
19

A Survey on Graph Representation Learning Methods

SHIMA KHOSHRAFTAR and AIJUN AN, Electrical Engineering and Computer Science Department,

York University, Canada

Graph representation learning has been a very active research area in recent years. The goal of graph rep-

resentation learning is to generate graph representation vectors that capture the structure and features of

large graphs accurately. This is especially important because the quality of the graph representation vectors

will affect the performance of these vectors in downstream tasks such as node classification, link prediction

and anomaly detection. Many techniques have been proposed for generating effective graph representation

vectors, which generally fall into two categories: traditional graph embedding methods and graph neural

network (GNN)–based methods. These methods can be applied to both static and dynamic graphs. A static

graph is a single fixed graph, whereas a dynamic graph evolves over time and its nodes and edges can be

added or deleted from the graph. In this survey, we review the graph-embedding methods in both traditional

and GNN-based categories for both static and dynamic graphs and include the recent papers published until

the time of submission. In addition, we summarize a number of limitations of GNNs and the proposed solu-

tions to these limitations. Such a summary has not been provided in previous surveys. Finally, we explore

some open and ongoing research directions for future work.

CCS Concepts: • Computing methodologies→ Machine learning; neural networks; learning latent

representations;

Additional Key Words and Phrases: Graphs, graph representation learning, graph neural network, graph

embedding

ACM Reference format:

Shima Khoshraftar and Aijun An. 2024. A Survey on Graph Representation Learning Methods. ACM Trans.

Intell. Syst. Technol. 15, 1, Article 19 (January 2024), 55 pages.

https://doi.org/10.1145/3633518

1 INTRODUCTION

Graphs are powerful data structures to represent networks that contain entities and relationships
between entities. There are very large networks in different domains, including social networks,
financial transactions, and biological networks. For instance, in social networks, people are the
nodes and their friendships constitute the edges. In financial transactions, the nodes and edges
could be people and their money transactions. In biological networks, nodes are biological entities
such as proteins and genes and edges are the interactions between them. One of the strengths of
a graph data structure is its generality, meaning that the same structure can be used to represent

Authors’ address: S. Khoshraftar and A. An, Electrical Engineering and Computer Science Department, York University,

Keele Street, Toronto, Canada; e-mails: {khoshraf, aan}@eecs.yorku.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2157-6904/2024/01-ART19 $15.00

https://doi.org/10.1145/3633518

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

https://orcid.org/0000-0002-6384-4169
https://orcid.org/0000-0003-1765-5751
https://doi.org/10.1145/3633518
mailto:permissions@acm.org
https://doi.org/10.1145/3633518
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3633518&domain=pdf&date_stamp=2024-01-16

19:2 S. Khoshraftar and A. An

different networks. In addition, graphs have strong foundations in mathematics, which could be
leveraged for analyzing and learning from complex networks.
In order to use graphs in different downstream applications, it is important to represent them ef-

fectively. A graph can be simply represented using the adjacency matrix, which is a square matrix
whose elements indicate whether pairs of vertices are adjacent or not in the graph, or using the
extracted features of the graph. However, the dimensionality of the adjacency matrix is often very
high for big graphs, and the feature extraction–based methods are time-consuming and may not
represent all the necessary information in the graphs. Recently, the abundance of data and compu-
tation resources have paved the way for more flexible graph representation methods. Specifically,
graph embedding methods have been very successful in graph representation. These methods
project the graph elements (such as nodes, edges, and subgraphs) to a lower dimensional space
and preserve the properties of graphs. Graph embedding methods1 can be categorized into tradi-
tional graph embedding and graph neural network (GNN)–based graph embedding methods.
Traditional graph embedding methods capture the information in a graph by applying different
techniques, including random walks, factorization methods, and non-GNN–based deep learning.
These methods can be applied to both static and dynamic graphs. A static graph is a single fixed
graph, whereas a dynamic graph evolves over time and its nodes and edges can be added or deleted
from the graph. For example, a molecule can be represented as a static graph, whereas a social net-
work can be represented by a dynamic graph. GNNs are another category of graph embedding
methods that have been proposed recently. In GNNs, node embeddings are obtained by aggre-
gating the embeddings of the node’s neighbors. Early works on GNNs were based on recurrent
neural networks. However, later convolutional GNNs were developed that are based on the convo-
lution operation. In addition, there are spatial-temporal GNNs and dynamic GNNs that leverage
the strengths of GNNs in evolving networks.
In this survey, we conduct a review of both traditional and GNN-based graph embedding meth-

ods in static and dynamic settings. To the best of our knowledge, there are several other surveys
and books on graph representation learning. The surveys in [9, 29, 38, 90, 100, 101, 151, 181, 201,
295, 306, 341, 357, 369, 370] mainly cover the graph embedding methods for static graphs and their
coverage of dynamic graph embedding methods is limited, if any. Inversely, [14, 136, 252, 298]
surveys mainly focus on dynamic graph embedding methods. [84, 293] review both the static and
dynamic graph embedding methods but they focus on GNN-based methods. The distinctions be-
tween our survey and others are as follows:

(1) We put together the graph embedding methods in both traditional and GNN-based cate-
gories for both static and dynamic graphs and include over 300 papers published in reputable
venues in datamining, machine learning, and artificial intelligence 2 since 2017 until the time
of this submission, as well as influential papers with high citations published before 2017.

(2) We summarize a number of limitations of GNN-basedmethods and the proposed solutions to
these limitations until the time of submission. These limitations are expressive power, over-
smoothing, scalability, over-squashing, capturing long-range dependencies, design space,
neglecting substructures, homophily assumptions, and catastrophic forgetting. Such a sum-
mary was not provided in previous surveys.

(3) We provide a list of the real-world applications of GNN-based methods that are deployed in
production.

1The methods covered in the survey do not consider or distinguish the types of nodes and/or edges. There are other surveys

that take into account the heterogeneity of graph structure [278, 309].
2The venues include KDD, ICLR, ICML, NeurIPS, AAAI, IJCAI, ICDM, WWW, WSDM, DSAA, SDM, and CIKM.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:3

(4) We suggest a list of future research directions, including new ones that are not covered by
previous surveys.

The organization of the survey is as follows. In Section 2, we provide basic background on graphs.
In Section 3, the traditional node embedding methods for static and dynamic graphs are reviewed.
In Section 4, we survey static, spatial-temporal and dynamic GNN-based graph embedding meth-
ods and their real-world applications, limitations, and implementation libraries. In Section 5, we
provide a list of some common datasets used for evaluating graph embeddingmethods. In Section 6,
we describe some embedding methods that are specially designed for heterogeneous graphs, bipar-
tite graphs, and hypergraphs, which were not covered in the earlier sections. Finally, in Section 7,
we discuss the ongoing and future research directions in the graph representation learning area.

2 GRAPHS

Graphs are powerful tools for representing entities and relationships between them. Graphs have
applications in many domains, including social networks, E-commerce, and citation networks. In
social networks such as Facebook, nodes in the graph are the people and the edges represent the
friendship between them. In E-commerce, the Amazon network is a good example, in which users
and items are the nodes and the buying or selling relationships are the edges.

Definition 1. Formally, a graph G is defined as a tuple G = (V ,E), where V = {v0,v1, . . . ,vn } is
the set of n nodes/vertices and E = {e0, e1, . . . , em } ⊆ V ×V is the set ofm edges/links ofG, where
an edge connects two vertices.

A graph can be directed or undirected. In a directed graph, an edge ek = (vi ,vj) has a direction
with vi being the starting vertex and vj the ending vertex. Graphs can be represented by their
adjacency, degree, and Laplacian matrices, which are defined as follows:

Definition 2. The adjacency matrix A of a graph G with n vertices is an n × n matrix, where
an element ai j in the matrix equals to 1 if there is an edge between node pair vi and vj and is
0 otherwise. An adjacency matrix can be weighted in which the value of an element represents the
weight (such as importance) of the edge it represents.

Definition 3. The degree matrixD of a graphG with n vertices is an n×n diagonal matrix, where
an element dii is the degree of nodevi for i = {1, . . . ,n} and all other di j = 0. In undirected graphs,
where edges have no direction, the degree of a node refers to the number of edges attached to that
node. For directed graphs, the degree of a node can be the number of incoming or outgoing edges
of that node, resulting in an in-degree or out-degree matrix, respectively.

Definition 4. The Laplacian matrix L of a graph G with n vertices is an n × n matrix, defined as
L = D −A, where D and A are G’s degree and adjacency matrix, respectively.

2.1 Graph Embedding

In order to use graphs in downstream machine learning and data mining applications, graphs and
their entities, such as nodes and edges, need to be represented using numerical features. One way
to represent a graph is its adjacency matrix. However, an adjacency matrix is memory-consuming
for representing very large graphs because its size is |V | × |V |. We can represent a graph and its ele-
ments using their features. Specifically, a node in the graph can be representedwith a set of features
that could help the performance of the representation in a particular application. For example, in
an anomaly detection application, the nodes with the densest neighborhood have the potential to
be anomalous. Therefore, if we include the in-degree and out-degree of nodes in the node represen-
tation, we can more likely detect the anomalous nodes with high accuracy because the anomalous

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:4 S. Khoshraftar and A. An

Fig. 1. The graph on the left-hand side consists of 6 nodes {a,b, c,d, e, i} and 8 edges. Graph embeddingmeth-

ods map each node of the graph into an embedding vector with dimension d . For demonstration purposes,

the node a is embedded into an embedding vector za of dimension 4 with given values.

nodes often have larger degrees. However, it could be hard to find features that are important
in different applications and can also represent the entire structure of the graph. In addition, it
is time-consuming to extract these features manually. Therefore, the graph embedding methods
have been proposed, which study the issue of automatically generating representation vectors for
the graphs. These methods formulate the graph representation learning as a machine learning task
and generate embedding vectors leveraging the structure and properties of the graph as input data.
Graph embedding techniques include node, edge, and subgraph embedding techniques, which are
defined as follows.

Definition 5. (Node embedding). Let G = (V ,E) be a graph, where V and E are the set of nodes
and the set of edges of the graph, respectively. Node embedding learns a mapping function f :
vi → Rd that encodes each graph’s node vi into a low-dimensional vector of dimension d such
that d << |V | and the similarities between nodes in the graph are preserved in the embedding
space.

Figure 1 shows a sample graph and that an embedding method maps node a in the graph to a
vector of dimension 4.

Definition 6. (Edge embedding). Let G = (V ,E) be a graph, where V and E are the set of nodes
and the set of edges of the graph, respectively. Edge embedding converts each edge of G into a
low-dimensional vector of dimension d such that d << |V | and the similarities between edges in
the graph are preserved in the embedding space.

While edge embeddings can be learned directly from graphs, most commonly they are derived
from node embeddings. For example, let (vi ,vj) ∈ E be an edge between two nodes vi and vj in
a graph G and let zi , zj be the embedding vectors for nodes vi ,vj . An embedding vector for the
edge (vi ,vj) can be obtained by applying a binary operation such as hadamard product, mean,
weighted-L1 and weighted-L2 on the two node embedding vectors zi and zj [93].

Definition 7. (Subgraph embedding). LetG = (V ,E) be a graph. Subgraph embedding techniques
in machine learning convert a subgraph of G into a low-dimensional vector of dimension d such
that d << |V | and the similarities between subgraphs are preserved in the embedding space.

A subgraph embedding vector is usually created by aggregating the embeddings of the nodes
in the subgraph using aggregators such as a mean operator.
As node embeddings are the building blocks for edge and subgraph embeddings, almost all the

graph embedding techniques developed so far are node embedding techniques. Thus, the embed-
ding techniques we describe in this survey are mostly node embedding techniques unless other-
wise stated.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:5

2.2 Graph Embedding Applications

The generated embedding vectors can be utilized in different applications, including node classifi-
cation, link prediction, and graph classification. Here, we explain some of these applications.
Node Classification. The node classification task assigns a label to the nodes in the test dataset.

This task has many applications in different domains. For instance, in social networks, a person’s
political affiliation can be predicted based on the person’s friends in the network. In node classi-
fication, each instance in the training dataset is the node embedding vector and the label of the
instance is the node label. Different regular classification methods such as Logistic Regression and
Random Forests can be trained on the training dataset and generate the node classification scores
for the test data. Similarly, graph classification can be performed using graph embedding vectors.
Link Prediction. Link prediction is one of the important applications of node embedding meth-

ods. It predicts the likelihood of an edge formation between two nodes. Examples of this task
include recommending friends in social networks [255] and finding biological connections in bi-
ological networks [1, 53]. For instance, the methods in [1] predict the links between a drug and
a target, which could be a disease, a gene, or other drugs in the drug–target interaction network.
Link prediction can be formulated as a classification task that assigns a label for edges. Edge label
1 means that an edge is likely to be created between two nodes and the label is 0 otherwise. For
the training step, a sample training set is generated using positive and negative samples. Positive
samples are the edges the exist in the graph. Negative samples are the edges that do not exist and
their representation vector can be generated using the node vectors. Similar to node classification,
any classification method can be trained on the training set and predict the edge label for test edge
instances.
Anomaly Detection. Anomaly detection is another application of node embedding methods.

The goal of anomaly detection is to detect the nodes, edges, or graphs that are anomalous and
the time that the anomaly occurs. Anomalous nodes or graphs deviate from normal behavior. For
instance, in banks’ transaction networks, people who suddenly send or receive large amounts of
money or create lots of connections with other people could be potential anomalous nodes. An
anomaly detection task can be formulated as a classification task such that each instance in the
dataset is the node representation and the instance label is 0 if the node is normal and 1 if the
node is anomalous. This formulation necessitates having a dataset with true node labels. One of
the issues in anomaly detection is the lack of datasets with true labels. Mitigation offered for this is-
sue in the literature is generating synthetic datasets thatmodel the behaviors of real-world datasets.
Another way to formulate the anomaly detection problem, especially in dynamic graphs, is view-
ing the problem as a change-detection task. In order to detect the changes in the graph, one way is
to compute the distance between the graph representation vectors at consecutive times. The time
points that the value of this difference is far from the previous normal values, a potential anomaly
has occurred [91].

Graph Clustering. In addition to classification tasks, graph embeddings can be used in clus-
tering tasks. This task can be useful in domains such as social networks for detecting communi-
ties [148, 154] and biological networks to identify similar groups of proteins [19, 335]. Groups of
similar graphs/node/edges can be detected by applying clustering methods such as the K-means
method [203] on the graph/node/edge embedding vectors.
Visualization. One of the applications of node embedding methods is graph visualization be-

cause node embedding methods map nodes in lower dimensions and the nodes, edges, communi-
ties, and different properties of graphs can be seen better in the embedding space. Therefore, graph
visualization is very helpful for the research community to gain insight into graph data, especially
very large graphs that are hard to visualize.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:6 S. Khoshraftar and A. An

Fig. 2. Categories of graph representation learning methods for non-heterogeneity-aware graphs.

3 TRADITIONAL GRAPH EMBEDDING

The first category of graph embedding methods are traditional graph embedding methods. These
methods map the nodes into the lower dimensions using different approaches, such as random
walks, factorization methods, and temporal point processes. We review these methods in static and
dynamic settings in this section. Figure 2 shows the categories of static and dynamic traditional
embedding methods. The upper part of Table 1 lists all the methods that we survey in this category.

3.1 Traditional Static Graph Embedding

The traditional static graph embedding methods have been developed for static graphs. The static
graphs do not change over time and have a fixed set of nodes and edges. Graph embedding meth-
ods preserve different properties of nodes and edges in graphs, such as node proximities. Here,
we define first-order and second-order proximities. Higher orders of proximities can be similarly
defined.

Definition 8. (First-order proximity). Nodes that are connected with an edge have first-order
proximity. Edge weights are the first-order proximity measures between nodes. Higher weights
for edges show more similarity between two nodes connected by the edges.

Definition 9. (Second-order proximity). The second-order proximity between two nodes is the
similarity between their neighborhood structures. Nodes sharing more neighbors are assumed to
be more similar.

The traditional static graph embedding methods can be put into three categories: factorization-
based, random walk–based and non-GNN–based deep learningmethods [90, 101]. Below, we review
these methods and the techniques they use.

3.1.1 Factorization based. Matrix factorization methods are the early works in graph represen-
tation learning. These methods can be summarized in two steps [308]. In the first step, a proximity-
based matrix is constructed for the graph where each element of the matrix denoted as Pi j is a
proximity measure between two nodes i, j. Then, a dimension reduction technique is applied in
the matrix to generate the node embeddings in the second step. In the Graph Factorization al-
gorithm [3], the adjacency matrix is used as the proximity measure and the general form of the

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:7

Table 1. Graph Embedding Methods in Both Traditional and GNN-Based Categories

Type Graph Methods

Trad Static Node2vec [93], Deepwalk [232], Graph Factorization [3], GraRep [30],
HOPE [222], STRAP [322], HARP [39], LINE [260], SDNE [269], DNGR [31],
VGAE [141], AWE [127], PRUNE [147], E[D] [2], ULGE [216], APP [366],
CDE [163], GNE [67], DNE [250], DANE [81], RandNE [354], SANE [271],
BANE [311], LANE [123], VERSE [264], ANECP [120], NOBE [130], AANE [122],
Reinforce2vec [297], REFINE [375], M-NMF [279], struct2vec [238], SNEQ [106],
PAWINE [284], FastRP [40], SNS [197], InfiniteWalk [34], EFD [35], NetMF [234],
Lemane [353], AROPE [356], NetSMF [233], SPLITTER [73], Ddgk [5],
GVNR [26], LouvainNE [21], HONE [242], CAN [208], Methods in [124, 180, 308]

Dynamic CTDNE [215], DynNode2vec [204], LSTM-Node2vec [139], EvoNRL [109],
DynGEM [91], Dyn-VGAE [205], DynGraph2vec [89], HTNE [383],
DynamicTriad [373], DyRep [263], MTNE [117], DNE [69], Toffee [198],
HNIP [235], tdGraphEmbed [17], DRLAN [185], TIMERS [355], M2DNE [191],
DANE [153], TVRC [249], tNodeEmbed [251], NetWalk [333],
DynamicNet [377], Method in [318]

GNN Static RecGNN [246], GGNN [165], IGNN [94], Spectral Network [28], GCN [142],
GraphSAGE [99], DGN [16], ElasticGNN [179], SGC [290], GAT [266],
MAGNA [270], MPNN [86], GN block [15], GNN-FiLM [27], GRNF [336],
EGNN [245], BGNN [374], MuchGNN [372], TinyGNN [307], GIN [303],
RP-GNN [213], k-GNN [212], PPGN [206], Ring-GNN [50], F-GNN [10],
DEGNN [157], GNNML [12], rGIN [244], DropGNN [225], PEG [272],
GraphSNN [288], NGNN [346], ID-GNN [326], CLIP [60], APPNP [143],
JKNET [304], GCN-PN [361], DropEdge [240], DGN-GNN [371], GRAND [77],
GCNII [46], GDC [103], PDE-GCN [72], SHADOW-SAGE [337],
ClusterGCN [51], FastGCN [43], LADIES [382], GraphSAINT [338],
VR-GCN [44], GBP [45], RevGNN [152], VQ-GNN [63], BNS [317], GLT [47],
H2GCN [378], GPR-GNN [52], WRGNN [259], DMP [312], CPGNN [376],
U-GCN [134], NLGNN [177], GPNN [314], HOG-GCN [277], Polar-GNN [76],
GBK-GNN [68], Geom-GCN [228], GSN [24], MPSN [22], GraphSTONE [188],
DeepLPR [49], GSKN [189], SUBGNN [8], DIFFPOOL [324], PATCHY-SAN [217],
SEAL [344], DGCNN [345], AGCN [160], DGCN [381], CFANE [224],
AdaGNN [66], MCN [149], Method in [159]

Spatial-
temporal

GCRN [248], Graph WaveNet [294], SFTGNN [156], CoST-Net [319],
DSTN [223], LightNet [83], DSAN [169], H-STGCN [55], DMSTGCN [102],
PredRNN [283], Conv-TT-LSTM [256], ST-ResNet [343], STDN [316],
ASTGCN [97], DGCNN [62], DeepETA [291], SA-ConvLSTM [171],
STSGCN [253], FC-GAGA [221], ST-GDN [352], HST-LSTM [145], STGCN [329],
PCR [310], GSTNet [74], STAR [299], ST-GRU [172], Tssrgcn [48], Test-GCN [6],
ASTCN [347], STP-UDGAT [168], STAG-GCN [190], ST-GRAT [227],
ST-CGA [351], STC-GNN [287], STEF-Net [166], FGST [321], PDSTN [209],
STAN [194], GraphSleepNet [129], DCRNN [164], CausalGNN [274],
SLCNN [348], MRes-RGNN [36], Method in [281]

Dynamic DyGNN [199], EvolveGCN [226], TGAT [300], CAW-N [282], DySAT [243],
EHNA [119], TGN [241], MTSN [184], SDG [79], VGRNN [98], MNCI [176],
FeatureNorm [313]

Trad and GNN stand for Traditional and GNN-based graph embedding.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:8 S. Khoshraftar and A. An

optimization function is as follows:

min
zi ,zj

∑
vi ,vj ∈V

���zTi zj − ai j ���, (1)

where zi and zj are the node representation vectors for node vi and vj and ai j is the element
in the adjacency matrix corresponding to nodes vi and vj . In GraRep [30] and HOPE [222],
the value of ai j is replaced with other measures of similarity, including higher orders of ad-
jacency matrix, Katz index [135], Rooted page rank [254], and the number of common neigh-
bors. STRAP [322] employs the personalized page rank as the proximity measure and approxi-
mates the pairwise proximity measures between nodes to lower the computation cost. In [308], a
network embedding update algorithm is introduced to approximately compute the higher-order
proximities between node pairs. In [353], it is suggested that using the same proximity matrix
for learning node representations may limit the representation power of the matrix factoriza-
tion–based methods. Therefore, it generates node representations in a framework that learns the
proximity measures and SVD decomposition parameters in an end-to-end fashion. Methods in
[26, 73, 120, 122, 123, 130, 147, 163, 180, 216, 233, 234, 242, 250, 279, 308, 311, 353, 354, 356, 375] are
other examples of factorization-based methods.

3.1.2 Random Walk based. Random walk–based methods have attracted a lot of attention be-
cause of their success in graph representation. The main concept that these methods utilize
is generating random walks for each node in the graph to capture the structure of the graph
and output similar node embedding vectors for nodes that occur in the same random walks.
Using co-occurrence in a random walk as a measure of similarity of nodes is more flexible
than fixed proximity measures in earlier works and showed promising performance in different
applications.

Definition 10. (Random walk). In a graph G = (V ,E), a random walk is a sequence of nodes
v0,v1, . . . ,vk that starts from node v0. (vi ,vi+1) ∈ E and k + 1 is the length of the walk. The next
node in the sequence is selected based on a probabilistic distribution.

DeepWalk [232] and Node2vec [93] are based on the Word2vec embedding method [211] in
natural language processing (NLP). Word2vec is based on the observation that words that co-
occur in the same sentence many times have a similar meaning. Node2vec and DeepWalk extend
this assumption for graphs by considering that nodes that co-occur in random walks are similar.
Therefore, these methods generate similar node embedding vectors for neighbor nodes. The al-
gorithm of these two methods consists of two parts. In the first part, a set of random walks are
generated, and in the second part, the random walks are used in the training of a SkipGram model
to generate the embedding vectors. The difference between DeepWalk and Node2vec is in the way
that they generate random walks. DeepWalk selects the next node in the random walk uniformly
from the neighbor nodes of the previous node. Node2vec applies a more effective approach to gen-
erating random walks. In this section, we first explain the Node2vec random walk generation and
then the SkipGram.

(1) Random Walk Generation. Assume that we want to generate a random walk v0,v1, . . . ,vk ,
wherevi ∈ V . Given that the edge (vi−1,vi) is already passed, the next nodevi+1 in the walk
is selected based on the following probability:

P (vi+1 |vi) =
⎧⎪⎨⎪⎩
αvivi+1

Z
if (vi+1,vi) ∈ E

0 otherwise
, (2)

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:9

where Z is a normalization factor and αvivi+1 is defined as

αvivi+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/p if dvi−1vi+1 = 0

1 if dvi−1vi+1 = 1

1/q if dvi−1vi+1 = 2

, (3)

where dvi−1vi+1 is the length of the shortest path between nodes vi−1 and vi+1 and takes
values from {0, 1, 2}. The parameters p and q guide the direction of the random walk and can
be set by the user. A large value for parameter p encourages global exploration of the graph
and avoids returning to the nodes that are already visited. A large value for q, on the other
hand, biases the walk toward local exploration. With the use of these parameters, Node2vec
creates a randomwalk that is a combination of breadth-first search (BFS) and depth-first
search (DFS).

(2) SkipGram. After generating random walks, the walks are input to a SkipGram model to
generate the node embeddings. SkipGram learns a language model, which maximizes the
probability of sequences of words that exist in the training corpus. The objective function
of SkipGram for node representation is

max
Φ

∑
vi ∈V

log P (N (vi) |Φ(vi)), (4)

where N (vi) is the set of neighbors of node vi generated from the random walks. Assuming
independency among the neighbor nodes, we have that

P (N (vi) |Φ(vi)) =
∏

vk ∈N (vi)

P (Φ(vk) |Φ(vi)). (5)

The conditional probability of P (Φ(vk) |Φ(vi)) is modeled using a softmax function:

P (Φ(vk) |Φ(vi)) = exp(Φ(vk)Φ(vi))∑
vj ∈V exp(Φ(vj)Φ(vi))

. (6)

The softmax function nominator is the dot product of the node representation vectors. Since
the dot product between two vectors measures their similarity, by maximizing the softmax
function for neighbor nodes, the generated node representations for neighbor nodes tend
to be similar. Computing the denominator of the conditional probability is time-consuming
between the target node and all the nodes in the graph. Therefore, DeepWalk and Node2vec
approximate it using hierarchical softmax and negative sampling, respectively.

In HARP [39], a graph-coarsening algorithm is introduced that generates a hierarchy of smaller
graphs as G0,G1, . . . ,GL such that G0 = G. Starting from the GL , which is the smallest graph, the
node embeddings that are generated forGi are used as initial values for nodes inGi−1. This method
avoids getting stuck in the local minimum for DeepWalk and Node2vec because it initializes the
node embeddings with better values in the training process. The embedding at each step can be
created using DeepWalk [232] and Node2vec [93] methods. LINE [260] is not based on random
walks. However, because it is computationally related to DeepWalk and Node2vec, its results are
usually compared with them. LINE generates node embeddings that preserve the first-order and
second-order proximities in the graph using a loss function that consists of two parts. In the first
part, L1, it minimizes the reverse of the dot product between connected nodes. In the second part,
L2, for preserving the second-order proximity, it assumes that nodes that have many connections
in common are similar. LINE trains two models that minimize L1 and L2 separately; then, the
embedding of a node is the concatenation of its embeddings from two models. Methods in [21, 34,
35, 124, 127, 197, 238, 271, 284, 297, 366] are some other variants of random walk–based methods.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:10 S. Khoshraftar and A. An

3.1.3 Non-GNN-based Deep Learning. SDNE [269] is based on an autoencoder that tries to re-
construct the adjacency matrix of a graph and captures nodes’ first-order and second-order prox-
imities. To that end, SDNE jointly optimizes a loss function that consists of two parts. The first
part preserves the second-order proximity of the nodes and minimizes the following loss function:

L1 =
∑
vi ∈V

��(xi − x ′i) � bi ��, (7)

where xi is the row corresponding to node vi in the graph adjacency matrix and x ′i is the recon-
struction of xi . bi is a vector consisting of bi js for j from 1 to n (the number of nodes in the graph).
If ai j = 0,bi j = 1; otherwise, bi j = β > 1. ai j is the element corresponding to nodes vi and vj
in the adjacency matrix. Using bi , SDNE assigns more penalty for the error in the reconstruction
of the non-zero elements in the adjacency matrix to avoid reconstructing only zero elements in
sparse graphs. The second part captures the first-order similarity and optimizes L2:

L2 =
∑

(vi ,vj)∈E
ai j |(zi − zj) |, (8)

where zi and zj are the embedding vectors for nodes vi and vj , respectively. In this way, a higher
penalty is assigned if the difference between the embedding vectors of two nodes connected by
an edge is higher, resulting in similar embedding vectors for nodes connecting with an edge. This
loss is based on ideas from Laplacian Eigenmaps [18]. SDNE jointly optimizes L1 and L2 to gener-
ate the node embedding vectors. The embedding method DNGR [31] is also very similar to SDNE
with the difference that DNGR uses pointwise mutual information of two nodes co-occurring in
random walks instead of the adjacency matrix values. VGAE [141] is a variant of variational au-
toencoders [140] on graph data. The variational graph encoder encodes the observed graph data,
including the adjacency matrix and node attributes into low-dimensional latent variables.

q(Z |A,X) =
N∏
i=1

q(zi |A,X),

with q(zi |A,X) = N
(
zi |μi ,diaд

(
σ 2
i

))
where zi is the embedding vector for nodevi , μi is amean vector andσi is the log standard deviation
vector of nodevi .A andX are the adjacency matrix and attribute matrix of the graph, respectively.
The variational graph decoder decodes the latent variables into the distribution of the observed
graph data as follows:

p (A|Z) =
N∏
i=1

N∏
j=1

p (ai, j |zi , zj),

with p (ai, j = 1|zi , zj) = siдmoid
(
zTi , zj

)
.

The model generates embedding vectors that minimize the distance between the p and q prob-
ability distributions using the KL-divergence measure, SGD, and reparametrization trick. Other
works in [2, 5, 40, 67, 81, 106, 208, 264] also learn node embeddings using non-GNN-based deep
learning models.

3.2 Traditional Dynamic Graph Embedding

Most real-world graphs are dynamic and evolve, with nodes and edges added and deleted from
them. Dynamic graphs are represented in two ways in the dynamic graph embedding studies:
discrete-time and continuous-time.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:11

Definition 11. (Discrete-time dynamic graphs). In discrete-time dynamic graph modeling, dy-
namic graphs are considered a sequence of graphs’ snapshots at consecutive time points. Formally,
dynamic graphs are represented as G = G0,G1, . . . ,GT , in which Gi is a snapshot of the graph G
at timestamp i . The dynamic graph is divided into graph snapshots using time granularity such as
hours, days, months, and years depending on the dataset and applications.

Definition 12. (Continuous-time dynamic graphs). In continuous-time dynamic graph modeling,
the time is continuous and the dynamic graph can be represented as a sequence of edges over time.
The dynamic graph can also be modeled as a sequence of events in which events are the changes
in the dynamic graphs, such as adding/deleting edges/nodes.

Definition 13. (Dynamic graph embedding). We can use either the discrete-time or the
continuous-time approach for representing a dynamic graph. Let Gt = (Vt ,Et) be the graph at
time t , with Vt ,Et as the nodes and edges of the graph. Dynamic graph embedding methods map
nodes in the graph to a lower-dimensional space d such that d << |V |.

The naïve way to generate dynamic graph embeddings is to apply static graph embedding
methods on dynamic graphs. Static methods can be applied to discrete-time and continuous-time
dynamic graphs, but the generated embeddings may not fully represent dynamic graphs. In
discrete-time graphs, a static graph embedding method can be applied to each graph snapshot
separately. However, the generated embeddings at different snapshots are at different embedding
spaces. Therefore, the embeddings generated at different time points are not comparable and the
embeddings do not capture the evolution of the graph over time. Similarly, in the continuous-time
dynamic graphs, the static graph embeddingmethods do not consider the order inwhich each inter-
action occurs and lose the time information. In addition, static methods must be rerun from scratch
to learn the new embedding with the arrival of new interactions, which is very time-consuming.
Due to these issues, different dynamic graph embedding methods have been proposed for dynamic
graph representation learning. Here, we provide an overview of the dynamic embedding methods
and put these methods into four categories: Aggregation based, Random walk based, Non-GNN
based deep learning and Temporal point process based [14, 136].

3.2.1 Aggregation based. Aggregation-based dynamic graph embeddingmethods aggregate the
dynamic information of graphs to generate embeddings for dynamic graphs. These methods can
fall into two groups:
(1) Aggregating the temporal features. In these methods, the evolution of the graph is simply

collapsed into a single graph and the static graph embedding methods are applied on the single
graph to generate the embeddings. For example, the aggregation of the graph over time could be
the sum of the adjacency matrices for discrete-time dynamic graphs [167] or the weighted sum,
which gives more weights to recent graphs [249]. One drawback of these methods is that they lose
the time information of graphs that reveals the dynamics of graphs over time. For instance, there
is no information about when any edge was created. Factorization-based models can also fit into
the aggregation-based category. The reason is that factorization-based models save the sequence
of graphs over time in a three-dimensional tensor ∈ R |V |× |V |×T (T is a time dimension) and then
apply factorization on this tensor to generate the dynamic graph embeddings [70, 153, 185, 355].

(2) Aggregating the static embeddings. These aggregation methods first apply static embedding
methods on each graph snapshot in the dynamic graph sequence. Then, these embeddings are
aggregated into a single embedding matrix for all the nodes in the graph. These methods usually
aggregate the node embeddings by considering a decay factor that assigns a lower weight to older
graphs [318, 377]. In another type of these methods, the sequence of graphs from time 0 to t − 1

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:12 S. Khoshraftar and A. An

are fit into a time-series model such as ARIMA, which predicts the embedding of the next graph
at time t + 1 [54].

3.2.2 Random Walk based. Random walk–based approaches extend the concept of random
walks in the static graphs for dynamic graphs. Random walks in dynamic graphs capture the
time dependencies between graphs over time in addition to the topological structure of each
of the graph snapshots. Depending on the definition of random walks, different methods include
the temporal information of the graphs differently. CTDNE [215] defines a temporal walk to cap-
ture time dependencies between nodes in dynamic graphs. CTDNE considers a continuous-time
dynamic graph such as graphG = (V ,ET ,T),whereV ,ET ,T are nodes and edges of the graph and
time T : E → R+. Each edge e in this graph is represented by a tuple (u,v, t), where u,v are the
nodes connected by the edge and t is the time of occurrence of that edge.

Definition 14. (Temporal walk). A temporal walk is a sequence of nodes v0,v1, . . . ,vk such that
(vi ,vi+1) ∈ ET and t (vi−1,vi) ≤ t (vi ,vi+1) .

An important concept in CTDNE is that time is respected in selecting the next edge in a temporal
walk. In order to generate these temporal walks, first a time and a particular edge in that time,
e = (u,v, te), is selected based on one of three probability distributions: uniform, exponential, and
linear. The uniform probability for an edge e is p (e) = 1/|ET |. The exponential probability is

p (e) =
exp (te − tmin)∑

e ′ ∈ET exp (t
′
e − tmin)

, (9)

where tmin is theminimum time of an edge in the graph. Using exponential probability distribution,
edges that appear at a later time aremore likely to be selected. After selecting e = (u,v, te), the next
node in the temporal walk is selected from the neighbors of node v in time te + k , where k > 0
again using one of the uniform, exponential, or linear probability distributions. The generated
temporal walks are then input to a SkipGram model and the temporal node representation vectors
are generated.
DynNode2vec [204] is a dynamic version of Node2vec [93]. It uses a discrete-time approach for

dynamic graph representation learning. This method represents the dynamic graph as a sequence
of graph snapshots over time as G0,G1, . . . ,GT . The embedding for the graph at time 0, G0, is
computed by applying Node2vec on G0. Then, for next time points, the SkipGram model of Gt+1

is initialized using node representations fromGt for nodes that are common between consecutive
time points. New nodes will be initialized randomly. In addition, DynNode2vec does not generate
random walks at each timestep i from scratch. Instead, it uses random walks from the previous
time i−1 and only updates the ones that need to be updated. This method has two advantages. First,
it saves time because it does not generate all the walks in each step. Second, since the SkipGram
model at time t is initialized with weights from time t −1, embedding vectors of consecutive times
are in the same embedding space, embedding vectors of nodes change smoothly over time. and
the model converges faster. LSTM-Node2vec [139] captures both the static structure and evolv-
ing patterns in graphs using a long short-term memory (LSTM) autoencoder and a Node2vec
model. The dynamic graph is represented as a sequence of snapshots over time as G0,G1, . . . ,GT .
For each graphGi at time ti , first, a set of temporal walks is generated for each node in the graph.
Each temporal random walk of a node v is represented as w0,w1, . . . ,wL of length L, where w j is
a neighbor of the node v at time tj in graph G j and tj < tj+1. These temporal walks demonstrate
changes in the neighborhood structure of the node before time ti . EvoNRL [109] focuses on main-
taining a set of valid random walks for the graph at each time point so that the generated node
embeddings using these random walks stay accurate. To that end, EvoNRL updates the existing

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:13

random walks from previous time points instead of generating random walks from scratch. Specif-
ically, it considers four cases of edge addition, edge deletion, node addition and node deletion for
evolving graphs and updates the affected random walks accordingly. For instance, in the edge ad-
dition case, EvoNRL finds random walks containing the nodes that are connected by the updated
link and updates those walks. However, updating random walks is time-consuming, especially for
large graphs. Therefore, EvoNRL proposed an indexing mechanism for fast retrieval of random
walks. Other examples of this category include [17, 69, 198, 333].

3.2.3 Non-GNN-based Deep Learning. This type of dynamic graph embedding method uses
deep learning models such as recurrent neural networks (RNNs) and autoencoders. Dyn-
GEM [91] is based on the static deep learning–based graph embedding method SDNE [269]. Let
the dynamic graph be a sequence of graph snapshotsG0,G1, . . . ,Gt . The embeddings for graphG0

are computed using a SDNE model. The embedding of Gi is obtained by running an SDNE model
onGi that is initialized with the embeddings fromGi−1. This initialization leads to generating node
embeddings at consecutive time points that are in the same embedding space and can reflect the
changes in the graph at consecutive times accurately. As the size of the graph can change over
time, DynGEM uses Net2WiderNet and Net2DeeperNet to account for bigger graphs [37]. Dyn-
VGAE [205] is a dynamic version of VGAE [141]. The input to dyn-VGAE is the dynamic graph
as a sequence of graph snapshots,G0,G1, . . . ,GT . At each time point, the embedding of the graph
snapshot Gi is obtained using VGAE. However, the loss of the model at time t has two parts. The
first part is related to VGAE loss and the second loss is a KL divergence measure that minimizes
the difference between two distributions as follows:

Lts = KL[qt (Zt |Xt ,At) | |N (Zt−1,σ 2)], (10)

where qt (Zt |Xt ,At) is the distribution of latent vectors at time t and N (Zt−1,σ 2) is a normal dis-
tribution with mean Zt−1 and standard deviation σ . This loss places the current latent vectors
Zt near latent vectors of previous time point Zt−1. The loss function of all the models for the
graph at time 0 to T are jointly trained. Therefore, the generated representation vectors preserve
both the structure of the graph at each time point and evolutionary patterns obtained from previ-
ous time points. Dyngraph2vec [89] generates embeddings at time t using an autoencoder. This
method inputs adjacency matrices of previous timesA0,A1, . . . ,At−1 to the encoder and using the
decoder reconstructs the input and generates the embeddings at time t . Dyngraph2vec proposes
several variants using a fully connected model or an RNN/LSTMmodel for the encoder and the de-
coder: dyngraph2vecAE, dyngraph2vecAERNN and dyngraph2vecRNN. Dyngraph2vecAE uses an
autoencoder, dyngraph2vecAERNN is based on an LSTM autoencoder, and dyngraph2vecAERNN
has an LSTM enocoder and a fully connected decoder. Other examples of non-GNN-based deep
learning methods include [235, 251].

3.2.4 Temporal Point Process Based. This class of the dynamic graph embedding methods as-
sumes that the interaction between nodes for creating the graph structure is a stochastic process
and models it using temporal point processes. HTNE [383] generates embeddings for dynamic
graphs by modeling the neighborhood formation of nodes as a Hawkes process. In a Hawkes pro-
cess modeling, the occurrence of an event at time t is influenced by events that occur before time
t and a conditional intensity function characterizes this concept. Let G = (V ,E,A) be the tem-
poral network, where V ,E,A are the nodes, edges, and events. Each edge (vi ,vj) in this graph is
associated with a set of events ai j = {a1 → a2 → . . .} ⊂ A, where each ai is an event at time i .

Definition 15. (Neighborhood Formation Sequence). A neighborhood formation sequence for a
node vi is a series of neighborhood arrival events {vi : (u0, t0) → (u1, t1) . . . → (uk , tk)}, where ui
is a neighbor of vi that occurs at time ti .

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:14 S. Khoshraftar and A. An

HTNE models the neighborhood formation for a node v using the neighborhood formation
sequence Hv . The probability that an edge forms between node v and a target neighbor u at time
t is represented using the following formula:

p (u |v,Hv) =
λu |v (t)∑
u′ λu′ |v (t)

, (11)

where λy |x (t) is defined as

λu |v (t) = exp ��	μu,v +
∑
h,u

αh,uκ (t − th)
��. (12)

λu |v (t) is the conditional intensity function of a Hawkes process, which is the arrival rate of tar-
get neighbor u for node v at time t given the previous neighborhood formation sequence. μu,v is
a base rate of edge formation between u,v and it is equal to |zu − zv |. h is a historical neighbor of
the node v in the neighborhood formation sequence in a time before t . αh,u is the degree that the
historical neighbor h is important for u and it equals |zh − zu |. κ (t − th) is a decay factor to con-
trol the intensity of influence of a historical node on u. HTNE generates embedding vectors that
maximize the

∑
v ∈V
∑
u ∈Hv

p (u |v,Hv) for all the nodes using SGD and negative sampling to deal
with a large number of computations in the denominator of the probability function. DyRep [263]
captures the dynamic of graphs using two temporal point process models. DyRep argues that in
the evolution of a graph, two types of events occur: communication and association. Communica-
tion events are related to node interactions and association events are the topological evolution
and these events occur at different rates. For instance, in a social network, a communication event
such as liking a post from someone happens much more frequently than an association event such
as creating a new friendship. DyRep represents these two events as two temporal point process
models. MTNE [117] is based on the concepts of triad motif evolution and the Hawkes process.
This method considers the evolution of graphs as the evolution of motifs in the graphs and models
that evolve using a Hawkes process. MTNE argues that a model such as HTNE based on neighbor-
hood formation processes considers network evolution at edge and node levels and cannot reflect
network evolution very well. Therefore, MTNE models dynamics in a graph as a subgraph (motif)
evolution process. M2DNE [191] is another example of temporal point process–based dynamic
embedding methods.

3.2.5 Other Methods. DynamicTriad [373] generates dynamic graph embeddings by modeling
the triad closure process, which is a fundamental process in the evolution of graphs.

Definition 16. (Triad closure process). Let (vi ,vj ,vk) be an open triad in the graph at time t ,
which means that there are two edges (vi ,vj) and (vj ,vk) in the graph but no edge exists between
vi and vk . It is likely that an edge forms between vi and vk at time t + 1 because of the influence
of node vj and closes the open triad.

DynamicTriad computes the probability that an open triad (vi ,vj ,vk) evolves into a closed triad
under the influence of vj at time t as pttr (i, j,k). An open triad can evolve in two ways: (1) It
becomes closed because of the influence of any one of the neighbors or (2) stays open because no
neighbor could influence the creation of the open link. These two evolution traces are reflected in

DynamicTriad loss function by maximizing (pttr (i, j,k))
αi jk × (1−pttr (i, j,k)) (1−αi jk) for open triad

samples that close under the influence of a neighbor and 1−pttr (i, j,k) for those samples that do not
close. αi jk = 1 if an open triad closes at time t + 1. The loss function also utilizes social homophily
and temporal smoothness regularizations. Social homophily smoothness assumes that nodes that
are highly connected are more similar and should have similar embeddings. Temporal smoothness

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:15

Table 2. Comparison of Traditional and GNN-Based Graph Representation Learning

Category Advantages Disadvantages

Traditional Higher expressive power, scalable in
some categories

Not generalizable to unseen nodes, not
considering node/edge attributes easily

GNN-based Generalize to unseen nodes, consider
node/edge attributes, can do both
task-specific and node similarity–based
training

Expressive power, scalability,
over-smoothing, over-squashing,
homophily assumption and catastrophic
forgetting. (More details in Section 4.6)

assumes that the network evolves smoothly and, therefore, the distance between embeddings of a
node at consecutive times should be small.

3.2.6 Time Efficiency of Dynamic Graph Embeddings. The time efficiency of dynamic graph
embedding methods depends on the techniques they use for generating graph embeddings and
the requirements of the dynamic environment. For instance, dynnode2vec, a dynamic graph em-
bedding method, is faster than the static Node2vec method in generating graph embeddings of
a series of graph snapshots over time. The reason is twofold. First, dynnode2vec initializes the
SkipGram model at each timestep with the weights from the previous time point, which leads to
faster model convergence compared with random initialization in Node2vec. Second, this method
only generates random walks for the changed nodes at each timestamp, which is faster than gen-
erating random walks for all the nodes in Node2vec [204]. However, Node2vec is faster than the
dynamic method LSTM-Node2vec, as LSTM-Node2vec trains an LSTM autoencoder model at each
time point, which is time-consuming. LSTM-Node2vec, in turn, is faster than two other dynamic
methods, dyngraph2vecAE and dyngraph2vecAERNN, as these two models reconstruct adjacency
matrices of the graphs over time compared with temporal random walks in LSTM-Node2vec [139].
The requirements of the dynamic settings are also important in the training speed of models. For
example, the static methods are offline and can scan the data multiple times. However, some dy-
namic methods need to be online so that they scan the data only once and incrementally update the
model; therefore, they are faster than using a static method to learn embeddings at each time point.

4 GNN-BASED GRAPH EMBEDDING

Graph Neural Network (GNN)–based graph embedding methods are the second category of
graph embedding methods, which employ GNNs to generate embeddings. These methods are dif-
ferent from traditional methods in that the GNN-based methods generalize well to unseen nodes.
In addition, they can better take advantage of node/edge attributes. Table 2 shows the advantages
and disadvantages of the different categories of graph embedding methods. In this section, we first
introduce GNNs. Then, three categories of GNN-based methods —static, spatial-temporal, and dy-
namic GNNs (see Figure 2 for subcategories and Table 1 for the list of methods in each category)
— and their real-world applications are surveyed. Finally, we summarize the limitations of GNNs
and the proposed solution to these limitations.

4.1 Introduction to GNNs

A GNN is a deep learning model that generates a node embedding by aggregating the node’s
neighbors’ embeddings. The GNN’s intuition is that a node’s state is influenced by its interactions
with its neighbors in the graph. Below, we explain GNN’s basic architecture and training.

4.1.1 Basic Architecture. GNNs can generate node representation vectors by stacking several
GNN layers. Let hli represent the node embeddings for node i at layer l . Each GNN layer takes as

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:16 S. Khoshraftar and A. An

input the node embeddings. The node representations for node i at each layer l + 1 are updated
using the following formula:

h (l+1)
i = f ��	hli ,

∑
j ∈N (i)

д(i, j)
��, (13)

where f and д are learnable functions and N (i) are the neighbors of node i . h0i are the node i initial
features. At each layer, the embedding of the node i is obtained by aggregating the embeddings of
the node’s neighbors. After passing through L GNN layers, the final representation of node i is hLi ,
which is the aggregation the node’s neighbors of L hops away from the node.

4.1.2 GNN Training. GNNs can be trained in supervised, semi-supervised, and unsupervised
frameworks. In supervised and semi-supervised frameworks, different prediction tasks focusing
on nodes, edges, and graphs can be employed for training the model. Here, we describe the other
layers stacked after GNN layers to generate the prediction results.

— Node-focused: For node-level prediction such as node classification, the GNN layers output
node representations. Then, using amultilayer perceptron (MLP) or a softmax layer, the
prediction output is generated.

— Edge-focused: In edge-focused prediction, including link prediction, given two nodes’ repre-
sentations, a similarity function or an MLP is used for the prediction task.

— Graph-focused: In graph-focused tasks such as graph classification, a graph representation is
often generated by applying a readout layer on node representations. The readout function
can be a pooling operation that aggregates representations of a graph’s nodes to generate
the graph representation vector. A clique pooling operation has also been proposed, which
aggregates a graph’s cliques for generating the graph embedding [195].

A typical way to train a GNN in a node classification task is by applying the cross entropy loss
function as follows:

L =
∑

i ∈Vtrain
yi log(σ (h

T
i θ)) + (1 − yi)log(1 − σ (hTi θ)), (14)

wherehi is the embedding of nodeu, which is the output of the last layer of GNN andyu is the true
class label of the node and θ are the classification weights. Figure 3 shows a general framework
for training a GNN using a node classification task. There are three types of nodes in a node
classification in GNNs [100]:

— Training nodes: Nodes whose embeddings are computed in the last layer of GNNs and are
included in the loss function computation.

— Transductive test nodes: Nodes whose embeddings are computed in the GNN but are not
included in the loss function computation.

— Inductive test nodes: They are not included in the GNN computation and loss function.

Transductive node classification in GNNs is equivalent to semi-supervised node classification. It
refers to testing on transductive test nodes that are observed during training but their labels are not
used. On the other hand, inductive node classification means that the testing is on inductive test
nodes (unseen nodes); these test nodes and all their adjacent edges are removed during training.
The loss function for graph classification and link prediction tasks can be similarly defined using
graph representations and pairwise node representations. In an unsupervised framework for GNN
training, node similarities obtained from co-occurrence of nodes in the graph randomwalks can be
used for model training. GNNs often compute node representations using a graph-level implemen-
tation to avoid redundant computations for neighbors that are shared among nodes. In addition,

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:17

Fig. 3. A general supervised framework for training GNN layers. Two GNN layers are applied on an input

graph to compute the node representation vectors for its nodes. The colors on arrows show neighbors of a

target node that are aggregated to generate the target node representation. xa is the feature vector of node

a and h1a and h2a are the representation vectors generated for the node a after applying the first and second

GNN layers. The generated embeddings are used in a node classification task. y′a is the predicted label for

the node a.

formulating the message passing operations as matrix multiplications is computationally cheap.
As an example for a basic GNN, the node embedding computation formula can be reformulated as

H (l+1) = σ (ÂH lW l), (15)

where H l contains the embedding of all the nodes in layer l andWl is the weight matrix at layer

l . Â = D̃−1/2ÃD̃−1/2, where Ã = A + In , D̃ii =
∑

j Ãi j , In is an identity matrix, and A,D are the
graph’s adjacency and degree matrices. The graph-level implementation avoids redundant compu-
tations; however, it needs to operate on the whole graph, which may lead to memory limitations.
Various methods have been proposed to alleviate the memory complexities of GNNs, which will
be discussed in Section 4.6.

4.1.3 Other Important Concepts in GNNs. In this section, we define some of the concepts that
are frequently used in the GNN-based graph representation literature.
Receptive Field. The receptive field of a node in GNNs are the nodes that contribute to the

final representation of the node. After passing through each layer of the GNN, the receptive field
of a node grows one step towards its distant neighbors.
Graph Isomorphism. Two graphs are isomorphic if they have a similar topology. Some of the

early works on GNNs, such as GCN [142] and GraphSAGE [99], fail to distinguish non-isomorphic
graphs in some cases.
Weisfeiler & Lehman (WL) test. The WL test [150] is a classic algorithm for testing graph

isomorphism. It has been shown that the representation power of the message passing GNNs
is upper bounded by this test [303]. The WL test successfully determines isomorphism between
different graphs, but there are some corner cases in which it fails. Similarly, GNNs fail in those
cases. The simple way of thinking about how this test works is that it first counts the number of
nodes in two graphs. If two graphs have a different number of nodes, they are different. If two
graphs have a similar number of nodes, it checks the number of immediate neighbors of each
node. If the number of immediate neighbors of each node is the same, it goes on to check the
second-hop neighbors of nodes. If two graphs are similar in all these cases, then they are identical
or isomorphic.
Skip connections. A skip connection in deep architectures means skipping some layers in the

neural network and feeding one layer’s output as an input to the next layers, not just the immediate

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:18 S. Khoshraftar and A. An

next layer. A skip connection helps in alleviating the vanishing gradient effect and preserving
information from previous layers. For instance, skip connections are used in the GraphSAGE [99]
update step. This method concatenates the node representation at the previous level with the
aggregated representation from node neighbors from the previous layer in the update step. This
way, it preserves more node-level information in the message passing.

4.2 Static Graph Neural Networks

Static GNN-based graph embedding methods are suitable for graph representation learning on
static graphs, which do not change over time. These methods can be divided into two classes:
Recurrent GNNs and Convolutional GNNs, which will be explained below.

4.2.1 Recurrent Graph Neural Networks (RecGNNs). RecGNNs are the early works onGNNs that
are based on RNNs. The original GNNmodel proposed by Scarselli et al. [246] used the assumption
that nodes in a graph constantly exchange information until they reach an equilibrium. In this
method, the representation of node v at iteration t , htv is defined using the following recurrence
equation:

htv =
∑

u ∈N (v)

f
(
xv ,x

e
(v,u),h

(t−1)
u ,xu

)
, (16)

where f is a recurrent function. N (v) is a set of neighborhood nodes of node v . xv ,xu are feature
vectors of nodesv,u and xe

(v,u)
is the feature vector of the edge (u,v). This GNNmodel recursively

runs until convergence to a fixed point. Therefore, the final representation hTv in this method is
a vector for which hTv = f (hT−1v). In this model, h0v is initialized randomly. The initialization of
node representation vectors does not matter in this model because the function f recursively con-
verges to the fixed point using any value as an initialization. For learning the model parameters,
the states htv are iteratively computed until the iterationT . An approximate fixed point solution is
obtained and used in a loss function to compute the gradients. This model has several limitations.
One limitation is that if T is large, the iterative computation of node representation until conver-
gence is time-consuming. Furthermore, the node representations obtained from this model are
more suitable for graph representation than node representation, as the outputs are very smooth.
GGNN [165] uses a gated recurrent unit (GRU) as the recurrent function in the original RecGNN
method proposed by Scarselli et al. [246]. The advantage of using a GRU is that the number of re-
currence steps is fixed and the aggregation does not need to continue until convergence. The htv
formula is as follows:

htv = GRU
��	h

(t−1)
v ,

∑
u ∈N (v)

h (t−1)
u

��. (17)

The h0v are initialized with node features. The Implicit Graph Neural Net (IGNN) [94] is
another recurrent GNN that generates node representations by iterating until convergence with
no limit on the number of neighbor hops. However, it guarantees the existence of the solution
for the equilibrium equations by defining the concept of well-posedness for GNNs, which was
previously defined for neural networks [71] and enforcing it at the training time.

4.2.2 Convolutional Graph Neural Networks (ConvGNNs). ConvGNNs are a well-known cat-
egory of GNNs. These methods generate node embeddings using the concept of convolution
in graphs. The difference between ConvGNNs and RecGNNs is that ConvGNNs use convolu-

tional neural network (CNN)–based layers to extract node embeddings instead of RNN layers
in RecGNNs. There are three key characteristics in CNNs that make them attractive in graph rep-
resentations. (1) Local connections: CNN can extract local information from neighbors for each

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:19

node in the graph; (2) shared weights: weight sharing in node representation generates node em-
beddings that consider the information of other nodes in the graph; and (3) multiple layers: each
layer of convolution can explore a layer of proximities between nodes [369]. ConvGNNs have two
categories that can overlap: spectral-based and spatial-basedmethods. The spectral-basedmethods
have roots in graph signal processing and define graph signal filters. The spatial-based methods
are based on information propagation and message-passing concepts from RecGNNs and are more
preferred than spectral methods because of efficiency and flexibility. Here, we explain these two
categories in more detail.

(1) Spectral based. Spectral-based GNNs utilize mathematical concepts from graph signal pro-
cessing. Spectral Network [28] is one of the early works that defines convolution operations on
graphs. Here, we define some of the main concepts shared among spectral-based GNNs.

Definition 17. (Graph Signal). In graph signal processing, a graph signal x ∈ Rn is an array of n
real or complex values for n nodes in the graph.

Definition 18. (Eigenvectors and eigenvalues (spectrum)). Let L = D −A be the graph Laplacian
of graphG, whereD,A are the graph’s degree matrix and adjacency matrix. The normalized graph
Laplacian matrix is LN = In − D−1/2AD−1/2, which can be factorized as LN = UΛUT . U is the
matrix of eigenvectors and Λ is the diagonal matrix of ordered eigenvalues. The set of eigenvalues
of a matrix are also called the spectrum of the matrix.

Definition 19. (Graph Fourier transform). The graph Fourier transform is F = UTx , which maps
the graph signal x to a space formed by the eigenvectors of LN .

Definition 20. (Spectral Graph Convolution). The spectral graph convolution of the graph signal
x with a filter д ∈ Rn is defined as

x ∗ д = F−1 (F (x) � F (д)) = U (UTx � UTд) (18)

⇒ x ∗ дθ = UдθUTx (19)

where дθ = diaд(U
Tд). (20)

Different spectral-based ConvGNNs use a different graph convolution filter дθ . For instance,
Spectral CNN [28] defines дθ as a set of learnable parameters. One of the main limitations of this
method is the eigenvalue decomposition computational complexity. This limitation was resolved
by applying several approximations and simplification in future works. A Graph Convolutional

Network (GCN) [142] uses a layerwise propagation rule based on multiplying the first-order
approximation of localized spectral convolution filter дθ with a graph signal x as follows:

x ∗ дθ = θ (In + D−1/2AD−1/2)x , (21)

where D,A are the degree matrix and adjacency matrix of a graph G and In is an identity matrix
with 1 on the diagonal and 0 elsewhere. θ represents the filter parameters. The GCN also mod-
ifies the convolution operation into a layer defined as H = X ∗ дΘ = f (ĀXΘ), where f is an
activation function and Ā = In + D−1/2AD−1/2. Using a renormalization trick, Ā is replaced with

Â = D̃−1/2ÃD̃−1/2, where Ã = A + In and D̃ii =
∑

j Ãi j . Therefore, the formulation of hl+1v for node
v becomes:

hl+1v = f ��	Θl ��	
∑

u ∈{N (v)∪v }
Âv,uxu

��

��, (22)

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:20 S. Khoshraftar and A. An

where Ā is a constant and is approximately computed in a preprocessing step. N (v) is the set of
neighbors of a node v . Therefore, hl+1v value can be roughly approximated as

hl+1v ≈ f
(
Θl .Mean

(
hlv ∪

{
hlu ,∀u ∈ N (v)

}))
. (23)

In a neural network setting, f is an activation function such as ReLU and Θl is the matrix of pa-
rameters at layer l . The GCN can be viewed as a spatial-based GNN because it updates the node
embeddings by aggregating information from neighbors of nodes. In [159], a spectral-based model
is proposed that jointly learns relations between nodes and relations between attributes of nodes.
The node embeddings in this model are the output of a 2D spectral graph convolution defined as
Z = GXF . In this formula, X is a node feature matrix and G and F are an object graph convo-
lutional filter and an attribute graph convolutional filter, respectively. The object graph convolu-
tional filter is defined by designing a filter on the adjacency matrix of the graph. For defining the
attribute graph convolutional filter, an attribute affinity graph is constructed on the original graph
by applying either positive pointwise mutual information or word embedding–based K-nearest

Neighbor (KNN) on the attributes of the nodes. Directional Graph Networks (DGNs) [16]
defines directions for information propagation in the graph using vector fields to improve the
message passing in a specific direction in the current GNNs. In this method, the contribution of a
neighbor node depends on its alignment with the receiving node’s vector field. The vector fields
denoted by B are defined using the k lowest frequency eigenvectors of the Laplacian matrix of
the graph, as they preserve the global structure of graphs [92]. The node representations are ob-
tained by multiplication of the matrix B and the adjacency matrix of the input graph. In [200], it
has been shown that most common GNNs perform l2-based graph smoothing on the graph sig-
nal in the message passing, which leads to global smoothness. Motivated by the trend filtering
idea [285], Elastic GNN [179] accounts for different smoothness levels for different regions of the
graph using l1-based graph smoothing. In [364], a framelet graph convolution is proposed. This
method is based on graph framelets and their transforms [365]. Framelet convolution can lower
the feature and structure noises in graph representation. This method decomposes the graph into
low-pass and high-pass matrices and generates framelet coefficients. Then, the coefficients are
compressed by shrinkage activation, which improves the network denoising properties. Simple

Graph Convolution (SGC) [290] is a graph convolution network that simplifies the GCN model
by removing the non-linear activation functions at consecutive layers. This study theoretically
proves that this model corresponds to a fixed low-pass filtering in spectral domain in which similar
nodes have similar embeddings. Many other studies introduce different variants of spectral-based
GNNs [144, 160, 202, 210, 277, 345, 359, 381].

(2) Spatial based. Spatial-based ConvGNNs define the graph convolution similar to applying
CNNs on images. Images can be viewed as a graph such that the nodes are the pixels and the
edges are the proximity of pixels. When a convolution filter applies to an image, the weighted
average of the pixel values of the central node and its neighbor nodes are computed. Similarly,
the spatial-based graph convolutional filters generate a node representation by aggregating the
node representations of neighbors of a node. One of the advantages of spatial-based ConvGNNs
is that the learned parameters of models are based on close neighbors of nodes and, therefore,
can be applied on different graphs with some constraints. In contrast, spectral-based models
learn filters that depend on eigenvalues of a graph Laplacian and are not directly applicable on
graphs with different structures. GraphSAGE [99] is one of the early spatial-based ConvGNNs.
This method generates node embeddings iteratively. The node embeddings are first initialized
with node attributes. Then, a node embedding at iteration k is computed by concatenating the
aggregation of the node’s neighbor and the node embedding at iteration k − 1. For example, for a

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:21

node v ,

hkN (v) = Aддreдatek
(
hk−1u ,∀u ∈ N (v)

)
hkv = σ

(
W k .Concat

(
hk−1v ,h

k
N (v)

))
,

where hk andW k are the node embedding and weight matrix at iteration k . N (v) is the set of
neighbors of v . GraphSAGE leverages mean, LSTM, and pooling aggregators as follows:

—Mean aggregator. The mean aggregation is similar to that of a GCN [142], which takes the
mean over neighbors of a node. The difference is that a GCN includes the node representa-
tion hk−1v in the mean but GraphSAGE concatenates the node representation with the mean
aggregation of neighbor nodes. This way, GraphSAGE avoids node information loss.

— LSTM aggregator. An LSTM aggregator aggregates neighbor node representations using an
LSTM structure. It is important to note that LSTM preserves the order between nodes; how-
ever, there is no order among neighbor nodes. Therefore, GraphSAGE inputs a random per-
mutation of nodes to alleviate this problem.

— Pooling aggregator. In this aggregation, each neighbor node is fed through a fully connected
neural net. Then, an elementwise max operation is applied on the transformed nodes as
follows:

Aддreдatepool = max ({σ (Wpoolhu + b),∀u ∈ N (v)}). (24)

The above equation uses the max operator for pooling. However, the mean operator can be
used as well. The pooling aggregator is symmetric and learnable. The pooling aggregation
intuition is that it captures different aspects of the neighborhood set of a node.

The aggregation continues until K iterations. The model is trained using a loss function that
generates similar node embeddings for nearby nodes in an unsupervised setting. The unsuper-
vised loss can be replaced with task-specific objective functions. The Graph Attention Network

(GAT) [266] utilizes the self-attention mechanism [265] to generate node representations. Unlike
a GCN, which assigns a fixed weight to neighbor nodes, a GAT learns a weight for a neighbor
depending on the importance of the neighbor node. The state of nodev at layer k is formulated as
follows:

hkv = σ ��	
∑

u ∈N (v)

αkvuW
khk−1u

�� (25)

αvu =
exp (LeakyReLU(aT [Whu | |Whv]))∑

k ∈Nv
exp (LeakyReLU(aT [Whu | |Whk]))

(26)

h0v = xv , (27)

where αvu is the attention coefficient of node v to its neighbor u defined using a softmax func-
tion. Nv is the neighbor set of node v .W is the weight matrix and a is a weight vector. | | is the
concatenation symbol. In addition to self-attention, a GAT’s results benefit from using multi-head
attention. Similar to GraphSAGE, a GAT is trained in an end-to-end fashion and outputs node
representations. A Multi-hop Attention Graph Neural Network (MAGNA) [270] generalizes
the attention mechanism in a GAT [266] by increasing the receptive fields of nodes in every layer.
Stacking multiple layers of a GAT has the same effect; however, that causes the oversmoothing
problem. MAGNA first computes the 1-hop attention matrix for every node and then uses the sum
of powers of the attention matrix to account for multi-hop neighbors in every layer. To lower the
computation cost, an approximated value for the multi-hop neighbor attention is computed. The
MAGNA model aggregates the node features with attention values and passes the values through

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:22 S. Khoshraftar and A. An

a feed forward neural network to generate the node embeddings. The Message Passing Neural

Network (MPNN) [86] proposes a general framework for ConvGNNs. In the MPNN framework,
each node sends messages based on its states and updates its states based on messages received
from its immediate neighbors. The forward pass of the MPNN has two parts: a message passing
and a readout phase. In the message passing phase, a message function is utilized for information
propagation and the node state is updated as follows:

htv = Ut
��	ht−1v ,

∑
u ∈N (v)

Mt

(
ht−1v ,h

t−1
u , evu

)
�� (28)

h0v = xv , (29)

where Mt is the message function and Ut updates the node representation. Ut ,Mt are learnable
functions. evu is the information of an edge (v,u). In the readout phase, the readout layer generates
the graph embeddings using the updated node representations, hG = R (htv |v ∈ G). Different
ConvGNNmethods can be formulated using this framework using different functions forUt ,Mt ,R.
The GN block [15] proposes another general framework for GNNs in which some of the GNN
methods could fit in its description. A GN block learns nodes, edges, and the graph representations
denoted as hli , e

l
i j ,u

l , respectively. Each GN block contains three update functions, ϕ and three

aggregation functions, ρ:

el+1i j = ϕe
(
eli j ,h

l
i ,h

l
j ,u

l
)

ml+1
i = ρe→v

({
el+1i j ,∀j ∈ N (i)

})
(30)

hl+1i = ϕv
(
ml+1

i ,h
l
i ,u

l
)

ml+1
V = ρv→u

({
hl+1i ,∀i ∈ V

})
(31)

u (l+1) = ϕu
(
ml+1

E ,m
l+1
V ,h

l
i ,u

l
)

ml+1
E = ρe→u

({
el+1i j ,∀(i, j) ∈ E

})
. (32)

The GN assumption is that computation on a graph starts from an edge to a node and then to
the entire graph. This phenomenon is formulated with update and aggregation functions: (1) ϕe

updates the edge representations for each edge. (2) ρe→v aggregates the updated edge represen-
tations for the edges connected to each center node. (3) ϕv updates the node representations.
(4) ρv→u aggregates node representation updates for all nodes. (5) ρe→u aggregates edge repre-
sentation updates for all edges. (6) Finally, the entire graph representation is updated by ϕu .

GNN-FiLM [27] generates node embedding using the feature-wise linearmodulation (FiLM)

idea that was introduced in the visual question answering area [231]. Many common GNNs, such
as GCN [142] and GraphSAGE [99], propagate information along edges using information from
the source node of the edges. In GNN-FiLM, the target node representation transformation is com-
puted and applied to incoming messages to generate the feature-wise modulation of the incom-
ing messages. Graph Random Neural Features (GRNFs) [336] generate graph embeddings by
preserving the metric structure of the graphs in the embedding space, therefore distinguishing
between any pair of non-isomorphic graphs. This method is based on a family of graph neural
feature maps. The graph neural feature maps are GNNs that can separate graphs. The outputs of
these GNNs, which are scalar features, are then concatenated to generate the graph embedding.
E(n) Equivariant Graph Neural Network (EGNN) [245] is a rotation, translation, and permu-
tation equivariant GNN. These properties are fundamental in representing structures that show
rotation and translation symmetric characteristics, such as molecular structures [237]. An EGNN
takes as inputs a feature vector and an n-dimensional coordinates vector for each graph node along
with the edge information and outputs the node embeddings. The main difference between this
method and common GNNs is that the relative squared distance between a node’s coordinates and
neighbors has been considered in the GNNmessage-passing operation. The Bilinear Graph Neu-

ral Network (BGNN) [374] argues that the neighbors of a node can have interactions that may

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:23

affect the node representations. Therefore, it augments the aggregation of neighbors of a node by
pairwise interactions of neighbor nodes. Motivated by factorization machines [108], it models the
neighbors’ interaction using a bilinear aggregator denoted by BA, which computes the average of
pairwise multiplication of neighbor nodes of a node. Then, the convolution operator is defined as
follows:

H (k) = (1 − α).AGG (H (k−1),A) + α .BA(H (k−1),A), (33)

whereH (k) is the node representation at the k-th layer and α is a trade-off parameter between two
components. In [349], it is theoretically shown that all attention-based GNNs fail in distinguishing
between certain structures due to ignoring the cardinality information in aggregation. Therefore,
this article introduces two cardinality-preserved attention (CPA) models named Additive and
Scaled. The formulation of the Additive model is as follows:

hli = f l ��	
∑

j ∈N (i)

α l−1i j hl−1i +w l �
∑

j ∈N (i)

hl−1i

��, (34)

where the first term is the original attention formula and the second term captures the cardinality
information. The Scaled model formula is

hli = f l ��	ψ l (|N (i) |) �
∑

j ∈N (i)

α l−1i j hl−1i

��, (35)

whereψ (|N (i) |) is a function that maps the cardinality value to a non-zero vector. Both these mod-
els improve the distinguishing power of the original attention model. A Multi-Channel graph

neural network (MuchGNN) [372] generates graph representations using a graph pooling oper-
ation. However, instead of shrinking the graph layer by layer using graph pooling, which may
result in loss of information, it shrinks the graph hierarchically. This method generates a se-
ries of graph channels at each layer and applies graph pooling on them to generate the graph
representation at each layer. The final graph representation is the concatenation of graph repre-
sentations at each layer. Policy-GNN [146] captures information for each node using different
iterations of aggregations to capture the graph’s structural information better. To that end, it
uses meta-policy [339] trained by deep reinforcement learning to choose the number of aggre-
gations per node. TinyGNN [307] proposes a small GNN with a short inference time. In order
to capture the local structure of the graph, this method generates node representations by ag-
gregating peer-aware representations of the node’s neighbors. Peer-aware representations con-
sider the interactions between peer nodes, which are neighbor nodes with the same distance
from the center node. In addition, inspired by knowledge distillation [110], it proposes a neigh-

bor distillation strategy (NDS) in a teacher–student network. The teacher network is a regular
GNN that has access to the entire neighborhood and the student network is a small GNN that
imitates the teacher network. Other spatial-based convolution GNNs include those discussed in
[107, 149, 187, 217, 218, 224, 228, 268, 301, 324, 327, 334, 358, 380].

Despite the success of GNNmethods, most require some supervision for training, which is costly.
Self-supervised graph learning methods address this shortcoming by generating the graph embed-
dings without the need of the label information. These methods are categorized into generation-
based, auxiliary property-based, contrast-based, and hybrid methods [183]. The generation-based
methods generate embeddings by reconstructing the perturbed version of the input graph adja-
cency matrix or node/edge properties. For instance, a GPT-GNN [112] reconstructs node attributes
and edges of a graph iteratively by maximizing the likelihood of the graph. GraphMAE [111] is
another example of this category, which focuses on reconstructing features of graphs efficiently.
The auxiliary property-based methods utilize extracted auxiliary properties of the graph as labels

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:24 S. Khoshraftar and A. An

for training the model. M3S [257] belongs to this category and uses cluster assignments as class
labels for nodes.
Contrast-based methods are the major category in self-supervised graph learning, which maxi-

mize the mutual information (MI) between the augmented instances of a graph and the graph
or graph elements, such as nodes and subgraphs. DGI [267] is a contrast-based method that maxi-
mizes the MI between a graph representation and the graph’s node representations. This method
is trained by maximizing the following objective function:

1

N +M
��	

N∑
i=1

E(X ,A)

[
log D (

−→
hi ,
−→s)

]
+

M∑
j=1

E(X̃ ,Ã)

[
log

(
1 − D (

−→̃
hj ,
−→s)
)]
��, (36)

where N is the number of nodes and M is the number of negative examples. X ,A, X̃ , Ã are graph
features, adjacency matrix, and the corrupted version of these matrices, respectively. D (., .) is the

probability score.−→s is the graph representation vector, and
−→
hi and

−→̃
hj are the representation vectors

of node i and node j obtained by summarizing a subgraph surrounding the node from the graph and
the corrupted version of the graph, respectively. SimGCL [332] is another contrast-based method
that generates contrastive views by adding uniform noises to node embeddings. Other examples
of contrast-based methods include those discussed in [296, 332]. Hybrid methods combine two
or more self-supervised objectives for the model training. For example, GMI [230] generates the
node embeddings by considering two MI maximization objectives: feature MI and topology-aware
MI. Feature MI is derived by comparing a representation of a node with its neighbors’ features.
Topology-aware MI considers the proximity of the node with its neighbors using an MI term. A
survey on self-supervised graph learning methods can be found in [183].

4.3 Spatial-Temporal Graph Neural Networks (STGNNs)

STGNNs are a category of GNN that capture both the spatial and temporal properties of a graph.
They model the dynamics of graphs considering the dependency between connected nodes. There
are wide applications for STGNNs, such as traffic flow forecasting [36, 97, 156, 281, 348, 352], epi-
demic forecasting [274], and sleep stage classification [129]. For instance, in traffic prediction, the
future traffic on a road is predicted taking into consideration the traffic congestion of its connected
roads in previous time periods. Most of the STGNN methods fall into CNN-based and RNN-based
categories that integrate the graph convolution in CNNs and RNNs, respectively.

4.3.1 RNN based. A Graph Convolutional Recurrent Network (GCRN) [248] is an exam-
ple of RNN-based STGNN. In this method, an LSTM network is combined with the convolution
operation. The GCRN has two variants. In the first variant, a CNN layer is stacked with an LSTM
layer. The CNN layer extracts the features at time t and the LSTM captures the temporal behavior
of nodes over time. Therefore,

xCNN
t = CNNG (xt), (37)

where xt and x
CNN
t are the features and extracted features by CNN at time t . Then, xCNN

t is input
to the LSTM gates. For instance, for the input gate i , we have the following formula:

i = σ
(
WxCNN

t +Uht−1 + b
)
, (38)

whereW and U are the weights of the LSTM layer. ht−1,b, and σ are the hidden state of LSTM
at time t − 1, bias, and sigmoid function, respectively. Similar formulas are used for other LSTM
equations. In the second variant, the GCRN replaces the matrix multiplication operation in the
LSTM with the graph convolution operation. For example, the formula for the input gate i is as

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:25

follows:

i = σ (W ∗G xt +U ∗G ht−1 + b), (39)

where ∗G is the graph convolution operator. In [281], the spatial and temporal correlations between
nodes are modeled using three components: a spatial GNN layer, a GRU layer, and a transformer
layer. The input to the model is a sequence of graphs over time. The spatial GNN layer captures the
spatial relations between nodes in each graph. Then, a GRU and transformer layers are applied on
the sequence of graphs that are output from a previous layer and capture the temporal relations
between graphs over time. Other RNN-based spatial-temporal GNNs include methods in [36, 64,
83, 145, 164, 166, 171, 172, 209, 256, 274, 283, 287, 291, 299, 310, 316, 319, 321, 347].

4.3.2 CNN based. Graph WaveNet [294] is a CNN-based spatial-temporal GNN. This method
takes as input a graph and feature matrices of nodes form previous timesteps and the goal is to
predict the next n feature matrices. For example, in a traffic prediction application, a feature matrix
is an N × d matrix in that each row contains traffic features of a node. Each node is a sensor or
a road. N is the number of nodes and d is the feature vector dimension. Graph WaveNet consists
of stacked spatial-temporal layers with two building blocks: a GCN and a temporal convolution
layer (Gated TCN). The model considers spatial dependencies at different temporal levels using
the spatial-temporal layers. In each layer, the input X is given to the temporal convolution layer,
which outputs h as follows:

h = д(θ1 �X + b) � σ (θ2 �X + c), (40)

where θ1, θ2,b, and c are the model parameters.д and σ are activation functions and� is the dilated
convolution operator. The dilated causal convolution captures a node’s historical information with
sliding over the input. For a one-dimensional input sequence x and a filter f ∈ RK , the dilated
causal convolution operation is as follows:

x � f (t) =
K−1∑
s=0

f (s)x (t − d × s), (41)

where t is the sliding step andd is the dilation factor. In Spatial-Temporal FusionGraphNeural

Networks (SFTGNN) [156], instead of modeling the spatial and temporal correlations of nodes
separately, a spatial-temporal fusion graph is constructed using three N × N matrices to capture
three kinds of correlation for each node: (1) a spatial graph for spatial neighbors, (2) a temporal
graph for nodes with similar temporal sequences, and (3) a temporal connectivity graph for connec-
tion of a node at nearby time points. The spatial-temporal fusion graph is then input to a spatial-
temporal fusion graph neural module (STFGNmodule) that generates node representations.
In [6, 48, 55, 62, 74, 97, 102, 129, 168, 169, 190, 194, 221, 223, 227, 253, 329, 343, 348, 351, 352], many
other CNN-based spatial-temporal GNNs are proposed.

4.4 Dynamic Graph Neural Net (DGNN)

Dynamic Graph Neural Networks (DGNNs) are GNNs that model a broad range of dynamic
behaviors of a graph, including adding or deleting nodes and edges over time. EvolveGCN [226]
is a dynamic GNN method. The idea behind it is to use an RNN model to update weights of the
GCN at each time point and capture dynamics of the graph. At each timestep t , a GCN layer is
used to represent the graph at time t . In order to integrate historical information of the nodes,
the initial weights for the GCN at time t are the hidden states/output of RNN-based models that
take as input the weights of previous GCN models. Each RNN-based model is assigned to a sep-
arate layer of GCN models. The EvolveGCN model is trained end to end for link prediction and
edge/node classification tasks. DyGNN [199] proposes a dynamic GNN method that consists of

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:26 S. Khoshraftar and A. An

two components: update and propagation components. These two components work in parallel to
update and propagate the information of a new interaction in the graph. Let (vs ,vд , t) represent
a new directed edge that emerges between a source node vs and a target node vt at time t . The
update component updates the two nodes vs ,vt representations and the propagate component
propagates the interaction information to influenced nodes, which are defined as 1-hop neighbors
of the two interacting nodes.
ADynamic Self-Attention Network (DySAT) [243] consists of two components, a structural

block followed by a temporal block to capture the structural and temporal properties of a graph.
This method defines dynamic graphs as a series of graphs over time. In order to capture the struc-
ture of the graph at each time point, the structural block, which is a variant of GAT, is applied
to the graph at each time point. Then, to capture dynamic patterns of nodes, DySAT applies a
temporal self-attention layer in the temporal block. The inputs to the temporal block are node
representation overtime for every node v such that the node representation x tv attends over the
historical representation of the node (< t) to generate the final embedding of each node. Em-

bedding via Historical Neighborhoods Aggregation (EHNA) [119] aggregates the historical
neighbors of a node to capture the evolution of the node in the graph. In order to capture the
historical neighbors of a node, EHNA first generates k temporal random walks for each node. The
transition probability of each edge in a temporal random walk depends on the weight and time of
the edge. The generated random walks for each node x are first aggregated using an LSTM model
to generate the walk encoding. The sequence of k walk encodings are aggregated to generate a
representation for the node x . A Temporal Graph Network (TGN) [241] generates node embed-
dings for dynamic graphs that are modeled as a stream of edges. This model consists of several
modules.

—Memory: At each time t , the TGN saves a vector si (t) for each node i in the memory to
represent the node history in a compressed format. The vector si (t) is initialized as a zero
vector and updated as more edges emerge.

—Message Function: Every time an edge occurs between two nodes, a message is sent to the
nodes participating in the edge.

—Message Aggregator : A node can be involved in multiple interactions. The TGN keeps the
last message in the order of time and the mean of other messages from other interactions
for each node.

—Memory Updater : Every time an event occurs, the memory of the participating nodes is up-
dated using a learnable memory update function such as LSTM.

— Embedding: The embedding module generates the temporal embeddings for each node at
any time t using a learnable function h that updates the representation of each node even if
the node was not involved in any interaction until that point.

In [273], a streaming GNN is modeled as G1,G2, . . . ,GT , where Gt = Gt−1 + δGt and δGt is
the changes of a graph between times t − 1 and t . The loss of the network at time t is formulated
as Lnew + Lexist inд . Lnew is the loss of parts of the graph influenced by the new changes at time
t . Lexist inд preserves information from previous time points. In Lnew , the influenced nodes by
new changes are replayed in the GNN model. In Lexist inд , the important nodes from the history
are replayed. In addition, the model parameters are approximated such that they do not deviate
drastically from the model parameters at the previous time. A Temporal Graph Attention Net-

work (TGAT) [300] is a dynamic version of a GAT [266]. A GAT does not consider time ordering
between neighbors of a node and is used for static settings. However, a TGAT assumes ordering
between neighbors of a node based on the time they arrive. The assumption is that a neighbor

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:27

that occurs more recently is likely to have more influence on a node. In order to add time to the
attention mechanism, a time vector is concatenated to the node feature vector. Time features that
are used in TGAT are obtained based on the concepts from Bochner’s Theorem and expressed by
mapping the time to Rd as follows:

ϕd (t) =

√
1

d
[cos (w1t), sin(w1t), . . . , cos (wd/2t), sin(wd/2t)], (42)

where parametersw1, . . . ,wd/2 are learnable parameter. TheCausal AnonymousWalks Neural

Network (CAW-N)[282] generates temporal link embeddings by capturing the motif evolution
in dynamic networks using a variant of anonymous walks [127]. This method predicts the prob-
ability of a link in the future and assumes that if motif structures of two nodes u,v interact over
time, the probability of a link occurrence between u,v is higher. Therefore, this model defines
set-based anonymization on the temporal random walks to capture the interaction between the
motifs of the two nodes over time. Then, in order to obtain a representation of a link (u,v), all
the anonymized walks for nodes u and v are encoded and aggregated using a mean or attention
mechanism and are passed through an MLP to obtain the link probability. In aMotif-preserving

Temporal Shift Network (MTSN) [184], the dynamic network is considered as a series of graph
snapshots over time and two components for generating node embeddings at each time point
are introduced. The first component is a Motif Preserving Encoder (MPE) and the second is a
Temporal shIft based on Motif preserving Encoder (TIME). The MPE component preserves
the high-order similarity between nodes at each snapshot. First, it generates node embeddings by
running a simplified GCN on the adjacency matrix and a combined motif matrix of the graph sepa-
rately and adding their outputs. The combined motif matrix of a graph is obtained by weighted av-
eraging of motif matrices of the input graph that are computed using the Parametrized Graphlet

Decomposition (PGD) technique [4]. The TIME component considers the effect of time and is
inspired by the Temporal Shift Mechanism in computer vision [170]. It shifts the node embed-
dings at each snapshot to capture the temporal evolution. TGR-Clique [137] is another temporal
GNN that generates node and edge embeddings by preserving maximal cliques in the network.
In order to generate a node embedding, this method first generates temporal random walks on
the maximal cliques containing the node to capture the node’s neighbors. Then, it aggregates the
temporal walks of the node using Bidirectional Long Short-Term Memory (BiLSTM), multi-
head attention, and mean function. In [79, 98, 176, 313], several other dynamic/temporal GNNs are
presented.

4.5 Real-World Applications of GNN-Based Methods

GNN methods have been deployed in production in several companies in recommendation sys-
tems, fraud detection, travel time prediction, and other types of predictions. Table 3 presents some
real-world applications of GNNs. One of the main applications of GNNs in the industry is recom-
mendation systems. Gemini [302] is an example of a recommendation system based on aGCN [142]
used by the DiDiChuxing company, an online ride-hailing platform. The recommendation tasks of
the company include coupon and product recommendations. Gemini deals with the heterogeneous
graph of users and items by dividing it into two homogenous graphs from the users’ and items’ per-
spective called Gemini-U and Gemini-I, respectively. In Gemini-U, nodes are the users, and there
is an edge between two users if they are interested in the same item, and the item will be the edge
attribute. Gemini-I is generated similarly. As such, this method keeps the original user–item topol-
ogy information. Then, given Gemini-U and Gemini-I, user and item representations are jointly
learned to introduce the users to items’ embeddings and vice versa.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:28 S. Khoshraftar and A. An

Table 3. Some of the Real-World Applications of Graph Neural Networks Deployed in Production

The Applied Algorithm Application

Standard GNN with MetaGradients [61] Estimated time of travel (ETA) prediction in Google Maps
HetMatch [186] Keyword matching for bid keyword recommendation in

sponsered search platform of Alibaba Group
Category-aware GNN [236] Review helpfulness prediction in Taobao
GNN-based tag ranking (GraphTR)
[178]

Video recommendation in WeChat Top Stories

DecGCN [182] Online recommendation system in JD.com
DHGAT [219] Search matching in shop search in Taobao
Dynamic Heterogeneous GNN [193] Real-time event prediction in DiDi platform
Spatial-temporal graph neural network
(ConSTGAT) [75]

Travel time estimation in Baidu Maps

Heterogeneous Graph Attention
Matching Network (HGAMN)[118]

Retrieving point of interests in different languages in
Baidu Maps

PinSage [323] Recommendation system at Pinterest
Gemini [302] Online recommendation at DidiChuXing
M2GRL [275] Recommender system at Taobao
ColdGuess [104] Fraud detection at Amazon

GNNs have also been applied in fraud detection tasks. For instance, ColdGuess [104] is a risky
listing detector used in production at Amazon. This model defines the fraud detection task as a
multi-label classification task in which a classifier predicts a label for an offer based on the product
complaints type. The complaint type can be normal or eight different abnormal types. In the graph
of this application, nodes are sellers and products. There is an edge between a seller and a prod-
uct if the seller offers that product, and the offer features are the edge features. The ColdGuess
model comprises an relational graph convolutional network (RGCN) model [247] for gen-
erating node embeddings and an MLP model for edge embedding generation. A final classifier
concatenates the nodes and edge embedding and predicts the product complaint type.
Another example of GNN applications is travel time estimation. GN blocks [15] have been used

in travel time prediction in Google Maps [61]. The graph in this application is a road network
in which nodes are road segments and edges are the connection between them. Each node in the
graph is representedwith features such as length, priority, real time and historical travel speeds and
times. Given a start time and a road supersegment that contains a series of segments in the network,
the model predicts the travel time labels across the supersegment in the future. For training the
model, a MetaOptimizer with MetaGradients is utilized to address the variance issues resulting
from using a combination of different loss functions.

4.6 The Limitation of GNNs and the Proposed Solutions

GNNs have several known limitations, such as expressive power, oversmoothing and scalability.
In this section, we summarize the major articles that address these issues.

4.6.1 Expressive Power. The expressive power of a model refers to the model’s ability to distin-
guish between different graphs. In other words, the model can map different graphs to different
embeddings and similar graphs to similar embeddings. The expressive power of common GNNs
such as GCN [142] and GraphSAGE [99] is bounded by the WL test and they fail to distinguish
certain non-isomorphic substructures. A more powerful GNN-based embedding method called the
Graph Isomorphism Network (GIN) is proposed in [303]. The GIN employs the sum operator
instead of the mean or max operators to aggregate the neighbors of a node using the following

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:29

formula:

h (k)
v = MLP(k)

��	(1 + ϵ (k))h
(k−1)
v +

∑
u ∈N (v)

h (k−1)
u

��, (43)

where ϵ can be a fixed or learnable parameter. GIN uses the sum aggregator, as its expressive
power is higher than the mean or max operators. For instance, assume that we have two nodes
v1 and v2. If v1 has two equal neighbors and v2 has three equal neighbors, the mean aggregator
generates the same embedding for two nodes. The same applies to the max aggregator. However,
the sum operator distinguishes different graph structures and generates different embeddings. It
is also theoretically proven that GIN’s expressive power is equal to the WL test. The Identity-

aware Graph Neural Network (ID-GNN) [326] proposes a coloring mechanism as a solution
for increasing the expressive power of GNNs. This model has two variants. The first variant has
two components: inductive identity coloring and heterogeneous message passing. For computing
the embedding for each nodev , a k-hop ego network of nodev is extracted and the center node of
the ego network is colored. Then, for each node in the ego network of node v , the embedding is
computed using a different message-passing component for each node based on color. This article
proposes a fast variant of ID-GNN that augments the node features instead of coloring nodes by
injecting identity information such as cycle counts for cycles that start and end in the node v . A
Nested Graph Neural Network (NGNN) [346] suggests to encode a rooted subgraph instead of
rooted subtree in common GNNs to generate node representations. It argues that rooted subtrees
have limited expressiveness to represent non-tree graphs. In [157, 344], distance-based features
are added to each node to increase the expressive power of GNNs, where distance vectors for each
node are computed with respect to each center node. Table 4 summarizes the major studies related
to increasing the expressive power of GNNs.

4.6.2 Oversmoothing. A critical known issue with GNNs is their depth limitation [158, 220].
GNN methods aggregate information from one-hop neighbors of a node in the first layer. The sec-
ond layer reaches the two-hop neighbors of a node and, stacking additional layers, goes forward in
the neighbors of a node similarly. After passing throughmultiple layers, the generated node vectors
will be oversmoothed because the local information for each node is lost. Graph Random Neural

Network (GRAND) [77] proposes a new framework to address the oversmoothing problem. This
method augments the feature matrix of the input graph using DropNode, which randomly drops
features of some of the nodes, similar to the DropEdge mechanism [240]. This augmentation helps
in making nodes less sensitive to their neighbor nodes. Then, it aggregates neighbors of a node
up to K-hop away using mixed-order propagation, which lowers the risk of oversmoothing. The

mixed-order propagation formula is X =
∑K

k=0
1

K+1Â
kX̄ , where X̄ is the augmented feature matrix.

The model is trained using consistency regularization [20] also to reduce the overfitting issue in
the semi-supervised setting in the case of scarce labels. In [46], it has been theoretically proved
that adding two simple techniques to a GCN at each layer can overcome oversmoothing. The first
technique is to construct a connection to input features to ensure that at least a fraction of node
features reach the final node representation. The second technique is to add the identity matrix to
the weight matrix to enforce at least the same performance as a shallow GCN. The formulation of
this deep GCN is as follows:

H (l+1) = σ (((1 − αl)ÂH (l) + αlH
(0)) ((1 − βl)In + βlW (l))), (44)

where αl and βl are the hyperparameters. H (0) are the initial node representations which are the
node features. In is the identitymatrix. Table 5 shows the formulation of some of themajormethods
that are introduced for alleviating the oversmoothing problem in GNNs.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:30 S. Khoshraftar and A. An

Table 4. A Summary of Major Solutions Proposed to Increase the Expressive Power of GNNs

Authors Algorithm Brief summary of the solution

Xu et al. [303] GIN Aggregating neighbors using the sum operator
Murphy et al [213] RP-GNN Adding a unique node label
Morris et al. [212] k-GNN Performing message passing between subgraph structures

instead of the node level
Maron et al. [206] PPGN Considering higher-order message passing
Chen et al. [50] Ring-GNN Using a ring of matrices in addition and multiplication
Azizian et al. [10] FGNN Augmenting the model with matrix multiplication
Li et al. [157] DEGNN Adding an extra node feature based on distance encoding
Balcilar et al. [12] GNNML Designing the convolution in spectral domain and masking

it with a large receptive field
Barcelo et al. [13] - Adding local graph parameter to GNNs
Sato et al. [244] rGIN Adding random features to GIN [303]
Papp et al. [225] DropGNN Dropping some of the nodes randomly
Wang et al. [272] PEG Using separate channels to update the node and positional

features
Wijesinghe and Wang [288] GraphSNN Injecting structural characteristics in the message passing
Zhang and Li [346] NGNN Encoding a rooted subgraph for each node instead of a

rooted subtree
You et al. [326] ID-GNN Inductively injecting node identities either using a coloring

mechanism or an augmented node feature
Dasoulas et al. [60] CLIP Using colors to distinguish similar node attributes
Huang et al. [125] PG-GNN Capturing correlation between neighboring nodes using a

permutation-aware aggregation
Wijesinghe and Wang [289] GraphSNN Designing a local isomorphism hierarchy for node neighbor-

hood subgraphs

4.6.3 Scalability. Another bottleneck of GNNs is scalability. In GNNs, the representations of a
node’s neighbors are aggregated to generate the node embeddings. Specifically, for a GNN with L
layers, the neighbor aggregation computed by the matrix multiplicationAH l has the time complex-
ityO (LmF), wherem is the number of neighbors and F is the hidden dimension of the model. The
number of neighbors can be large in very large graphs, which lowers the GNN’s training speed
and increases the memory consumption. In [44, 99, 317], this problem is alleviated by sampling a
subset of node neighbors. In [43], neighbors of a node are sampled at each layer independently.
The Cluster-GCN [51] reduces the memory problem of the GCN by sampling a subgraph for each
batch using clustering techniques and applying a graph convolution filter on the nodes in the
subgraph. Some methods, such as SGC [290], remove the non-linear activation function to reduce
the training time. RevGNN [152] is based on the reversible connections [88] and lowers the mem-
ory consumption of GNNs with respect to the number of layers. In this model, the feature matrix
is divided into several groups, which are then input into the model to generate a group of out-
puts. The advantage of this model is that only the output of the last input is saved in memory
for backpropagation. In [47], a unified GNN sparsification (UGS) framework is proposed that
jointly simplifies the graph and the model to lower the GNN’s inference time. The loss function of
UGS is

LUGS = L({mд � A,X },mθ � Θ) + γ1 |mд | + γ2 |mθ | (45)

where mд ,mθ are masks for the unimportant connections in the graph and weights in GNNs. L
is the cross-entropy loss and γ1,γ2 are hyperparameters to control the regularization of mд ,mθ .
After the training, these two masks prune the adjacency matrix and model parameters. Several

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:31

Table 5. A Summary of Major Solutions Proposed to Alleviate Oversmoothing of GNNs

Algorithm Formula

GCN [142] H (l+1) = σ (ÂH lW l)

APPNP [143] H = σ (ÂH lW l), Z l+1 = (1 − α)ÂZ l + αH

JKNet-Concat [304] hv = concat(h1v , . . . ,h
L
v)W

GCN-PN [361] H (l+1) = TPSD(σ (ÂH lW l))

DropEdge [240] H (l+1) = σ (ÂdropH
lW l)

SGC [290] H = ÂLXW

DGN-GNN [371] H (l+1) = S (l+1)H (l+1) + λ
∑C

i=1 γi ((H
(l+1)
i − μi)/σi) + βi

DAGNN [175] H = concat(mlp (X), Â1mlp (X), . . . , Âkmlp (X))),Z = softmax(σ (Hs)H)

GRAND [77] Z =mlp (1/(L + 1)
∑L

i=0 Â
iXdrop)

GCNII [46] H (l+1) = σ (((1 − αl)ÂH (l) + αlH
(0)) ((1 − βl)In + βlW (l)))

GDC [103] H (l+1) = σ (
∑fl

i=1 Âdrop[:, i]H
l [:, i]W l [i, :])

PDE-GCN [72] h (l+1) = hl − pGTKT
l
σ (KlGoh

l)

GRAND-PDE [32] H = ψ (X (0) +
∫ T
0

∂X (t)
∂t dt)

SHADOW-SAGE [337] h (l+1)
v = σ (W l .concat(hlv , aggregate(h

l
u ,∀u ∈ Gv))

GCN+inflation [105] H (l+1) = INFLATION(l+1) (σ (ÂH lW l), e)

AdaGNN [66] H (l+1) = H (l) − L̃H (l)Φl

Z is the node prediction label, H is the node representation, Kl is the convolution of the l -th layer, s is a projection

vector, Go is the discrete gradient operator on the graph, Âdrop is the symmetric normalized adjacency matrix with

certain number of edges dropped, INFLATION(.,e) = Normal(Power(Softmax(.),e)), fl is the number of features at layer

l , S l is the clustering assignment matrix, C is number of groups, μi , σi are the mean and standard deviation of group i .

γi , βi , λ are hyperparameters. TPSD is a total pairwise squared distance measure, Xdrop is the perturbed feature

matrix, p is a step size, Gv is an extracted subgraph for a node v . Φl is a learnable parameter, L̃ is symmetric

normalized Laplacian matrix. psi is a learnable function, X is the feature matrix. T is timestep.

other papers that studied the scalability of GNNs are [23, 45, 63, 78, 121, 126, 128, 229, 325]. Table 6
provides the complexity of GCN and some of the proposed approaches for lowering its complexity.

4.6.4 Capturing Long-Range Dependencies in Graphs. GNNs struggle to capture long-range de-
pendencies between nodes in the graph. The reason is that broadening the GNNs’ receptive field
by increasing their depth encounters the oversmoothing problem in node representations. To solve
this problem, in [292], a transformer module is combined with the standard GNN to capture the
long-range relationships. An Efficient infinite-depth graph neural net (EIGNN)[174] has im-
plicit infinite layers that can capture very long dependencies. The output of an EIGNN before the
softmax layer is a limit of an infinite sequence of convolutions:

f (X , F ,B) = B
(
lim
H→∞Z

(H)
)
, (46)

where Z (H) = γд(F)Z (H−1)S +X is the output of the H -th layer. F ,B are learnable weight parame-
ters, S is the normalized adjacency matrix of the input graph, and γ ∈ (0, 1]. The д(F) function is
defined as 1

|FT F |+ϵF F
T F , which is constrained to be less than one. As a result, the infinite sequence

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:32 S. Khoshraftar and A. An

Table 6. Time and Memory Complexities of GCN and Some of the Proposed Scalable GNN Models

Method Solution Time complexity Memory
complexity

GCN [142] - O (LmF + LnF 2) O (LnF)
GraphSAGE [99] Neighbor sampling O (nsLnF + ns

L−1
n F 2) O (sLnbF)

SGC [290] Linear model O (nF 2) O (bF)
ClusterGCN [51] Graph sampling O (LmF + LnF 2) O (LbF)
FastGCN [43] Layer sampling O (LnslF + LnF

2) O (LslbF)
LADIES [382] Layer sampling O (LnslF + LnF

2) O (LslbF)
GraphSAINT [338] Graph sampling O (LbdF + LnF 2) O (LbF)
VR-GCN [44] Graph sampling O (LmF + LnF 2 + sLnnF

2) O (LnF)
GBP [45] Linear model O (LnF 2) O (bF)
RevGNN [152] Reversible connections O (LmF + LnF 2) O (nF)
VQ-GNN [63] Vector quantization O (LbdF + LnF 2 + LnkF) O (LbF + LkF)
BNS [317] Neighbor sampling O (s̃L−1n .(snbF + (δ/(1−δ)+1).bF 2)) O (s̃L−1n snbF)
GLT [47] Graph sampling and

model pruning
O (LmдF + LmθnF

2) O (LnF)

L is the number of layers, F is the hidden dimension of the model, n is the number of nodes,m is the number of

neighbors per node, b is the batch size, d is the average degree of the graph, sn is the number of sampled nodes per

node,sl is the number of sampled nodes per layer, δ is the ratio of blocked nodes, s̃n = sn × (1 − δ),mд is the number

of remaining edges,mθ is the number of remaining connections in the model, k is number of codewords.

of convolutions is convergent. A closed-form solution is derived for the EIGNN instead of using
iterative solvers. In [192], the depth-wise and breadth-wise propagations are considered to capture
long-range dependencies in graphs. The breadth-wise propagation is between the representation
of a node with its neighbors’ representations from the previous layer, which is a form of horizontal
skip-connections. This model leverages a residual message function to consider edge features and
alleviate the breadth-wise gradient diminishing in the model’s backpropagation.

4.6.5 Catastrophic Forgetting. Catastrophic forgetting means that the neural network model
may forget previously learned knowledge when trained on a new task. In [173], a topology-aware

weight preserving module (TWP) is proposed to alleviate this issue in GNNs. This module
measures the importance of the GNN’s parameters after learning each task. Then, it enforces
the model to remember the old parameters when learning a new task by penalizing changes to
the important parameters with respect to the old tasks. In [368], an experience replay-based

model (ER-GNN) selects some nodes from previous tasks and replays them when learning new
tasks. The replayed nodes are those whose features are the closest to the mean of features in each
class and have the maximum coverage and influence in model training.

4.6.6 Homophily Assumption. GNNs are based on the homophily [207] assumption, which
means that nodes that are connected are similar and have the same class labels. However, it is
not true in networks that nodes with opposite characteristics connect to each other. In [378], three
design principles from previous methods are combined to make the new model suitable for both
homophily and heterophily settings.

(1) Separating node embeddings and neighbor embeddings because mixing the node and neigh-
bor information results in similar embeddings among a neighborhood.

(2) Considering higher-order neighborhoods to capture more relevant information from more
neighbors.

(3) Combining the intermediate representations to increase the range of neighbors and infor-
mation considered in node representations.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:33

Table 7. A Summary of Major Solutions Proposed to Make GNNs Suitable for Both

Homophily and Heterophily

Author Algorithm Brief summary of the solution

Zhu et al. [378] H2GCN Combining three design principles: (1) separation of ego
and neighbor sampling, (2) higher-order neighbors, (3)
combining intermediate representations.

Chien et al. [52] GPR-GNN Propagating node hidden features using generalized
pagerank methods

Suresh et al. [259] WRGNN Generating a computation graph based on nodes’
structural equivalences

Yang et al. [312] DMP Setting an attribute propagation weight for each edge
Zhu et al. [376] CPGNN Adding a compatibility matrix
Jin et al. [134] U-GCN Extracting three types of node embeddings from 1-hop,

2-hop, and k-nearest neighbors
Liu et al. [177] NLGNN Employing an attention-guided sorting of neighbor nodes
Yang et al. [314] GPNN Leveraging a pointer network to rank neighbor nodes
Wang et al. [277] HOG-GCN Incorporating a learnable homophily degree matrix into a

GCN
Fang et al. [76] Polar-GNN Using dissimilarities between nodes in the aggregation by

introducing attitude polarization
Du et al. [68] GBK-GNN Utilizing two kernels to capture the homophily and

heterophily and selecting the appropriate one for each
node pair

Li et al. [161] GloGNN Finding global homophily for nodes showing heterophily
by learning a coefficient matrix

Similarly, it has been shown in [259] that the disassortativity of many real-world graphs can lead to
the low performance of GNNmodels on these graphs. Therefore, this article proposes to generate a
computation graph from the original graph and then run the GNN on the computation graph. The
computation graph is a multi-relational graph with different types of edges between two nodes
based on different levels of neighborhood similarities, such as node degrees and neighboring node
degrees. In [376], a class compatibility matrix is added into GNNs to improve the performance of
GNNs in graphs in which heterophily exist. This framework first estimates a prior belief of every
node’s class label based on the node features. Then, using a compatibility matrix H , the prior
beliefs of nodes are propagated in their neighborhood. Each element Hi j in the matrix H is the
empirical probability that nodes with class label i connect to nodes with class label j in the dataset.
The compatibility matrix that can be learned in this model enables it to go beyond the homophily
assumption. Table 7 summarizes some of the major papers that studied the homophily assumption
in GNNs.

4.6.7 Neglecting Substructures. It has been shown in [49] that the expressive power of message-
passing GNNs in detecting subgraphs of three or more nodes is limited. Therefore, a local relation
pooling (LPR) model is proposed based on egonets. An egonet centered at a node is a subgraph
consisting of nodes within a certain distance from the node in the graph. The LPR’s idea is that a
pattern in a graph can be found in the egonet of some node. Therefore, it generates a node repre-
sentation by aggregating transformed egonets centered at the node. A Graph Structural Kernel

Network (GSKN) [189] accounts for graph substructures such as cliques or motifs by leverag-
ing anonymous walk-based graph kernels (AWGK). Graph kernels are similarity measures

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:34 S. Khoshraftar and A. An

Table 8. Formulas for the Major Solutions Proposed to Help GNNs Capture Substructures

Algorithm Formula

Geom-GCN [228] hl+1v = σ (Wl .aggregatei,r ((e
v,l+1
(i,r)
, (i, r)))), ev,l+1

(i,r)
= aggregate({hlu |u ∈

Ni (v),τ (zv , zu) = r })
GSN-v [24] hl+1v = σ (hlv ,m

l+1
v),ml+1

v = aggregate({hlv ,hlu ,xVv ,xVu , eu,v })
MPSN [22] hl+1p = aggregate(hlp ,m

l
B
(p),ml

C
(p),ml

↓(p),m
l
↑(p))

GraphSTONE [188] hl+1v = aggregate({ RTv Ru∑
u RTv Ru

hlu ,u ∈ N (v)})
DeepLPR [49] H l+1

v = 1
|Sk−BFSnv ,t |

∑
π ∈Sk−BFSnv,t

α lπ � f l (π ∗ B[eдo]
v,t (H l))

GSKN [189] hv =
∑

ϕ ∈Φl (G,v) σ (ZTZ)−1/2σ (ZTR (ϕ))

SUBGNN [8] hl+1x,c = σ (W .[дlx,c ;h
l
x,c]),д

l
x,c = aggregate({γ (c,Ax).ax ,∀Ax })

i is a neighborhood, r is a relationship, τ (zv , zu) is a function that defines a relationship from node v to node u in a

latent space, xVv are the combined structural features of node v , eu,v are the edge (u, v) features, hp is the embedding

of a simplex p ,mB (p),mC (p),m↓ (p),m↑ (p) are the aggregation of messages from the boundary, co-boundary, lower

and upper adjacent simplices of the simplex p , Rv is a row in a node-topic matrix representing the probabilities of a

node v in a graph belonging to the graph’s structural topics, Sk−BFSnv,t is the set of permutation of subset of nodes in

egonet of node v of depth t compatible with k-truncated breadth first search, απ is a learnable normalization factor for

π , f can be an MLP layer, B
[eдo]
v,t is the tensor representation of the egonet of node v , ϕ is an anonymous walk, R (ϕ) is

the concatenation of the attributes of ϕ , Z = [R (ϕi)]i , Φl is the set of anonymous walks of length l , hx,c is the

representation of a subgraph c , γ is a learnable similarity measure, Ax is a subgraph at channel x , ax is the

representation of Ax .

for pairwise graph comparison. This method defines an anonymous walk kernel and a random
walk kernel to capture structural information in the graph. These kernels are defined based on
the definition of l-walk kernels, which compute the similarity between two graphs by compar-
ing all length l walks between every node in two graphs. Then, the GSKN formulation is derived
using the kernel mapping of these two kernels. In message-passing simplicial networks (MP-

SNs) [22], the message passing is performed on simplicial complexes [214], which are a form of
subgraphs consisting of several simplices. For instance, 0-simplex is a node, 1-simplex is an edge,
and 2-simplex is a triangle. The representation of each simplex is computed by aggregating four
types of messages received from its adjacent simplices that are present in the graph, including
boundary, co-boundary, and lower and upper adjacencies. For example, an edge’s boundary sim-
plices are its vertices and the co-boundary simplices of a node are its connected edges. Finally, the
global embedding for a simplicial complex is computed using a readout function on the represen-
tation of its simplices. In [8, 24, 188, 228, 261], several other GNNs with the focus on the subgraphs
are presented. Table 8 demonstrates the formulas for some of these methods.

4.6.8 Over-squashing. One of the bottlenecks of GNNs is over-squashing when capturing long-
range dependencies. The over-squashing is different from the oversmoothing because the over-
smoothing occurs when the graph learning task only needs short-range dependencies and stack-
ingmore layers in GNNmakes the node embeddings indistinguishable. However, when long-range
dependencies are required and more layers are added to GNNs, the information from distant neigh-
bors is compressed in a fixed-length vector, resulting in over-squashing and low performance of
GNNs [7]. A simple solution for this problem is presented in [7], in which a fully adjacent layer is
added as the last layer to a GNN model. In this layer, every two nodes are connected, which helps
consider nodes beyond the nodes’ local neighbors in their representation. In [262], it is proved

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:35

that negatively curved edges are the cause of over-squashing. A negative curvature occurs when
an edge becomes a bridge between two sides of the graph where removing the edge disconnects
them. Therefore, a curvature-based graph rewiring model is proposed to solve the over-squashing
issue. This rewiring approach works by adding extra edges to support the most negatively curved
edges and removing the most positively curved edges. Furthermore, the graph edit distance be-
tween the original graph and the modified one is bounded to ensure a local graph modification.

4.6.9 Design Space for GNNs. Designing effective architectures for GNNs in different tasks and
datasets requires manual labor and domain knowledge. Therefore, several methods were proposed
to automatically design suitable architecture for the given datasets and downstream tasks. The
Graph neural architecture search (GraphNAS) method [82] allows the automated architec-
ture design using reinforcement learning. In GraphNAS, a recurrent neural network (RNN)

generates a GNN architecture that will be trained and validated on the training and validation sets.
The validation result is the reward of the RNN. The RNN samples the design of each layer from
a search space of different operators such as neighbor sampling, message computation, message
aggregation, and readout operators. For example, a sample GNN layer is

[first-order, gat, sum, 4, 8, relu], (47)

where each element in the list corresponds to neighbor sampling, message computation, message
aggregation operators, number of heads, number of hidden layers, and the activation function.
In [328], a general design space, task space and evaluation method for GNNs are proposed to
identify the best GNN architecture for the given task quickly. The design space consists of intra-
layer design, inter-layer design, and learning configuration. The intra-layer design in each layer of
GNN consists of batch normalization, dropout, activation function, and aggregation function. The
inter-layer design between GNN layers has four dimensions: layer connectivity, pre-process layers,
message passing layers, and post-processing layers. The training configuration concerns the batch
size, learning rate, optimizer, and training epochs. Then, a task similarity metric is introduced that
can identify similar tasks. Finally, it develops a controlled random search evaluation to quickly
find the best GNN design for the given task among many model-task combinations. In [114, 286],
other methods related to the architecture design of GNNs are introduced.

4.7 GNN Libraries

For building GNN models, there exist several deep learning libraries that speed up the implemen-
tation of GNNs in practice. These libraries include PyTorch Geometric, DGL [276], Spektral, and
GraphNets, which are explained below.

— PyTorch Geometric (PyG)3: This is a well-established deep learning library on graphs
based on PyTorch, which has the implementation for many GNN layers, such as Graph-
SAGE [99], GAT [266], and GIN [303].

—DGL4: DGL is a well-known deep learning library on graphs that can be used with flexi-
ble backends, including PyTorch or TensorFlow. Several libraries have been built on top of
DGL for specific purposes, such as DGL-LifeSci [155] for bioinformatics, DGL-KE [363] for
knowledge graphs, and DistDGL [362] for distributed training of billion-scale graphs.

— Spektral5: This library is based on Tensorflow2 and Keras. Spektral has an easy-to-use de-
sign similar to the Keras library. However, it can be slower in training models than PyG and
DGL.

3pytorch-geometric.readthedocs.io/en/latest
4dgl.ai
5graphneural.network

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:36 S. Khoshraftar and A. An

—GraphNets6: GraphNets is built on TensorFlow1 and Sonnet. However, using DGL or Spek-
tral with TensorFlow may be easier because they are more up-to-date than GraphNets.

5 DATASETS

Graph representation learning methods are commonly evaluated in terms of their performance on
a collection of datasets. In this section, we explain some of these benchmark datasets used in the
literature.

—Open Graph Benchmark (OGB)7: A collection of graph datasets prepared for benchmark-
ing the performance of different models on graphs. It consists of a diverse set of graph
datasets with different sizes and domains.

—Wikipedia8: A network of wiki pages and editors as nodes. There is an edge between two
nodes if an editor edits a page. The number of nodes and edges are around 9k and 157k,
respectively. Edge features are user edit text. The interactions occur over 1 month.

—Reddit9: A graph between users and subreddit pages as nodes over 1 month. An edge exists
between two nodes if a user posts under a page. There are around 11k nodes and 700 edges.
Textual features of user posts are used as edge features.

— Enron10: This is a network of email communication between employees of the Enron cor-
poration. Number of nodes and edges are 36k and 183k, respectively.

—Cora11: A citation network of scientific publications with 7 classes. The number of nodes
and edges are 3k and 5k, respectively.

—CiteSeer12: A network of scientific publication citations from the CiteSeer digital library
between around 3k nodes and 5k edges. There are 6 classes for nodes.

— PubMed13: This is a citation of publications from the PubMed database with 3 classes. This
dataset has 19k nodes and 44k edges.

— PPI14: This is a protein–protein interaction network consisting of around 56k nodes and
800k edges.

— SMS-A15: A network of communication between 44k users with 548k edges over 338 days.
There is an edge between two users if they exchange messages.

— StackOverflow16: An interaction network between users of the MathOverflow website. It
has 14k nodes and 195k edges over 2,350 days.

6 METHODS NOT FOCUSED ON IN THIS SURVEY

6.1 Heterogeneity-Aware Graph Embedding Methods

Heterogeneous graphs contain nodes and/or edges with multiple types. The methods we discussed
in this survey do not distinguish the types of nodes or edges when generating embeddings, even
when applied to heterogeneous graphs. There is a stream of work on the heterogeneity-aware

6deepmind.com/open-source/graph-nets
7ogb.stanford.edu
8snap.stanford.edu/jodie/wikipedia.csv
9snap.stanford.edu/jodie/reddit.csv
10snap.stanford.edu/data/email-Enron.html
11paperswithcode.com/dataset/cora
12paperswithcode.com/dataset/citeseer
13paperswithcode.com/dataset/pubmed
14paperswithcode.com/dataset/ppi
15networkrepository.com/SMS-A.php
16snap.stanford.edu/data/sx-mathoverflow.html

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:37

graph embedding methods that we do not cover in this survey. Heterogeneity-aware graph embed-
ding methods preserve the types of nodes and/or edges in generating graph embeddings. These
methods are categorized into structure-preserved, attribute-assisted, application-oriented and dy-
namic heterogeneous graph embeddingmethods based on the type of information they use for gen-
erating the graph embeddings [278].Metapath2vec [65] is a representativework from the structure-
preserved category, which preserves the graph structures. This method generates meta-path-based
random walks to capture the heterogeneous structural and semantic relationships between nodes.
Then, it uses them to train a SkipGram model that considers the heterogeneity of nodes and edges
and generates the node embeddings. HetGNN [340] belongs to the attribute-assisted category and
considers the node’s attributes in the node embedding. This method captures neighbors of a node
by generating random walks and grouping the neighbors based on their type. Then, for each node,
it encodes the features using a BiLSTM and generates the node embedding by aggregating the
node’s neighbors’ encoded features based on the type and then all together using an attention
mechanism. Other examples of heterogeneity-aware graph embedding methods include methods
in [80, 113, 133, 196, 280, 315, 360, 379]. Two surveys on heterogeneity-aware graph embedding
are provided in [278, 309].

6.2 Bipartite Graph-Aware Embedding Methods

Bipartite graphs are a special case of heterogeneous graphs whose nodes have two types. In addi-
tion, the edges of these graphs can only consider the interaction between two nodes with different
types [85]. Bipartite graphs represent graphs in different applications, including recommendation
systems. In the recommendation system, the two types of nodes are users and items. For exam-
ple, SEPT [331] is a recommendation system that utilizes a user–item bipartite graph. It enhances
the user–item graph with users’ social relationships to improve the recommendation. Two types
of relations are exploited for users, which are used as augmented views. The first view consists
of triadic relationships between users. In the second view, there are edges between users that
buy the same item. This method learns the user and item embeddings for the recommendation
using three encoders that are jointly trained on the user–item graph and two views in a self-
supervised tri-training setting. Other examples of using bipartite graphs in recommendation sys-
tems include methods in [33, 41, 115, 116, 132, 162, 295, 350]. In this survey, we do not review
these types of methods. Further information about bipartite graph-aware embedding methods can
be found in a related survey in [85].

6.3 Hypergraph Embedding Methods

A hypergraph is a graph in which each edge can represent the relationship between more than
two nodes [367]. For instance, in an N-hop neighbor hypergraph, a hyperedge connects a user
with its N-hop neighbors. An example of hypergraph embedding methods is amulti-level graph

convolutional network(MGCN), [42], which generates hypergraph embeddings for matching
the same user’s accounts across different social networks. This method generates user embeddings
in each social network using a convolution on the graph and refines them with a convolution on
a hypergraph containing additional user information. The hypergraph convolution is obtained
by replacing the information of the hypergraph in the standard GCN. The user embeddings are
used to identify similar users by predicting whether there is a link between any two users across
social networks. A graph with only pairwise relationships is a special hypergraph in which each
edge connects two nodes. In this survey, we review methods developed for graphs with pairwise
relationships. Further works on hypergraph representation learning include methods in [11, 96,
131, 258, 330].

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:38 S. Khoshraftar and A. An

7 OPEN ISSUES AND ONGOING RESEARCH

Graph representation learning has been a very active field of study. Although numerous techniques
were developed, there are still significant issues and challenges that need to be addressed. We will
discuss some of them here.
Proposing solutions for limitations ofGNNs.As discussed in Section 4.6, GNNs have several

limitations, such as expressive power, scalability and over-squashing. Different solutions have been
proposed for these issues. However, some of them, such as over-squashing, were newly discovered
and solutions to them are still preliminary, which have potential for further research. In addition,
the proposed solutions for the limitations of GNNs were all for static GNNs; not much work has
been done on solving the problems of dynamic and spatial-temporal GNNs. Furthermore, there
might be new issues in dynamic settings that are not discovered yet and areworth studying. Finally,
by applying GNNs to different real-world problems and datasets, new drawbacks of GNNs may be
discovered, which will be interesting to study and solve.
Studying the theory side of GNNs. GNNs have been very successful in different applications,

and researchers have tried to understand the theoretical aspects of GNNs’ success. However, the
theoretical analyses of GNN models in terms of optimization properties and generalization across
graph sizes are less understood. In [305], the first steps in understanding the global convergence of
gradient descent in GNNs are studied. In addition, in [320], it is shown that GNNs that are trained
on some graph distributions cannot generalize to larger unseen graphs. Therefore, future work is
needed to understand these topics fully.
Defining newGNNs by employing differential equations. Partial differential equations

(PDEs) are used to model physical phenomena [25]. Recently, PDEs have been used to model the
information propagation in graphs and design new GNNmodels [32, 72]. One of the advantages of
these new GNNs is that they address the over-smoothing limitations of GNNs. Therefore, it will be
interesting future work to investigate what other GNN models can be proposed using differential
equations and whether these models are more powerful than other GNNs.
Including domain-knowledge in GNNs. The domain knowledge is the information about

a specific problem that may not be available for a machine learning model. This knowledge can
be included in the models by changing the input, loss function, and model architecture [57]. For
instance, we can enrich the input data by considering additional relationships or constraints on
existing relationships among the entities in the data. A few works incorporate domain knowledge
into GNNs, such as [58, 59], but this area is still new and has the potential for further research.

Limited training data labels. Training neural networks with limited training data has always
been challenging, which is also true for training GNNs. Solutions such as self-supervised learning,
data augmentation, and contrastive learning have been proposed to solve the label scarcity problem
and are employed in GNNs. However, there are still opportunities for further studying these types
of learning in GNNs in both static and dynamic settings.
Transferring advances in deep learning models to GNNs. GNNs use deep learning tech-

niques. Any advances and newmodels that are proposed in deep learning can be adapted in GNNs.
Specifically, computer vision and natural language processing are very active areas and the new
models that are developed for images, videos, and texts can be studied in graphs as well. For in-
stance, ideas from video representation learning might be useful in dynamic graph learning be-
cause the concept of objects moving in a video’s frames is similar to nodes changing over time.
Interpretability. One of the differences between representing nodes with their features, such

as node degrees and centrality properties, and representing them using embedding vectors is that
the embedding vectors are less understandable by a human. Therefore, developing metrics for
explaining the values of node embedding vectors is necessary. There have been several works on
this topic [56, 87, 138]; however, there are still opportunities to explore.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:39

More applications. GNNs achieved great success in application in many domains, such as
social networks, financial networks, and protein structures. Some of the newer applications of
GNNs are in electrical power grid monitoring [239], drug overprescription prediction [342], and
paper publication prediction [95]. Therefore, it is interesting to investigate the effectiveness of
GNNs in other applications.

8 CONCLUSION

In this survey, we reviewed the node/graph embedding methods, which can be divided into tradi-
tional and GNN-based methods. In contrast to previous surveys on graph representation learning,
we provided the literature review in both traditional and GNN-based graph embedding methods
for both static and dynamic graphs and included the recent papers published up to the time of this
submission. Traditional static methods generate node embedding vectors for static graphs and
are categorized into factorization-based, random walk–based and non-GNN-based deep learning
models. Traditional dynamic methods capture the evolving patterns in the history of nodes and
are based on aggregations, random walks, non-GNN deep learning, and temporal point processes.
In addition to traditional methods, GNN-based methods have achieved huge success in generating
node representations. GNNs are deep learning models that generate a node representation by ag-
gregating the node’s neighbors embeddings and often use information from the particular graph
mining task of interest in learning the node representations. We reviewed the general framework
of GNNs and their categories, including static GNNs, spatial-temporal GNNs, and dynamic GNNs,
and their real-world applications. Furthermore, we summarized nine limitations of GNNs and the
proposed solutions to these limitations. These limitations are expressive power, over-smoothing,
scalability, over-squashing, capturing long-range dependencies, design space, neglecting substruc-
tures, homophily assumptions, and catastrophic forgetting. Previous surveys do not provide such
a summary. We also described some well-known GNN libraries, benchmark datasets, and some
heterogeneity-aware, bipartite graph-aware, and hypergraph embedding methods. Finally, we dis-
cussed some of the open issues in the node representation learning field that are interesting future
research directions. These future directions include proposing solutions for limitations of GNNs in
both static and dynamic settings, learning GNNswith limited training data labels in both static and
dynamic settings, transferring advances in deep learning to GNNs, and further studying GNN’s
theory side. As this field is growing fast, we hope that this up-to-date survey can provide valuable
additional information for researchers working in this area.

ACKNOWLEDGMENTS

The work was supported by a Discovery Grant and a Discovery Accelerator Supplement from the
Natural Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] Khushnood Abbas, Alireza Abbasi, Shi Dong, Ling Niu, Laihang Yu, Bolun Chen, Shi-Min Cai, and Qambar Hasan.

2021. Application of network link prediction in drug discovery. BMC Bioinformatics 22 (2021), 1–21.

[2] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A. Alemi. 2018. Watch your step: Learning node

embeddings via graph attention. Advances in Neural Information Processing Systems 31 (2018).

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J. Smola. 2013. Dis-

tributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide

Web. 37–48.

[4] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015. Efficient graphlet counting for large

networks. In 2015 IEEE International Conference on Data Mining. IEEE, 1–10.

[5] Rami Al-Rfou, Bryan Perozzi, and Dustin Zelle. 2019. DDGK: Learning graph representations for deep divergence

graph kernels. In The World Wide Web Conference. 37–48.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:40 S. Khoshraftar and A. An

[6] MuhammadAfifAli, Suriya Venkatesan, Victor Liang, andHannes Kruppa. 2021. TEST-GCN: Topologically enhanced

spatial-temporal graph convolutional networks for traffic forecasting. In 2021 IEEE International Conference on Data

Mining (ICDM). IEEE, 982–987.

[7] Uri Alon and Eran Yahav. 2020. On the bottleneck of graph neural networks and its practical implications. In Inter-

national Conference on Learning Representations.

[8] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. 2020. Subgraph neural networks. Advances in

Neural Information Processing Systems 33 (2020), 8017–8029.

[9] Amina Amara, Mohamed Ali Hadj Taieb, and Mohamed Ben Aouicha. 2021. Network representation learning sys-

tematic review: Ancestors and current development state. Machine Learning with Applications 6 (2021), 100130.

[10] Waiss Azizian et al. 2020. Expressive power of invariant and equivariant graph neural networks. In International

Conference on Learning Representations.

[11] Song Bai, Feihu Zhang, and Philip H. S. Torr. 2021. Hypergraph convolution and hypergraph attention. Pattern

Recognition 110 (2021), 107637.

[12] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul Honeine. 2021. Break-

ing the limits of message passing graph neural networks. In International Conference on Machine Learning. PMLR,

599–608.

[13] Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. 2021. Graph neural networks with local graph

parameters. Advances in Neural Information Processing Systems 34 (2021).

[14] Claudio D. T. Barros, Matheus R. F. Mendonça, Alex B. Vieira, and Artur Ziviani. 2021. A survey on embedding

dynamic graphs. ACM Computing Surveys (CSUR) 55, 1 (2021), 1–37.

[15] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Mali-

nowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep

learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[16] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro Liò. 2021. Direc-

tional graph networks. In International Conference on Machine Learning. PMLR, 748–758.

[17] Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, and Kira Radinsky. 2020. tdGraphEmbed: Temporal dynamic graph-

level embedding. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

55–64.

[18] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering.

In NIPS, Vol. 14. 585–591.

[19] Kamal Berahmand, Elahe Nasiri, Yuefeng Li, et al. 2021. Spectral clustering on protein-protein interaction networks

via constructing affinity matrix using attributed graph embedding. Computers in Biology and Medicine 138 (2021),

104933.

[20] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A. Raffel. 2019. Mix-

match: A holistic approach to semi-supervised learning. Advances in Neural Information Processing Systems 32 (2019).

[21] Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, Jean-Loup Guillaume, and Bivas Mitra. 2020. Lou-

vainne: Hierarchical Louvain method for high quality and scalable network embedding. In Proceedings of the 13th

International Conference on Web Search and Data Mining. 43–51.

[22] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F. Montufar, Pietro Lio, and Michael Bronstein.

2021. Weisfeiler and Lehman go topological: Message passing simplicial networks. In International Conference on

Machine Learning. PMLR, 1026–1037.

[23] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózemberczki,

Michal Lukasik, and Stephan Günnemann. 2020. Scaling graph neural networks with approximate PageRank. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2464–2473.

[24] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P. Zafeiriou, and Michael Bronstein. 2022. Improving graph neural net-

work expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis andMachine Intelligence

(2022).

[25] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. 2022. Message passing neural PDE solvers. In Interna-

tional Conference on Learning Representations.

[26] Robin Brochier, Adrien Guille, and Julien Velcin. 2019. Global vectors for node representations. In The World Wide

Web Conference. 2587–2593.

[27] Marc Brockschmidt. 2020. GNN-FiLM: Graph neural networks with feature-wise linear modulation. In International

Conference on Machine Learning. PMLR, 1144–1152.

[28] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks and deep locally connected

networks on graphs. In 2nd International Conference on Learning Representations (ICLR 2014).

[29] Hongyun Cai, VincentW. Zheng, and Kevin Chen-Chuan Chang. 2018. A comprehensive survey of graph embedding:

Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:41

[30] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning graph representations with global structural

information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.

891–900.

[31] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for learning graph representations. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.

[32] Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael Bronstein, Stefan Webb, and Emanuele Rossi. 2021.

GRAND: Graph neural diffusion. In International Conference on Machine Learning. PMLR, 1407–1418.

[33] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. 2021. Sequential

recommendation with graph neural networks. In Proceedings of the 44th International ACM SIGIR Conference on

Research and Development in Information Retrieval. 378–387.

[34] Sudhanshu Chanpuriya and Cameron Musco. 2020. InfiniteWalk: Deep network embeddings as Laplacian embed-

dings with a nonlinearity. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 1325–1333.

[35] Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos Tsourakakis. 2020. Node

embeddings and exact low-rank representations of complex networks. Advances in Neural Information Processing

Systems 33 (2020), 13185–13198.

[36] Cen Chen, Kenli Li, Sin G. Teo, Xiaofeng Zou, Kang Wang, Jie Wang, and Zeng Zeng. 2019. Gated residual recurrent

graph neural networks for traffic prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.

485–492.

[37] Chen Chen and Hanghang Tong. 2015. Fast eigen-functions tracking on dynamic graphs. In Proceedings of the 2015

SIAM International Conference on Data Mining. SIAM, 559–567.

[38] Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C.-C. Jay Kuo. 2020. Graph representation learning: A survey. AP-

SIPA Transactions on Signal and Information Processing 9 (2020).

[39] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. HARP: Hierarchical representation learning for

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[40] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. 2019. Fast and accurate network

embeddings via very sparse random projection. In Proceedings of the 28th ACM International Conference on Informa-

tion and Knowledge Management. 399–408.

[41] Hongxu Chen, Hongzhi Yin, Tong Chen, Weiqing Wang, Xue Li, and Xia Hu. 2020. Social boosted recommendation

with folded bipartite network embedding. IEEE Transactions on Knowledge and Data Engineering 34, 2 (2020), 914–926.

[42] Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, and Katarzyna Musial. 2020. Multi-level

graph convolutional networks for cross-platform anchor link prediction. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 1503–1511.

[43] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast learning with graph convolutional networks via importance

sampling. In International Conference on Learning Representations.

[44] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic training of graph convolutional networks with variance reduc-

tion. In International Conference on Machine Learning. PMLR, 942–950.

[45] Ming Chen, ZheweiWei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-RongWen. 2020. Scalable graph neural

networks via bidirectional propagation. Advances in Neural Information Processing Systems 33 (2020), 14556–14566.

[46] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020. Simple and deep graph convolutional

networks. In International Conference on Machine Learning. PMLR, 1725–1735.

[47] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. 2021. A unified lottery ticket hypoth-

esis for graph neural networks. In International Conference on Machine Learning. PMLR, 1695–1706.

[48] Xu Chen, Yuanxing Zhang, Lun Du, Zheng Fang, Yi Ren, Kaigui Bian, and Kunqing Xie. 2020. TSSRGCN: Temporal

spectral spatial retrieval graph convolutional network for traffic flow forecasting. In 2020 IEEE International Confer-

ence on Data Mining (ICDM). IEEE, 954–959.

[49] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can graph neural networks count substructures?

Advances in Neural Information Processing Systems 33 (2020), 10383–10395.

[50] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. 2019. On the equivalence between graph isomorphism

testing and function approximation with GNNs. Advances in Neural Information Processing Systems 32 (2019).

[51] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. 2019. Cluster-GCN: An efficient algo-

rithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 257–266.

[52] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2020. Adaptive universal generalized PageRank graph neural

network. In International Conference on Learning Representations.

[53] Mustafa Coşkun and Mehmet Koyutürk. 2021. Node similarity-based graph convolution for link prediction in bio-

logical networks. Bioinformatics 37, 23 (2021), 4501–4508.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:42 S. Khoshraftar and A. An

[54] Paulo Ricardo da Silva Soares and Ricardo Bastos Cavalcante Prudêncio. 2012. Time series based link prediction. In

The 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7.

[55] Rui Dai, Shenkun Xu, Qian Gu, Chenguang Ji, and Kaikui Liu. 2020. Hybrid spatio-temporal graph convolutional

network: Improving traffic prediction with navigation data. In Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 3074–3082.

[56] Ayushi Dalmia and Manish Gupta. 2018. Towards interpretation of node embeddings. In Companion Proceedings of

the The Web Conference 2018. 945–952.

[57] Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and Ashwin Srinivasan. 2022. A review of some techniques for

inclusion of domain-knowledge into deep neural networks. Scientific Reports 12, 1 (2022), 1–15.

[58] Tirtharaj Dash, Ashwin Srinivasan, and A. Baskar. 2022. Inclusion of domain-knowledge into GNNs using mode-

directed inverse entailment. Machine Learning 111, 2 (2022), 575–623.

[59] Tirtharaj Dash, Ashwin Srinivasan, and Lovekesh Vig. 2021. Incorporating symbolic domain knowledge into graph

neural networks. Machine Learning 110, 7 (2021), 1609–1636.

[60] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. 2021. Coloring graph neural networks

for node disambiguation. In Proceedings of the 29th International Conference on International Joint Conferences on

Artificial Intelligence. 2126–2132.

[61] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc Nunkesser, Seongjae

Lee, Xueying Guo, Brett Wiltshire, et al. 2021. ETA prediction with graph neural networks in Google Maps. In

Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 3767–3776.

[62] Zulong Diao, XinWang, Dafang Zhang, Yingru Liu, Kun Xie, and Shaoyao He. 2019. Dynamic spatial-temporal graph

convolutional neural networks for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 890–897.

[63] MucongDing, Kezhi Kong, Jingling Li, Chen Zhu, JohnDickerson, FurongHuang, and TomGoldstein. 2021. VQ-GNN:

A universal framework to scale up graph neural networks using vector quantization. Advances in Neural Information

Processing Systems 34 (2021).

[64] Ziluo Ding, Rui Zhao, Jiyuan Zhang, Tianxiao Gao, Ruiqin Xiong, Zhaofei Yu, and Tiejun Huang. 2022. Spatio-

temporal recurrent networks for event-based optical flow estimation. Proceedings of the AAAI Conference on Artificial

Intelligence (2022).

[65] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for

heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. 135–144.

[66] Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. 2021. AdaGNN: Graph neural networks with

adaptive frequency response filter. In Proceedings of the 30th ACM International Conference on Information & Knowl-

edge Management. 392–401.

[67] Lun Du, Zhicong Lu, Yun Wang, Guojie Song, Yiming Wang, and Wei Chen. 2018. Galaxy network embedding: A

hierarchical community structure preserving approach. In IJCAI. 2079–2085.

[68] Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. 2022. GBK-GNN: Gated

bi-kernel graph neural networks for modeling both homophily and heterophily. In Proceedings of the ACM Web

Conference 2022. 1550–1558.

[69] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dynamic network embedding: An extended

approach for skip-gram based network embedding. In IJCAI, Vol. 2018. 2086–2092.

[70] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. 2011. Temporal link prediction using matrix and tensor fac-

torizations. ACM Transactions on Knowledge Discovery from Data (TKDD) 5, 2 (2011), 1–27.

[71] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. 2021. Implicit deep learning. SIAM

Journal on Mathematics of Data Science 3, 3 (2021), 930–958.

[72] Moshe Eliasof, Eldad Haber, and Eran Treister. 2021. PDE-GCN: Novel architectures for graph neural networks mo-

tivated by partial differential equations. Advances in Neural Information Processing Systems 34 (2021).

[73] Alessandro Epasto and Bryan Perozzi. 2019. Is a single embedding enough? learning node representations that cap-

ture multiple social contexts. In The World Wide Web Conference. 394–404.

[74] Shen Fang, Qi Zhang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. 2019. GSTNet: Global spatial-temporal

network for traffic flow prediction. In IJCAI. 2286–2293.

[75] Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng Wang. 2020. ConSTGAT: Contex-

tual spatial-temporal graph attention network for travel time estimation at Baidu maps. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2697–2705.

[76] Zheng Fang, Lingjun Xu, Guojie Song, Qingqing Long, and Yingxue Zhang. 2022. Polarized graph neural networks.

In Proceedings of the ACM Web Conference 2022. 1404–1413.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:43

[77] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, and Jie

Tang. 2020. Graph random neural networks for semi-supervised learning on graphs. Advances in Neural Information

Processing Systems 33 (2020), 22092–22103.

[78] Matthias Fey, Jan E. Lenssen, FrankWeichert, and Jure Leskovec. 2021. GNNAutoScale: Scalable and expressive graph

neural networks via historical embeddings. In International Conferences on Machine Learning (ICML).

[79] Dongqi Fu and Jingrui He. 2021. SDG: A simplified and dynamic graph neural network. In Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information Retrieval. 2273–2277.

[80] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath aggregated graph neural network for

heterogeneous graph embedding. In Proceedings of The Web Conference 2020. 2331–2341.

[81] Hongchang Gao and Heng Huang. 2018. Deep attributed network embedding. In 27th International Joint Conference

on Artificial Intelligence (IJCAI)).

[82] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2020. Graph neural architecture search.. In IJCAI,

Vol. 20. 1403–1409.

[83] Yangli-ao Geng, Qingyong Li, Tianyang Lin, Lei Jiang, Liangtao Xu, Dong Zheng, Wen Yao, Weitao Lyu, and Yijun

Zhang. 2019. LightNet: A dual spatiotemporal encoder network model for lightning prediction. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2439–2447.

[84] Stavros Georgousis, Michael P. Kenning, and Xianghua Xie. 2021. Graph deep learning: State of the art and challenges.

IEEE Access 9 (2021), 22106–22140.

[85] Edward Giamphy, Jean-Loup Guillaume, Antoine Doucet, and Kevin Sanchis. 2023. A survey on bipartite graphs

embedding. Social Network Analysis and Mining 13, 1 (2023), 54.

[86] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, andGeorge E. Dahl. 2017. Neural message passing

for quantum chemistry. In International Conference on Machine Learning. PMLR, 1263–1272.

[87] Antonia Gogoglou, C. Bayan Bruss, and Keegan E. Hines. 2019. On the interpretability and evaluation of graph

representation learning. arXiv preprint arXiv:1910.03081 (2019).

[88] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. 2017. The reversible residual network: Back-

propagation without storing activations. Advances in Neural Information Processing Systems 30 (2017).

[89] PalashGoyal, Sujit Rokka Chhetri, andArquimedes Canedo. 2020. dyngraph2vec: Capturing network dynamics using

dynamic graph representation learning. Knowledge-Based Systems 187 (2020), 104816.

[90] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications, and performance: A survey.

Knowledge-Based Systems 151 (2018), 78–94.

[91] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2017. DynGEM: Deep embedding method for dynamic graphs.

3rd International Workshop on Representation Learning for Graphs (ReLiG), IJCAI 2017 (2017).

[92] Denis S. Grebenkov and B.-T. Nguyen. 2013. Geometrical structure of Laplacian eigenfunctions. SIAM Review 55, 4

(2013), 601–667.

[93] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd

ACM SIGKDD. ACM, 855–864.

[94] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. 2020. Implicit graph neural net-

works. Advances in Neural Information Processing Systems 33 (2020), 11984–11995.

[95] Renchu Guan, Yonghao Liu, Xiaoyue Feng, and Ximing Li. 2021. VPALG: Paper-publication prediction with graph

neural networks. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

617–626.

[96] Lei Guo, Hongzhi Yin, Tong Chen, Xiangliang Zhang, and Kai Zheng. 2021. Hierarchical hyperedge embedding-

based representation learning for group recommendation. ACM Transactions on Information Systems (TOIS) 40,

1 (2021), 1–27.

[97] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019. Attention based spatial-temporal graph

convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 922–929.

[98] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and Xiaoning Qian.

2019. Variational graph recurrent neural networks. Advances in Neural Information Processing Systems 32 (2019).

[99] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances

in Neural Information Processing Systems 30 (2017).

[100] William L. Hamilton. 2020. Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning 14, 3 (2020), 1–159.

[101] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs: Methods and applica-

tions. arXiv preprint arXiv:1709.05584 (2017).

[102] Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong. 2021. Dynamic and multi-faceted spatio-

temporal deep learning for traffic speed forecasting. In Proceedings of the 27th ACM SIGKDDConference on Knowledge

Discovery & Data Mining. 547–555.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:44 S. Khoshraftar and A. An

[103] Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna Narayanan, and

XiaoningQian. 2020. Bayesian graph neural networkswith adaptive connection sampling. In International Conference

on Machine Learning. PMLR, 4094–4104.

[104] Bo He, Xiang Song, Vincent Gao, and Christos Faloutsos. 2022. ColdGuess: A general and effective relational graph

convolutional network to tackle cold start cases. arXiv preprint arXiv:2205.12318 (2022).

[105] Dongxiao He, Rui Guo, Xiaobao Wang, Di Jin, Yuxiao Huang, and Wenjun Wang. 2022. Inflation improves graph

neural networks. In Proceedings of the ACM Web Conference 2022. 1466–1474.

[106] TaoHe, Lianli Gao, Jingkuan Song, XinWang, Kejie Huang, and Yuanfang Li. 2020. SNEQ: Semi-supervised attributed

network embeddingwith attention-based quantisation. In Proceedings of the AAAI Conference onArtificial Intelligence,

Vol. 34. 4091–4098.

[107] Tiantian He, Yew Soon Ong, and Lu Bai. 2021. Learning conjoint attentions for graph neural nets. Advances in Neural

Information Processing Systems 34 (2021), 2641–2653.

[108] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 355–364.

[109] Farzaneh Heidari and Manos Papagelis. 2020. Evolving network representation learning based on random walks.

Applied Network Science 5, 1 (2020), 1–38.

[110] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. stat 1050 (2015),

9.

[111] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang. 2022. GraphMAE: Self-

supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining. 594–604.

[112] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020. GPT-GNN: Generative pre-training

of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 1857–1867.

[113] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. In Proceedings of

the Web Conference 2020. 2704–2710.

[114] Zhao Huan, Yao Quanming, and Tu Weiwei. 2021. Search to aggregate neighborhood for graph neural network. In

2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 552–563.

[115] Chao Huang, Jiahui Chen, Lianghao Xia, Yong Xu, Peng Dai, Yanqing Chen, Liefeng Bo, Jiashu Zhao, and Jimmy Xi-

angji Huang. 2021. Graph-enhanced multi-task learning of multi-level transition dynamics for session-based recom-

mendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4123–4130.

[116] Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu, Liefeng Bo, Hao Xing, Xiaoping Lai, and

Yanfang Ye. 2021. Knowledge-aware coupled graph neural network for social recommendation. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 35. 4115–4122.

[117] Hong Huang, Zixuan Fang, Xiao Wang, Youshan Miao, and Hai Jin. [n.d.]. Motif-preserving temporal network em-

bedding. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI-20). 1237–1243.

[118] Jizhou Huang, Haifeng Wang, Yibo Sun, Miao Fan, Zhengjie Huang, Chunyuan Yuan, and Yawen Li. 2021. HGAMN:

Heterogeneous graph attention matching network for multilingual POI retrieval at Baidu maps. In Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3032–3040.

[119] Shixun Huang, Zhifeng Bao, Guoliang Li, Yanghao Zhou, and J. Shane Culpepper. 2020. Temporal network rep-

resentation learning via historical neighborhoods aggregation. In 2020 IEEE 36th International Conference on Data

Engineering (ICDE). IEEE, 1117–1128.

[120] Tong Huang, Lihua Zhou, Lizhen Wang, Guowang Du, and Kevin Lü. 2020. Attributed network embedding with

community preservation. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA).

IEEE, 334–343.

[121] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sampling towards fast graph represen-

tation learning. Advances in Neural Information Processing Systems 31 (2018).

[122] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network embedding. In Proceedings of the 2017

SIAM International Conference on Data Mining. SIAM, 633–641.

[123] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network embedding. In Proceedings of the 10th

ACM International Conference on Web Search and Data Mining. 731–739.

[124] Zexi Huang, Arlei Silva, and Ambuj Singh. 2021. A broader picture of random-walk based graph embedding. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 685–695.

[125] Zhongyu Huang, Yingheng Wang, Chaozhuo Li, and Huiguang He. 2022. Going deeper into permutation-sensitive

graph neural networks. ICML (2022).

[126] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021. Scaling up graph neural networks

via graph coarsening. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.

675–684.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:45

[127] Sergey Ivanov and Evgeny Burnaev. 2018. Anonymous walk embeddings. In International Conference on Machine

Learning. PMLR, 2186–2195.

[128] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. 2020. Redundancy-free computation for

graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining. 997–1005.

[129] Ziyu Jia, Youfang Lin, JingWang, Ronghao Zhou, XiaojunNing, Yuanlai He, and Yaoshuai Zhao. 2020. GraphSleepNet:

Adaptive spatial-temporal graph convolutional networks for sleep stage classification. In IJCAI. 1324–1330.

[130] Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, and Philip S. Yu. 2018. On spectral graph embedding: A non-

backtracking perspective and graph approximation. In Proceedings of the 2018 SIAM International Conference on Data

Mining. SIAM, 324–332.

[131] Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. 2019. Dynamic hypergraph neural networks. In

IJCAI. 2635–2641.

[132] Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-behavior recommendation with graph

convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development

in Information Retrieval. 659–668.

[133] Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. 2021. Heterogeneous graph neural network via attribute

completion. In Proceedings of the Web Conference 2021. 391–400.

[134] Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang, Dongxiao He, and Jiawei Han. 2021. Universal graph convo-

lutional networks. Advances in Neural Information Processing Systems 34 (2021).

[135] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 1 (1953), 39–43.

[136] SeyedMehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal Poupart. 2020.

Representation learning for dynamic graphs: A survey. Journal of Machine Learning Research 21, 70 (2020), 1–73.

[137] Shima Khoshraftar, Aijun An, and Nastaran Babanejad. 2022. Temporal graph representation learning via maximal

cliques. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 606–615.

[138] Shima Khoshraftar, Sedigheh Mahdavi, and Aijun An. 2021. Centrality-based interpretability measures for graph

embeddings. In 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 1–10.

[139] Shima Khoshraftar, Sedigheh Mahdavi, Aijun An, Yonggang Hu, and Junfeng Liu. 2019. Dynamic graph embedding

via LSTM history tracking. In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

IEEE, 119–127.

[140] Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational Bayes. stat 1050 (2014), 1.

[141] Thomas N. Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016).

[142] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. ICLR

(2017).

[143] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural

networks meet personalized PageRank. In International Conference on Learning Representations.

[144] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffusion improves graph learning. In

Proceedings of the 33rd International Conference on Neural Information Processing Systems. 13366–13378.

[145] Dejiang Kong and Fei Wu. 2018. HST-LSTM: A hierarchical spatial-temporal long-short term memory network for

location prediction. In IJCAI, Vol. 18. 2341–2347.

[146] Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and Xia Hu. 2020. Policy-GNN: Aggregation optimization for graph

neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 461–471.

[147] Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, and Shou-De Lin. 2017. PRUNE: Preserving proximity and

global ranking for network embedding. Advances in Neural Information Processing Systems 30 (2017).

[148] Vang Le and Vaclav Snasel. 2019. Community detection in online social network using graph embedding and hierar-

chical clustering. In Proceedings of the 3rd International Scientific Conference “Intelligent Information Technologies for

Industry” (IITI’18) Volume 13. Springer, 263–272.

[149] John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao. 2019. Graph convolutional

networks with motif-based attention. In Proceedings of the 28th ACM International Conference on Information and

Knowledge Management. 499–508.

[150] A. A. Leman and B. Weisfeiler. 1968. A reduction of a graph to a canonical form and an algebra arising during this

reduction. Nauchno-Technicheskaya Informatsiya 2, 9 (1968), 12–16.

[151] Bentian Li and Dechang Pi. 2020. Network representation learning: A systematic literature review.Neural Computing

and Applications 32, 21 (2020), 16647–16679.

[152] Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. 2021. Training graph neural networks with 1000

layers. In International Conference on Machine Learning. PMLR, 6437–6449.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:46 S. Khoshraftar and A. An

[153] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017. Attributed network embedding for

learning in a dynamic environment. In Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management. 387–396.

[154] Meizi Li, Shuyi Lu, Lele Zhang, Yuping Zhang, and Bo Zhang. 2021. A community detection method for social

network based on community embedding. IEEE Transactions on Computational Social Systems 8, 2 (2021), 308–318.

[155] Mufei Li, Jinjing Zhou, Jiajing Hu,Wenxuan Fan, Yangkang Zhang, Yaxin Gu, and George Karypis. 2021. DGL-LifeSci:

An open-source toolkit for deep learning on graphs in life science. ACS Omega 6, 41 (2021), 27233–27238.

[156] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-temporal fusion graph neural networks for traffic flow forecasting.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4189–4196.

[157] Pan Li, YanbangWang, HongweiWang, and Jure Leskovec. 2020. Distance encoding: Design provably more powerful

neural networks for graph representation learning. Advances in Neural Information Processing Systems 33 (2020),

4465–4478.

[158] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph convolutional networks for semi-

supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[159] Qimai Li, Xiaotong Zhang, Han Liu, Quanyu Dai, and Xiao-Ming Wu. 2021. Dimensionwise separable 2-D graph

convolution for unsupervised and semi-supervised learning on graphs. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining. 953–963.

[160] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph convolutional neural networks. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[161] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian. 2022. Finding global

homophily in graph neural networks when meeting heterophily. ICML (2022).

[162] Yinfeng Li, ChenGao, Xiaoyi Du, HuazhouWei, Hengliang Luo, Depeng Jin, and Yong Li. 2022. Spatiotemporal-aware

session-based recommendation with graph neural networks. In Proceedings of the 31st ACM International Conference

on Information & Knowledge Management. 1209–1218.

[163] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. 2018. Community detection in attributed graphs: An embed-

ding approach. In 32nd AAAI Conference on Artificial Intelligence.

[164] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional recurrent neural network: Data-

driven traffic forecasting. In International Conference on Learning Representations.

[165] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. 2016. Gated graph sequence neural networks. In

Proceedings of ICLR’16.

[166] Xiaoyuan Liang, GuilingWang,Martin RenqiangMin, Yi Qi, and ZhuHan. 2019. A deep spatio-temporal fuzzy neural

network for passenger demand prediction. In Proceedings of the 2019 SIAM International Conference on Data Mining.

SIAM, 100–108.

[167] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for social networks. Journal of the Amer-

ican Society for Information Science and Technology 58, 7 (2007), 1019–1031.

[168] Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, and Jagannadan Varadara-

jan. 2020. STP-UDGAT: Spatial-temporal-preference user dimensional graph attention network for next POI rec-

ommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

845–854.

[169] Haoxing Lin, Rufan Bai, Weijia Jia, Xinyu Yang, and Yongjian You. 2020. Preserving dynamic attention for long-term

spatial-temporal prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 36–46.

[170] Ji Lin, Chuang Gan, and Song Han. 2019. TSM: Temporal shift module for efficient video understanding. In Proceed-

ings of the IEEE/CVF International Conference on Computer Vision. 7083–7093.

[171] Zhihui Lin, Maomao Li, Zhuobin Zheng, Yangyang Cheng, and Chun Yuan. 2020. Self-attention ConvLSTM for spa-

tiotemporal prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 11531–11538.

[172] Hongbin Liu, Hao Wu, Weiwei Sun, and Ickjai Lee. 2019. Spatio-temporal GRU for trajectory classification. In 2019

IEEE International Conference on Data Mining (ICDM). IEEE, 1228–1233.

[173] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic forgetting in graph neural networks.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8653–8661.

[174] Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. 2021. EIGNN: Efficient infinite-depth

graph neural networks. Advances in Neural Information Processing Systems 34 (2021).

[175] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards deeper graph neural networks. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 338–348.

[176] Meng Liu and Yong Liu. 2021. Inductive representation learning in temporal networks via mining neighborhood and

community influences. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development

in Information Retrieval. 2202–2206.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:47

[177] Meng Liu, Zhengyang Wang, and Shuiwang Ji. 2021. Non-local graph neural networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence (2021).

[178] Qi Liu, Ruobing Xie, Lei Chen, Shukai Liu, Ke Tu, Peng Cui, Bo Zhang, and Leyu Lin. 2020. Graph neural network

for tag ranking in tag-enhanced video recommendation. In Proceedings of the 29th ACM International Conference on

Information & Knowledge Management. 2613–2620.

[179] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. 2021. Elastic graph neural

networks. In International Conference on Machine Learning. PMLR, 6837–6849.

[180] Xin Liu, Tsuyoshi Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, and Chenyi Zhuang. 2019. A general view for

network embedding as matrix factorization. In Proceedings of the 12th ACM International Conference on Web Search

and Data Mining. 375–383.

[181] Xueyi Liu and Jie Tang. 2021. Network representation learning: A macro and micro view. AI Open 2 (2021), 43–64.

[182] Yiding Liu, Yulong Gu, Zhuoye Ding, Junchao Gao, Ziyi Guo, Yongjun Bao, and Weipeng Yan. 2020. Decoupled

graph convolution network for inferring substitutable and complementary items. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management. 2621–2628.

[183] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip Yu. 2022. Graph self-supervised learning:

A survey. IEEE Transactions on Knowledge and Data Engineering (2022).

[184] Zhijun Liu, Chao Huang, Yanwei Yu, and Junyu Dong. 2021. Motif-preserving dynamic attributed network embed-

ding. In Proceedings of the Web Conference 2021. 1629–1638.

[185] Zhijun Liu, Chao Huang, Yanwei Yu, Peng Song, Baode Fan, and Junyu Dong. 2020. Dynamic representation learn-

ing for large-scale attributed networks. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management. 1005–1014.

[186] Zongtao Liu, Bin Ma, Quan Liu, Jian Xu, and Bo Zheng. 2021. Heterogeneous graph neural networks for large-

scale bid keyword matching. In Proceedings of the 30th ACM International Conference on Information & Knowledge

Management. 3976–3985.

[187] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-GNN: Tail-node graph neural networks. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1109–1119.

[188] Qingqing Long, Yilun Jin, Guojie Song, Yi Li, andWei Lin. 2020. Graph structural-topic neural network. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1065–1073.

[189] Qingqing Long, Yilun Jin, Yi Wu, and Guojie Song. 2021. Theoretically improving graph neural networks via anony-

mous walk graph kernels. In Proceedings of the Web Conference 2021. 1204–1214.

[190] Bin Lu, Xiaoying Gan, Haiming Jin, Luoyi Fu, and Haisong Zhang. 2020. Spatiotemporal adaptive gated graph con-

volution network for urban traffic flow forecasting. In Proceedings of the 29th ACM International Conference on Infor-

mation & Knowledge Management. 1025–1034.

[191] Yuanfu Lu, XiaoWang, Chuan Shi, Philip S. Yu, and Yanfang Ye. 2019. Temporal network embedding with micro- and

macro-dynamics. In Proceedings of the 28th ACM International Conference on Information and KnowledgeManagement.

469–478.

[192] Denis Lukovnikov and Asja Fischer. 2021. Improving breadth-wise backpropagation in graph neural networks helps

learning long-range dependencies. In International Conference on Machine Learning. PMLR, 7180–7191.

[193] Wenjuan Luo, Han Zhang, Xiaodi Yang, Lin Bo, Xiaoqing Yang, Zang Li, Xiaohu Qie, and Jieping Ye. 2020. Dynamic

heterogeneous graph neural network for real-time event prediction. In Proceedings of the 26th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining. 3213–3223.

[194] Yingtao Luo, Qiang Liu, and Zhaocheng Liu. 2021. STAN: Spatio-temporal attention network for next location rec-

ommendation. In Proceedings of the Web Conference 2021. 2177–2185.

[195] Enxhell Luzhnica, Ben Day, and Pietro Lio. 2019. Clique pooling for graph classification. arXiv preprint

arXiv:1904.00374 (2019).

[196] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo Jiang, Yuxiao

Dong, and Jie Tang. 2021. Are we really making much progress? Revisiting, benchmarking and refining heteroge-

neous graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining. 1150–1160.

[197] Tianshu Lyu, Yuan Zhang, and Yan Zhang. 2017. Enhancing the network embedding quality with structural similarity.

In Proceedings of the 2017 ACM Conference on Information and Knowledge Management. 147–156.

[198] Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, and Joyce C. Ho. 2021. Temporal network embedding via tensor factor-

ization. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 3313–3317.

[199] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming graph neural networks. In Proceedings

of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 719–728.

[200] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. 2021. A unified view on graph neural net-

works as graph signal denoising. In Proceedings of the 30th ACM International Conference on Information & Knowledge

Management. 1202–1211.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:48 S. Khoshraftar and A. An

[201] Yao Ma and Jiliang Tang. 2021. Deep Learning on Graphs. Cambridge University Press.

[202] Zheng Ma, Junyu Xuan, Yu GuangWang, Ming Li, and Pietro Liò. 2020. Path integral based convolution and pooling

for graph neural networks. Advances in Neural Information Processing Systems 33 (2020), 16421–16433.

[203] JamesMacQueen et al. 1967. Somemethods for classification and analysis of multivariate observations. In Proceedings

of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. Oakland, CA, USA, 281–297.

[204] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2018. dynnode2vec: Scalable dynamic network embedding. In

2018 IEEE International Conference on Big Data (Big Data). IEEE, 3762–3765.

[205] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2019. Dynamic joint variational graph autoencoders. In Joint

European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 385–401.

[206] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019. Provably powerful graph networks.

Advances in Neural Information Processing Systems 32 (2019).

[207] Miller McPherson, Lynn Smith-Lovin, and James M. Cook. 2001. Birds of a feather: Homophily in social networks.

Annual Review of Sociology 27, 1 (2001), 415–444.

[208] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019. Co-embedding attributed networks. In

Proceedings of the 12th ACM International Conference on Web Search and Data Mining. 393–401.

[209] Congcong Miao, Jiajun Fu, Jilong Wang, Heng Yu, Botao Yao, Anqi Zhong, Jie Chen, and Zekun He. 2021. Predict-

ing crowd flows via pyramid dilated deeper spatial-temporal network. In Proceedings of the 14th ACM International

Conference on Web Search and Data Mining. 806–814.

[210] XupengMiao, Nezihe Merve Gürel, Wentao Zhang, Zhichao Han, Bo Li, Wei Min, Susie Xi Rao, Hansheng Ren, Yinan

Shan, Yingxia Shao, et al. 2021. DeGNN: Improving graph neural networks with graph decomposition. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1223–1233.

[211] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781 (2013).

[212] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Mar-

tin Grohe. 2019. Weisfeiler and Leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 33. 4602–4609.

[213] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. 2019. Relational pooling for graph

representations. In International Conference on Machine Learning. PMLR, 4663–4673.

[214] Vidit Nanda. 2021. Computational algebraic topology lecture notes. https://people.maths.ox.ac.uk/nanda/cat/

TDANotes

[215] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and Sungchul Kim. 2018.

Continuous-time dynamic network embeddings. In Companion Proceedings of the The Web Conference 2018. 969–976.

[216] Feiping Nie, Wei Zhu, and Xuelong Li. 2017. Unsupervised large graph embedding. In 31st AAAI Conference on

Artificial Intelligence.

[217] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning convolutional neural networks for

graphs. In International Conference on Machine Learning. PMLR, 2014–2023.

[218] Giannis Nikolentzos and Michalis Vazirgiannis. 2020. Random walk graph neural networks. Advances in Neural

Information Processing Systems 33 (2020), 16211–16222.

[219] Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao, Haochuan Sun, Hongbo Deng, and Zhenzhong Chen. 2020. A

dual heterogeneous graph attention network to improve long-tail performance for shop search in e-commerce. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 3405–3415.

[220] Kenta Oono and Taiji Suzuki. 2019. Graph neural networks exponentially lose expressive power for node classifica-

tion. In International Conference on Learning Representations.

[221] Boris N. Oreshkin, Arezou Amini, Lucy Coyle, and Mark J. Coates. 2021. FC-GAGA: Fully connected gated graph

architecture for spatio-temporal traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence.

[222] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, andWenwu Zhu. 2016. Asymmetric transitivity preserving graph em-

bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

1105–1114.

[223] Wentao Ouyang, Xiuwu Zhang, Li Li, Heng Zou, Xin Xing, Zhaojie Liu, and Yanlong Du. 2019. Deep spatio-temporal

neural networks for click-through rate prediction. In Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. 2078–2086.

[224] Guosheng Pan, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. 2021. Unsupervised attributed network embedding

via cross fusion. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 797–805.

[225] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. 2021. DropGNN: Random dropouts in-

crease the expressiveness of graph neural networks. Advances in Neural Information Processing Systems 34 (2021).

[226] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, Tao

Schardl, and Charles Leiserson. 2020. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5363–5370.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

https://people.maths.ox.ac.uk/nanda/cat/TDANotes

A Survey on Graph Representation Learning Methods 19:49

[227] Cheonbok Park, Chunggi Lee, Hyojin Bahng, Yunwon Tae, Seungmin Jin, Kihwan Kim, Sungahn Ko, and Jaegul Choo.

2020. ST-GRAT: A novel spatio-temporal graph attention network for accurately forecasting dynamically chang-

ing road speed. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

1215–1224.

[228] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2019. Geom-GCN: Geometric graph

convolutional networks. In International Conference on Learning Representations.

[229] Jingshu Peng, Yanyan Shen, and Lei Chen. 2021. GraphANGEL: Adaptive aNd structure-aware sampling on graph

NEuraL networks. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 479–488.

[230] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang. 2020. Graph

representation learning via graphical mutual information maximization. In Proceedings of The Web Conference 2020.

259–270.

[231] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. 2018. Film: Visual reasoning

with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[232] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Pro-

ceedings of the 20th ACM SIGKDD. ACM, 701–710.

[233] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. 2019. NetSMF: Large-scale

network embedding as sparse matrix factorization. In The World Wide Web Conference. 1509–1520.

[234] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018. Network embedding as matrix

factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In Proceedings of the 11th ACM International Conference

on Web Search and Data Mining. 459–467.

[235] Zhenyu Qiu, Wenbin Hu, Jia Wu, Weiwei Liu, Bo Du, and Xiaohua Jia. 2020. Temporal network embedding with

high-order nonlinear information. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5436–5443.

[236] Xiaoru Qu, Zhao Li, JialinWang, Zhipeng Zhang, Pengcheng Zou, Junxiao Jiang, JiamingHuang, Rong Xiao, Ji Zhang,

and Jun Gao. 2020. Category-aware graph neural networks for improving e-commerce review helpfulness prediction.

In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2693–2700.

[237] Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole Von Lilienfeld. 2014. Quantum chemistry

structures and properties of 134 kilo molecules. Scientific Data 1, 1 (2014), 1–7.

[238] Leonardo Ribeiro, Pedro Saverese, and Daniel Figueiredo. 2017. struc2vec: Learning node representations from struc-

tural identity. In KDD.

[239] Martin Ringsquandl, Houssem Sellami, Marcel Hildebrandt, Dagmar Beyer, Sylwia Henselmeyer, Sebastian Weber,

and Mitchell Joblin. 2021. Power to the relational inductive bias: Graph neural networks in electrical power grids. In

Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 1538–1547.

[240] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. DropEdge: Towards deep graph convolutional

networks on node classification. In International Conference on Learning Representations.

[241] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein. 2020.

Temporal graph networks for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[242] Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, Sungchul Kim, Anup Rao, and Yasin Abbasi-Yadkori. 2020. A struc-

tural graph representation learning framework. In Proceedings of the 13th International Conference onWeb Search and

Data Mining. 483–491.

[243] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020. DySAT: Deep neural representation

learning on dynamic graphs via self-attention networks. In Proceedings of the 13th International Conference on Web

Search and Data Mining. 519–527.

[244] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. 2021. Random features strengthen graph neural networks. In

Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). SIAM, 333–341.

[245] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. 2021. E (n) equivariant graph neural networks. In

International Conference on Machine Learning. PMLR, 9323–9332.

[246] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph

neural network model. IEEE Transactions on Neural Networks 20, 1 (2008), 61–80.

[247] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. 2018. Mod-

eling relational data with graph convolutional networks. In The Semantic Web: 15th International Conference, ESWC

2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[248] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. 2018. Structured sequence modeling

with graph convolutional recurrent networks. In International Conference on Neural Information Processing. Springer,

362–373.

[249] Umang Sharan and Jennifer Neville. 2008. Temporal-relational classifiers for prediction in evolving domains. In 2008

8th IEEE International Conference on Data Mining. IEEE, 540–549.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:50 S. Khoshraftar and A. An

[250] Xiaobo Shen, Shirui Pan, Weiwei Liu, Yew-Soon Ong, and Quan-Sen Sun. 2018. Discrete network embedding. In

Proceedings of the 27th International Joint Conference on Artificial Intelligence. 3549–3555.

[251] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node embedding over temporal graphs. In Proceedings of the 28th

International Joint Conference on Artificial Intelligence. 4605–4612.

[252] Joakim Skardinga, Bogdan Gabrys, and Katarzyna Musial. 2021. Foundations and modelling of dynamic networks

using dynamic graph neural networks: A survey. IEEE Access (2021).

[253] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-temporal synchronous graph convolutional

networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 34. 914–921.

[254] Han Hee Song, Tae Won Cho, Vacha Dave, Yin Zhang, and Lili Qiu. 2009. Scalable proximity estimation and link

prediction in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement.

322–335.

[255] Xiran Song, Jianxun Lian, Hong Huang, Mingqi Wu, Hai Jin, and Xing Xie. 2022. Friend recommendations with self-

rescaling graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining. 3909–3919.

[256] Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, and Anima Anandkumar. 2020. Convolutional

tensor-train LSTM for spatio-temporal learning. Advances in Neural Information Processing Systems 33 (2020), 13714–

13726.

[257] Ke Sun, Zhouchen Lin, and Zhanxing Zhu. 2020. Multi-stage self-supervised learning for graph convolutional net-

works on graphs with few labeled nodes. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.

5892–5899.

[258] Xiangguo Sun, Hongzhi Yin, Bo Liu, Hongxu Chen, Jiuxin Cao, Yingxia Shao, and Nguyen Quoc Viet Hung. 2021. Het-

erogeneous hypergraph embedding for graph classification. In Proceedings of the 14th ACM International Conference

on Web Search and Data Mining. 725–733.

[259] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. 2021. Breaking the limit of graph neural

networks by improving the assortativity of graphswith local mixing patterns. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining. 1541–1551.

[260] Jian Tang, Meng Qu, MingzheWang, Ming Zhang, Jun Yan, and QiaozhuMei. 2015. Line: Large-scale information net-

work embedding. In Proceedings of the 24th WWW. International World Wide Web Conferences Steering Committee,

1067–1077.

[261] Erik Thiede, Wenda Zhou, and Risi Kondor. 2021. Autobahn: Automorphism-based graph neural nets. Advances in

Neural Information Processing Systems 34 (2021).

[262] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M. Bronstein. 2022.

Understanding over-squashing and bottlenecks on graphs via curvature. International Conference on Learning Repre-

sentations (2022).

[263] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019. DyRep: Learning representations

over dynamic graphs. In International Conference on Learning Representations.

[264] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018. VERSE: Versatile graph embeddings

from similarity measures. In Proceedings of the 2018 World Wide Web Conference. 539–548.

[265] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Advances in Neural Information Processing Systems 30 (2017).

[266] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph

attention networks. In International Conference on Learning Representations.

[267] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon Hjelm. 2019. Deep

Graph Infomax. ICLR (Poster) 2, 3 (2019), 4.

[268] Clement Vignac, Andreas Loukas, and Pascal Frossard. 2020. Building powerful and equivariant graph neural net-

works with structural message-passing. Advances in Neural Information Processing Systems 33 (2020), 14143–14155.

[269] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embedding. In Proceedings of the 22nd ACM

SIGKDD. ACM, 1225–1234.

[270] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2021. Multi-hop attention graph neural networks. In

IJCAI.

[271] HaoWang, Enhong Chen, Qi Liu, Tong Xu, Dongfang Du, Wen Su, and Xiaopeng Zhang. 2018. A united approach to

learning sparse attributed network embedding. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,

557–566.

[272] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. 2021. Equivariant and stable positional encoding for more

powerful graph neural networks. In International Conference on Learning Representations.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:51

[273] JunshanWang, Guojie Song, Yi Wu, and LiangWang. 2020. Streaming graph neural networks via continual learning.

In Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 1515–1524.

[274] Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan Venkatramanan, and Madhav Marathe.

2022. CausalGNN: Causal-based graph neural networks for spatio-temporal epidemic forecasting. Proceedings of the

AAAI Conference on Artificial Intelligence (2022).

[275] Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, and Xiao-ming Wu. 2020. M2GRL: A multi-task multi-view graph

representation learning framework for web-scale recommender systems. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 2349–2358.

[276] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al.

2019. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv preprint

arXiv:1909.01315 (2019).

[277] Tao Wang, Rui Wang, Di Jin, Dongxiao He, and Yuxiao Huang. 2022. Powerful graph convolutioal networks with

adaptive propagation mechanism for homophily and heterophily. Proceedings of the AAAI Conference on Artificial

Intelligence (2022).

[278] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S. Yu Philip. 2022. A survey on heterogeneous graph

embedding: Methods, techniques, applications and sources. IEEE Transactions on Big Data (2022).

[279] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017. Community preserving network

embedding. In 31st AAAI Conference on Artificial Intelligence.

[280] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. 2019. Heterogeneous graph

attention network. In The World Wide Web Conference. 2022–2032.

[281] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu. 2020. Traffic flow

prediction via spatial temporal graph neural network. In Proceedings of The Web Conference 2020. 1082–1092.

[282] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2020. Inductive representation learning in

temporal networks via causal anonymous walks. In International Conference on Learning Representations.

[283] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S. Yu. 2017. PredRNN: Recurrent neural

networks for predictive learning using spatiotemporal LSTMs. Advances in Neural Information Processing Systems 30

(2017).

[284] Yaojing Wang, Guosheng Pan, Yuan Yao, Hanghang Tong, Hongxia Yang, Feng Xu, and Jian Lu. 2020. Bringing order

to network embedding: A relative ranking based approach. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 1585–1594.

[285] Yu-Xiang Wang, James Sharpnack, Alex Smola, and Ryan Tibshirani. 2015. Trend filtering on graphs. In Artificial

Intelligence and Statistics. PMLR, 1042–1050.

[286] Zhili Wang, Shimin Di, and Lei Chen. 2021. AutoGEL: An automated graph neural network with explicit link infor-

mation. Advances in Neural Information Processing Systems 34 (2021).

[287] Zhaonan Wang, Renhe Jiang, Zekun Cai, Zipei Fan, Xin Liu, Kyoung-Sook Kim, Xuan Song, and Ryosuke Shibasaki.

2021. Spatio-temporal-categorical graph neural networks for fine-grained multi-incident co-prediction. In Proceed-

ings of the 30th ACM International Conference on Information & Knowledge Management. 2060–2069.

[288] Asiri Wijesinghe and Qing Wang. 2021. A new perspective on “How graph neural networks go beyond Weisfeiler-

Lehman?”. In International Conference on Learning Representations.

[289] Asiri Wijesinghe and Qing Wang. 2022. A new perspective on “How graph neural networks go beyond Weisfeiler-

Lehman?”. ICML (2022).

[290] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplifying graph

convolutional networks. In International Conference on Machine Learning. PMLR, 6861–6871.

[291] Fan Wu and Lixia Wu. 2019. DeepETA: A spatial-temporal sequential neural network model for estimating time of

arrival in package delivery system. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 774–781.

[292] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion Stoica. 2021. Represent-

ing long-range context for graph neural networks with global attention. Advances in Neural Information Processing

Systems 34 (2021), 13266–13279.

[293] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S. Yu Philip. 2020. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems (2020).

[294] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Graph WaveNet for deep spatial-

temporal graph modeling. In IJCAI.

[295] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. 2021. Graph learning: A survey.

IEEE Transactions on Artificial Intelligence 2, 2 (2021), 109–127.

[296] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Huang. 2022. Hypergraph contrastive

collaborative filtering. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in

Information Retrieval. 70–79.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:52 S. Khoshraftar and A. An

[297] Wenyi Xiao, Huan Zhao, Vincent W. Zheng, and Yangqiu Song. 2020. Vertex-reinforced random walk for network

embedding. In Proceedings of the 2020 SIAM International Conference on Data Mining. SIAM, 595–603.

[298] Yu Xie, Chunyi Li, Bin Yu, Chen Zhang, and Zhouhua Tang. 2020. A survey on dynamic network embedding. arXiv

preprint arXiv:2006.08093 (2020).

[299] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. 2019. Spatio-temporal attentive RNN for

node classification in temporal attributed graphs. In IJCAI. 3947–3953.

[300] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. 2020. Inductive representation learn-

ing on temporal graphs. ICLR (2020).

[301] Fengli Xu, Quanming Yao, Pan Hui, and Yong Li. 2021. Automorphic equivalence-aware graph neural network. Ad-

vances in Neural Information Processing Systems 34 (2021).

[302] Jixing Xu, Zhenlong Zhu, Jianxin Zhao, Xuanye Liu, Minghui Shan, and Jiecheng Guo. 2020. Gemini: A novel and

universal heterogeneous graph information fusing framework for online recommendations. In Proceedings of the

26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 3356–3365.

[303] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks?. In

International Conference on Learning Representations.

[304] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2018. Rep-

resentation learning on graphs with jumping knowledge networks. In International Conference on Machine Learning.

PMLR, 5453–5462.

[305] Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. 2021. Optimization of graph neural networks:

Implicit acceleration by skip connections and more depth. In International Conference on Machine Learning. PMLR,

11592–11602.

[306] Mengjia Xu. 2021. Understanding graph embedding methods and their applications. SIAM Rev. 63, 4 (2021), 825–853.

[307] Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. 2020. TinyGNN: Learning efficient graph neural

networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

1848–1856.

[308] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast network embedding enhancement via high

order proximity approximation. In IJCAI, Vol. 17. 3894–3900.

[309] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heterogeneous network representation learning:

A unified frameworkwith survey and benchmark. IEEE Transactions on Knowledge and Data Engineering 34, 10 (2020),

4854–4873.

[310] Guolei Yang, Ying Cai, and Chandan K. Reddy. 2018. Spatio-temporal check-in time prediction with recurrent neural

network based survival analysis. In Proceedings of the 27th International Joint Conference on Artificial Intelligence.

2976–2983.

[311] Hong Yang, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang. 2018. Binarized attributed network

embedding. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 1476–1481.

[312] Liang Yang,Mengzhe Li, Liyang Liu, ChuanWang, XiaochunCao, YuanfangGuo, et al. 2021. Diversemessage passing

for attribute with heterophily. Advances in Neural Information Processing Systems 34 (2021).

[313] Menglin Yang, Ziqiao Meng, and Irwin King. 2020. FeatureNorm: L2 feature normalization for dynamic graph em-

bedding. In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 731–740.

[314] Tianmeng Yang, Yujing Wang, Zhihan Yue, Yaming Yang, Yunhai Tong, and Jing Bai. 2022. Graph pointer neural

networks. Proceedings of the AAAI Conference on Artificial Intelligence (2022).

[315] Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, and Quan Wang. 2021. Interpretable and efficient

heterogeneous graph convolutional network. IEEE Transactions on Knowledge and Data Engineering (2021).

[316] Huaxiu Yao, Xianfeng Tang, HuaWei, Guanjie Zheng, and Zhenhui Li. 2019. Revisiting spatial-temporal similarity: A

deep learning framework for traffic prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.

5668–5675.

[317] Kai-Lang Yao and Wu-Jun Li. 2021. Blocking-based neighbor sampling for large-scale graph neural networks. In

International Joint Conference on Artificial Intelligence.

[318] Lin Yao, Luning Wang, Lv Pan, and Kai Yao. 2016. Link prediction based on common-neighbors for dynamic social

network. Procedia Computer Science 83 (2016), 82–89.

[319] Junchen Ye, Leilei Sun, BowenDu, Yanjie Fu, Xinran Tong, andHui Xiong. 2019. Co-prediction of multiple transporta-

tion demands based on deep spatio-temporal neural network. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 305–313.

[320] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. 2021. From local structures to size gener-

alization in graph neural networks. In International Conference on Machine Learning. PMLR, 11975–11986.

[321] Peiyu Yi, Feihu Huang, and Jian Peng. 2021. A fine-grained graph-based spatiotemporal network for bike flow predic-

tion in bike-sharing systems. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). SIAM,

513–521.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:53

[322] Yuan Yin and Zhewei Wei. 2019. Scalable graph embeddings via sparse transpose proximities. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1429–1437.

[323] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. 2018. Graph

convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining. 974–983.

[324] Zhitao Ying, Jiaxuan You, ChristopherMorris, Xiang Ren,Will Hamilton, and Jure Leskovec. 2018. Hierarchical graph

representation learning with differentiable pooling. Advances in Neural Information Processing Systems 31 (2018).

[325] Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon Yang. 2021. Performance-adaptive sampling

strategy towards fast and accurate graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining. 2046–2056.

[326] Jiaxuan You, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. 2021. Identity-aware graph neural networks.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 10737–10745.

[327] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural networks. In International Conference

on Machine Learning. PMLR, 7134–7143.

[328] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph neural networks. Advances in Neural

Information Processing Systems 33 (2020), 17009–17021.

[329] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolutional networks: A deep learning

framework for traffic forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence.

3634–3640.

[330] Chia-An Yu, Ching-Lun Tai, Tak-Shing Chan, and Yi-Hsuan Yang. 2018. Modeling multi-way relations with hyper-

graph embedding. In Proceedings of the 27th ACM International Conference on Information and Knowledge Manage-

ment. 1707–1710.

[331] Junliang Yu, Hongzhi Yin, Min Gao, Xin Xia, Xiangliang Zhang, and Nguyen Quoc Viet Hung. 2021. Socially-aware

self-supervised tri-training for recommendation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining. 2084–2092.

[332] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. 2022. Are graph augmen-

tations necessary? Simple graph contrastive learning for recommendation. In Proceedings of the 45th International

ACM SIGIR Conference on Research and Development in Information Retrieval. 1294–1303.

[333] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. 2018. NetWalk: A flexible

deep embedding approach for anomaly detection in dynamic networks. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 2672–2681.

[334] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J. Kim. 2021. Neo-GNNs: Neighborhood

overlap-aware graph neural networks for link prediction. Advances in Neural Information Processing Systems 34

(2021).

[335] Nazar Zaki, Harsh Singh, and Elfadil A. Mohamed. 2021. Identifying protein complexes in protein-protein interaction

data using graph convolutional network. IEEE Access 9 (2021), 123717–123726.

[336] Daniele Zambon, Cesare Alippi, and Lorenzo Livi. 2020. Graph random neural features for distance-preserving graph

representations. In International Conference on Machine Learning. PMLR, 10968–10977.

[337] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor

Prasanna, Long Jin, and Ren Chen. 2021. Decoupling the depth and scope of graph neural networks. Advances in

Neural Information Processing Systems 34 (2021).

[338] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. 2019. GraphSAINT:

Graph sampling based inductive learning method. In International Conference on Learning Representations.

[339] Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. 2019. Experience replay optimization. In IJCAI.

[340] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. 2019. Heterogeneous graph

neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 793–803.

[341] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Network representation learning: A survey. IEEE

Transactions on Big Data 6, 1 (2018), 3–28.

[342] Jianfei Zhang, Ai-Te Kuo, Jianan Zhao, Qianlong Wen, Erin Winstanley, Chuxu Zhang, and Yanfang Ye. 2021. RxNet:

Rx-refill graph neural network for overprescribing detection. In Proceedings of the 30th ACM International Conference

on Information & Knowledge Management. 2537–2546.

[343] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual networks for citywide crowd flows

prediction. In 31st AAAI Conference on Artificial Intelligence.

[344] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural networks.Advances in Neural Information

Processing Systems 31 (2018).

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

19:54 S. Khoshraftar and A. An

[345] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end-to-end deep learning architecture

for graph classification. In Thirty-second AAAI Conference on Artificial Intelligence.

[346] Muhan Zhang and Pan Li. 2021. Nested graph neural networks. Advances in Neural Information Processing Systems

34 (2021).

[347] Mingyang Zhang, Yong Li, Funing Sun, Diansheng Guo, and Pan Hui. 2021. Adaptive spatio-temporal convolutional

network for traffic prediction. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 1475–1480.

[348] Qi Zhang, JianlongChang, GaofengMeng, ShimingXiang, andChunhong Pan. 2020. Spatio-temporal graph structure

learning for traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1177–1185.

[349] Shuo Zhang and Lei Xie. 2020. Improving attentionmechanism in graph neural networks via cardinality preservation.

In IJCAI: Proceedings of the Conference, Vol. 2020. NIH Public Access, 1395.

[350] Weifeng Zhang, Jingwen Mao, Yi Cao, and Congfu Xu. 2020. Multiplex graph neural networks for multi-behavior

recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

2313–2316.

[351] Xiyue Zhang, Chao Huang, Yong Xu, and Lianghao Xia. 2020. Spatial-temporal convolutional graph attention net-

works for citywide traffic flow forecasting. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management. 1853–1862.

[352] Xiyue Zhang, Chao Huang, Yong Xu, Lianghao Xia, Peng Dai, Liefeng Bo, Junbo Zhang, and Yu Zheng. 2021. Traffic

flow forecasting with spatial-temporal graph diffusion network. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 35. 15008–15015.

[353] Xingyi Zhang, Kun Xie, Sibo Wang, and Zengfeng Huang. 2021. Learning based proximity matrix factorization

for node embedding. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.

2243–2253.

[354] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-scale network embedding with

iterative random projection. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 787–796.

[355] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, andWenwu Zhu. 2018. Timers: Error-bounded SVD restart on dynamic

networks. In 32nd AAAI Conference on Artificial Intelligence.

[356] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu. 2018. Arbitrary-order proximity pre-

served network embedding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 2778–2786.

[357] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A survey. IEEE Transactions on Knowledge

and Data Engineering (2020).

[358] Zhen Zhang, Fan Wu, and Wee Sun Lee. 2020. Factor graph neural networks. Advances in Neural Information Pro-

cessing Systems 33 (2020), 8577–8587.

[359] Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. 2021. Adaptive diffusion in graph neural

networks. Advances in Neural Information Processing Systems 34 (2021).

[360] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. 2021. Heterogeneous graph structure

learning for graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4697–4705.

[361] Lingxiao Zhao and Leman Akoglu. 2019. PairNorm: Tackling oversmoothing in GNNs. In International Conference

on Learning Representations.

[362] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang, and George

Karypis. 2020. DistDG;: Distributed graph neural network training for billion-scale graphs. In 2020 IEEE/ACM 10th

Workshop on Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

[363] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, and George Karypis.

2020. DGL-KE: Training knowledge graph embeddings at scale. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval. 739–748.

[364] Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yuguang Wang, Pietro Lió, Ming Li, and Guido Montufar. 2021. How

framelets enhance graph neural networks. In International Conference on Machine Learning. PMLR, 12761–12771.

[365] Xuebin Zheng, Bingxin Zhou, Yu Guang Wang, and Xiaosheng Zhuang. 2022. Decimated framelet system on graphs

and fast G-framelet transforms. Journal of Machine Learning Research 23, 18 (2022), 1–68.

[366] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable graph embedding for asymmetric

proximity. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

[367] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with hypergraphs: Clustering, classifica-

tion, and embedding. Advances in Neural Information Processing Systems 19 (2006).

[368] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in graph neural networks with experience

replay. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4714–4722.

[369] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and

Maosong Sun. 2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020), 57–81.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

A Survey on Graph Representation Learning Methods 19:55

[370] Jingya Zhou, Ling Liu, Wenqi Wei, and Jianxi Fan. 2022. Network representation learning: From preprocessing, fea-

ture extraction to node embedding. ACM Computing Surveys (CSUR) 55, 2 (2022), 1–35.

[371] Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. 2020. Towards deeper graph neu-

ral networks with differentiable group normalization. Advances in Neural Information Processing Systems 33 (2020),

4917–4928.

[372] Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu. 2021. Multi-channel graph neural

networks. In Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelli-

gence. 1352–1358.

[373] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic network embedding by modeling

triadic closure process. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[374] Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, and Yongdong Zhang. 2021. Bilinear graph

neural network with neighbor interactions. In Proceedings of the 29th International Conference on International Joint

Conferences on Artificial Intelligence. 1452–1458.

[375] Hao Zhu and Piotr Koniusz. 2021. REFINE: Random range finder for network embedding. In Proceedings of the 30th

ACM International Conference on Information & Knowledge Management. 3682–3686.

[376] Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai Koutra. 2021. Graph

neural networks with heterophily. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 11168–

11176.

[377] Jia Zhu, Qing Xie, and Eun Jung Chin. 2012. A hybrid time-series link prediction framework for large social network.

In International Conference on Database and Expert Systems Applications. Springer, 345–359.

[378] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. 2020. Beyond homophily in

graph neural networks: Current limitations and effective designs. Advances in Neural Information Processing Systems

33 (2020), 7793–7804.

[379] Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. 2019. Relation structure-aware heterogeneous

graph neural network. In 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 1534–1539.

[380] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021. Neural Bellman-Ford networks: A

general graph neural network framework for link prediction. Advances in Neural Information Processing Systems 34

(2021).

[381] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional networks for graph-based semi-supervised classifi-

cation. In Proceedings of the 2018 World Wide Web Conference. 499–508.

[382] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. 2019. Layer-dependent importance

sampling for training deep and large graph convolutional networks. Advances in Neural Information Processing Sys-

tems 32 (2019).

[383] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018. Embedding temporal network via

neighborhood formation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 2857–2866.

Received 14 June 2022; revised 20 May 2023; accepted 8 November 2023

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 19. Publication date: January 2024.

