

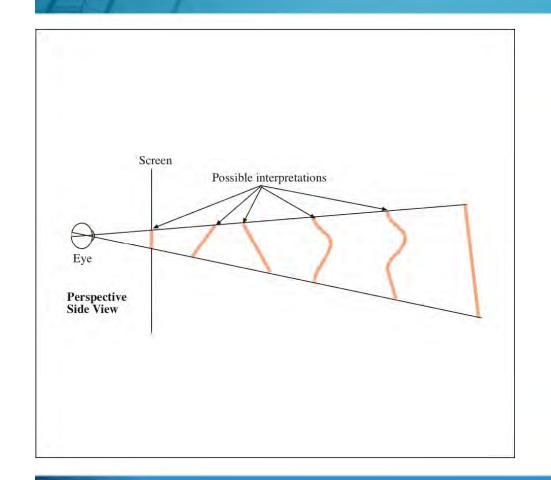
International Conference on Stereoscopic 3D for Media and Entertainment

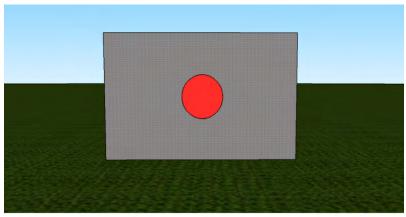
Next-Generation Science & Standards | Authoritative • Comprehensive • Global

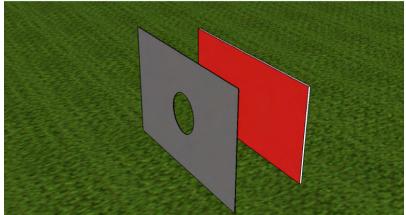
© 2011 SMPTE • 2nd Annual SMPTE International Conference on Stereoscopic 3D for Entertainment & Media • www.smpte.org

Depiction of Depth and Space in S3D

- Vivid sense of depth and solidity from binocular disparity
- Traditional 'pictorial' cues present and active
 - Shading, shadows, defocus blur, aerial perspective (haze, smoke), linear perspective, texture gradient, occlusion, motion
 - Not subsidiary or secondary cues


Raphael, School of Athens 1510




Essential Ambiguity of Vision

- Depth cues provide incomplete, imprecise, ambiguous, and even contradictory depth information
- Vision as inverse graphics (or photography)
 - Invert' the imaging process and recover the 3D world
 - Image is compatible with multiple possible realities
 - Including a 2D image on a painting, screen or television

Ambiguity in stereopsis

1. Correspondence problem

- 2. A given disparity can correspond to a range of possible depths
 - Vergence or vertical disparity is limited to close range and has limited accuracy

Interactions of Disparity and Other Cues

- Binocular and monocular vary in the depth judgments that they support and their reliability
 - Discriminating a difference in depth
 - Ordering objects in depth
 - Judging slant or curvature
 - Shape and relief
 - Judging speed or direction of motion in depth
 - Surface properties
 - Accurate measures of depth between objects

Cue Combination in S3D

- In S3D film and other content
 - Perceptions are complex and multifaceted.
 - Cue integration and combination needs to be considered on all these levels
 - Occur simultaneously and often seamlessly

How to Resolve these Ambiguities

- Not all possible interpretations are equally likely
 - Constraints: Structure and regularities of the world
 - Consistency among cues
- Choose the most likely 3D dimensional world
 - 'Unconscious inference' for Helmholtz
 - Probabilistic interpretation of sensory signals

Cue Integration

- Monocular cues vary in the degree that they support specific judgments
 - For example, occlusion is one of the least ambiguous depth cues tells you nothing of the amount of depth
 - How to combine with stereopsis for depth magnitude?
 - Two cues are not commensurate
- Cue combination must account for precision, reliability and range
- Tolerant of bias

Cue Conflict

- When two or more cues provide different and incompatible information
 - Within binocular cues (e.g., vergence, stereopsis)
 - Between stereopsis and other cues
- S3D media almost always produce cue conflict
 - Essential conflict due to technology; vergence and accommodation
 - Nature of the medium; e.g., choice of lens or display size
 - 'Natural' conflict; e.g. unusual lighting direction

Models of Cue Combination

- 1. Cue dominance or veto
- 2. Summation and averaging
- 3. Disambiguation
- 4. Calibration and adaptation
- 5. Dissociation

Models of Cue Combination

- Maximum likelihood estimators (MLE) and Bayesian estimators have proven successful
 - Likelihood of various scenes and perceptions
 - Reliability of cues (effects of distance, slant ...)
 - Dependencies among cues
 - Robustness when they disagree

$$\begin{split} D_{optimal} &= w_1 \cdot D_{cue1} + w_2 \cdot D_{cue2} \\ w_1 &= \frac{\frac{1}{\sigma_{cue1}^2}}{\frac{1}{\sigma_{cue1}^2} + \frac{1}{\sigma_{cue2}^2}} \quad \text{and} \quad w_2 &= \frac{\frac{1}{\sigma_{cue2}^2}}{\frac{1}{\sigma_{cue1}^2} + \frac{1}{\sigma_{cue2}^2}} \\ \frac{1}{\sigma_{optimal}^2} &= \frac{1}{\sigma_{cue1}^2} + \frac{1}{\sigma_{cue2}^2} \end{split}$$

Cue Conflict for Depth Sign

- Conflict in depth order (in front versus behind) often considered especially strong conflicts
- Depth sign errors in automated 2D-3D conversion
- Pseudostereo

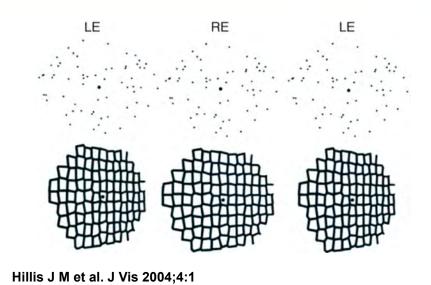
Cue Conflict for Depth Sign

Window violation

- Occlusion cues indicate the frame edge is in front of imagery that is stereoscopically in front
- Cue dominance as occlusion cue 'pins' the surface to the edge of the screen
- In other cases strange and uncomfortable cue dissociations can be perceived

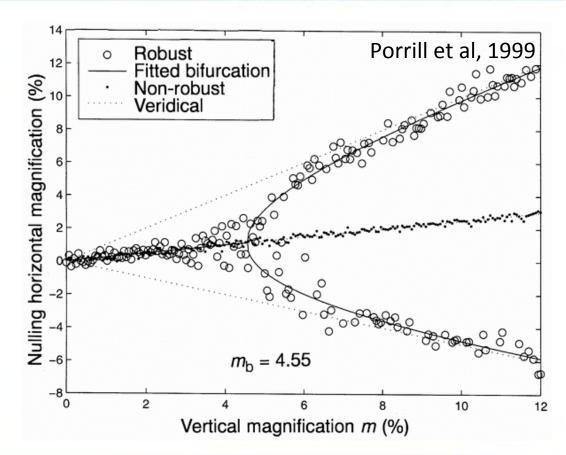
Cue Conflict for Depth Magnitude

- Cues such as perspective and shading act to modulate the depth from disparity
 - Differential effects of rig and projection parameters (such as focal length, IA, depth of field, screen distance, and screen size)
 - Impact other aspects besides depth such as apparent size



Cue Conflict for Slant

- The orientation of surfaces in depth, or slant, is important for shape and object recognition
- Slant is produced by perspective cues (e.g. texture gradients) and disparity
 - Relationship varies with
 - Focal length and magnification on the one hand and rig parameters such as IA on the other
 - Viewing geometry



Allison, R.S. et al, Vision Research, 2000

- Weight perspective and disparity to arrive an estimate of surface slant
- Both studies found robust behaviour
- Observers 'chose' perspective or disparity
 - Idiosyncratic
 - Not always optimal

Cue Conflict for Appearance

- Stereo is effective for transparency, surface perception and atmospherics
- Interaction of stereopsis with shading and lighting in an S3D context
 - Lighting for depth can enhance the sense of volume and space

Cue Conflict for Appearance

- Should specular highlights be avoided at all costs?
 - Binocular differences in intensity produce percepts of luster that supports the perception of surface gloss
 - Polarization sensitive beamsplitter in a mirror rig
 - Specularities are highly directional phenomenon. We might be more sensitive cue conflict here

Summary - Cue Trading

- Cue combination and conflict is essential and unavoidable in S3D
- Reduce disparity while 'turning up' the perspective, motion parallax or shading (Ware, Siegel, ...)?
- Possible, even mandatory if viewer has access to only the final perception
- But ...

Summary - Cue Trading

- On the other hand there are limits to the degree this can be accomplished and automated:
 - Robust estimation should discount biased cues (i.e. veto)
 - Weights adopted vary by viewer, even with good stereopsis
 - Weights vary with task, experience, scene, and location
- Thus cue trading is a complex scene-dependent and often idiosyncratic process

