mine IIS (TDB) and MSS s that contain item A but not B, and other subsets
of them. The header table H after this adjustment is shown in Figure 5.

Header table HA and the mining result are shown in Figure 11. Since C is locally
infrequent with respect to A, pair 〈A,C〉 is added to IIS (TDB).

Similarly, the mining process continues to discover IIS (TDB) and MSS s that
contain item C, item D and item E, as shown from Figure 12 to Figure 14. It
is easy to see that the above mining process finds the complete IIS (TDB) and
MSS s because we partition the sets into disjoined subsets and mine each subset



16

 

Header Table of 
{ D:3} 

Item Count Link 
E 1  

A 2 � 

C 2 � 

Index 

04 

 

IIS(TDB) = + <D,E> 
MSS(A) = + {D} 
MSS(C) = + {D} 

Figure 13. Header table HD and mining result

 

Header Table of 
{ E:2} 

Item Count Link 
A 2 � 

C 0 � 

D 1 � 

MSS(A) = + {E} 

IIS(TDB) = {<A,C>,<C,E>,<D,E>} 
MSS(A) = {{B},{B,D},{B,E},{D},{E}}  
MSS(C) = {{B},{B,D},{D}} 
MSS(D) = {{B},{B,A},{B,C},{A},{C}}  
MSS(E) = {{B},{B,A},{A}} 

Figure 14. Header table HE and mining result

by further partitioning it recursively. The complete IIS (TDB) and MSS s for our
example database TDB are shown in Figure 14.

The second phase of the HI-mine algorithm is to compute the set of mediators
for each indirect itempair in IIS (TDB) (see steps 7-18 in HI-mine algorithm).
For example, the set of mediators for itempair 〈A, C〉 in IIS (TDB) is computed by
intersecting MSS (A) and MSS (C), which results in {{B}, {D}, {B, D}}. Therefore,
three indirect associations are discovered for itempair 〈A,C〉:

〈A, C | {B}〉, 〈A, C | {D}〉, 〈A, C | {B, D}〉

Similarly, the following indirect associations are discovered for itempairs 〈C,E〉
and 〈D,E〉:

〈C, E | {B}〉
〈D, E | {A}〉, 〈D, E | {B}〉, 〈D, E | {A, B}〉

From Theorem 1, we can guarantee that the above mining process finds the
complete set of indirect associations without duplication.

3.5. Complexity Analysis

Suppose there are N transactions in D. Let f be the number of frequent items of
size 1, m be the maximal length of a single frequent itemset. We will now briefly
discuss the computational complexity of our algorithm from the following three
aspects: database scan, space usage and time complexity.
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3.5.1. Database scan The two most important performance factors of the as-
sociation rules mining are the number of passes made over the database and the
efficiency of those passes [6]. The HI-mine algorithm described in the previous sec-
tion shows that if the frequent-item projections of D plus a set of header tables can
fit in main memory then two and only two scans of D are needed to build the initial
HI-struct. First, it scans D once to get the set of frequent items. Then it scans
D again to construct an HI-struct. After the initial HI-struct is constructed, the
remaining mining process is performed on the HI-struct only, without referencing
any information in the original database.

If the HI-struct cannot be held in main memory, then in the second scan of
database, we partition the set of frequent-item projections into f parts, where
each part collects the frequent-item projections of one frequent item. At the same
time, the first partition (i.e., the set of frequent-item projections start with item
B in our example) is held in the main memory to build a partial HI-struct which
contain enough information for mining IIS (D) and MMS s that contain the first
frequent item. After that, the frequent-item projections in the first partition are
moved into proper partitions (in the same way as we adjust the indexes of frequent-
item projections in main memory), and the second partition is loaded in the main
memory to build and mine the partial HI-struct of the second frequent item (item
A in our example). This process continues until IIS (D) and MMS s that contain
the last frequent item (item E in our example) are generated.

One can easily see that a partial HI-struct is usually orders of magnitude smaller
than the global HI-struct. Therefore, there is a good chance for it to be fit in
the main memory. But if not, we can further partition the set of frequent-item
projections of each frequent item, and the process can go on recursively until the
partial HI-struct fits in the main memory.

3.5.2. Space usage For each transaction in D, the initial HI-struct stores its
frequent-item projection, and the space requirement is:

∑N

i=1
|pro(Ti)|, where |pro(Ti)|

is the length of a frequent-item projection of a transaction Ti. Besides frequent-item
projections, HI-struct also stores a header table H. The maximal number of entries
in the table is at most the number of frequent items, so the space requirement of
head table H is at most 3f and the total size of all the queues is less than N.

To mine the HI-struct, the only space overhead is a set of local header tables.
If the maximal length of a single frequent itemset is m, then the corresponding
frequent itemset tree5 would contain a maximum of f ·2m nodes. Therefore, in
the worst case, our algorithm will generate at most f ·2m header tables. However,
there are only a very limited number of header tables exist simultaneously in the
algorithm. For the previous example, to compute the frequent itemset ACDE, only
the header table for the prefixes of ACDE, i.e., HA, HAC , HACD and HACDE are
needed. All the other header tables either are already used and can be released,
or have not been generated yet. The header tables for frequent itemsets having
item B have already been used and can be released since all the frequent itemsets
having item B have been computed before frequent itemset ACDE. On the other
hand, all the other header tables will be used later and need not be generated at
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this moment. Therefore, the number of header tables is no more than the maximal
length of a single frequent itemset that can be found. Thus the total space usage
of HI-mine algorithm in the worst case is:

m(3f + N) +

N
∑

i=1

|pro(Ti)|

3.5.3. Time complexity After building the initial HI-struct, there are two phases
in the algorithm: first, generate IIS (D) and all the MSS s; and then generate all the
indirect associations. The performance of the first phase dominates the performance
of the overall algorithm, since the size of transaction data is usually much more
larger than the size of IIS (D) and MSS s.

It’s easy to find that the complexity of the first phase depends on the total number
of the header tables used in the mining process, which is at most f ·2m as described
in the space usage section. In the worst case (e.g. header table H ), the time
complexity of constructing and mining each header table is O(p·N ), where p is the
maximal length of the frequent itemset projections. Therefore, the time complexity
of the first phase is O(2m·f ·p·N ) in the worst case.

Suppose there are u itempairs that can be found in IIS (D) and the maximal
number of mediators in a single mediator support set is v, then the second phase
will take at most O(u·v2) time to discover the complete set of indirect associa-
tions. Hence, the overall worst-case complexity of this algorithm is O(2m·f ·p·N +
u·v2). Please note that N is far more greater than m, f, p, u and v in real world
applications, thus the total time is O(N ).

4. Experimental Evaluation and Performance Study

In this section, we report our experimental results on the performance of HI-mine
in comparison with two versions of the INDIRECT algorithm, INDIRECT-A and
INDIRECT-F, which extract frequent itemsets using Apriori and FP-growth in the
first step, respectively.

All the experiments are performed on a 533-MHz Pentium PC machine with 128M
main memory, running on Microsoft Window 2000 Professional. All the programs
are written in Sun Java 1.3.1. The algorithms are tested on two types of data sets:
synthetic data, which mimic market basket data, and anonymous web data, which
belong to the domain of web log databases. To evaluate the performance of the
algorithms over a large range of data characteristics, we have tested the programs
on various data sets and only the results on some typical data sets are reported here.
Moreover, these algorithms generate exactly the same set of indirect associations
for the same input parameters.

Please note that run time used here means the total execution time, i.e., the period
between input and output. Also, in all reports, the run time of HI-mine include
the time of constructing HI-struct, and the run time of INDIRECT-F include the
time of constructing FP-tree from the original database as well.
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Table 3. Parameters used in the synthetic data generation

|D | Total number of transactions
|T | Average size of transactions
|I | Average size of maximal potentially frequent itemsets
|L| Number of maximal potentially frequent itemsets
N Total number of items

Table 4. Parameters settings of synthetic data sets

Name |T | |I | |D | Size in Megabytes

T5.I3.D20k 5 3 20k 0.6

T10.I5.D20k 10 5 20k 1.0

T5.I3.D50k 5 3 50k 1.3

T10.I5.D50k 10 5 50k 2.2

T5.I3.D100k 5 3 100k 2.5

T10.I5.D100k 10 5 100k 4.4

4.1. Experiments with Synthetic Data

The synthetic data sets which we used for our experiments were generated using
the procedure described in [4]. These transactions mimic the actual transactions
in a retail environment. The transaction generator takes the parameters shown in
Table 3.

Each synthetic data set is named after these parameters. For example, the data
set T10.I5.D20K uses the parameters |T | = 10, |I | = 5, and |D | = 20000. For all
the experiments, we generate data sets by setting N = 1000 and |L| = 2000 since
these are the standard parameters used in [4]. We chose 2 values for |T |: 5 and 10.
We also chose 2 values for |I |: 3 and 5. And the number of transactions are set to
20000, 50000 and 100000. Table 4 summarizes the data set parameter settings. For
the same |T | and |D | values, the size of data sets in megabytes are roughly equal
for the different value of |I |.

In our experiments, the itempair support threshold is set to be the same as the
mediator support threshold, and the mediator dependence threshold is set to be 0.1.
Figures 15 and 16 show the execution times for the six synthetic data sets given
in Table 4 for decreasing values of mediator support threshold. As the minimum
mediator support threshold decreases, the execution times of all the algorithms
increase because of increases in the total number of frequent itemsets.

4.2. Experiments with Real-World Data

We test the algorithms on two real-world data sets. One of them was obtained
from http://kdd.ics.uci.edu/databases/msweb/msweb.html. It was created by sam-
pling and processing the www.microsoft.com logs. The data records the use of
www.microsoft.com by 38000 anonymous, randomly-selected users. For each user,
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Figure 15. Run time comparison on synthetic data set (1)
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Figure 16. Run time comparison on synthetic data set (2)
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Figure 17. Run time comparison on Microsoft web log data
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Figure 18. Run time comparison on Livelink web log data

the data lists all the areas of the web site that user visited in a one week time frame.
The data set contains 32711 instances (transactions) with 294 attributes (items);
each attribute is an area of the www.microsoft.com web site. The corresponding
performance curves are illustrated in Figure 17.

The other data set was first used in [9] to discovery interesting association rules
from Livelink 6 web log data. This data set is not publicly available for proprietary
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reasons. The log files contain Livelink access data for a period of two months (April
and May 2002). The size of the raw data is 7GB. The data describe more than
3,000,000 requests made to a Livelink server from around 5,000 users. Each request
corresponds to an entry in the log files. The detail of data preprocessing, which
transformed the raw log data into the data that can be used for learning association
rules, was described in [8].

The resulting session file used in our experiment was derived from the 10-minute
time-out session identification method. The total number of sessions (transactions)
in the data set is 30,586 and the total number of objects 7 (items) is 38,679. The
corresponding performance chart is shown in Figure 18.

4.3. Performance Study

As we can see from the figures, the HI-mine algorithm outperforms the other
two algorithms on all data sets. At high support threshold values, HI-mine and
INDIRECT-F have similar performance and they both outperform INDIRECT-
A. However, as the support threshold goes lower, the gap between INDIRECT-F
and HI-mine and the gap between HI-mine and INDIRECT-A become larger. It
is interesting to observe that the lines for HI-mine in the figures are quite flat,
which means that the run time of HI-mine does not increase much as the support
threshold goes lower.

For synthetic data sets T10.I5.D20k and T5.I3.D50k, INDIRECT-F has almost
the same execution time as HI-mine when the mediator support threshold is over
0.7%. When the mediator support threshold decreases under 0.7%, the perfor-
mance gap becomes outstanding. At the reasonable low support threshold of 0.5%
in T10.I5.D20k, for example, HI-mine requires 70 seconds, whereas INDIRECT-
F requires 238 seconds and INDIRECT-A requires 450 seconds. At the even
lower support threshold of 0.3% in T5.I3.D50k, HI-mine requires 46 seconds, while
INDIRECT-F requires 89 seconds and INDIRECT-A requires 759 seconds.

On Microsoft and LiveLink web data sets, when the support threshold is large,
such as 0.4% for Microsoft data set and 0.7% for LiveLink data set, INDIRECT-F
behaves the same as HI-mine. However, the performance gap becomes significant
when the support threshold decreases to lower value. For example, HI-mine finishes
in 35 seconds while INDIRECT-F runs over 148 seconds and INDIRECT-A requires
345 seconds for the support level of 0.3% in LiveLink data set. When the support
threshold decreases to an even lower level, improvements of HI-mine are more
striking.

The reason for which INDIRECT-F is better than INDIRECT-A is that FP-
growth does not generate candidates when it generates frequent patterns and the
generation of frequent patterns is based on a compressed tree structure (FP-tree),
which is usually much smaller than the original database. However, INDIRECT-F
generates candidates for indirect associations using a join operation. HI-mine does
not perform any candidate generation. It discovers indirect associations directly
based on the HI-struct data structure.
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The reason that the run time of HI-mine does not change much with the support
threshold is that, when the support threshold decreases, the number of frequent
itemsets increases, but the number of indirect associations may not increase be-
cause there are fewer indirect itempairs. For example, at mediator support 0.2%
in Figure 18, the number of indirect associations in Livelink web data is only 555
while the number of frequent itemsets is 29,685. On the other hand, the run time
of INDIRECT depends primarily on the number of frequent itemsets generated by
Apriori or FP-growth. Therefore, avoiding generating all the frequent itemsets in
HI-mine makes it the most efficient on both synthetic and real-world data sets at
all levels of support threshold.

5. Conclusion

In this paper, we have proposed an efficient algorithm, HI-mine, which uses a new
data structure, HI-struct, to discover all indirect associations between items. The
salient features of HI-mine include that it avoids generating all the frequent itemsets
before generating indirect associations and that it generates indirect associations
directly without candidate generation. We have compared this algorithm to the
previously known algorithm, the INDIRECT algorithm, using both synthetic and
real-world data. As shown in our performance study, the proposed algorithm sig-
nificantly outperforms the INDIRECT algorithm, which uses a standard frequent
itemset generation algorithm such as Apriori and FP-growth to extract the frequent
itemsets before mining indirect associations.

For future research, there are several unresolved issues we need to address.

1. Scalability issue. The current implementation of HI-mine algorithm compresses
the database into frequent-item projections. If the projected database can be
stored in the main memory, there is no extra disk I/O in the subsequent mining
process. Otherwise, multiple scans of (part of) the projected database (usually
much smaller than the original database if the database is sparse) are needed
in the process of learning IIS (D) and MSS s. We will work on the issue of how
to further reduce disk I/Os when the database is huge, e.g., with millions of
transactions.

2. Measure selection. In addition to the IS measure used in our thesis, various
interestingness measures have been proposed to identify the statistical signifi-
cance of association rules. In the next step of our study, a proper evaluation
of these measures should be carried out before deciding what is the right mea-
sure to use for finding interesting indirect associations. Threshold selection is
another issues that needs further investigation.

3. Framework extension. It is possible to extend our work to discover indirectly
associated itemsets rather than between a pair of items. In addition, we have
ideas for how to develop a broader framework to directly generate both positive
and negative association rules, and to improve the efficiency for interesting rule
generation as well.
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Notes

1. The initial header table of a database may contain more than one queue. We use a simple
example for the convenience of explanation.

2. The proper queue is the queue of the item right after item i in the corresponding frequent-item
projection.

3. The proper queue is the queue of the item right after item j in the corresponding frequent-item
projection.

4. The two thresholds are of the same value here just for the convenience of explanation. They
can be different.

5. See the example frequent itemset tree shown in [12] for more detail

6. Livelink is a product of Open Text Corporation (http://www.opentext.com).

7. An object could be a document (such as a PDF file), a project description, a task description,
a news group message, a picture and so on [8].
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