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Abstract

As epitomized in DARPA’s ’Augmented Cognition’ pro-
gram, next generation avionics suites are envisioned as
sensing, inferring, responding to and ultimately enhancing
the cognitive state and capabilities of the pilot. Inferring
such complex behavioural states from imagery of the face is
a challenging task and multimodal approaches have been
favoured for robustness. We have developed and evalu-
ated the feasibility of a system for estimation of cognitive
workload levels based on analysis of facial skin tempera-
ture. The system is based on thermal infrared imaging of
the face, head pose estimation, measurement of the temper-
ature variation across regions of the face and an artificial
neural network classifier. The technique was evaluated in a
controlled laboratory experiment using subjective measures
of workload across tasks as a standard. The system was ca-
pable of accurately classifying mental workload into high,
medium and low workload levels 81% of the time. The suit-
ability of facial thermography for integration into a multi-
modal augmented cognition sensor suite is discussed.

1. Introduction

The task of operating a vehicle is difficult. This can be
seen from the fact that between 1989 and 2007 there were
46 fatal aircraft accidents [2] resulting in over 1700 deaths.
Even when disregarding the years in which accidents were
caused by illegal acts (1994 and 2001) there were over 900
deaths. This means there is a death approximately every
31,000 departures, and with an estimated 840,000 domes-
tic departures in a typical month (May 2005) in the United
States alone [7] it would be a great relief if even a portion
of these accidents could be prevented.

The situation is even worse for operating an automobile
where from 1994 to 2008 there were approximately 560,000
fatal road accidents [6]. Ranney has determined that in
10.5% of car accidents the driver was distracted [12].

If a method was available to detect potentially dangerous
mental states such as distraction, then it is conceivable that
methods for minimizing or preventing these mental states
could result in fewer deaths and collateral damage. Assess-
ment of cognitive workload can also be used to tune and
monitor tasks with the goal of improved productivity and
awareness [11], particularly for jobs that require high at-
tention but are not cognitively stimulating such as security
monitoring.

The current system is intended for integration into an
advanced multi-modal avionics suite for cognitive work-
load assessment and mitigation at the Operator Performance
Laboratory at the University of Iowa. The system integrates
an advanced AugCog suite of sensors and software into a
small aircraft. This augmented aircraft serves as a testbed
for assessing the utility of intelligent autonomous systems
to increase efficiency, inter-operability and safety of human-
in-the-loop control in a realistic flight environment [13].
Currently the system integrates a number of sensors includ-
ing gaze tracking, EEG nets, pulse oximeters and thermal
cameras. The present paper describes our efforts to assess
the suitability of using thermal imaging to classify mental
workload as a component of the augmented cognition sen-
sor suite.

In past research, thermal imaging has been linked to spe-
cific emotional states such as stress [11] or deception [10, 8]
but never to a spectrum of mental workload levels ranging
from low to high. Finally, with inputs from many varying
sources it is desired that these sources can be merged to-
gether to improve accuracy. We looked at the use of artifi-
cial neural networks (ANN) to classify each thermal image
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into either a low, medium, or high level of workload. The
ultimate goal is to prevent extremely low workload levels
(which could lead to boredom and inattention) or extremely
high workload levels (which could lead to decreased perfor-
mance or the operator being overwhelmed).

The logic for use of facial thermography is based on
the known relationships between cardiovascular physiol-
ogy and mental states. Cardiovascular measures have been
shown to reliably differentiate between emotional states
[14]. Since the temperature of the face is directly related to
the conduction of heat from the blood to the surface of the
skin we believe that thermal temperature will significantly
correlate with these mental states.

2. Background Information

One problem with the augmented cognition concept is
that all sensor-based techniques to infer cognitive states are
limited; there is no silver bullet solution. Limitations in-
clude practical issues such as attachment of sensors, visibil-
ity, noise, interference and artefact. Most measures are also
indirect, measuring correlates of the cognitive state rather
than being specific to the psychological parameter of inter-
est. Like other techniques, detection of mental workload
through the use of thermal imaging has pros and cons.

A primary advantage of thermal imaging is the non in-
vasive, contact-free sensing. By removing contact with par-
ticipants, a greater level of comfort can be achieved. Also it
is simply not efficient to have people to be connected with
wires to monitoring devices in many applications. Loss of
direct sensor contact also forms a problematic mode of fail-
ure for many techniques such as EEG.

Objective workload measures rely on phenomena that
are not under the voluntary control of the user. Since the fa-
cial temperature of a person is directly related to the blood
flow rate within the tissue of the face [8] and the blood flow
(part of the cardiovasular system) is controlled by the auto-
nomic nervous system [3], it can be classified as an objec-
tive measure in the same manner as an EEG signal. This
control is exercised at a local level to direct blood flow to
tissues and organs so that cognitive state is reflected in lo-
cal flow patterns as well as in whole-body parameters such
as heart rate. This can lead to more reliable readings than
subjective measures.

Finally, with the development of uncooled thermal cam-
eras, a facial thermography system can be implemented
with cameras that are not much bigger than a standard web
camera for a personal computer.

The disadvantages of thermal imaging include artifacts
from environmental effects and metabolic effects of diges-
tion [8], occlusion of ROI by eye glasses or hair bangs [8],
and the current high cost of small thermal cameras. We
also encountered a difficulty of tracking the ROI within the

thermal image due to the nature of intensities changing not
as a result of motion but as a result of changes in work-
load. To compensate for this we added a tracking system
which would ease deployment of any commercial applica-
tion. Such head tracking is currently built into the AugCog
sensor suite in the aircraft so this data is readily available in
the target system.

2.1. Thermal Imaging

Several different mental states have been correlated with
changes in facial temperature.

Pavlidis et al. explored how facial temperatures changed
depending on the activity being performed [9]. Using a
Raytheon ExplorIR thermal camera type, six participants
were imaged as they performed a battery of tasks includ-
ing resting in the dark, a 60dB startle stimulus (a sudden
loud sound intended to increase alertness, anxiety and fear),
chewing gum, and mild physical exertion. Each thermal im-
age collected was segmented into five ROI consisting of a
section around both eyes, the left and right cheeks, the nose,
chin, and neck.

Within 300 ms of the startle stimulus an increase in
thermal intensity was recorded around the eyes and the
carotid with an accompanying decrease in temperature of
the cheeks. Similarly when chewing gum a warming of the
chin area was seen. Finally, with mild exertion a slow cool-
ing of the nasal area was observed. These results let Pavlidis
et al. to conclude that unique facial thermal patterns can be
associated with different activities.

Puri et al. found that the thermal intensity of a rectangu-
lar region within the forehead was shown to correlated with
stress levels in 12 participants performing a Stroop colour
word conflict test [11].

Finally in 2006, two applications for the detection of ef-
fective learning rates and for the detection of concealed in-
formation using thermal imaging were described.

In the first, Kang et al. showed that nose temperature
of participants learning an unfamiliar arithmetic operation
increased as they became more familiar with the operation
[5]. This increase in nose temperature was correlated with
a decreasing response time, increasing response accuracy,
and a decreasing subjective rating of mental workload (as
measured using a Modified Cooper Harper scale). In to-
tal, nine participants learned to verify addition between the
numbers 1, 2, 3, and 4 with the numeric codes for the let-
ters C, D, and E over a set of seven blocks consisting of 96
questions.

In the second application, Pavlidis and Levine as well as
Pollina et al. looked at the use of thermal imaging to im-
prove detection rates of polygraph tests [8, 10]. By having
participants reenact a murder scenario and administering a
traditional polygraph test, both were able to show a connec-
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tion between knowledge of the crime and the facial temper-
ature.

Pavlidis and Levine were able to correctly classify 84%
of participants as either deceptive or non deceptive. This
was done by converting the thermal intensity of the perior-
bital region of skin around both the left and right eyes to a
blood flow rate using the algorithm described by Fujimasa
et al. [4]. This represents an improvement over traditional
polygraphs systems that only achieve a correct classification
rate of 78%.

Even more impressive is the 91.7% correct classification
over 24 participants achieved by Pollina et al. based on
analysis of two 10 by 10 pixel squares below the left and
right eyes.

While all of these studies show significant results, only
two of them demonstrate potential in a real-world applica-
tion, in this case polygraph testing. Although Kang et al.
demonstrated a link between nose temperature and learn-
ing levels, they did not attempt to estimate current level
of learning achieved given a nose temperature. In contrast,
we are interested in estimating workload levels. Thus, we
looked not only at the correlation of cognitive workload
with thermal intensity, but also at how that thermal inten-
sity could be used to classify an operators’ current mental
state.

3. Methods

In order to evaluate our system we had 12 participants (6
male and 6 female) take part in a cognitive stress test (CST)
consisting of three blocks. After the session each block was
given a post-hoc subjective rating of mental workload by
the participants on a scale of 1 to 7, 1 being extremely low,
and 7 being extremely high.

The three blocks of the CST were randomly ordered, to
compensate for any learning or order effects, resulting in
six different orders (each of which was tested with 2 partici-
pants). There was at least a four-minute rest period between
blocks in which the participants were able to rest and lower
their cognitive load to a resting state. During this period
subjects were allowed to remove the tracking headset and
move around freely.

The cognitive stress test was based on Berka et al. [1]
and consists of three workload levels. In their work Berka
et al. demonstrated the ability to categorize cognitive work-
load using a six-channel wireless EEG system called the B-
Alert system. Berka et al. varied cognitive workload over
blocks consisting of 250 trials in which a digit between 1
and 8 was presented at a rate of 1.6 digits per second. For
the present experiment, we used similar techniques to pro-
vide three levels of relative workload: low, medium and
high.

For our experiments, the first level of workload (low

workload) asked the participants had to press the mouse but-
ton when they saw the number 5. This simple recognition
paradigm was fairly trivial to perform.

For the second level of workload (moderate workload)
the participants had to press the mouse button only when
three even numbers were displayed consecutively. This in-
creased the cognitive load because the size of the set to be
recognized by the participant increased from just the num-
ber 5 to the numbers 2, 4, 6, and 8. Also, requiring the
participants to recall whether the last two digits were even
added a working memory component to the task.

The final level of workload (high workload) required the
participants to press the mouse button when they saw a digit
that was identical to the the digit displayed two trials earlier
(2-back). In this way we expanded the set of digits of in-
terest to be all eight digits as well as requiring the use of
working memory to store the specific value of the last 2 tri-
als rather than just an odd/even classification.

For our experiment each participant performed 600 trials
for each of the workload blocks in a random counterbal-
anced order. The probability for any given digit appearing
was identical with each digit presented 75 times per block.
The frequency of the target condition was equated across
the three tasks so that the target sequence occurred 75 times
for each of the thee workload blocks. Due to random sys-
tem delays on the recording computer not all stimuli were
presented for exactly 1.6 seconds. Only trials that were pre-
sented for less than 1.7 seconds were analyzed for perfor-
mance.

While performing the stress test blocks, each partici-
pant’s face was imaged using an Indigo A10 thermal camera
capturing frames at a rate of 15 frames/sec. Each frame of
the video was separated into ROI similar to four of the five
ROI defined by [9] as well as a forehead region similar to
[5, 8, 11]. We also distinguished between left and right sides
similar to [10] in the hopes that this could be used at a later
date to compensate for any possible environmental effects
such as a warming of a part of the face due to direct light.
Thus, the ROI were the forehead, nose, eyes (peri-orbital),
left cheek, right cheek and chin (Figure 1 and Figure2). The
neck region was not used due to an inconsistent ability to
view the region within the small field of view of the cam-
era (25◦ x 19◦). To facilitate separation of the ROI from
the background an InterSense 900 hybrid ultrasonic inertial
tracking system headset was worn by the participants. This
allowed a generic 3D head model (Figure 1) to be used to
track the movement of and separate each of the ROI. Unfor-
tunately the added tracker negated the non-invasive benefits
of using thermal imaging. In the target system this is not a
concern since the system was designed to allow for the easy
swapping of the InterSense 900 tracking system with the
SmartEye tracker (a non-contact infra red tracking system)
present in the AugCog suite of the flight platform.
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Figure 1. Head model used for all participants

Figure 2. Approximate ROI as seen on a ther-
mal image

Workload
Low Medium High

Figure 3. Mean reaction time across all sub-
jects versus condition. Error bars show 95%
Confidence Intervals

4. Results

To determine the relative workload entailed for each
block, the reaction time for each trial in which a correct re-
sponse was made was recorded and analyzed as a function
of block. Figure 3 depicts mean reaction time (in millisec-
onds) broken down by workload condition type. A one-way
repeated-measures ANOVA indicated a significant change
in reaction time as a function of workload level (F(2) =
25.659, p< 0.001). Post-hoc analysis (with Bonferroni cor-
rection) revealed that participants’ reaction times were sig-
nificantly higher in the high workload block (M = 765.21,
SD = 108.25) than in the low (M = 599.20, SD = 88.76) or
medium (M = 607.24, SD = 117.83) workload blocks (p <
0.001).

Figure 4 shows mean percentage of trials in which
a correct response was made within each condition. A
chi-squared test of independence indicated that the mean
percentage of correct responses varied as a function of
workload level (χ2(2) = 255.139, p < 0.001). Partic-
ipants made fewer correct responses in the high work-
load workload (M =54.75, SD = 9.94) than in either the
low (M=68.33,SD=2.87) or medium (M=68.58, SD =8.03)
workload conditions (p < 0.001). Correlation analysis con-
firmed the negative relationship between task difficulty and
percentage of correct responses (r(33) = -0.64, p < 0.001).

These results imply a definite increase in the difficulty
(and thus mental workload) from the low and medium con-
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Workload
Low Medium High

Figure 4. Mean percentage of correct identi-
fication versus condition. Error bars show
95% Confidence Intervals

ditions to the high condition. On the other hand perfor-
mance measures did not show a difference between low and
medium workload blocks. However, participants can work
harder to perform one task compared to another without
a degradation in performance if they have spare capacity.
Thus as performance measures can suffer from plateau ef-
fects caused by spare capacity, a subjective workload mea-
sure (using a 7-point Likert scale) was also obtained. The
mean subjective workload rating broken down by condi-
tion is presented in Figure 5. Again a one-way repeated-
measures ANOVA indicated participants’ subjective ratings
varied as a function of workload (F(2) = 76.374, p< 0.001).
Here we can clearly see that despite no significant differ-
ences in performance between the low and medium work-
loads, participants felt their mental workload was signifi-
cantly higher for medium workload than low workload.

The above results indicate that participants’ mental
workload differs across the conditions. However, are we
able to detect these changes in the patterns of facial temper-
ature? To determine if changes in facial temperature were
indicative of changes in mental workload, we took the aver-
age temperature for each of our seven ROI and fed them into
an SPSS PASW multilayer perception network [15]. The
input layer took in each of the seven ROI and rescaled the
values by subtracting the mean of each input and dividing
by the standard deviation. The hidden layer used an hyper-
bolic tangent function (see equation 2) where input values
where from the interval (-1, 1). The number of neurons in

Workload
Low Medium High

Figure 5. Mean subjective rating versus con-
dition. Error bars show 95% Confidence In-
tervals

the hidden layer was determined by PASW using an esti-
mation algorithm on a random sample of 50% of all video
frames collected for all participants resulting in the seven
hidden layer neurons (See Figure 6). 20% of the training
data used to estimate the optimal architecture was used to
prevent over training. Finally, the output layer used a soft-
max activation function (equation 2)

γ(c) = tanh(c)

=
ec − e−c

ec + e−c
(1)

γ(ck) =
exp(ck)

Σjexp(cj)
(2)

Using the remaining 50% of the data not used for train-
ing, the network achieved an 81% correct classification rate
(76.9%, 79.2%, and 86.8% correct classification for low,
medium, and high workload respectively; See Table 1 for
details).

A second network was trained using the same propor-
tions of data but from only a single randomly selected sub-
ject resulting in the architecture seen in Figure 7 and achiev-
ing an overall correct classification rate of 98.9% (97.6%,
99.8%, 99.3% respectively for each low, medium and high
workloads; See Table 2 for details).

As a final step in our analysis we attempted to interpret
the classifier in terms of the underlying physiology. Gen-
eral trends across the different workloads were looked at by
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Figure 6. Architecture for the ANN used to
classify workload

Figure 7. Architecture for the ANN used to
classify a single participants workload

Table 1. Confusion Matrix showing how often
the trained ANN (all data sets) mistook one
workload for a different workload

Actual
Workload Low Medium High

Predicted
Low 59937 9070 3700

Medium 9820 62486 7010
High 8231 7300 70343

Percent Correct 76.9% 79.2% 86.8%

Table 2. Confusion Matrix showing how often
the trained ANN (single participant data set)
mistook one workload for a different work-
load

Actual
Workload Low Medium High

Predicted
Low 6604 7 42

Medium 3 6688 5
High 159 5 6722

Percent Correct 97.6% 99.8% 99.3%

taking the average temperature across the entire face and
across the entire session (see Figure 8). In these diagrams,
each line corresponds to one of the 12 subjects and each
data point is the average infra-red intensity recorded across
the face for each of the three workloads. As several partici-
pants had a decreased thermal intensity from low workload
to medium workload, and others have an increased thermal
intensity, a consistent pattern was not observed. Similar re-
sults were seen when we looked at individual regions across
the entire session (see Figure 9 and Figure 10).

5. Discussion

It is apparent from our study that our cognitive stress
test did produce an appropriate change in mental work-
load across the experimental conditions. Furthermore these
changes in subjective and objective workload produced re-
liable facial thermography signatures that could be detected
by an uncooled thermal camera and analyzed with an ANN.

One interesting observation is that while the thermal sig-
natures appear to be differentiable they don’t appear to be
consistent across participants. With workload being a com-
plex psychological constant it is possible that each individ-
ual has a unique signature. It is also a possible explanation
for why the single person neural network only requires 4
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Workload
Low Medium High

Figure 8. The average raw intensities
recorded across each session (all ROI)
for each participant.

Figure 9. The average raw intensities
recorded across each session (nose) for
each participant. The nose temperature
has previously been shown to decrease as
learning levels increase.

Figure 10. The average raw intensities
recorded across each session (left eye) for
each participant. The eye temperature has
previously been shown to be in indicator of
stress levels [9] and deception [10]

hidden layer neurons instead of the 7 that are required for
all participants and achieved a superior level of classifica-
tion. This leads us to believe that for any commercial appli-
cation an ANN trained for each user would be required to
minimize failed classifications.

This system provides scientists with a framework for
posing research questions and basing future studies. This
base will allow for studies that test the generalization to real
work tasks. Part of this generalization to real work tasks
will be to look at what, if any, effects the environment has
on thermal imaging. It is trivial to imagine difficult scenar-
ios such as when a pilot is flying perpendicular to the sun so
that half of his or her face in being heated by solar radiation
and the other half is in shade. Also, the effects of biological
operations such as digestion can be investigated and would
allow for an improved level of detection in scenarios where
pilots are flying for extended periods and eating meals or
drinking coffee.

If the neural network classifier provides similar discrim-
ination power between workload levels in the cockpit then
flight operations could be safer and more reliable. This
technology could also be applied to other applications such
as automobile drivers, heavy equipment operators, and se-
curity guards. The detection of underload could be used to
help maintain vigilance.

Another area in which this system will be of benefit is
the study of mitigation strategies. If the automated work-
load analysis provided by the present system was merged
with the data collection processes then a complete real-time
workload estimation system could be implemented. With

237

Authorized licensed use limited to: York University. Downloaded on July 04,2010 at 18:56:48 UTC from IEEE Xplore.  Restrictions apply. 



such a tool mitigation studies would be able to get real-time
feedback enabling study of the effects of different mitiga-
tion strategies on mental workload.

Once a real-time system has been implemented and inte-
grated with the other physiological systems to make a multi-
modal and robust system and appropriate mitigation strate-
gies have been developed, air travel will become a safer
mode of transportation as well as a less stressful operation
for the pilot.

6. Conclusions

We have been able to demonstrate that facial thermogra-
phy can reliably quantify participants’ workload in various
cognitive tasks. Through the use of an artificial neural net-
work our system was able to correctly classify the majority
of thermal images into multiple levels of workload. This
provides the foundation for future work in multimodal aug-
mented cognition and demonstrates the potential of facial
thermography for the estimation of cognitive state.
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