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ABSTRACT

Application designers of collaborative distributed Virtual Environ-
ments must account for the influence of the network connection and
its detrimental effects on user performance. Based upon analysis
and classification of existing latency compensation techniques, this
paper introduces a novel approach to latency amelioration in the
form of a two-tier predictor-estimator framework. The technique
is variability-aware due to its proactive sender-side prediction of
a pose a variable time into the future. The prediction interval re-
quired is estimated based on current and past network delay char-
acteristics. This latency estimate is subsequently used by a Kalman
Filter-based predictor to replace the measurement event with a pre-
dicted pose that matches the event’s arrival time at the receiving
workstation. The compensation technique was evaluated in a sim-
ulation through an offline playback of real head motion data and
network delay traces collected under a variety of real network con-
ditions. The experimental results indicate that the variability-aware
approach significantly outperforms a state-of-the-art one, which as-
sumes a constant system delay.
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1 INTRODUCTION

Virtual Environments (VE) allow users to gain a sense of immer-
sion into a synthetic reality that is populated with manipulatable
objects and can be navigated, making it possible to experience a
modeled world from an egocentric perspective [21]. Distributed
Virtual Reality (VR) applications offer the ability for multiple peo-
ple to collaborate in a virtual environment, effectively providing a
shared synthetic reality. Normally, participants are geographically
separated and the whole system is therefore called a Distributed In-
teractive Virtual Environment (DIVE).

Despite substantial advances, the main limiting factors for
DIVEs are still the limitations of current network technology. The
interactive nature of DIVE applications necessitates maintaining a
spatio-temporally consistent state of the shared environment as well
as the objects and autonomous or human operated avatars that in-
habit it. Non-deterministic state changes must be communicated to
other DIVE nodes explicitly or implicitly via commands that bring
those changes about.

Ironically, the networks that enable DIVEs are also a source of
virtual environment state inconsistencies [10]. More specifically,
network propagation delay, defined as the amount of time it takes
for a packet dispatched by the sender to reach the receiver’s com-
puter at the application layer level, and even more so the non-
deterministic variability remain to this day the main problem of
real-time distributed applications.
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1.1 Motivation

End-to-end latency leads to a number of serious anomalies. It takes
a toll on human performance in cooperative tele-operation tasks, as
demonstrated by Park and Kenyon [20]. In their task, one of the
users controlled a virtual rod, while the other manipulated a virtual
ring. Their common goal was to transfer the ring from one end
of the rod to the other with the minimum number of object colli-
sions as quickly as possible. The authors concluded that partici-
pants adopt a move-and-wait strategy to synchronize their move-
ments, consequently increasing the total time required to complete
the task. This study, as well as other similar research [3] converge
on the conclusion that, in addition to increased time-to-completion,
task accuracy also suffers in setups with larger latencies.

Furthermore, latency can result in oscillopsia, which is the per-
ception that the visual world appears to swim about or oscillate in
space [2]. Such perceptual instability has been identified as a major
cause of what has become known as cybersickness [13]. Cybersick-
ness refers to “sensations of nausea, oculomotor disturbances, dis-
orientation, and other adverse effects associated with VE exposure”
[21]. Finally, latency has been shown to result in causal anomalies
in multi-operator DIVEs, such as multiplayer games, with “dead
man shooting” serving as the classic example [18].

While end-to-end delay has been clearly identified as a major im-
pairment to DIVEs, jitter has recently been acknowledged as hav-
ing an even greater impact [10, 20, 3]. Park and Kenyon [20] con-
clude that network latency jitter disarms compensatory prediction
techniques otherwise available for known constant delay systems.
From a human performance perspective, it becomes difficult, if not
impossible, to adapt to variable display lag. Such considerations
motivate variability-aware latency compensation techniques.

1.2 Our Latency Amelioration Approach

Figure 1 depicts what constitutes a single cycle of a client-server
type VE application without prediction. ts and tc represent the flow

Figure 1: client-server VE application cycle: no prediction
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of time, respectively, on the server and client platforms according
to a global world clock. Current pose transmission incurs network

transport delay td
k , where k is the discrete-time independent variable

and d stands for delay. The client receives what is believed to reflect

server-controlled entity’s pose at time tk + td
k , whereas, in fact, the

pose is “current” as of t = tk.
Our approach to network delay amelioration rests on the follow-

ing idea: why broadcast an entity’s current pose, if it is already des-
tined to arrive outdated? We leverage a sender’s knowledge about
its motion profile, event history, and a possible physical model of
its motion trajectory. This allows us to address VE state incon-
sistency by having VE entities exchange their predicted pose in-
stead of the currently measured one. This approach departs from
the wide-spread method of correcting for the VE state inconsisten-
cies due to network latency a posteriori. It conceptually modifies
the cycle illustrated above through the introduction of a pose and
network delay estimator framework, see fig. 2.

Figure 2: client-server VE application cycle: with prediction

With this modification, clients receive a pose calculated for

t = tk + ˆtd
k

at t = tk + td
k . Even with a modest performance of net-

work delay estimation, we expect that ˆtd
k
≈ td

k , in which case the
predicted pose will closely match the current pose of the server-
controlled entity, conditioned upon the pose estimator performance.
We accomplish this through the introduction of a variability-aware
framework, by coupling a user pose predictor with a network de-
lay estimator to determine the prediction interval required for the
former to estimate a future pose at the time of the event’s arrival.

Ultimately, our contribution is a two-tier adaptive predictor
framework (see fig. 3) which implements a proactive approach to
network latency amelioration that is sensitive to the variability in
network delays.

Figure 3: Two-layer latency amelioration framework

1.3 Server-side vs. Client-side Prediction

Alternatively, pose prediction can be carried out at the receiving end
- the most widespread approach we classify under reactive com-

pensation in section 2.1. This method would render latency estima-
tion unnecessary, since delay can be measured upon timestamped
packet arrival. The primary disadvantage, however, is the need for
tight clock synchronization among participating workstations, con-
ditioning the accuracy of delay measurement on that of synchro-
nization over a latency-impaired communication medium. Further-
more, client-side prediction requires smart clients, having access to
the motion model & sufficient computational capacity to use it.

Sender-side prediction addresses these shortcomings, providing
additional benefits. Security and privacy concerns are eliminated
where the knowledge of tracked object’s dynamic behavior is valu-
able intellectual property, and/or certain access privileges (such as
security clearance) are required. Clock synchronization becomes
unnecessary, as the round-trip time is measured when packet ac-
knowledgments are received. Furthermore, this approach presents
clients with a ready to use pose estimate, eliminating the need for
smart receivers and additional computational resources. Finally,
sender-side latency estimation reduces sensitivity to packet loss. In
contrast, client-side prediction may suffer from lack of continuous
and prompt pose measurements from remote workstations, whereas
senders can rely on access to the complete data stream regardless
of network reliability.

2 DELAY AMELIORATION CLASSIFICATION

Network delay has detrimental effects across a whole spectrum of
immersive synthetic reality applications. A range of techniques
have been promoted to address the problem including attempts to
minimize that latency and its variability to active compensation
techniques. The classification we introduce separates methods of
latency compensation into two major categories — reactive and
proactive delay amelioration. The former is characterized by pro-
viding algorithmic solutions to a problem once it has already taken
place, while the latter acts in anticipation of the expected delay to
be incurred in the network. Proactive methods can be further sub-
divided into jitter-insensitive and variability-aware.

2.1 Reactive Latency Compensation

Prototypical reactive approaches are based on the dead reckoning
(DR) algorithm popularized by the well-known IEEE Standard for
Distributed Interactive Simulation [11]. Dead reckoning attempts
to solve two problems simultaneously: reduce bandwidth consump-
tion and mitigate the effect of network delay. Client-side prediction
eliminates the need for a continuous stream of pose updates from
the server at the expense of the accuracy of the pose estimated. To
impose a cap on the pose misestimation, the same extrapolator is
run on the server side to ensure that the discrepancy between its
output and the real pose is under a specified threshold. When the
threshold is exceeded, the correct pose is dispatched to the client.
Dead reckoning is reactive in nature — in essence, it waits for the
problem to happen before correcting it. Subsequent smoothing at
the client side to blend its inaccurate pose estimate with the newly
arrived correct pose only intensifies its reactive nature.

Despite its disadvantages, approaches based on dead reckoning
continue to have a strong presence, e.g. [4, 19]. Network games
represent an important area of research and they are one of the
most wide-spread examples of Distributed Virtual Environments,
as many inhabitants share the same virtual world and interact with
each other on a regular basis. Delay compensation in these games
is typically a combination of DR and client-side interpolation [8].

2.2 Proactive Latency Compensation

In light of the disadvantages of reactive latency amelioration, pre-
dictive compensation comes across as “the only viable approach to
mitigating the consequences of delay” [14]. Predictive compensa-
tion is a proactive approach and can be further differentiated into
delay jitter insensitive and variability-aware methods. The former
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category is the state-of-the-art approach at the time of writing, as
proactive delay amelioration methods found in the literature as-
sume, explicitly or implicitly, a constant delay. This manifests itself
in ways ranging from experiment setups with simulated constant
delay to delay stability assumptions in extrapolation equations.

Wu & Ouhyoung’s [24] comparative evaluation of their Grey
System method was carried out by fixing the prediction interval
to constant values. Akatsuka and Bekey [1] evaluated their method
of head-tracking latency compensation assuming a static network
delay that depended on the complexity of the rendered scene. A
constant prediction interval is adopted, again, in another evaluation
of a proposed KF-based head-motion predictor [14, 15]. The conse-
quences of added high-frequency noise and overshoot as a result of
predictive compensation were evaluated, with a look-ahead predic-
tion interval of 50ms [14] and for constant latencies ranging from 0
to 100ms [15]. Finally, in the discussion of the suitability of client-
side prediction for games [19], Pantel and Wolf evaluated the per-
formance of seven different prediction schemes for simulated delay
values of 100 and 200 milliseconds. In doing so, they too adopted
the assumption of a constant delay.

Azuma departs from the constant delay assumption [5, 6]. His
closed-form expressions for pose predictors parameterize the in-
terval of look-ahead. The testbed implementing his work was not
distributed, however, running on the same local platform with tight
control on and the knowledge of various parts of the end-to-end
system delay. Furthermore, clock synchronization and timestamp
acquisition throughout various portions of the tracker-to-the-screen
pipeline enabled Azuma to deterministically compute the prediction
interval required [6]. The latter along with the distributed nature of
DIVEs clearly separates Azuma’s work from ours. Public switched
networks afford little, if any, control over the propagation delay,
with network latency undergoing significantly more variation com-
pared to local processing delays. Finally, the extent of variability
itself can easily change throughout a single experiment or a DIVE
session.

Azuma later introduced a theoretical framework for head mo-
tion predictor analysis, allowing researchers to perform compar-
isons across several predictive trackers w.r.t. specified system pa-
rameters, such as a prediction interval [7]. LaViola offers an entire
testbed for the empirical evaluation of predictor performance [17].
Both Azuma’s theoretical framework and LaViola’s testbed enforce
a choice of a specific value for the latency and are hence best suited
for the evaluation of systems with constant system latency.

A unifying theme in the literature on proactive compensation is
the continued influence of the constant delay assumption. The two-
tier compensation framework presented in this paper breaks away
from this premise and offers a simulation environment where mul-
tiple head motion datasets can be tested against multiple network
delay traces, each of which exhibits significant latency jitter.

3 POSE ESTIMATION

Pose estimation represents the top layer of the two-tier framework
introduced in section 1.2. The need for estimating the pose, defined
as a combination of a tracked object’s position in the motion space
and its orientation, is evident from the dynamic nature of DIVE
systems. The physical system consisting of the user’s tracked body
parts, the muscles setting them in motion, and the tracking device
producing measurements of their pose can be modeled as a system
with the input in the form of a white noise disturbance function and
a pose as its output. Figure 4 illustrates the model employed for the

Figure 4: Process model for positional component of the system

positional component of the pose.

3.1 Position

The Kalman Filter recursive framework has been widely used by the
VR community for both position and orientation state estimation.

For position, we used a per-component state vector ~X =

[

px

ṗx

]

,

where px denotes a positional component and ṗx its time derivative.
Due to the nature of human motion and tracking devices, our system
should be regarded as a continuous-time system sampled at discrete
points in time. The continuous process’ governing equation below,
therefore, was chosen to formulate its dynamic behavior:

Ẋ(t) = FX(t)+Gw(t)+Lu(t) (1)

X here represents the state vector discussed above, while Ẋ denotes
its time derivative. w(t) is the process noise input into the system,
which is assumed to be well-behaved, and u(t) generally signifies a
deterministic vector-forcing function. Due to the absence of a de-
terministic control input, u is set to zero in our case. The square
matrix F is of particular importance here and is known as the sys-
tem dynamics matrix. In general, the coefficients of eq. (1) vary
with time, but the time subscript has been dropped for notational
convenience. Upon discretization of the process model equation
above using the difference equation solution to eq. (1) [9]:

xk+1 = Φ(tk+1, tk)x(tk)+
∫ tk+1

tk

Φ(tk+1,τ)G(τ)w(τ)dτ (2)

we get the more familiar form of the governing equation:

xk+1 = Φkxk +wk

Coupling it with the measurement equation linearly relating the ob-
served state of the system to the measurement zk, we arrive at the
system of discrete-time linear equations that are the heart of the KF
recursive algorithm:

{

xk+1 = Φkxk +wk

zk = Hkxk + vk

A constant velocity model was chosen for the positional KF due
to our observation that, for adequately small time intervals, lin-
ear velocity undergoes insignificant change [23]. This assumption
readily leads to the computation of the system dynamics matrix

F =

[

0 1
0 0

]

and G =

[

0
1

]

. Fundamental matrix Φk is then

found by evaluating a Taylor series expansion of the matrix expo-
nential eF∆t [9, 25]:

Φk = eF∆t = I +F∆t +
(F∆t)2

2!
+ . . . = I +F∆t =

[

1 ∆t

0 1

]

(3)

H =
[

1 0
]

is even simpler to find, since measurement z is
formed to be a scalar value equaling the corresponding component
of a tracked object’s position.

With these building blocks in place we can pictorially summarize
the recursive KF algorithm in fig. 5, which requires the process
noise covariance matrix Qk to be either computed or analytically
derived. We can show that [23] that

Qk =
∫ ∆t

0
Φ(τ)QΦT (τ)dτ (4)

is mathematically equivalent to Qk calculated from its definition
(i.e. E[wkwT

k ]), but due to space restrictions present only the final
closed-form expression here:

Qk = W

[

(∆t)3

3

(∆t)2

2
(∆t)2

2
∆t

]
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Figure 5: Recursive KF prediction/correction cycle

where W is the power spectral density of the driving noise.
To summarize, the position is estimated by first projecting the

previous estimate of its state forward through the time update and,
then, correcting the obtained a priori estimate by incorporating the
measurement through the measurement update. The latter is per-
formed by computing the Kalman Gain Kk = P−

k
HT (HP−

k
HT +

R)−1 and using it as the weight for the measurement residual

(zk−Hx̂−
k
) in the measurement update equation:

x̂k = x̂−k +Kk(zk−Hx̂−k )

3.2 Orientation

The orientation component of the pose is represented by a quater-
nion q = qw + qxi + qyj + qzk. Together with angular velocity it

forms the state vector X = [qw qx qy qz w0 w1 w2]
T . A similar re-

cursive Kalman Filter approach is applied to the online estimation
of orientation. The difference, however, manifests itself through the
non-linear nature of the quaternion representation. Eq. (5)

q̇ =
1

2
q⊗w (5)

is typically used as the basis for the non-linear governing model
equation, see [16] for its derivation. The general form of non-linear
governing equation in the absence of deterministic control input is:

Ẋ = f (X , t)+w(t)

and should be regarded as a generalization of eq. (1). Vector-valued
f : R

7 7→ R
7 can be piecewise defined as follows [23]:
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The measurement equation Z = h(X)+v(t) is also non-linear, since

function h : R
7 7→ R

4 normalizes the quaternion part of the state:
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√
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The time update is performed by employing 4th order Runge-
Kutta (RK4) numerical integration for state projection [23], with
covariance projection performed similarly to the positional KF
case. The fundamental matrix Φk for the latter is derived from the
Taylor series approximation of exponential eF∆t ≈ I +F∆t, see eq.
(3). Linearization about the estimated trajectory of motion yields

Jacobian matrices F = δ f
δX

∣

∣

∣

X=X̂−k

and H = δh
δX

∣

∣

∣

X=X̂−k

as a result of

Taylor series expansion approximation. A closed form expression
for Φk can now be analytically derived

Φ =
∆t

2
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w0
2
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w2 −w1 qw −qz qy
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w0 qz qw −qx
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0 0
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0

0 0 0 0 0 0 2
∆t





















(6)

Plant equation matrix H surfaces in the measurement update
stage of the predictive-corrective KF cycle. The equations for the
measurement update are as follows:

Kk = P−k HT (HP−k HT +R)−1

X̂k = X̂−k +Kk(Zk−h(X̂−k ))

Pk = (I−KkH)P−k

(7)

Special attention must be paid to the proper calculation of the mea-
surement residual, since the predictive estimate of the measurement
h(X̂−

k
) does not equal to HX̂−

k
in the non-linear EKF case. Using

the latter makes the estimate of the measurement degenerate into
the zero vector, which results in errorneous filter updates, see [23]
for details. The closed-form expression for H follows from taking
the Jacobian of function h w.r.t. the a priori estimate of the state.
Letting L equal |q|2 = q2

w + q2
x + q2

y + q2
z , the resulting expression

for H is simplified to the following:

H =−
1

L3/2









q2
w−L qwqx qwqy qwqz 0 0 0

qwqx q2
x −L qxqy qxqz 0 0 0

qwqy qxqy q2
y −L qyqz 0 0 0

qwqz qxqz qyqz q2
z −L 0 0 0









(8)

Finally, Qk was also analytically derived, using eq. (4) and, sim-
ilarly to the derivation of Qk for positional KF, assuming that most
noise enters the system through the higher-order derivative terms.
The latter translates into constructing the continuous-time process
noise covariance matrix Q to equal

Q(t) =







04×4 04×3

03×4

W 0 0

0 W 0

0 0 W






= W

[

04×4 04×3

03×4 I3×3

]

and the resulting Qk = ∆t2

4 ·













∆t
3

(L−q2
w)

− ∆t
3

qwqx
∆t
3

(L−q2
x )

− ∆t
3

qwqy − ∆t
3

qyqx
∆t
3

(L−q2
y )

− ∆t
3

qwqz − ∆t
3

qzqx − ∆t
3

qzqy
∆t
3

(L−q2
z )

−qx qw qz −qy
4
∆t

−qy −qz qw qx 0 4
∆t

−qz qy −qx qw 0 0 4
∆t













This variance-covariance matrix must be symmetric by definition,
hence only the lower triangle part is presented here. To the best of
our knowledge, a closed form expression for the constant angular
velocity model process noise covariance matrix never appeared in
the literature before. This concludes our derivation and description
of all construction blocks for the EKF recursive step algorithm.
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Figure 6: Detailed simulation functionality

4 THE SIMULATOR

To evaluate our approach to network delay amelioration, we sim-
ulated a unidirectional type client-server DIVE. Fig. 6 provides a
functional overview of the simulator. It is composed of 3 principal
components: the network, pose, and statistical performance blocks.

4.1 Network delay estimator

Network delay estimator is the bottom layer of our latency amelio-

ration framework. It estimates network propagation delay (t̂d
k ), used

by the pose estimation & prediction block as Tpred . The estimator
was modeled after the TCP retransmission timeout — a time-tested
auto-regressive (AR) filtering approach introduced by Jacobson as
a means to calculate retransmission timeout (RTO) for TCP frag-
ments [22]. TCP RTO was designed for network delay estimation
of immediate utility during a single end-to-end connection — an at-
tractive feature for applications with short-term network delay pre-
diction requirements. The retransmission timeout delay estimation
algorithm can be summarized as follows:

delta = measuredRT T − srtt
srtt ← srtt +g×delta

rttvar ← rttvar +h(|delta|− rttvar)
RTO = srtt +4× rttvar

(9)

with weight factors g & h ranging between 0 and 1. This algorithm
measures the instantaneous estimation error delta and provides fil-
tered versions of the instantaneous network delay srtt and its vari-
ability rttvar. Eq. (9) can be rewritten as a low-pass AR filter:

srtti+1 = (1−g)× srtti +g× rttdeli
rttvari+1 = (1−h)× rttvari +h×|rttdeli− srtti|

providing smoothed estimates of round-trip time delay and its devi-
ation from the mean.

4.2 Pose module particulars

The pose module was implemented to play back real head pose data
from the motion repository described in [17]. Simulated measure-
ment data was derived from the ground truth by downsampling it &
perturbing the result with white noise according to in-house IS900
tracker specs. While positional data perturbation is straightforward,
orientation measurement sequence had to be obtained from quater-
nion sequence perturbation. Our approach to it rests on the geomet-
ric interpretation of quaternions [16]. Namely, quaternion perturba-
tion can be achieved by performing quaternion multiplication of the
ground truth sequence with noise quaternions generated. The effect
of the latter is perturbing the true rotation by a subsequent noise
rotation, carried out about a random axis with the angle normally

distributed about zero. Details of this approach are omitted due to
space constraints and can be found in [23].

Finally, pose prediction was performed using the respective

state projection equations. For position, Φpred =

[

1 Tpred

0 1

]

,

resulting in xp = Φpred x̂k. For orientation, we formed qk =
[

qw qx qy qz

]T
and wk = [0 w0 w1 w2]

T from X̂k. Then qp was ob-
tained using RK4 with ∆t = Tpred . The resulting quaternion under-
went explicit normalization.

5 RESULTS AND DISCUSSION

5.1 Experimental Setup

Six head motion datasets were chosen from LaViola’s repository
[17]. Each dataset features approximately 20 seconds of positional
and orientation data captured by an IS900 tracking system. The
head motion datasets fall into three major categories and reflect spe-
cific motion profiles, as summarized in table 5.1.

name motion profile

HEAD1 simple head movement where the user is roughly stationary and

rotates to view the display screens

HEAD2 more complex head movement where the user is allowed to both

walk and look around the CAVE

HEAD3 more complex head movement where the user is examining a

fixed virtual object to gain perspective about its structure

Table 1: Motion data summary

Two datasets were selected for each head motion profile and will
be referred to by the corresponding name from the table above, aug-
mented with an id ∈ {1,2} for unique identification. The simulation
was carried out using Matlab under Linux.

Network delay datasets were collected with two computers, a de-
partmental server for echoing incoming packets and another com-
puter behind a residential ISP with a maximum of 128KB/s band-
width. To generate significant latency and jitter, we saturated the
network link with 50% artificial traffic. We collected 10 network
traces with the following characteristics:

trace min avg max sdev % var

1 7382 48900 157891 40147 82.1

2 7215 48548 153349 40142 82.6

3 7318 48514 153590 40495 83.4

4 7275 47450 153464 39655 83.5

5 7318 47745 152637 40273 84.3

6 7303 46515 149634 39601 85.1

7 7405 47652 157251 39947 83.8

8 7266 46995 150121 39274 83.5

9 7225 46431 154447 39484 85.0

10 7214 46662 153613 39937 85.5

Table 2: network delay statistics - halfpipe nettrace (µs)

As the granularity of Linux timers is only 10ms (100Hz), we
used real-time clock chip interrupts to trigger packet generation at
180Hz, equivalent to the desired sampling frequency of a single-
station IS900 tracker [12]. Four different pose predictor conditions
were compared in our simulaton:

1. Const – network delay estimate was set to a constant value

2. Runavg – a running average of network RTT was used as an
estimate of current round trip latency

3. SRTT – smoothed RTT estimator, as described in section 4.1

4. Opti – an omnipotent network delay estimator given perfect
knowledge of packet latencies
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Opti was included to compare the overall performance of the
proactive algorithms with an ideal network delay estimator, which
provides the pose predictor with the correct prediction interval ev-
ery time. Hence, Opti serves as a benchmark we strive to reach
through potential improvements to network delay estimation. Con-
stant delay prediction was included for comparison with variability-
aware Runavg and SRTT. The value for the constant RTT delay was
set to the mean RTT delay for a given network trace.

5.2 Results

Results are presented as root mean square error (RMSE) to mea-
sure the extent of the overall framework’s accuracy in predicting
the pose at the time of events’ arrival at the receiving workstation.
For position, then, the component-wise difference is determined be-
tween the received pose data and interpolated ground truth, result-
ing in n×3 diffpose, where n is the number of data points. Global
position RMSE is calculated as follows:

pos rmse =

√

√

√

√

1

n

n

∑
j=1

3

∑
i=1

diffpose2( j, i)

Global orientation RMSE was computed based on the angular
error, which provides an intuitive measure of the discrepancy be-
tween the ground truth and received orientation in terms of the an-
gular separation between them. The difference quaternion is

qdiff = qreal ⊗q−1
pred

= qreal ⊗q∗pred

and we can compute the angular error Eα using the q0 component
of this difference quaternion, denoted as qdiff[0]:

Eα =
2 ·180

π
cos−1(qdiff[0])

The angular RMSE for the entire motion sequence can then be com-

puted as ang rmse =
√

∑n
j=1

E2
α ( j)
n . Finally, TImes BETter (TIBET)

statistic was used to measure the %-improvement obtained over
Const by other predictors on average.

5.2.1 Position

The smoothing performance of the positional Kalman Filter is fairly
consistent across all six head motion datasets and is nearly identi-
cal for all three components. Figure 7 presents an overlaid plot of

Figure 7: Position KF Estimate vs Measurement Data RMSE

KF estimator RMS error versus using the measurement data. Bars
of the same color but varying height represent RMSE information
for each of the six motion datasets on a per-component basis. It
can be seen that KF smoothing improves the estimate of the state in
all cases. Table 3 illustrates the relative performance improvement

pcmp head11 head12 head21 head22 head31 head32

x 1.4970 1.4949 1.4451 1.4087 1.4367 1.3706

y 1.5082 1.5145 1.4665 1.4546 1.4504 1.4099

z 1.5115 1.5012 1.4446 1.3394 1.4464 1.3852

Table 3: TIBET - KF estimator performance (position)

from Kalman Filter smoothing. A consistent improvement in the
neighborhood of 45% is observed. TIBET ratios are slightly higher
for HEAD1 than for motion profiles 2 & 3 though, a fact we at-
tribute to small range of translational head motion characteristic of
the first motion profile.

Our principal goal is to minimize the gap between the output
of the predictor and the ground truth. What follows is, therefore,
a look at the aggregate performance of the entire compensation
framework. Figure 8 shows the average framework performance

Figure 8: Global Position RMSE across all data

for the four prediction approaches in terms of global head position
RMS error across all motion datasets and network traces. The re-
sults reveal that both Runavg and SRTT based predictors visibly
outperform constant delay prediction, but do not get close to Opti.
The apparent consistency of RMSE information across all the net-
work traces, signified here by individual bars of the same color, is
noteworthy as well. This motivated us to present the TIBET statistic
for a randomly chosen network RTT dataset as a 2D table represen-
tation (table 4). Runavg offers 55.5% relative improvement over
Const, while SRTT is better by 75.7%.

dataset Const Runavg SRTT Opti

head11 1.0000 1.5918 1.7773 3.3637

head12 1.0000 1.5427 1.7260 3.2836

head21 1.0000 1.5431 1.7497 4.4087

head22 1.0000 1.5212 1.7213 3.8391

head31 1.0000 1.5510 1.7696 5.2136

head32 1.0000 1.5791 1.7999 4.5335

Table 4: TIBET - overall framework performance (position)

5.2.2 Orientation

Similarly to the positional results presented above, the Extended
Kalman Filter based smoother reduces the RMS error w.r.t. raw
measurements for each of the quaternion components across all of
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Figure 9: Orientation EKF Estimate vs Measurement Data RMSE

qcmp head11 head12 head21 head22 head31 head32

qw 1.7081 1.6396 1.6961 1.7138 1.8428 1.7355

qx 1.8967 1.8609 1.8177 1.9017 1.8616 1.7555

qy 1.7063 1.7034 1.7638 1.7025 1.8702 1.8207

qz 1.8882 1.9546 1.8611 1.9706 1.8748 1.9078

Table 5: TIBET - EKF estimator performance (orientation)

the head motion datasets (fig. 9). According to table 5, the EKF
estimator manages to follow the ground truth with approximately
81% less error than the measurement data on its own.

To evaluate the predictor performance, a measure of global ori-
entation error in the form of a rotation angle between predicted
and ground truth quaternion was chosen. Figure 10 visualizes the
performance of the EKF predictor on average in terms of overlaid
RMSE information across all motion datasets and network traces.
Table 6 demonstrates the relative performance gain for both Runavg

Figure 10: Angle RMSE across all data

and SRTT based EKF predictors over the constant delay prediction.
Specifically, Runavg offers 52% relative improvement over Const,
while SRTT is better by 67%. The performance improvement from
network latency tracking is the least for the third motion profile,
consistent with smaller variability in head orientation. Indeed, it’s
reasonable to hypothesize that the increase in the variability of un-
derlying data will exacerbate the severity of predictor overshoots
and undershoots in case of constant prediction time interval. In
support of this hypothesis, the ground truth quaternion sequences
were converted to the underlying axis-angle representation and the

dataset Const Runavg SRTT Opti

head11 1.0000 1.5565 1.7049 2.8486

head12 1.0000 1.5293 1.7064 3.2357

head21 1.0000 1.5079 1.6865 3.3344

head22 1.0000 1.5442 1.7402 3.5669

head31 1.0000 1.5050 1.5682 1.8488

head32 1.0000 1.5000 1.6360 2.4663

Table 6: TIBET - overall framework performance (orientation)

standard deviation in both is summarized in table 7. The correla-

dataset α◦ ux uy uz

head11 25.6876 0.2943 0.7488 0.0929

head12 25.7972 0.3357 0.8853 0.1670

head21 36.9928 0.3690 0.8785 0.2047

head22 34.1722 0.3175 0.8867 0.2144

head31 20.0750 0.1969 0.0699 0.1900

head32 13.9617 0.3630 0.2316 0.2970

Table 7: Axis-angle standard deviation

tion between the heightened variability in both the axis and angle
of rotation and the increase in relative performance improvement is
reflected in the smaller values for the third dataset.

5.3 Discussion

The above results demonstrate that variability-aware predictors sub-
stantially outperform constant delay based pose prediction. Further-
more, for orientation we pointed out a clear correlation between the
amount of variability in motion data and the overall performance of
the predictor-estimator framework relative to the Const predictor.
More generally, we’ve established that variability increase along
a spatial dimension correlates with relative performance improve-
ment for jitter-sensitive compensation techniques, see also [23]. Or-
thogonally, we can also show that relatively hightened variability
along the time dimension translates into the increase of SRTT’s
performance as compared to that of Runavg-based predictor! To

trace min avg max sdev % var

1 24876 225154 293980 39857 17.7

2 12790 225701 290841 43760 19.3

3 23076 227901 290391 41182 18.0

4 14569 224701 280530 39852 17.7

5 14239 226571 282307 42672 18.8

6 14730 220918 277460 41187 18.6

7 13246 218871 283756 44095 20.1

8 14100 223254 278400 38992 17.4

9 14266 221354 282119 42936 19.3

10 14577 220632 279065 38968 17.6

Table 8: network delay statistics - fullpipe nettrace (µs)

demonstrate this, a second set of network delay traces was collected
by saturating the connection to 100% with artificial traffic, resulting
in higher means, see table 8. Remarkably, the standard deviation of
the RTT delay was similar to the first experiment.

Performing the same simulation results in the RMSE data plotted
in fig. 11 and summarized in table 9. Clearly, the overall picture
has changed compared to fig. 10 and table 6. Specifically, we see
much less difference between Runavg and SRTT-based predictor
RMS errors.

Comparing data from table 2 and 8, we can say that in the
100% saturated environment there was an average 18% variabil-
ity, whereas in the 50% saturated environment there was about
83% variability, or about a factor of 4.5 more variability. Cor-
relating this with the performance of the two variability-sensitive
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Figure 11: Angle RMSE across all data - fullpipe

dataset Const Runavg SRTT Opti

head11 1.0000 2.9476 3.1719 3.1955

head12 1.0000 3.4262 3.5847 3.6435

head21 1.0000 3.0347 3.1418 3.1627

head22 1.0000 3.2896 3.2786 3.3148

head31 1.0000 2.0984 2.1514 2.1431

head32 1.0000 2.3523 2.4699 2.4739

Table 9: TIBET - overall framework performance (orientation)

algorithms (tables 6 and 9), we see that in the first case SRTT out-
performed runavg by only 4% on average, where as in the second
case, SRTT outperformed it clearly by 10%, or about a factor of 2.5
better. SRTT clearly performs better in environments with higher
variability. In the interest of space, only the angle RMS errors are
compared here, since the position errors follow the same trend.

6 CONCLUSION

A new variability-aware proactive latency compensation technique
was described and evaluated. No assumptions about the dynamics
of the network delay to be estimated are either made or enforced.
The two-tier predictive framework presented in this paper consists
of the pose predictor working in concert with the network delay
estimator to perform sender-side prediction of the events. This
work represents the only known technique to compensate for la-
tency by performing sender-side prediction a variable time into the
future. Evaluation was carried out through an offline playback of
real head motion data and network RTT delay traces. This simulator
is a conceptual improvement over LaViola’s predictive algorithm
testbed, where a user was confined to using a constant look-ahead
interval. Statistical evaluation of the variability-aware predictive
framework shows its substantial improvement over the predictor’s
assumption of constant latency. Furthermore, the relative perfor-
mance of variability-aware predictors was shown to increase with
increased variability in orientation motion data.
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