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Abstract

This paper presents methods for recovering accurate binocular disparity es-
timates in the vicinity of 3D surface discontinuities. Of particular concern
are methods that impact coarse-to-fine, block matching as it forms the ba-
sis of the fastest and resource efficient disparity estimation procedures. Two
advances are put forth. First, a novel approach to coarse-to-fine processing
is presented that adapts match window support across scale to ameliorate
corruption of disparity estimates near 3D boundaries. Second, a novel for-
mulation of half-occlusion cues within the coarse-to-fine, block matching
framework is described to inhibit false matches that can arise in regions near
occlusions. Empirical results show that incorporation of these advances in
coarse-to-fine, block matching reduces disparity errors by more than a factor
of two, while performing little extra computation.

1 Introduction

Recent advances in binocular stereo have led to impressive results. Particularly notable
performance in recovered disparity has arisen via application of global optimization meth-
ods. In contrast, the fastest methods still mostly rely on local block matching. Further,
local matching often uses coarse-to-fine (CTF) refinement. CTF helps remove local min-
ima in search by their reduction at coarser resolutions. As commonly embedded in image
pyramids (where image sampling is commensurate with scale) ensuing processing can re-
duce match ambiguities, as large match windows at fine resolution are covered by smaller
windows at coarse resolution. Also, processing speed increases as large disparities at fine
resolution can be recovered at coarse resolution with smaller search range (subject to re-
finement at finer resolution). While recent advances in global methods improve speed
[1, 6], block matchers, often with CTF, remain preferred when speed is a concern; such
procedures inherently entail lower processing demands, map well to current hardware and
software architectures [1, 20, 3] and are suitable for parallel and pipeline computation.
For both local and global methods of disparity estimation, reliable recovery in the
vicinity of 3D surface boundaries remains a matter of concern. This problem is of partic-
ular note in conjunction with CTF approaches, which tend to resolve poorly such geome-
tries as they are not well represented at coarser resolutions. In the past, much research has
considered recovery of binocular disparity near 3D boundaries [14, 5, 1]. For local meth-
ods, the use of adaptive spatial support for match windows can ameliorate issues arising
in attempts to match near 3D discontinuities by shaping windows to avoid poorly defined
matches [8, 9, 19, 21]. Many recent advances in disparity estimation near 3D boundaries



explicitly consider half-occlusions, where one view sees portions of a background surface
that are occluded to the other view by a foreground surface. Some of the most impressive
recent results have been demonstrated in conjunction with global methods [10, 13, 17, 4].
In comparison, empirical investigation of half-occlusion detection with local processing
underlines shortcomings [5].

This paper presents methods for improved disparity estimates within the CTF, block
matching framework with a particular emphasis on resolving information in the vicinity
of 3D boundaries. The major contributions of the present research are as follows. (i) A
novel approach to adaptively defining match support in CTF refinement is used to ame-
liorate corruption of 3D boundaries. (ii) A novel method for processing half-occlusions
is developed to prevent matches in such areas during CTF estimation. (iii) In empirical
evaluation, the overall approach yields disparity estimates with significant improvement
over standard CTF, block matching, while preserving efficiency.

2 Adaptive coarse-to-fine processing

For present concerns, the basic elements of coarse-to-fine (CTF), block binocular match-
ing are as follows (see [14, 1] and references therein). Initially both images are brought
into image pyramid representations via repeated filtering and subsampling. The disparity
map is estimated for the coarsest level, then upsampled and scaled (implicitly or explic-
itly) to the next finer pyramid level where it serves to provide an initial estimate for refined
matching. The procedure continues until the finest resolution level is reached. At each
level disparity is estimated via basic block-based matching [14, 1].

There are two major sources of errors near 3-D discontinuities that arise in a CTF
block-matching: i) foreground fattening/shrinking effect due to match windows of fixed
shape, ii) refining incorrect disparity upsampled from the disparity map estimated at
coarser resolution. While the first flaw of block matcher is well-researched and a number
of remedies exist via introduction of shiftable/overlapping/adaptive windows [8, 9, 19,
21], the second one is specific to CTF and has not been paid enough attention. Thus, in
the following, more discussion is devoted to the disparity upsampling procedure.

Consider the process of initializing a disparity map at some pyramid level based on
estimates from the previous coarser level. Initialization via standard upsampling (e.g.,
nearest-neighbor, bilinear or Gaussian interpolation) of the disparity map recovered at
the coarse level leads to difficulties in the vicinity of underlying disparity discontinuities.
Depending on specifics of the situation, upsampled disparities near discontinuities can be
incorrectly initialized from a wrong side of the discontinuity or come as an average across
the discontinuity. In either case, subsequent refinement often cannot correct for the poor
initialization and recovered surface geometry is compromised near 3D boundaries.

The snapshot of CTF estimation in Fig. 1 makes matters more precise. Disparity ini-
tialization (offset) for pointk can come from coarser level poirdsb, c, d or even more
distant locations, because informationxatvas implicitly used to calculate the coarse
disparities (i.ex participated in constructing the low resolution image)x belongs to
a constant disparity region, then disparity values at neighbouring black points (Fig. 1)
would be the same and it makes no difference which one is used for initialization. In con-
trast, ifx is near a 3D boundary (i.e., boundary between regions with distinct disparities),
then it is appropriate to search for finer disparitiex asing each possible initialization
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Figure 1. Snapshot of the Coarse-To-Fine (CTF) Estimation Procedure. White cells are

pixels at fine level, black pixels are from coarse level. Window size is 3x3. Disparity
offset for pixelx can be from one of disparities at poirts, c or d (scaled by 2).

separately, i.e., as obtained franb, c, d (or even broader areas, if larger windows are
used). In theory, systematic consideration of all possible CTF initializations should im-
prove estimates near discontinuities as subsequent refinement will be less subject to poor
starting disparities, as derived from information across different surfaces.

Brute-force realization of the above observations entails additional search at each finer
level (one search for each initialization), with final disparity assignment taken as that
yielding the best score under the block-matching metric. A closer look suggests a more
efficient approach and one that also selects for the best shifted match window about each
point. In Fig. 1, if initialization fromb gives the best match for finer level refinement
atx, thenx andb derive from the same surface. Correspondingly, the best (e.g., 3x3 in
Fig. 1) shifted match window forwould be as shaded. Significantly, the selected window
is centered about poirt, which gets correct initialization frorb via nearest-neighbor
upsampling. Analogous conclusions are drawn when the best initializationderives
from a, c or d. In general, the best initialization, match window and refinement éme
achieved via nearest neighbor upsampling of the coarser disparity map and subsequent
selection of the best disparity estimate derived across all shifted windows thatxcatver
the finer level. It is not necessary to try all window shifts for all initializations, as the
correct disparity offset and window configuration are very tightly coupled.

The desired computations for each pyramid level can be realized efficiently in two
steps:i) obtain an initial disparity map via central window block matching using Near-
est Neighbour upsampled coarse disparity as offset; ii) finalize the disparity map at each
pixel by choosing the disparity of the neighboring pixel that has the best match score;
here, the neighbourhood is that covered by the match window. The latter step is simi-
lar to morphological operation on the match score map (dilation for Normalized Cross
Correlation match measure) using the aggregation window as a structural element to sim-
ulate shiftable windows in single-scale matching [14]. Note that the proposed approach
is not identical to estimating disparity estimates at each level via shiftable windows [8],
because, for each pixel, each shifted window corresponds to a different disparity offset.

It is well known that CTF disparity estimation corrupts 3D boundaries. In non-CTF
block matching, use of shiftable or otherwise adaptive windows to conform to disparity
discontinuities is well established [8, 9, 19, 21]; however, the link to improving CTF
disparity refinement seems not to have been stated previously. Recent work that exploits
CTF processing for disparity estimation beyond block matching, e.g., with global methods
[18, 16, 7, 6], has yielded strong results; however, the importance of considering multiple
offsets in projecting CTF has not been addressed clearly. Ideally, these methods should
use multiple offsets; whereas, the proposed method is naturally more efficient — window
placement and disparity offset are tied to eliminate extra search.
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Figure 2: Two Cases of Half-Occlusion Formation. Left: All points on the back surface
that are within the forbidden zone of the boundaries of the front surface are half-occluded,
e.g.,A is the right boundary point of the front surface. Right: Narrower front surfaces al-
low portions of the back surface within the forbidden zone of the front surface boundaries
to be binocularly visible. Further interposed surfaces in the red (dark grey) region allow
for half-occlusion relations to occuecursively

3 Half-occlusion processing

Given the goal of improved disparity estimates in the vicinity of 3D discontinuities, it
is appropriate to account explicitly for binocular half-occlusions, as they bear a close
relationship with discontinuous surface geometry. Two illustrative cases are depicted in
Fig. 2. Note that angleE ABandO, AOr encompass the forbidden zone for pointthe
region where other points will appear as violations of the ordering constraint [11].

For present purposes, a useful constraint for half-occlusion processing comes by con-
sidering the difference in disparity on either side of the occlusion region and region width.
Consider the shaded region on the right side of Fig. 2a. Let world poliré the left-most
point that is binocularly visible, while world poi is the right-most half-occluded point
(visible only to the right image); let their right image coordinates along a scanlilag be
andby, resp. (For ease of exposition: Images are taken as rectified; image coordinates
are specified as scalars along a given scanline.) The width of the half-occluded region
projected to the right image is

The disparity values for points andB are
d(A)=a —a;; d(B)=Db —b =a —b (2

with by = g by construction. Correspondingly, the change in disparity across the half-
occluded region is given as

Adi(B,A)=d(B)—di(A)=a —br—(a —&) =a — by 3)
Now, taking the ratio of disparity change (3) to occlusion width (1) it is found that
r B7A):a;—br:_1 @)

QV(B,A)  br—a
It is seen that this ratio is equal to the disparity gradient limit [2]. Further consideration
of the geometry illustrated in Fig. 2 shows that relationship (4) between disparity change
and occlusion width also holds for regions visible only to the left view of a binocular pair.

In this form, the constraint will be referred to as ttiisparity-change/width constraint

in the following. Note that “occlusion width” refers to the region where occlusiam
appear. Depending on the situation, the whole area can be occluded (Fig. 2a), or it can



have gaps of binocular visibility (Fig. 2b). The loci of points that yield the value of -1
for the disparity gradient limit lie along a boundary of the forbidden zone, e.g. the line
throughA, O, (and henca) in Fig. 2a.

Disparity-change/width can be related to the “uniqueness constraint”, i.e., that each
point in one image should match to only one in the other: Rearrangement of the terms in
(4) with substitution from (1) and (3) yields

d(A)+a =d(B)+by, )
i.e., uniqueness is violated as bathandb, map to the same location in the left image.

The derived formulae, (4) or (5), can be used to detect half-occlusions. In the follow-
ing, most emphasis is on (5) as it yields a convenient algorithm. To arbitrate further be-
tween visibility and occlusion a second cue to half-occlusion is employed. Since matches
in occluded areas have no physically defined match (corresponding points are not imaged
to the other view), any attempted match is expected to have a poor match score, at least
for areas having distinctive texture. So, given two or more points satisfying (5), the point
with the best match score is taken as binocularly visible, and the others as half-occluded.

In practice, straightforward use of uniqueness, (5), is not robust to slanted surfaces
[10] and continuous disparity, as integer disparity quantization can cause multiple pixels
in one image to map to a single pixel in the other. We deal with this problem efficiently as
follows. Integer disparity values are interpolated to subpixel precision (we use parabola
fitting around the match peak [9]). Subsequently, disparity relations between adjacent
pixels on a scanline are used to group pixels into equivalence classes according to whether
or not they are consistent with a single continuous surface. Given this grouping: Pixels
consistent with a single surface cannot engage in half-occlusion relationships (violation of
uniqueness credited to disparity quantization issues). The criterion for grouping adjacent
pixels as arising from a single surface|i&d|| < 1, with Ad is the interpixel disparity
difference. This criterion is based on the widely usedlusion(Ad > 1) andordering
constraintsfd < —1), as they both imply depth discontinuities [5, 1].

The proposed approach to half-occlusion detection is summarized as folleavs:
each scanline, form the surface equivalence classes by considering interpixel disparity
difference and obtain the sets of points that violate uniqueness (5). Within each set, find
the point which has best match score and declare it as visible; all other points in the set
that are not in the same surface class as the visible point are occluded.

In the context of CTF matching, half-occlusion detection is doubly useful. Occlusions
are detected on each scale followed by extrapolation of neighboring background surface
disparity values into the occluded regions. Such processing in turn yields better ability to
initialize disparity estimation at finer levels, esp. near half-occlusions.

The proposed approach to half-occlusion is most similar to others that also explicitly
consider disparity of occluded and occluding surfaces. They include “occlusion” (OCC)
[5, 17], “ordering” (ORD) [14, 5, 1] and “visibility” (VIS, an extension of “uniqueness”)

[13, 4] constraints. In turn, unlike OCC, our approach does not require two way matching;
unlike ORD, our approach is more specific to occlusion detection, as it only encompasses
the forbidden zone boundary, not the entire zone, and works in places where ORD is vi-
olated, yet physically correct (Fig. 2b); unlike VIS that enforces one-to-one mapping be-
tween continuougtervalsby affine parameterized matching on segments, our approach
is directly applicable to standard block-matching techniques.

The current approach also makes use of match scores in deciding which points are
binocularly visible vs. half-occluded. This situation is similar to when global methods



set occlusion cost in their energy formulations to depend on local match scores available
to a given pixel [14, 1]. Also similar is the use of inconsistencies between bidirectional
matches (i.e., left-right-checking) to detect half-occlusion [5, 9]. While such approaches
can detect half-occlusions, they are not specific to this situation; rather, they more gener-
ally diagnose problems in matching.

4 Empirical evaluation

The adaptive coarse-to-fine and half-occlusion processing advances have been imple
mented in software and tested on a standard testsgétuba Venus Teddyand Cones
[12] and a dataset with naturalistic imagery (albeit no ground tr&bgkandStephen

Overall, three different algorithm are evaluatéd: - single scale with shiftable win-
dows;A2 - standard CTFA3 - proposed adaptive CTF with occlusion detection. We com-
pare to A2 to show our improvements over standard CTF and to Al, as itis a strong single
scale block matcher [14]. All three algorithms work on a Gaussian pyramid obtained from
grayscale images (Al works on the finest level only) and use the Normalized Cross Corre-
lation (NCC) match measure [1]; for match windows, Al ukés 17 shiftable windows
(which gave the best result in initial tests), A2 and A3 use 5x5 windows; A2 and A3
work over all attainable pyramid levels for a given image size (i.e. coarsest level auto-
selected when one image dimension becomes unity) and sedrglixel at each level,

Al searched the maximum disparity range for each test case. A more detailed evaluation
can be found in our technical report [15].

For data sets with ground truth, three kinds of error statistics have been collected [12]:
errors for nonoccluded pixels, all pixels including occluded and pixels near discontinu-
ities. Average statistics for each class of errors are given by taking the weighted average
over all 4 stereo pairs, with weights proportional to the number of image pixels. Fig. 3
shows disparity maps while Fig. 4 shows the error statistics.

Comparing A2 and A3, the introduction of the proposed approach to adaptive CTF
processing and half-occlusion detection (A3) results in considerable improvement. It is
expected that the adaptive approach bests standard CTF, as it was designed for exactly
that purpose. Interestingly, adaptive CTF also bests single scale shiftable windows (A1),
especially near discontinuities (white bars in Fig. 4); this can be explained by the fact that
A3 can use smaller windows (5x5 vs. 17x17) to yield more precise boundary-fitting and
search over small ranges (i1 at each resolution) for less ambiguous matches.

Half occlusions are detected reliably, including sharp corners, e.g. tips of the cones in
Cones and slanted surfaces, elgddyandVenus(Fig. 3). Occlusion results are isolated
in Tab. 1. As a comparison for local methods, Tab. 1 also shows results based on the often
used left-right checking (LRC) [5, 9]. LRC yields &6 average hit rate increase and
2.5times higher false positive rate, supporting the claim that our method is more specific
to half-occlusions and therefore better suited when seeking to distinguish 3D boundaries
from other sources of match error (e.g., for segmentation).

Moreover, testing o sukubaand Venusexposes the relative weakness of the pro-
posed algorithm (like any local algorithm) when operating in regions with little texture.
Another apparent weakness is the lack of resolution for thin structures (typical to CTF
processing), e.g. the lamp armslisukubaand pencils ilCones

The error statistics can be used for comparison to state-of-the-art solutions (see Tab. 2).



Alg. Tsukuba| Venus | Teddy | Cones| Avg.
A3 HR (%) | 46.63 | 63.56 | 81.53| 77.92 | 69.39
FP (%) 2.31 127 | 227 | 221 | 1.99
HR (%) | 59.87 70.3 | 87.71 | 82.82 | 76.65
FP (%) 8.74 3.76 | 6.64 | 5.07 | 5.75

LRC

Table 1: Half-Occlusion Detection for A3 & Left-Right-Checking. Hit rate (HR) & false
positive rate (FP) as percent of pixels correctly and incorrectly marked occluded.

Alg. Avg. Tsukuba Venus Teddy Cones
rank| nonocc all disc nonocc all disc nonocc all disc nonocc all disc
A3 14.8(10.252 11.555 20.317|4.5819 5.2218 14.215| 8.3919 13.73 20.012 | 5.0311 10.89 13.912

SSD+MF| 18.5|5.2319 7.0718 24.150| 3.7417 5.1617 11.914| 16.530 24.819 32.920| 10.619 19.819 26.32¢

Table 2: Snapshot of the evaluation results on Middlebury stereo test-bed.

A3 ranks in the mid-range according to average rank; however, higher for the most com-
plex TeddyandCones 8th and 9th, resp.

In any case, theritical comparisonis that of A3 to standard CTF (e.g., A2), as a
major goal of the present work is improved disparity estimates for this style of efficient
processing; such improvement is clear in Figs. 3 and 4, e.g. average errors reduced by a
factor of two or more for all error classes plotted in Fig. 4.

Results of running A1-A3 on images of more naturalistic scenes are shown in Fig. 5.
These images reflect situations where the proposed algorithm would be more useful,
e.g. scenes for automatic navigation. All estimations were done using the same parameters
as in tests with the Middlebury dataset, Fig. 3. Itis evident that the proposed CTF disparity
estimation (A3) significantly outperforms standard CTF (A2) and also bests single-scale
matching (A1), both in textureless regions and near 3-D boundaries.

Significantly, A3 has few parameters to tune. Window size can be small, as CTF al-
lows greater aggregatio® & 5 used here). The tradeoff between search range on each
pyramid level and number of levels (the more levels, the greater the possibility of artifacts,
esp. near borders, but the smaller the search range) is not as critical as in standard CTF:
The proposed algorithm ameliorates boundary errors during CTF refinement and has al-
lowed the current results while starting at the coarsest attainable pyramid levels (i.e., when
one of the image dimensions has been reduced to 1 pixel) with seatch pikel at all
levels. Moreover, half-occlusion detection is essentially parameter free.

Finally, speed is an important advantage of any CTF algorithm including the proposed
algorithm. For image and match window sizaes< n andw?, resp., the theoretical com-
plexity is O(mndwf) = O(mnw#) (search range at each pyramid levetlis- 1), and can
be decreased O(mn) via a running box filter implementation for window cost aggrega-
tion [16]. The advances over standard CTF that are embodied in A3 do not degrade this
complexity. Moreover, the algorithm is suitable for parallel/pipeline implementation.



Figure 3: Disparity Maps Recovered for Middlebury Dataset [12]. Top-bottom: Left
image, ground truth and recovered disparity maps using algorithms A1, A2 and A3. Red

(dark grey) for A3 denotes half-occlusions.
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Figure 4: Error Statistics Across Algorithms. Triplet bars represents error statistics of

A1-A3 for non-occluded (black), all (gray), and discontinuity (white) pixels.
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Figure 5: Results for Naturalistic Scenes. Red (dark grey) for A3 denotes half-occlusions.

5 Conclusion

This paper has presented simple, effective procedures for improving disparity estimates
near 3D boundaries within coarse-to-fine (CTF), block-matching. The procedures entalil
adaptive CTF refinement that avoids corruption of disparities across 3D discontinuities
and accurate half-occlusion recovery. Empirical evaluation of an embodiment of these ad-
vances in a CTF, block-matcher shows its superior performance in comparison to the same
matcher without the proposed advances. Significantly, the enhanced disparity estimator
enjoys the same efficient style of computation as does standard CTF, block-matching. In
practice, the proposed advances should have considerable utility owing to their efficient,
effective nature, small number of parameters and applicability to any CTF, block matcher.
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