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ABSTRACT

Motivation: Much research has been dedicated to large-scale

protein interaction networks including the analysis of scale-free

topologies, network modules and the relation of domain–domain to

protein–protein interaction networks. Identifying locally significant

proteins that mediate the function of modules is still an open

problem.

Method: We use a layered clustering algorithm for interaction

networks, which groups proteins by the similarity of their direct

neighborhoods. We identify locally significant proteins, called

mediators, which link different clusters. We apply the algorithm to

a yeast network.

Results: Clusters and mediators are organized in hierarchies, where

clusters are mediated by and act as mediators for other clusters.

We compare the clusters and mediators to known yeast complexes

and find agreement with precision of 71% and recall of 61%.

We analyzed the functions, processes and locations of mediators

and clusters. We found that 55% of mediators to a cluster

are enriched with a set of diverse processes and locations, often

related to translocation of biomolecules. Additionally, 82% of

clusters are enriched with one or more functions. The important

role of mediators is further corroborated by a comparatively higher

degree of conservation across genomes. We illustrate the above

findings with an example of membrane protein translocation from

the cytoplasm to the inner nuclear membrane.

Availability: All software is freely available under Supplementary

information.

Contact: williama@biotec.tu-dresden.de

Supplementary information:

http://www.cse.yorku.ca/�billa/MODULARPIN/

1 INTRODUCTION

The surge of high-throughput experiments for finding pairs of

interacting proteins in a cell has led to the emergence of large

protein interaction network (PIN) datasets. A PIN may contain

thousands of proteins and interactions. A cluster is a set of

proteins with similar interaction partners (neighborhoods),
where a recorded interaction may be physical or logical

(occurring through an unknown intermediary). In a cellular

process, mediator proteins perform functionality that is
required before mediated proteins’ functionality can be carried

out. Mediators can often be considered as parent-child

relationships; childrens’ functionality is dependent on their
parent mediators, while parent mediators can function even in

the absence of their childrens’ functionality (Gavin et al., 2006;
Hollunder et al., 2005; Jensen et al., 2006; Ravasz et al., 2002).

A protein may be a mediator for a set of proteins, while it may

be mediated itself by other proteins, thus resulting in
hierarchical mediation. In this article, we propose clustering

a PIN on the basis of neighborhood similarity, as a method for

finding the mediators and modules that represent hierarchies
of dependencies in a PIN. We detect a mediator protein for

a cluster, as a protein that has recorded interactions with all of

the cluster’s member proteins. Mediators are ‘locally’ signifi-
cant, since they are not necessarily the most highly connected

proteins that affect the structure of the complete PIN, and
cannot be detected based on degree.

Figure 1 shows, as example, the translocation of membrane
proteins from the cytoplasm to the nucleus via nuclear pores

(NUPs). Karyopherins are mobile transport receptors, also

known as importins/exportins, that bind and mediate the
translocation of cargoes through the NUP complexes (Marelli

et al., 2001). Blobel et al. recently elucidated some mechanisms

by which karyopherins mediate translocation of membrane
proteins (King et al., 2006). Karyopherins mediate the

translocation of membrane proteins heh1 and heh2 from the
cytoplasm to the inner nuclear membrane (INM) through

physical interactions with nuculear localization signal (NLS)-

bearing substrates. The process of translocating the heh1 and
heh2 membrane proteins is similar for both heh1 and heh2 and

is mediated by the same karyopherins. Binding sites, such as the

NLS, define the karyopherin mediators’ interaction partners
(Deng et al., 2002; Hollunder et al., 2005; Kim et al., 2002;

Morrison et al., 2006; Wuchty, 2006). In turn, the karyopher-
ins’ functionality is dependent on Ran-GDP and Ran-GTP for

binding and unbinding to membrane protein cargo, pointing

to hierarchical levels of mediation (King et al., 2006). Clearly,*To whom correspondence should be addressed.
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the entire translocation process is dependent on the NUP

organization and biogenesis. Given a yeast PIN dataset,

we want to find the hierarchy of mediator proteins that are

involved in membrane proteins’ translocation.
In this example, a cluster of proteins may represent a module

of functionality in the PIN, such as structural activity in the

NUP complexes. For a cluster, there is usually at least one non-

member mediator protein that plays a significant local role by

interacting with all member proteins. In this example, the

GTPase Ran, which coordinates the bidirectional transport of

macromolecules across the nuclear envelope, would be expected

to interact (physically or logically via intermediate proteins)

with many of the proteins involved (King et al., 2006).

A protein (e.g. GTPases) can mediate more than one cluster.

A cluster (e.g. a functional module of structural activity) can

be mediated by more than one mediator.
The main contribution of this article is to propose a novel

methodology for clustering and analyzing PINs, which involves:

(a) We identify clusters of proteins with similar interaction

partners, i.e. neighborhoods. Proteins in the same cluster

have physical and/or logical interactions to an identical

set of proteins. We show that clusters of proteins are

enriched with homogeneous functional annotations and

often comprise modules of functionality.

(b) We identify mediator proteins, where a mediator interacts

with all of a cluster’s protein members (according to the

dataset and results). Mediators may have small degrees

and may go unnoticed in other clustering approaches.

We show that mediators of a cluster are enriched

with diverse process and location annotations and often

mediate a cluster’s proteins’ translocation in cellular

processes and locations (Chen and Yuan, 2006;

Chua et al., 2006; Espadaler et al., 2005; Okada et al.,

2005; Pereira-Leal et al., 2004; Samanta and Liang,

2003; Spirin and Mirny, 2003). Mediators are more

conserved than average, as shown by their orthologs

across genome groups.

The rest of this article is organized as follows. Section 2 gives

an overview of previous related work. Section 3 describes the

PIN dataset, methods and the MULIC clustering algorithm.

Section 4 discusses our experimental results. Section 5

concludes the article.

2 RELATED WORK

A PIN is an undirected graph, where the objects (nodes)

represent proteins and the edges represent interactions.

Successful PIN clustering applications are often based on

graph theoretic techniques. Previous work has been successful

in identifying clusters as tightly interacting groups of proteins.

Predicting protein complexes may involve matching a cluster

to a complex, such as the Restricted Neighborhood Search

Clustering (RNSC) algorithm (Li et al., 2006). An early work on

identifying protein complexes involved an application of the

k-cores algorithm by Bader et al. (Bader and Hogue, 2003;

Batagelj and Zavernik 2001). The k-core is computed by pruning

all the nodes and their respective edges with degree (number of

edges) less than k. That means that if a node u has degree m and

it has n neighbors with degree less than k, then u’s degree

becomes m� n and it will be also pruned if k > m� n. Consider

a cluster of low-degree proteins fA,B,Cg that is a 2-core or

3-core, but not a 4-core, because A and B have three edges only;

k-cores with k¼ 4 cannot find this cluster. Our clustering, on the

other hand, should still be able to find this cluster, if all proteins

fA,B,Cg have edges to the same proteins.
Methods for predicting interactions and complexes in PINs

often involve finding co-occurring domains in protein pairs

believed to interact (Albrecht et al., 2005). Several articles have

appeared on predicting protein–protein interactions based on

their binding sites (Deng et al., 2002; Kim et al., 2002; Morrison

et al., 2006; Sprinzak and Margalit, 2001; Wuchty, 2006).

These methods generally associate a statistical score to the

interaction probability between domains. These scores suggest

which protein pairs are most likely to interact; then it is

deduced that other protein pairs with these domains are likely

to interact.
Similarly, Morrison et al. and Li et al. identify bipartite

subgraphs in PINs, which arise from domain–domain inter-

actions and motifs (Li et al., 2006; Morrison et al., 2006).

Our approach is related: members of an n:m bipartite subgraph

will result in n and m interacting members of two clusters.

Our method generates ‘approximate’ bipartite graphs, revealing

hierarchical cluster organization and modular mediation.
Ding et al. (2004) represent PINs based on an underlying

bipartite graph model that allows generating the complex–

complex association network. This representation allows

viewing the PIN as consisting of protein complexes that share

components.

Dunn et al. (2005) describe separating PINs into clusters

of interconnected proteins, using Girvan and Newman’s

Edge-Betweenness algorithm (2002). Enriched gene ontology

(GO) annotations are detected in clusters.
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Fig. 1. The U-shapes represent membrane proteins, with the circles

representing NLS-bearing substrates to which karyopherins bind. The

translocation of membrane proteins from the cytoplasm to the inner

nuclear membrane, via nuclear pores, has been shown to be mediated

by karyopherin-a and karyopherin-b1 proteins. The karyopherins

are in turn dependent on Ran-GDP and Ran-GTP as source

of energy for binding and unbinding to membrane protein cargo.

The process depends on nuclear pore organization and biogenesis

(King et al., 2006).
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Yeh et al. (Segre et al., 2005; Yeh et al., 2006) present

a clustering of drugs into functional classes on the basis of

their interaction properties. Edges are colored to represent

a drug pair’s additive, synergistic or antagonistic effect. Then,

a network of drugs is clustered into functional classes that

interact with each other monochromatically.
Methods for finding functional modules in PINs often use

node degrees to find dense areas (Chen and Yuan, 2006;

Espadaler et al., 2005; Pereira-Leal et al., 2004; Spirin and

Mirny, 2003). Some recently proposed methods predict

functional modules based on how many common interaction

partners two proteins share. Some of these methods have been

shown to be effective in the presence of false positives (FPs)

(Chua et al., 2006; Morrison et al., 2006; Okada et al., 2005;

Samanta and Liang, 2003). We go a step beyond previous

work, by examining the locally significant interaction partners

(mediators) that mediate the functionality of a cluster’s member

proteins in processes and locations.

3 METHODS

3.1 Datasets

We used the yeast Saccharomyces cerevisiae PIN originating fromGavin

et al. (2006) containing 93 881 interactions between 2551 proteins (all

confidence levels included). We used the ‘matrix’ model for assigning

binary interactions within purifications (Bader and Hogue, 2002).

We annotated yeast proteins with GO functional process and

location annotations. The GO annotations were derived from the

SGD yeast database (SGD Saccharomyces Genome Database).

Orthologous analyses of the annotated ORFs in the yeast genome

were parsed out from the clusters of orthologous groups (COGs)

of proteins (ftp://ftp.ncbi.nih.gov/pub/COG) (Tatusov et al., 2001;

Von Mering et al., 2002).

3.2 Multiple layer incremental clustering

The MULIC algorithm clusters together proteins with ‘similar’

interaction partners. Similarity implies many interactions with the

same proteins and few interactions with different proteins. The

motivation is that proteins interacting with the same proteins are

likely to have similar binding sites and to belong to a functional

module, which may be involved in diverse cellular processes and

locations (Chua et al., 2006; Espadaler et al., 2005; Okada et al., 2005;

Pereira-Leal et al., 2004; Samanta and Liang, 2003; Spirin and Mirny,

2003). Similar proteins are joined according to a threshold, which starts

from a stringent value and is relaxed gradually. We identify one or more

mediators for a cluster, which are locally significant and interact with

all cluster members (Chen and Yuan, 2006).

Let nei( p) denote the set of interaction partners of protein p, i.e. p’s

edges to other proteins. Let nei(C) denote the union of the interaction

partners of all of cluster C’s protein members. The similarity of pro-

tein p to cluster C is the size of the intersection (overlap) between nei( p)

and nei(C), divided by p’s degree:

similarityð p,CÞ ¼ jneiðpÞ \ neiðCÞj=jneið pÞj

With this relative similarity metric, the significance of a protein’s

similarity is relative to its degree. An overlap � of interaction partners is

more significant if the protein has small degree (few interaction

partners) than if it is a ‘hub’ with many interaction partners. With this

relative similarity, small-degree unclustered proteins are likely to be

clustered first. The proteins clustered first have a relative similarity

that is significant and influence the clusters most.

Figure 2 shows the MULIC clustering algorithm, as used in our

application. The algorithm reads all proteins into set S. The proteins are

clustered in order from low to high degree, for the reasons described

above. The first protein is inserted into a new cluster. Each iteration

considers all unclustered proteins. A protein p is either inserted into the

cluster C to which it has the highest similarity or into a new cluster,

depending on p’s and C’s difference, which is the number of p’s different

interaction partners.

Variable � represents the maximum difference allowed between

p and C, which is the number of p’s different interaction partners:

differenceð p,CÞ ¼ jneið pÞ � neiðCÞj � �

If p’s most similar cluster C is within range � then p is inserted into C,

else, p is inserted into a new cluster on its own. The variable � is

initialized to 1 and is incremented by �� whenever no protein can be

placed into an existing cluster with the current � value. As clusters

grow, a greater � value becomes more suitable because the difference of

proteins to existing clusters increases. A cluster consists of one or more

‘layers’ formed gradually, by relaxing the criterion � for inserting

proteins in clusters. The cluster layer in which a protein is inserted,

which depends on �, represents how high the protein’s difference was

to the cluster when the protein was inserted into the cluster. MULIC

starts by inserting as many proteins as possible in top layers—such as

layer 1—and then moves to bottom layers, creating them as � increases.

Bottom layers, such as 1000, correspond to high � values.

Clusters of size 1 should not persist through the clustering.

Only clusters of size greater than 1 should persist (since a module or

complex consists of more than 1 protein). At the end of each iteration

through all unclustered proteins, clusters of size 1 are removed and their

proteins will be re-clustered at the next iteration.

One of the advantages of MULIC is that clusters are layered and

objects clustered at top layers have more similar neighborhoods.

Previous algorithms often do not consider the layered structure

of protein complexes, creating instead a flat clustering.

Fig. 2. The MULIC clustering algorithm.
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Moreover, the focus of these algorithms is often on finding the most

densely connected or largest hubs of a PIN, while MULIC focuses on

finding proteins with similar interaction sets. Our clustering approach’s

goal is to analyze local topological properties in contrast to macro

properties such as skewed degree distributions, which most of the

previous analysis focuses on. We want to identify structure by way of

similarity, by clustering proteins that interact with the same proteins.

This is in contrast to previous studies that have focused in clustering

according to (a) protein degree, (b) place in the PIN hierarchy and (c)

local density, e.g. clustering coefficient (Bader and Hogue, 2003; Girvan

and Newman, 2002; Yang et al., 2006). Given the clusters, we find

mediator proteins with locally significant roles, which interact with all

of a cluster’s members. Such microscopic analysis could not have been

possible by just examining the degree of a protein or the clustering

coefficient, since a small-degree protein may be locally significant for

a PIN neighborhood.

3.3 Evaluation of results

Our results’ evaluation involves assessing the effectiveness of our

methodology for identifying modules of functionality as well as the

proteins mediating their translocation and involvement in processes.

3.3.1 Overlap of our clusters and mediators with the complexes
by Gavin et al. (2006) We compared our results to the modularity

results of Gavin et al. (2006). They partitioned proteins in yeast PIN

complexes into two types: core components that are present in most

isoforms and attachments present in only some of them. Among the

attachments, sometimes two or more proteins were always together and

present in multiple complexes, which they call modules. We evaluated

the overlap of our mediators with their cores and our clusters with their

modules. To evaluate this correlation, we computed the precision and

recall to find how accurately our mediators match their cores and our

clusters match their modules. Precision measures the extent to which

each cluster matches its most similar complex. Recall measures the

extent to which each cluster’s objects are spread out over many

complexes.

3.3.2 Annotation enrichment of clusters and mediators We

evaluate the enrichment of a cluster’s proteins with functional

annotations using P-values (King et al., 2004). We compare this to

the enrichment of a cluster’s mediators with process and location

annotations. The P-value for a cluster of size C containing k � C

proteins with annotation X is:

P ¼ 1�
Xk�1

i¼0

C
i

� �
G� C
n� i

� �

G
n

� � :

This is the likelihood that the cluster would have k or more proteins

annotated with X, if the cluster’s contents were drawn randomly from

the set of known proteins. The size of the set of known proteins is G and

contains n � G proteins with annotation X. This P-value metric is also

used to evaluate the enrichment of a cluster’s mediators with annotation

X; in this case, C is the number of mediators of the cluster, k � C of

which have annotation X.

Enrichment of a cluster or a cluster’s mediators with X means a

P-value < 1% for annotation X.

4 RESULTS AND DISCUSSION

4.1 Overlap with complexes

The MULIC algorithm produced 274 clusters on the PIN

by Gavin et al. (2006). The cluster sizes ranged from 2 to

50 proteins. We identified 985 mediator proteins. Figure 3

shows that mediators are widely dispersed across all degree

ranges. The number of proteins that have degree 1 in our

dataset is 171 out of 2551 proteins in total (6:7%). Even if some

of these are FPs, such a small number of FPs will not greatly

affect our results. We evaluated if a cluster and its mediators

overlap with modules and cores, respectively, in the yeast

complexes by Gavin et al. (2006). We found a 71% precision

and 61% recall. Clearly, there is a high correlation between our

mediators clusters and the core modules. Figure 4 shows such a

typical example of overlap between module cluster and core

mediators.

We tried various �� values and selected �� ¼ 1. To select

the best �� value, we clustered the PIN originating from

Von Mering et al. (2002) and matched the MULIC clusters

to known yeast complexes from the MIPS database (Mewes

et al., 2002). The matching criteria, described in (King et al.,

2004), are roughly that a cluster should either have �60% of its

proteins overlapping with a complex of a similar size, or �90%

of its proteins overlapping with a complex of a larger size. We

generated 85 clusters of minimum size 4, of which 46 matched a

known MIPS complex. In comparison, King et al., who used

the same yeast dataset and matching criteria for this experi-

ment, generated 28 clusters of minimum size 4, of which

23 matched MIPS complexes (King et al., 2004). Bader and

Hogue generated 209 predicted yeast complexes, of which 54

match the MIPS database in at least 20% of their proteins

(Bader and Hogue, 2003).
We repeatedly changed the order of proteins within a degree

class of the Gavin dataset, for degree classes 1–31. Then, we

re-clustered the dataset and evaluated the precision and recall

to the initial clustering. The clusterings were always identical.
We randomly removed x% of edges in the Gavin dataset.

A protein was removed if all of its edges were removed.

m

Fig. 3. Number of mediators of various degrees (Gavin et al., 2006;

Von Mering et al., 2002).
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After re-clustering the dataset with missing edges, we evaluated

the precision/recall to the initial clustering. The average

precision/recall over 100 trials with x¼ 10 was 0.72 and 0.65.

The average precision/recall over 100 trials with x¼ 20 was 0.6

and 0.51. This shows that the results are relatively reproducible

even in the case of 20% missing edges. Nonetheless, the

limitations of this method are obvious in light of the low

connectivity and sparseness of PIN datasets.

4.2 Hierarchical modules of mediators

4.2.1 Protein translocation to nucleus Figure 5 gives a

detailed example from our results. We observed a hierarchy

of mediators and clusters. A cluster of proteins is often

mediated by a ‘parent’ cluster and in turn mediates a ‘child’

cluster. After mapping the proteins to their annotations,

we retrieve a hierarchy of functions/processes; often clusters

are enriched with annotations, and parent clusters represent

processes that are required for their child clusters. In other

words, proteins collaborate to form modules of functionality,

which in turn mediate subordinate modules; parent modules

mediate the cellular involvement of child modules (Chen and

Yuan, 2006; Samanta and Liang, 2003).
The most obvious processes that are described by the results

involve translocation of biomolecules and transmembrane

proteins between the cytoplasm and the INM, through

NUPs. Translocation of membrane proteins has long been an

enigma but it has recently been shown to require energy and

nuclear pore complexes (NPCs) together with karyopherins are

involved. This translocation is believed to be karyopherin-

mediated through NLS binding sites (King et al., 2006). The

mediator hierarchy in Figure 5 shows proteins’ reliance on

receptor-mediated transport through NPCs, as described by
Blobel et al. (2006). Several mediator dependencies are shown
as involved in protein translocation between the cytoplasm

and nucleus via NPCs. Next, we discuss this mediator
hierarchy, and how the hierarchy’s annotations are in
accordance with Sacchanomyces Genome Datebase (SGD)

and other literature (King et al., 2006; SGD Saccharomyces
Genome Database). The top-level mediators include some
highly connected ATPases in the yeast PIN that are involved in

releasing energy that drives chemical reactions. The proteins at
the lowest levels have more granular functions.
The mediator hierarchy involving clusters 59, 12, 50 in

Figure 5 shows the karyopherins’ involvement in translocation.

Kap95 is karyopherin-�1, which forms a dimeric complex with
kap60 (karyopherin-�), and they mediate nuclear import of
cargo proteins via NLS signals (King et al., 2006). Nup1 and

nup2 are described by SGD as involved in nucleocytoplasmic
transport, release of karyopherin–cargo complexes after trans-
port across NPC, and as binding to either the nucleoplasmic or

cytoplasmic faces of the NPC depending on Ran-GTP levels;
this is in accordance with the results described by Blobel et al.
(King et al., 2006; SGD Saccharomyces Genome Database). An

INM protein in the cytoplasm is bound to two karyopherin
proteins that act as mediators; one of these proteins recognizes
the INM protein and the other probably mediates the

interactions with the NPC to drive translocation of the INM
protein to the nuclear side (King et al., 2006). Nup60 and
q06616 are NPC subunits, which anchor nup1 and nup2 to the

NPC (SGD Saccharomyces Genome Database). These med-
iator proteins mediate the export from the nucleus of nucleus-
encoded ribonuclease P complexes (pop1, pop3, pop8). The

nucleus-encoded ribonuclease is transported to mitochondria
for mitochondrial RNA processing, a well-known process
(Chang and Clayton, 1987).

The mediator hierarchy involving clusters 59, 152 shows NPC
formation, organization and biogenesis as a prerequisite for
import/export to/from the nucleus. SGD describes the cluster

152 as a subcomplex of the NPC consisting of nsp1-nup57-
nup49-nic96. Nup57 is an essential subunit of this NPC,
functioning as the organizing center. On the other hand,

nup159 is a subunit of the NPC that is found exclusively on the
cytoplasmic side, forms a subcomplex with nup82 and nsp1,
and is required for mRNA export. Nsp1 is an essential

component of the NPC, mediating nuclear import and
export. Nup82 also interacts with nup116 and is required for
proper localization of nup116 in the NPC. Nup116 is a subunit

of the NPC that interacts with karyopherin kap95 (King et al.,
2006). However, since kap95 did not interact with nup116 in
the dataset we clustered, kap95 cannot mediate nup116 in

our results.
The mediator hierarchy involving clusters 59, 138, 11, 54

shows the formation of endoplasmic ruticulum (ER) to Golgi

transport vesicles as a prerequisite for coat protein complex II
(COPII) vesicle coat and ER to Golgi transport. The sec13
protein mediates two distinct clusters involved in known

processes: (a) mex67, nup85: NUP components involved in
mRNA export from nucleus, and subunits of the Nup84
subcomplex, respectively. (b) sec24, sfb2, sec16: involved in ER

to Golgi transport. SGD describes sec13 as important for
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Fig. 5. Circles are proteins and dotted rectangles are clusters.

The cluster numbers in Supplementary information are indicated at

the lower right.
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the formation of ER to Golgi transport vesicles, and as

a component of both the Nup84 subcomplex (nup84, nup85,

nup120, nup145, sec13, seh1) and of the COPII complex

(sar1, sec13, sec16, sec23, sec24, sec31(web1), sfb2, sfb3).

Sec13 was probably separated from nup84 complex because,

as described above, sec13 is important for both the Nup84

subcomplex and the COPII complex. SGD describes mtr2 as an

mRNA transport regulator, and mex67 is a NUP component

that is involved in nuclear mRNA export (SGD Saccharomyces

Genome Database). Mex67 and mtr2 form a nuclear mRNA

export complex, which binds to RNA.

4.2.2 Mitochondrial replication Table 1 shows, as another

example, the enriched annotations in the mediators-cluster

pair 106 in our results. These results are in accordance with

knowledge that mitochondrial replication is controlled by

chromosomes in the nucleus. Proteins in cluster 106 comprise

the ‘nuclear origin of replication recognition complex’, which

is transported to the mitochondria via mediators; there the

complex guides mitochondrial replication. As shown, the

mediators of cluster 106 are enriched with annotations on

‘mitochondrial transport’ of energy-related biomolecules, such

as ATP activity through the electron transport chain. Proteins

in cluster 106 are additionally enriched with annotations

on DNA replication and its initiation. The proteins of the

mediators-cluster pair 106 have complementary roles in the

nucleus and mitochondrial processes that are involved in

mitochondrial replication.

4.2.3 Discussion: Hierarchical modules of mediators Analyzing

a PIN dataset on the basis of common friends can be more

effective than degree or density-based analysis for some

purposes. The hierarchy of mediators and clusters that is

shown in Figure 5 can be explained as a result of an underlying

PIN organization that approximates a hierarchy of bipartite

graphs. Figure 6 shows such a PIN organization. If any two

proteins are connected in the PIN through a path of physical

interactions, then physical interactions are conceptualized

as occurring along two dimensions: x-dimension interactions

connect proteins within the same module, while y-dimension

interactions connect proteins between modules at different

levels of the hierarchy. A direction worth pursuing as future

work is to examine if such an organization is inherent to PINs,

or if it also exists in other scale-free networks. If this

organization is inherent to PINs, then it could help to find

the FP and false negative (FN) edges that result from the

matrix model of interpreting experimental results (Bader and

Hogue, 2002).
Our results for the Gavin et al. dataset indicate that the root

of the hierarchy includes the ATPases, GTPases and heat-shock

proteins (HSPs). The rationale is that when considering indirect

mediations of clusters, such that cluster A mediates B which

in turn mediates C, we notice that these hubs mediate most of

the other clusters directly or indirectly. Thus, the hierarchy of

mediation can be considered as starting at the hubs.
If domain–domain interactions (DDIs) produce the PIN

structure of Figure 6, then modules are produced by DDIs

along dimension x, while DDIs along dimension y connect

modules into a hierarchical PIN structure. As an example of a

cluster involving domains, the following yeast proteins were

placed in the same cluster, even though there was no apparent

interaction between them in the experimental results: ADH1,

EIF3B, SPAPB1E7.07. According to the SCOPPI database, six

known DDIs occurred between these proteins within the cluster

(see Supplementary information). These DDIs involved

domains with the following related functional annotations:

oxidoreductase activity, transferase activity, magnesium ion

binding, purine nucleotide biosynthesis. An oxidoreductase is

an enzyme that catalyzes the transfer of electrons from one

molecule to another, and may be involved in magnesium ion

binding.

4.3 Annotation enrichment of clusters and mediators

We computed the P-values of the GO annotations in each of

our 274 clusters. We also computed the P-values of the GO

annotations in the set of mediators of each cluster. The

P-values point out the enriched annotations in a cluster or

a cluster’s mediators, considering the annotations’ distributions

over all proteins (see Section 3.3.2).
Fifty five percent of the mediators are enriched with a set

of diverse process and location annotations, often related

to transport of biomolecules across cellular locations.

Table 1. Enriched annotations in cluster 106 and its mediators

P-value

Enriched annotations in cluster 106 and its mediators

RNA ligase (ATP) activity 0.0001

Iron ion transporter activity 0.0006

Mitochondrial iron ion transport 0.0006

Mitochondrial transport 0.0006

Carrier activity 0.0006

Additional enriched annotations in cluster 106

Pre-replicative complex formation and maintenance 1E�8

DNA replication initiation 2E�7

Nuclear origin of replication recognition complex 1.6E�11

pre-replicative complex 2.6E�8

Chromatin silencing at silent mating-type cassette 5.6E�8

Homologous chromosome segregation 0.0008

DNA replication origin binding 4.7E�10

Mannose-1-phosphate guanylyltransferase activity 0.0008

Fig. 6. A hypothetical PIN that approximates a hierarchy of bipartite

graphs. Proteins (circles) are grouped (ovals) based on common

interaction partners. The matrix model of interpreting experimental

mass spectrometry results is known to produce FP edges (broken lines).
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After replacing the mediators’ granular annotations with their
ancestors at GO depth 7, we found that all clusters’ mediators

are enriched with more than one generic process/location
annotations. Complementarily, 82% of clusters are enriched

with one or more functional annotations with low P-values,
sometimes near 0.0. These clusters are enriched with functional

annotations in addition to being enriched with similar process/
location annotations as their mediators.

As an example, cluster 202’s mediators are enriched with
both processes ‘endocytosis’ and ‘exocytosis’, while cluster 202

is additionally enriched with functions ‘mRNA binding’ and
‘RNA polymerase II transcription factor activity’. Endocytosis

is often coupled with exocytosis (Batteya et al., 1999).
Molecular mechanisms of exocytosis and endocytosis have

extensively been investigated, but the coupling mechanism
between these two events is unknown. Several

clusters’ mediators are also enriched with ‘snRNA/tRNA/
mRNA/rRNA export from nucleus’, ‘ribosomal/snRNP

protein import into nucleus’, ‘nuclear pore organization and
biogenesis’ (see Supplementary information).

4.4 Cluster-mediator cross talk of processes–locations

Functions and processes are sometimes known to occur in

specific cellular locations. We find the annotations that cross
talk most frequently between mediators and clusters. The cross

talk frequency is the number of mediator-cluster pairs in

which the location annotation occurs in the mediator and
the functional or process annotation in its mediated cluster.

Table 2 shows some cross-talk frequencies between mediators’
location annotations and clusters’ functional or process

annotations. Some examples of known associations that cross
talk frequently include: mitochondria/fermentation, nucleus/

DNA-dependent regulation of transcription, ER/glycosylation
and vacuole/telomere maintenance.

4.5 Mediators and evolution

We mapped the mediator proteins in yeast to their orthologs

across several groups of genomes, including archaea, eukaryota,
bacteria, Gram�positive bacteria (excluding actinobacteria),

Gram-positive actinobacteria, Gram-negative proteobacteria

(excluding alpha and gamma), Gram-negative alphaproteo-

bacteria, Gram-negative gammaproteobacteria and chlamydiae

bacteria. Actinobacteria have been considered as possible

ancestors for archaeans and eukaryotes.
We computed the percentage of yeast mediators that have

orthologs in these groups of genomes, according to the COG

orthologs database. Then, we compared this to the percentage

of all yeast proteins (Gavin et al., 2006) that have orthologs in

these groups of genomes. Figure 7 shows that for all groups of

genomes, there is a higher percentage of orthologs in our

set of yeast mediators than in the set of all yeast proteins.

Especially with respect to ancient genome groups such as

archaea and actinobacteria, the percentage of orthologs in our

yeast mediators is higher than the corresponding percentage

in the set of all yeast proteins. Mediator proteins, which are

locally significant in the yeast PIN and are often of low degree,

tend to be more evolutionarily conserved than any average

protein, as suggested by their orthologs across genome groups.

This may hint that mediators play a role in the evolution of

functional modules (clusters).

Since mediators interact with all members of a cluster

(according to the dataset), mediators may contribute to new

protein additions through evolution, similar to the preferential

attachment model of an evolving scale-free PIN [4]. Figure 8

illustrates a high-degree central hub and three mediator

proteins; a new protein’s addition to this hypothetical PIN is

connected to the hub and one of the mediators. Over time,

a few hub proteins will have many connections, while more

locally significant mediators will have fewer connections.

PIN evolution may involve a type of synergism effect, where

one or more hubs cooperate with mediator proteins. Synergistic

Table 2. Frequent cross talks between mediators’ location annotations

and clusters’ functional or process annotations

Cluster functional or process annotations Cross talk

Mediator location: endoplasmic reticulum (ER)

Membrane 6

Vesicle-mediated transport 6

Vesicle fusion 5

Mannosyl-oligosaccharide glucosidase activity 5

Mediator location: vacuole

Golgi to vacuole transport 7

Protein targeting to vacuole 6

Telomere maintenance 6

Mediator location: mitochondria

Fermentation 8

Mediator location: nucleus

DNA-dependent regulation of transcription 18

Fig. 7. For all groups of genomes, there is a higher percentage of

proteins with orthologs in our set of yeast mediators than in all yeast

proteins (Gavin et al., 2006).
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1130



selection often means that a single new protein added to an
evolving PIN is likely to be filtered out as irrelevant, while an
addition of several interacting new proteins are more likely

to be preserved. A PIN backbone traditionally involves hub
proteins of high degree, while our set of mediators consists
mostly of low-degree locally significant proteins.

5 CONCLUSIONS

Proteins with similar interaction partners often comprise a
functional module, which is supported by the homogeneity of

functional annotations within our clusters. Cluster involvement
in processes is mediated by locally significant mediator proteins
that may be of low degree. A cluster may be both a mediator
and mediated itself by other cluster(s), resulting in a hierarchy

of clusters and mediators. Our cluster-mediator yeast results
match the modular complexes of Gavin et al. 2006. Mediators
are more evolutionarily conserved than other proteins, as

shown by orthologs across genomes.
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