B The TarzaNN Neural Network Simulator

A number of computational models of visual attention exist, but making compar-
isons is difficult due to the incompatible implementations and levels at which the
simulations are conducted. To address this issue, we have developed a general-
purpose neural network simulator that allows all of these models to be imple-
mented in a unified framework. The simulator allows for the distributed execu-
tion of models, in a heterogeneous environment. Graphical tools are provided for
the development of models by non-programmers and a common model descrip-
tion format facilitates the exchange of models. In this paper we will present the
design of the simulator and results that demonstrate its generality.

B.1 Introduction

Even though attention is a pervasive phenomenon in primate vision, surprisingly
little agreement exists on its definition, role and mechanisms, due at least in
part to the wide variety of investigative methods. As elsewhere in neuroscience,
computational modelling has an important role to play by being the only tech-
nique that can bridge the gap between these methods [Wilson, 1999a] and pro-
vide answers to questions that are beyond the reach of current direct investigative
methods.

A number of computational models of primate visual attention have appeared
over the past two decades (see [Rothenstein and Tsotsos, 2008a] for a review).
While all models share several fundamental assumptions, each is based on a
unique hypothesis and method. Each seems to provide a satisfactory explanation
for several experimental observations. However, a detailed comparative analysis
of the existing models, that is, a comparison with each of the models subjected
to the same input data set in order to both verify the published performance and
to push the models to their limits, has never been undertaken. Such an analysis
would be invaluable: comparative, computational testing procedures would be
established for the first time, successful modelling ideas would be confirmed,

259

weaknesses identified, and new directions for development discovered. The goal
would be to validate the models by testing them against existing knowledge of the
primate attentional system; the experimental stimuli and task definitions which
led to that knowledge would form the basis for the development of the test data
sets.

In order to facilitate this analysis and to provide the research community with
a common software platform, we have developed a general purpose, extensible,
neural network simulator geared towards the computational modelling of visual
attention. The simulator allows for the distributed execution of models in a het-
erogeneous environment. Its associated tools allow non-programmers to develop
and test computational models, and a common model description format facil-
itates the exchange of models between research groups. The simulation results
can be presented in a variety of formats, from activation maps to the equivalent
of single-unit recordings and fMRI.

This paper starts with a discussion of the design of the simulator, from the per-
spective of the requirements imposed by existing computational models of visual
attention. This is followed by a review of some of the hardware and performance
issues that were taken into account. The paper continues with a description of the
simulator user interface and the modelling tools that accompany it and concludes
with a discussion of the system and the current state of the project, including
preliminary results, items considered for future development, and a comparison
with other neural network simulators.

B.2 Simulator requirements and design

The wide variety of computational models of visual attention creates unique chal-
lenges for a unified framework. For example, computer science inspired models
use simple, generic McCulloch-Pitts [McCulloch and Pitts, 1943] type neurons
(e.g. [Tsotsos et al., 1995, Ttti et al., 1998]), sometimes in combination with spe-
cialized neurons (e.g. gating neurons in [Tsotsos et al., 1995]), in large-scale sim-
ulations; others use neurons modeled by realistic differential equations in min-
imalist, “proof of concept” networks (e.g. [Reynolds et al., 1999]) or large-scale
systems with spike density functions (e.g. [Rolls and Deco, 2002]) or spiking (e.g.
[Lee et al., 2003]).

Object-oriented techniques have been applied to the specification of the var-
ious categories of neurons in the system in a very flexible and easily extendable
framework. Currently, the system provides simple McCulloch-Pitts type neurons

260

and two categories modeled by differential equations: Wilson-Cowan for spike
density functions and Hodgkin-Huxley for spiking neurons [Wilson, 1999b]. New
types of neurons can be added by simply subclassing the existing, high-level mod-
els and specializing the behaviour as desired. In particular, new kinds of neurons
modeled by differential equations can be added by creating a class that describes
their equations.

All large-scale computational models of visual attention share the notion of
a field of neurons with identical properties and connectivity. For the rest of the
paper we will refer to these fields as “feature planes.” Thus, a model consists
of a number of feature planes, interconnected by filters that define the recep-
tive field properties of the neurons in the plane. This division of the models
into feature planes and filters allows for very efficient implementation of the core
of the simulator as a convolution engine. Different models and levels of simu-
lation require distinct methods of communication and synchronization between
feature planes. Three such methods have been implemented: lock step, asyn-
chronous and synchronous. The lock step method corresponds to traditional
neural network behaviour, where the various components perform computational
steps according to an external clock determined by the slowest component. The
asynchronous method allows each computation to be performed at its own pace,
without any coordination except, of course, for the locking needed to ensure that
data transferred between feature planes is in a consistent state. This method
is the closest we can come to a biological, decentralized system, and it is the
most appropriate for the more realistic simulations that use neurons defined by
differential equations. If there are significant speed differences between feature
planes, this method means that the fastest one will perform several steps on the
same data. To handle this scenario, we have introduced the synchronous com-
munication method, which is identical to the previous one, except for the fact
that feature planes notify their dependents when new results are available and
the dependents will not perform computations unless notified.

Selective Tuning is implemented in a seamless way, by simply specifying an
attribute in the feature plane definition. Simple attentional tasks can be defined
by specifying the relative weighting with which the different feature planes par-
ticipate in the WTA competition. It is important to note that while previous
implementations of ST were tightly integrated into specialized networks, this is
the first generic implementation, that can be applied to any model network by
simply specifying which feature planes should participate and with what thresh-
olds.

For the purposes of this dissertation, the simulator was enhanced to perform

261

supervised learning. Learning occurs on Datasets, which contain lists of input im-
ages and the corresponding desired network output. When the learning algorithm
is stopped after reaching the desired output error threshold, the network struc-
ture is saved for later use. In testing mode, the network structure is loaded from
the saved file, and the system functions normally, with all the regular features.

Due to the wide variety of computing platforms available, portability was a
major concern in the design and implementation of the simulator. While porta-
bility alone would seem to suggest Java as the programming language of choice,
performance considerations make it impractical. The code is written in ANSI
C++, and the only external requirement is the highly portable Qt package from
Trolltech. The simulator was developed and tested on Mac OS X, Windows,
Linux and Solaris, and in a heterogeneous cluster composed of computers run-
ning various versions of these operating systems.

Given the stated goal of creating a system to be used by many research groups,
it was natural to adopt an open source development process. The whole project is
available on the Internet (http://www.tarzalNN.org), and researchers can partic-
ipate in the development process either directly, by submitting code through CVS,
which is used for source control (http://www.cvshome.org/), or by requesting
features and reporting bugs through Bugzilla (http://www.bugzilla.org/) and
its web interface. Documentation, also available on the project web site, is gen-
erated automatically using doxygen (http://www.doxygen.org/).

B.3 Performance considerations

Performance is key to the success of any simulator, and in this case performance
has two aspects. First and most obvious, model execution has to be as close as
possible to real time, especially in the computationally very expensive case of
differential equation models. A second, and by no means less important consid-
eration is the speed and ease with which models can be developed and modified
(see Section B.4).

The structuring of the models in feature planes connected through filters made
convolutions the main computation in the system, and this allowed us to apply
classical techniques from image processing to speed up the calculations. Here we
will mention only two of these techniques. Filters are analyzed using linear alge-
bra and, if possible, separated using singular value decomposition (SVD), which
transforms the two dimensional convolution into a sequence of two one dimen-
sional convolutions. In cases where decomposition is not possible, the designer

262

has the option of defining the filter as a linear composition of simpler filters that
are applied in parallel, increasing the chances that the simpler filters are candi-
dates for the SVD algorithm. An example of this is the difference-of-Gaussians
filter, which is not decomposable, but is a linear combination of decomposable
filters. The system also exploits the vector arithmetic units built into PowerPC
chips.

All complex object-oriented software systems have to address the performance
problems related to the use of virtual functions and the fact that they impose
late binding (i.e. the code to be executed has to be determined at run time).
Due to the fact that we require particular flexibility in the combination of neuron
types and synchronization strategies, this issue has been addressed early in the
design of our simulator. To alleviate this problem, policy-based design relying on
C++ templates [Alexandrescu, 2001] was used extensively, allowing us to assem-
ble complex behaviour in the feature plane classes out of many simple, specialized
classes without the overhead of the classical object oriented approach.

One important observation is that any visual attention model comprises of
a number of clusters of high connectivity with relatively sparse connectivity be-
tween clusters. Generally, the clusters correspond to the visual areas in the
primate brain with dense local interconnections in the form of inhibitory pools,
winner-take-all and center-surround circuits. This structure makes it possible to
distribute the computation across a group of computers. Feature planes are rep-
resented on remote machines by proxy objects that handle the communication in
its entirety, making the whole process completely transparent.

B.4 Tooling and interfaces

Two of the key requirements for the simulator are accessibility to non-
programmers and support for collaborative research, by allowing easy exchange
of models between groups. To facilitate this, models are described by using a
common description format based on the XML language. A tool is being de-
veloped to graphically describe the models, allowing researchers who are not
familiar with programming to use the system. XML files are automatically gen-
erated. The graphical designer has a look and feel that is very similar to that
of existing tools for drawing diagrams, with typical drag-and-drop toolbars for
the definition of feature planes and their interconnections. Double-clicking on
the feature planes opens the properties dialog, where users can specify their size,
type of neurons they contain and their parameters, and other characteristics.

263

Similarly, in the link properties dialog users can determine the size, type, and
parameters of filters. The simulator user interface presents the results of the com-
putations in three formats. The default view presents each feature plane as an
image, with shades of gray corresponding to local activations. The main window
of the application is presented in Fig. B.1, with the input image and a number
of activation maps being displayed. The time-course view presents the temporal
evolution of the output of individual neurons within a feature plane. Depend-
ing on the nature of the model neuron, these can correspond to spike density
functions or action potentials (for Wilson-Cowan or Hodgkin-Huxley neurons, re-
spectively [Wilson, 1999b]). In Fig. B.2, we present two spike density functions,
corresponding to two neurons in a competitive network. The neuron represented
in red corresponds to the winning neuron, with a characteristic response profile,
while the green trace corresponds to a neuron that is inhibited by the proximity
of the winner. Finally, the fMRI view presents a comparison between the current
state of one or more feature planes and a snapshot taken during a different run.
This comparison can be performed off-line, between two saved snapshots of activ-
ity, or in real time, between a saved snapshot and the currently executing network.
The fMRI view integrating activations across all feature planes corresponding to
a brain area should closely match observations made in human subjects. Fig.
B.3 presents the static comparison between two activations (left hand side of the
image), corresponding to the response of model non-Fourier (second order) V4
concentric units [Wilson, 1999a] to a Glass pattern [Glass, 1969] vs. a random dot
pattern, with the characteristic colour scheme. A threshold slider is available at
the bottom of the window, this can be used to eliminate statistically insignificant
image components. Note that the feature planes communicate with the various
views through an observer/notification scheme, so it is very easy to add custom
views if a specific application needs them. For an example of a large-scale system
that was implemented in TarzaNN, see [Zaharescu et al., 2005]. The simulator
accepts input images in a wide variety of file formats, or directly from a camera,
and includes mechanisms to control the motion of the camera, if applicable.

B.5 Discussion and conclusions

A number of computational models of primate visual attention have appeared
over the past two decades, but due to the different initial assumptions and re-
quirements, each modelling effort has started from scratch, and the designs reflect
these requirements and the particular software and hardware present in that par-

264

ticular lab.

In this paper we presented the design principles behind a general purpose
neural network simulator specifically aimed at computational modelling of visual
attention and we discussed hardware and performance issues and how they influ-
enced design and implementation. We also presented the user interface, with the
many ways in which simulation results can be presented to the user. The tools
that make the simulator accessible to non-programmers and allow for collabora-
tive research, by facilitating the exchange of models between groups, were also
introduced.

The flexibility of the simulator and the XML-based model description have
allowed us to very quickly obtain implementations of the three major compu-
tational models of visual attention ([Rolls and Deco, 2002, Tsotsos et al., 1995,
Itti et al., 1998]). Fig. B.4 (details extracted from Fig. B.1) corresponds to part
of Fig. 3 in [Itti et al., 1998]. Fig. B.4-left represents the input image, while Fig.
B.4- right is the activation of the saliency map feature plane. The largest of these
models is a subset of the Selective Tuning Model for motion [Tsotsos et al., 2005],
which consists of 210 feature planes organized in 4 areas (the full model will in-
clude 620 feature planes for the feedforward network, plus at least that number
for the winner-take all circuits). Note that the applicability of the simulator is
not limited to modelling visual attention, see for example Fig. B.5, where we
have reproduced the ability of model non-Fourier (second order) V4 concentric
units proposed in [Wilson, 1999a] to detect Glass patterns [Glass, 1969]. In terms
of performance, at the current level of optimization, on a dual processor 2.0Ghz
PowerMac G5, compiled using gec version 3.3, a sub-network composed of 3 fea-
ture planes of Wilson-Cowan neurons described by three differential equations
each, connected through 5 filters, performs one step in 40ms - two 128 by 128
and one 20 by 20 feature planes, or 33,168 neurons, which means roughly 800,000
neuron updates per second.

TarzaNN distinguishes itself from the other neural network simulators
available by uniquely bringing together a series of characteristics. Porta-
bility is extremely important for collaborative research, and many simula-
tors are limited to either Windows or one or more Unix platforms — e.g.
SNNS (http://www-ra.informatik.uni-tuebingen.de/SNNS), Genesis (http:
//www.genesis-sim.org/GENESIS), iNVT (http://ilab.usc.edu/toolkit/),
etc. Also, many simulators have built-in limitations that make them in-
appropriate for the simulation of some visual attention models, by lim-
iting neuron types (e.g. Amygdala (http://amygdala.sourceforge.net/),
PDP++ (http://www.cnbc.cmu.edu/Resources/PDP++) — or network config-

265

urations — e.g. INVT (http://ilab.usc.edu/toolkit/), NeuralWorks (http:
//www.neuralware.com/). General-purpose neural network simulators — e.g.
Neural Network Toolbox for Matlab (http://www.mathworks.com/products/
neuralnet/) require programming skills for anything but the most common ar-
chitectures, and performance is limited by the lack of facilities for distributed
computations. Usually there is a trade-off between flexibility and the ability to
design large-scale networks.

The main original contributions of the work presented in this paper are the
novel object oriented framework for defining neuron properties, the configurable
methods of communication and synchronization between layers and the standard-
based method of describing networks. The neuron framework allows users to de-
fine model neurons at any level of complexity desired, and even test the behaviour
of the same network with different models. The synchronization and communi-
cation infrastructure makes it possible to simulate both traditional computer
science neural networks and biologically plausible models. The XML based net-
work description is an important contribution in at least two ways: it allows
for easy interchange of models between researchers and it makes the automatic
generation of regular structures possible without a need for programming skills.

266

Figure B.1: The TarzaNN main window, presenting activation maps for the fea-
ture planes used in simulating the results presented by Itti et al. [Itti et al., 1998].
In their model, feature map activity is combined at each location, giving rise to a
topographic saliency map. A winner-take-all network detects the most salient lo-
cation. The top-left corner is the input image and the bottom-right the saliency
map. The other sub-windows represent (left to right, top to bottom) activa-
tion maps for center-surround feature planes for: the image luminance, the red,
the green and the blue colour channels, vertical, 45 degrees left, horizontal, and
45 degrees right orientations. The saliency map is a linear combination of the
center-surround feature maps.

267

Figure B.2: Spike density functions for two Wilson-Cowan neurons
[Wilson, 1999b] involved in a competitive interaction (mutual inhibition through
an interneuron, not represented here). The red trace corresponds to the winning
neuron, and shows the characteristic response of a neuron, with the high stimulus
onset response, followed by the longer adaptation period. The green trace shows
the response of a neuron that was inhibited as a result of the competition.

268

Figure B.3: Static functional MRI view corresponding to the difference between
the two activation maps on the left. The bottom activation map is the response
of non-Fourier V4 concentric units [Wilson, 1999a] to a Glass pattern (see Figure
B.5), while the top is the response of the same feature map to a random dot
pattern. The central red area in the fMRI view represents the higher activation
corresponding to the detected concentric pattern, while the other red and blue
areas represent stronger responses to the Glass pattern and the random pattern,
respectively. These weaker secondary areas can be eliminated by adjusting the
threshold at the bottom of the figure.

269

Figure B.4: Left — input image, Right — saliency map. This model reproduces
the results presented by Itti et al. (Figure 3 in [Itti et al., 1998]). The model
identifies the phone pole as the most salient area of the image, followed by the
traffic sign.

270

Figure B.5: Left — input Glass pattern, Right — activation map of V4 concentric
unit feature plane. This network implements the non-Fourier (second order)
processing presented by Wilson (Figure 6 in [Wilson, 1999a]). As can be observed
in the activation map, the highest activation corresponds to the V4 concentric
units corresponding to the center of the illusory circles. See also Figure 2, for a
comparison between the network’s response to the Glass pattern vs. a random
dot pattern.

271

