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Abstract: Stereoscopisurfacedetectiorof humanand
ideal observerswas assessedising a signal detection
paradigm. Signal displays were disparity defined
sinusoidal or square wave corrugations in depth
containingvariousamountsof additive disparity noise.
Distracter displays were created by scrambling pure
signal stimuli alongthe verticaldimension- destroying
surface representationwhile leaving the depth range
intact. Additive disparity noise was found to interfere
with stereoscopisurfacedetectionfor both humanand
ideal observers. Efficiencies found for stereoscopic
surfacedetectionweresimilar to thosefound previously
for detectionof asingle stepedgein depth (a suppsedly
easietask).

1 Introduction

Due to their two horizontally separated eyes and
overlappingvisual fields, humanssimultaneouslyreceive
two differentperspectiveviews of the samescene. The
term stereopsisrefersto the processedy which these
different 2-D views are combined and used to extract
information about the 3-D layout of the environment.
Randomdot stereogramgRDS) are a useful tool for
examining these processegJulesz, 1960). The 3-D
surfacesrepresentedby them are defined solely by

positionalshifts of correspondinglots in the two half-
images (referred to as binocular disparities). RDS
produce the following problems for stereopsis: (1)
Correspondinglotsin thetwo imagesmustbe matched;
(2) Thebinoculardisparity of eachmatched dot pair must
be accuratelyextracted;(3) Disparity information from

acrossthe visual field must be combined; (4) Depth,
surface slant, inclination and curvature must then be
calculatedbasedon this ‘disparity field. The human
visual system appearsto be able to perform these
processesinder a variety of difficult conditions. For
example,observerscan detect 3-D surface structurein

RDSwhich: (1) haveverylow or very high dot densities
(4-40%of the area- Tyler, 1974);(2) havelargenumbers
of unpairedor monocular dots (Julesz, 1960; 1971,
Christophers& Rogers, 1994; Cormack et al, 1991,
Cormacketal, 1994; Cormacket al, 1997; Palmisanoet

al, 2000; Wilcox & Hess,1996);and(3) havesubstantial
amplitudes of additive Gaussiandistributed disparity
noise(Harris& Parker,1992;1994a;1994b; Lankheet&
Lennie,1996; Palmisancetal, 1999a;1999b).

In a seriesof studies,Harris and Parker(1992; 1994a;
1994b) examined the statistical efficiency of these
stereoscopiprocesses.RDS stimuli alwaysrepresented
avertically orientedstepedgein depth— producedby an
appropriatedisparity shift — with various amounts of
Gaussiardistributed additive disparity noise. The task
for humanand ideal observersvasto determinewhich
side of the stimulus “stood furtherout towardsthem in
depth”. Unlike humanobserversthe ideal observemwas
ableto useall of the availablestimulus information to
performthis task. A comparisornof the performanceof
these two types of observeryielded the efficiency
measuréRose,1942; 1948). In their first study, Harris
andParker(1992)examinedietectionof a stepchangen
disparity (of 23”- 120”) in the presenceof additive
disparity noise (o = 2’ - 4’) asthe numberof dots was
increased. They found efficiencies fell dramatically
(downfrom ~30%to ~2%) asthe numberof dots in the
RDSincreasedrom 4 to 350. Unlike the ideal observer
who usedall of the dots, the effective numbersof dots
usedby humanobserverson either side of the depth
discontinuity neverexceeded (as many as 170 dots
wereavailablein some conditions). Harris and Parker
arguedthat this poor performancecould be attributed to
either difficulties in dot matching (Stage 1 of
stereoscopiprocessingdr to inefficienciesin combiring
disparitysampleqStages3 and4).

A subsequentstudy by Harris and Parker (1994a)
attemptedo separatehesetwo sourcef efficiency loss.
In their first experimentthey manipulatedthe amplitude
of the additivedisparity noise(ratherthan densty, which
washeld constaniat 240 dots). Theyalsovariedthe step
changein disparity (0.7'-2.1"), to keep the human
observers’d’ values as close as possible to 1 (to
minimize sampling errors). They found that efficiencies
in detectinga stepedgein depthdeclined(from ~10%to
~0.1%)asthe standardleviationof the additive disparity
noiseincreasedrom 1’ to 6'. Basedon the results of
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two followup experimentsywhich usedRDS stimuli that
minimized or eliminated the correspondenceproblem,
they concludedthat: (1) both dot matching difficulties
and inefficiency in combining disparity samplesled to
independentdeclines in efficiency; (2) of the two
components, difficulties in dot matching were
responsibldor the mostdramatidalls in efficiency.

Howeverjt mustbe notedthat this particularpatternof
results might have been due to the simplicity of the
stereoscopitask usedin the Harris and Parkerstudies.
It is possiblethat for more complicatedtasks, such as
stereoscopicsurface detectbn, disparity combination
difficulties would prove as disruptive as dot matching
difficulties. The current experimentsexamined this
possibility. Human and ideal observershad to decide
whetheror not the stimulus presentedwas a noisy
versionof a corrugatedsurface(a 3-D sinusoidor square
wave)or a distracter. Basedon humanandideal observer
performanceefficiencieswerecalculatedfor thesesurface
detectiontasks.

2 Human Observer Experiments

This experimenexaminedhe effect of additive disparity
noiseon humanobserver'sability to detectsurfaceswith

periodic corrugationsin depth. In principle, the
stereoscopidetectionof a step edgein depth could be
achievedwith information obtained from a relatively
small subsef dots— if theywerematchedcorrectlyand
their disparitieswereaccuratelyextracted. This task only
requiresthe observetto detecta significant differencein

disparitiesin thetwo regionsof the display. Difficulties

combiningdisparity samplesould potentially havelittle

effecton thistask, sincedisparity information from only
a few matcheddots would be required. However,the
stereoscopidetectionof a periodicsurface- suchasa 3-
D squarevaveor a 3-D sinusoid- is a potentially more
complex process. Not only is accuratedot matching
essentiato this task, accuratedisparity combinationand
calculationis alsorequired. As aresult,we expectedthat
additive disparity noisewould havea greaterimpact on
surfacedetectionthanit hadon detectionof a stepedge
in depth(Harris& Parker,1992;1994a).

HumanObserversThreeobservergagedbetweer?4 and
39 years)participated. SAP (the first author), XF and
MH (naive to the experimental hypotheses) had
participated in  many previous experiments on
stereoscopicsurface detection. All  had normal or
corrected-to-normavision and had been given several
hundredesttrials beforetheir datawascollected.

Stimuli & Procedure. RDS were generated on a
MacintoshG3 PowerPC andlaterpresentedn a 17 inch
Apple Vision monitor. A display splitter was usedto
presentRDS to observerswearing CrystalEyesliquid
crystalshutters. The splitter alternatedthe presentation
of the left and right eyes’ views on the screenin
synchronywith the shuttering of the glasses(60Hz),
which ran at half the video card refresh rate (120Hz).
RDS weretwo stereo-halfimages— each consistedof
4665 bright blue dots on a black backgroundand
subtende®°’ H x 9° V attheviewing distanceof 110cm.
Each“dot” subtendedan argle of 4 arcmiff and had a
luminanceof 0.15 cd/nf. RDS wereof two kinds. (1)
Signal Displays were stereoscopicallydefined 3-D
surfaceqhorizontally orientedsquarewave or sinusoidal
surfacesn depth)with one of threespatialfrequencies
0.22cpd0.44cpdypr 0.88cpd. Surfacephasewasvaried
randomlyfrom trial to trial. The patternof horizontal
disparities defining such a surface was produced by
shifting dotsin oppositehorizontaldirectionsin the left
andright half-imagegdisparity rangedfrom +2’ to —2").
Gaussiardistributed disparity noise was then addedto
thesedots (o of 0, 2’, 4’, 6" or 8'). (2) Noise Displays
were createdby scrambling signal stimuli along the
verticaldimension. This destroyedsurfacerepresentation
while preseving stereoscopidénformation about depth.
For eachsignal or noise display, observersindicated
whetheror not they saw the signal. The display was
presentedintil the observerpresseddne of two buttons
(“yes” and“no”), and then display turnedblack. This
was followed by a 2s intertrial interval - to reduce
afterimages and disparity aftereffects.  Observers
performedeight experimentatunsof 600 stimuli.

Resultsof Experiments:Yes” responsef the presence
or absenc®f a stereoscopicallgefinal 3-D surfacewere
convertednto hit rates(H) and false alarm rates(FA).

Thesethen were convertedinto z-scoresand used to

calculated’ - the measureof sensitivity usedin signal

detectiortheory:

de’ = z(H)- z(FA),
var(dk) = H(1-H)/Nu[@(H)]> + FA(1-FA)/Nea [@(FA)T,

where Ny = number of hits, Nea = number of false
alarms, o(H) = 2m*%exp[-0.5z(Hj], and @(FA) = 2m
Y2exp[-0.5z(FAJ]}.

Stereoscopisinusoiddetectiorwasremarkablyrobustin
the presencenf substantiaRMS amplitudesof disparity
noise (seeFigure 1). Sinusoid detection performance
was similar to that reportedby Lankheetand Lennie
(1996)- eventhoughstaticRDSwereusedin the current
experimentwhile dynamicRDS wereusedin the latter.



In both experiments disparity noise with RMS noise
amplitudes greaterthan 4’ tendedto reduce detection
performanceto chance(d.’ = 0). On the basis of the
currentfindings,Lankheetand Lennie’sclaim that depth
of both the additive disparity noise and the grating is
more difficult to resolve in dynamic RDS appears
guestionable. Sinusoiddetectionperformancevas more
sensitivefor low spatial frequencies(0.22cpd)than for
high spatial frequencies(0.88cpd). While stereoscopic
squarevavedetectionwas also robustin the presene of

substantiaRMS amplitudesof additive disparity noise
(see Figure 2), it was less tolerant than stereoscopic
sinusoiddetection. Squarewave detectionfirst fell to

chancdevelswith RMS noise amplitudesof 4’, whereas
sinusoiddetectionfirst fell to chancewith RMS noise
amplitudesof 6'.
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Figure 1: Sinusoid Detection (de') as a function of RMS amplitude of disparity noise and surface spatial frequency
(0.22, 0.44, 0.88cpd) for 3 human observers (SAP, XF, MH). Error bars represent standard errors of the mean.
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Figure 2: Square wave Detection (de') as a function of RMS amplitude of disparity noise and surface spatial
frequency (0.22, 0.44, 0.88cpd) for 3 human observers (SAP, XF, MH). Error bars represent standard errors of the

mean.

3 ldeal Observer Simulations

We constructechn ideal observethat utilised all of the
availableinformationabouteachRDS. We assumedhat
this model observercould perform the matching task
correctlyandrecoverthe ideal disparity map. Thus, its
taskwasto determinefrom this disparity map, whether
or not a corrugateddisparity signal had beendisplayed.

Wewantedtheideal observeto minimisethe probability
of detectiorerror. Giventhe dispaity imagemap,d, the
probability of error in detection for a disparity
corrugatiorsignal (denotedass) is (Haykin, 1988):

Ig(si|d) = P(s; not displayed|d)
=1-P(s; displayed|d)



Minimising the error in detection is equivalent to
maximising the a posteriori probability that the signal
was displayed given the data (Kersten, 1990). From
Bayes'rule:

P(s displ f ispl
P(s; displayedd) = (s displayed)f 4(dls displayed

fq (d)

Sincethe probability of displaying eachsignal is equal
andfy(d) is independenbf the signal displayed,we can
dispensavith the Bayesiarformulation. Themaximum a
posterioridecisionrule reducesto decidingthat s was
displayedif

fq (d|si displayed

was the greater for 5 than for any other disparity
corrugationsignal or distracter. This is the optimal
(maximum-likelihood) decision rule. An ideal,
maximumlikelihood observefor the detectionof known
signalsin additive, white Gaussiamoiseis known to be
a matchedfilter. Since the ideal observerknew the
stimulusphaseof eachRDS, detectionwith a matched
filter was equivalent to cross-correlating with the
expectedsignd (Burgess& Ghandeharian1984). Since
we used periodic signals - sinusoidsand squarewave
corrugations- sampledat random positions (the dot
locations),the matchedilter operationwas equivalentto
correlatingwith a template correspondingto the ideal
disparity corrugations,sampledat the locations of the
textureelements- i.e. at a discretenumberof positions.

We ran two sets of simulations— one set where the
signalstimuli weresurfaceswith sinusoidalmodulations
in depthwith oneof threespatial frequencieg0.22,0.44,

or 0.88cpd),andthe other set wherethe signal stimuli

were surfaceswith squarewave modulationsin depth
with the same spatial frequencies. In each set of

simulations, the ideal observermatchedthe disparity
map from a RDS with three matched filters -

correspondingp thethreesignal spatialfrequencies. The
noisewasorthogonalo eachsignal and the signalswere
orthogonalto eachother. Thus, the presenceof a pure
signalshouldhaveproduceda responsealong one of the
three axes equal in magnitude to the signal energy.
Theoretically,such a signal should have producedzero
responsesalong the other orthogonal dimensions.
However, trial to trial random sampling bias in the
position of the dot locations causedfluctuationsin the
magnitude along the principle dimension for a given
corrugation and led to small positive or negative
responseslong the other dimensions. This variability

generallycancelledacrosstrials. The more significant
noisewastypically the additive, white Gaussiannoise.

For detectionof a signal in noise, the signal to noise
ratio at the output of the matchedfilter would havebeen
equalto theratio of the energyin the ideal signal to the
noise spectral density (Haykin, 1988). Hence, the
matchedfilter showed selectivity by improving the
signalto noiseratio.

Each stimulus mappedon to a co-ordinatein a three-
dimensional Euclideansignal space. Along the axis
relevanto a givensignalwe would havetwo probability
densityfunctions(PDFs). OnePDF correspondedo the
signal(centredat the signalenergy)while the other PDF
correspondetb the distractel(centredat zero). Eachhad
avarianceproportionatto the noisespectratdensity. The
perceptualdistance betweennoise stimuli and signal
stimuli wasthe differencebetweerthe filter responseo
the signalandthefilter responseo the distracterelative
to the variationin that differencemeasureThe d’ value
was the ratio of the difference between signal and
distracteregponsesscaledby the standarddeviation of
that difference (it was basically a measureof signal to
noiseratio along the relevantdimensionin terms of z-
scores). If the responsealong any one of the axes
exceededa threshold amount then the ideal obserer
declaredthat one of the signals was present.If equal
noisewaspresenin the distracterandsignal stimuli then
the unbiaseddecision rule would place the decision
threshold halfway betweenthe origin and the expected
responsevhenthe signalwaspresent. This would be the
optimal maximum likelihood decision rule since the
probability densityfunctionscorrespondingo signal and
distractemwereequalhere.

Resultsof Simulations. Monte-Carlosimulationsof an
ideal observemerformingthe experimet wererun and
analysed. Onethousandrandomlygeneratedrials were
performedfor eachcondition and usedto calculatedd’
from the hit andfalsealarmrates. A signal was declared
presentoy the ideal observerif responseon any of the
signal axesexeededone half of the expectedresponse.
The ideal observer's detection performance was far
superiorto thatof the humanobservers remainingvery
robustin the presencef substantiabmountsof disparity
noise (d' values neverfalling below 3). The ideal
observemas still performingabovechancelevels with
RMS amplitudes of disparity noise of 10’ and 12’
(whichweredoublethe RMS noise amplitudesat which
human observerswere performing at chance levels).
Thesdargediscrepanciem performancewereexpected-
since for example,the ideal observenwould have used
disparity information from all of the dots, whereas
humanobserversvould haveusedonly a small subsetof
thesedots (Harris & Parker,1992). Figure 3A shows
that for sinusoid corrugatons the ideal observer's
performancealeclinedfrom d’ valuesof ~15 downto ~3
asthe standarddeviation of the additive disparity noise
increasedrom 2’-12’. Figure 3B showsthat the ideal



observer'sperformancewas generally better for square
wave corrugations. Since a squarewave corrugation
segmenthas more signal energy than a sinusoidal
corrugationsegmentof the same peak amplitude, this
finding was expected. For squarewave corrugations,
ideal observemerformancedeclinedfrom d’ values of
~15 down to ~4 asthe RMS amplitudeof the disparity
noiseincreasedrom 2’-12'. Interestingly, squarewave
detectionappearedo declinein a more linear fashion

154 Ideal Observer
14+ Sinusoid

—m— 0.22cpd
—o— 0.44cpd

—o— 0.88cpd

-1 T T T T T T T
0 2 4 6 8 10 12

RMS Noise Amplitude (arcmin)

thansinusoiddetectionwith increasingRMS amplitudes
of disparity noise. However,this differencemight have
beendueto the very high d’ valuesfound for displays
with RMS noise amplitudesof 2’-6’. In general,the
ideal observer'sletectionperformancewas similar for all

threestimulusspatialfrequencies for both sinusoidand
squarevawe detection.
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Figure 3: (A) Sinusoid and (B) Square wave detection (di") as a function of RMS amplitude of disparity noise and
surface spatial frequency (0.22, 0.44, 0.88cpd) for ideal observer. Error bars represent standard errors of the mean.
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Figure 4: (A) Sinusoid and (B) Square wave detection efficiency as a function of RMS amplitude of disparity noise and

surface spatial frequency (0.22, 0.44, 0.88cpd).

4 Surface Detection Efficiencies

We next compared human and ideal detection
performanceo calculatethe statisticalefficiency (F) for
thesesurfacedetectiontasks, which can be definedas
follows:

F = (d/dy)?

wherede’ is thed’ valuefor humanobserverandd’ is
thed’ valuefor theidealobserverespectivelyBarlow,

1978). The d.’ values were averagedfor the three
humanobservers.Efficiency fell for both squarewvave
and sinusoid detectiontasks as the amplitude of the
disparitynoiseincreased While squarewvavedetection
efficiency fell sharply, sinusoid detection efficiency
declined more gradually. Figure 4A shows that
efficienciesfor sinusoiddetectionfell from 17%-6%

with 2’ RMS amplitudesof disparity noise down to
2.5%-1%with 8’ RMS amplitudesof disparity noise.



Figure 4B shows that efficiencies for square wave
detectiorfell dramaticallyfrom 10%-3%with 2' RMS
amplitudes of disparity noise down to 0.7%-0.05%
with only 4° RMS amplitudes of disparity noise.
Stimulus spatial frequencydid appearto have some
effecton efficiency— especiallyin the caseof sinusoid
detection,which was more efficient with low spatial
frequencysinusoids(0.22cpd)than with high spatial
frequencysinusoidg0.88cpd).

5 General Discussion

Contrary to predictions, we found efficiencies for
stereoscopisurfacedetection(20%-0.1%)weresimilar
to thosefound previouslyby Harris and Parker(1994a
— Experiment 1) for stereoscopicedge detection.
However,before we comparethe efficienciesof these
two studies, some checksneed to be made. In

calculatingefficiencies,Harris and Parkerensuredthat
their human d’ values were always close to 1 by
changinghessizeof disparity stepasthey increasedhe
amplitudeof the dispaity noise. However,we did not
placethe samerestriction on our human observers-
human d’ values rangedbetween~5 and 0 as the
amplitudeof the disparity noiseincreasedthe disparity
range of sinusoidsand squarewaves was always a
constan®d’). Themostsimilar stimulusin the current
experimentso the Harrisand Parkerstep edgewasthe
0.22cpdsquarewave (it had2 stepedgesin depth as
opposedto 1). For two observers,d.’ values were
closeto 1 when4’ RMS amplitudesof disparity noise
wereaddedo this stimulus— producingefficienciesof

~1.25% (SAP) and ~1.8%-0.5%(MH). Since these
efficiencieswere within Harris and Parker’s range of

10%-0.1%andcloseto their efficienciesfound with 4’

RMS amplitudesof disparitynoise, they would appear
to vindicateour study — since similar tasks produced
similar efficiencies.

In principle, humandeviationsfrom ideal performance
could havearisenfrom a numberof sourcesof error.
Unlike the ideal observer,human observershad an
imperfectknowledge of the stimuli (ie they had no
prior knowledgeof stimulus phase,spatial frequency,
correct dot matches,etc). As a result, they were
vulnerableto matchingdifficulties, imperfectdisparity
recoveryand problemscombining disparity samples—
which would have beenexacerbatedy the externally
applieddisparity noise. Humanobserverslso hadan
additional sourceof external noise — the crosstalk
betweerthe left andright stereohalf-images(~8%) —
whichwould havefurtherimpairedstereoscopisurfice
detection. Finally, internal noise — ranging from
registration errors, to threshold criterion interactions

and guessingbehavior- would have also impaired
performance.

Efficiencies for sinusoid detection were generally
higher than those for squarewave detection— which

was expectedsincethe squarewave detectiontask by

definition produceshigher d’ values for the ideal

observerthan the sinusoid detectiontask. However,

humanobserversigherd.’ valuesfor sinusoidswould

also have contributel to this effect. This finding

suggeststhat stereo processesused by the visual

systemarespecializedfor sinusoidal surfacesjust as
thoseusedby the ideal observerwere specializedfor

squarevavesurfaces.For example,the processesised
by visual system might prefer smoothly continuous
surfaces— as opposedto discontinuoussurfaces. A

smoothlycontinuoussurfacepotentially simplifies the

dot matchingprocesqsinceadjacentdots would have
very similar disparities)as well as the processeof

combining disparity samplesand depth calculation
(since these disparities would be differentiable).
Irrespectiveof the particularsourceof the discrepancy,
this finding highlightsthe differencesin the strategies
usedby the visual systemandmachinevision.

Therewas someevidencethat higher spatial frequency
surfacesproducedower efficienciesthan lower spatial
frequency surfaces. This supports the notion that
detectinga single stepedgein depthis a simpler task
for the visual systemthan detecting a 3-D surfacewith

numerous variations in curvature and depth (more
dots/disparitysamplesarerequiredto detecta surface
than a step edgein depth). Since dot density was
constant(4%) for all displays,the more variationsin

surfacestructurethe fewer the dots/disparity samples
therewere defining eachof thesevariations. As a
result, high spatialfrequencysurfaceswould havebeen
especiallysusceptibleto disparity noise. This noise
would have led to difficulties matching dots —

resulting in fewer disparity samplesto define each
segment. Even if those dots had been matched
correctly, their disparities would have been quite
different from those of their neighbors,which might

have led them to be rejected at the disparity
combinationstage.

In conclusion, efficiencies found for stereoscopic
surface detection were similar to those found

previouslyfor detectionof a single stepedgein depth
(asupposedlysimplertask). It is alsopossiblethat the

higher efficiencies found in these experimats for

sinusoidalsurfacesndicatesthat the visual systemhas
been optimized for perceiving smoothly continuous
surfaces— ratherthan surfaceswith multiple depth
discontinuities.
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