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Abstract:   Stereoscopic surface detection of human and
ideal observers was assessed using a signal detection
paradigm.  Signal displays were disparity defined
sinusoidal or square wave corrugations in depth
containing various amounts of additive disparity noise.
Distracter displays were created by scrambling pure
signal stimuli along the vertical dimension - destroying
surface representation while leaving the depth range
intact.  Additive disparity noise was found to interfere
with stereoscopic surface detection for both human and
ideal observers.  Efficiencies found for stereoscopic
surface detection were similar to those found previously
for detection of a single step edge in depth (a supposedly
easier task).

1 Introduction

Due to their two horizontally separated eyes and
overlapping visual fields, humans simultaneously receive
two different perspective views of the same scene.  The
term stereopsis refers to the processes by which these
different 2-D views are combined and used to extract
information about the 3-D layout of the environment.
Random dot stereograms (RDS) are a useful tool for
examining these processes (Julesz, 1960).  The 3-D
surfaces represented by them are defined solely by
positional shifts of corresponding dots in the two half-
images (referred to as binocular disparities).  RDS
produce the following problems for stereopsis: (1)
Corresponding dots in the two images must be matched;
(2) The binocular disparity of each matched dot pair must
be accurately extracted; (3) Disparity information from
across the visual field must be combined; (4) Depth,
surface slant, inclination and curvature must then be
calculated based on this ‘disparity field’.  The human
visual system appears to be able to perform these
processes under a variety of difficult conditions.  For
example, observers can detect 3-D surface structure in
RDS which: (1) have very low or very high dot densities
(4-40% of the area - Tyler, 1974); (2) have large numbers
of unpaired or monocular dots (Julesz, 1960; 1971;
Christophers & Rogers, 1994; Cormack et al, 1991;
Cormack et al, 1994; Cormack et al, 1997; Palmisano et

al, 2000; Wilcox & Hess, 1996); and (3) have substantial
amplitudes of additive Gaussian distributed disparity
noise (Harris & Parker, 1992; 1994a; 1994b; Lankheet &
Lennie, 1996; Palmisano et al, 1999a; 1999b).

In a series of studies, Harris and Parker (1992; 1994a;
1994b) examined the statistical efficiency of these
stereoscopic processes.  RDS stimuli always represented
a vertically oriented step edge in depth – produced by an
appropriate disparity shift – with various amounts of
Gaussian distributed additive disparity noise.  The task
for human and ideal observers was to determine which
side of the stimulus “stood further out towards them in
depth”.  Unlike human observers, the ideal observer was
able to use all of the available stimulus information to
perform this task.  A comparison of the performance of
these two types of observer yielded the efficiency
measure (Rose, 1942; 1948).  In their first study, Harris
and Parker (1992) examined detection of a step change in
disparity (of 23’’- 120’’) in the presence of additive
disparity noise (σ = 2’ - 4’) as the number of dots was
increased.  They found efficiencies fell dramatically
(down from ~30% to ~2%) as the number of dots in the
RDS increased from 4 to 350.  Unlike the ideal observer
who used all of the dots, the effective numbers of dots
used by human observers on either side of the depth
discontinuity never exceeded 5 (as many as 170 dots
were available in some conditions).  Harris and Parker
argued that this poor performance could be attributed to
either difficulties in dot matching (Stage 1 of
stereoscopic processing) or to inefficiencies in combining
disparity samples (Stages 3 and 4).

A subsequent study by Harris and Parker (1994a)
attempted to separate these two sources of efficiency loss.
In their first experiment, they manipulated the amplitude
of the additive disparity noise (rather than density, which
was held constant at 240 dots).  They also varied the step
change in disparity (0.7’-2.1’), to keep the human
observers’ d’ values as close as possible to 1 (to
minimize sampling errors).  They found that efficiencies
in detecting a step edge in depth declined (from ~10% to
~0.1%) as the standard deviation of the additive disparity
noise increased from 1’ to 6’.  Based on the results of
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two followup experiments, which used RDS stimuli that
minimized or eliminated the correspondence problem,
they concluded that: (1) both dot matching difficulties
and inefficiency in combining disparity samples led to
independent declines in efficiency; (2) of the two
components, difficulties in dot matching were
responsible for the most dramatic falls in efficiency.

However, it must be noted that this particular pattern of
results might have been due to the simplicity of the
stereoscopic task used in the Harris and Parker studies.
It is possible that for more complicated tasks, such as
stereoscopic surface detection, disparity combination
difficulties would prove as disruptive as dot matching
difficulties.  The current experiments examined this
possibility.  Human and ideal observers had to decide
whether or not the stimulus presented was a noisy
version of a corrugated surface (a 3-D sinusoid or square
wave) or a distracter.  Based on human and ideal observer
performance, efficiencies were calculated for these surface
detection tasks.

2 Human Observer Experiments

This experiment examined the effect of additive disparity
noise on human observer’s ability to detect surfaces with
periodic corrugations in depth.  In principle, the
stereoscopic detection of a step edge in depth could be
achieved with information obtained from a relatively
small subset of dots – if they were matched correctly and
their disparities were accurately extracted.  This task only
requires the observer to detect a significant difference in
disparities in the two regions of the display.  Difficulties
combining disparity samples could potentially have little
effect on this task, since disparity information from only
a few matched dots would be required.  However, the
stereoscopic detection of a periodic surface - such as a 3-
D square wave or a 3-D sinusoid - is a potentially more
complex process.  Not only is accurate dot matching
essential to this task, accurate disparity combination and
calculation is also required.  As a result, we expected that
additive disparity noise would have a greater impact on
surface detection than it had on detection of a step edge
in depth (Harris & Parker, 1992; 1994a).

Human Observers. Three observers (aged between 24 and
39 years) participated.  SAP (the first author), XF and
MH (naive to the experimental hypotheses) had
participated in many previous experiments on
stereoscopic surface detection.  All had normal or
corrected-to-normal vision and had been given several
hundred test trials before their data was collected.

Stimuli & Procedure. RDS were generated on a
Macintosh G3 Power PC and later presented on a 17 inch
Apple Vision monitor.  A display splitter was used to
present RDS to observers wearing CrystalEyes liquid
crystal shutters.  The splitter alternated the presentation
of the left and right eyes’ views on the screen in
synchrony with the shuttering of the glasses (60Hz),
which ran at half the video card refresh rate (120Hz).
RDS were two stereo-half images – each consisted of
4665 bright blue dots on a black background and
subtended 9˚ H x 9˚ V at the viewing distance of 110cm.
Each “dot” subtended an angle of 4 arcmin2 and had a
luminance of 0.15 cd/m2.  RDS were of two kinds. (1)
Signal Displays were stereoscopically defined 3-D
surfaces (horizontally oriented square wave or sinusoidal
surfaces in depth) with one of three spatial frequencies -
0.22cpd, 0.44cpd, or 0.88cpd.  Surface phase was varied
randomly from trial to trial.  The pattern of horizontal
disparities defining such a surface was produced by
shifting dots in opposite horizontal directions in the left
and right half-images (disparity ranged from +2’ to –2’).
Gaussian distributed disparity noise was then added to
these dots (σ of 0, 2’, 4’, 6’ or 8’).  (2) Noise Displays
were created by scrambling signal stimuli along the
vertical dimension.  This destroyed surface representation
while preserving stereoscopic information about depth.
For each signal or noise display, observers indicated
whether or not they saw the signal.  The display was
presented until the observer pressed one of two buttons
(“yes” and “no”), and then display turned black.  This
was followed by a 2s intertrial interval - to reduce
afterimages and disparity aftereffects.  Observers
performed eight experimental runs of 600 stimuli.

Results of Experiments. “Yes” responses in the presence
or absence of a stereoscopically defined 3-D surface were
converted into hit rates (H) and false alarm rates (FA).
These then were converted into z-scores and used to
calculate d’ - the measure of sensitivity used in signal
detection theory:

de’ = z(H) - z(FA),

var(de’) = H(1-H)/NH[φ(H)]2 + FA(1-FA)/NFA [φ(FA)]2,

where NH = number of hits, NFA = number of false
alarms, φ(H) = 2π-1/2exp[-0.5z(H)2], and φ(FA) = 2π-

1/2exp[-0.5z(FA)2]}.

Stereoscopic sinusoid detection was remarkably robust in
the presence of substantial RMS amplitudes of disparity
noise (see Figure 1).  Sinusoid detection performance
was similar to that reported by Lankheet and Lennie
(1996) - even though static RDS were used in the current
experiment, while dynamic RDS were used in the latter.



In both experiments, disparity noise with RMS noise
amplitudes greater than 4’ tended to reduce detection
performance to chance (de’ = 0).  On the basis of the
current findings, Lankheet and Lennie’s claim that depth
of both the additive disparity noise and the grating is
more difficult to resolve in dynamic RDS appears
questionable.  Sinusoid detection performance was more
sensitive for low spatial frequencies (0.22cpd) than for
high spatial frequencies (0.88cpd).  While stereoscopic
square wave detection was also robust in the presence of

substantial RMS amplitudes of additive disparity noise
(see Figure 2), it was less tolerant than stereoscopic
sinusoid detection.  Square wave detection first fell to
chance levels with RMS noise amplitudes of 4’, whereas
sinusoid detection first fell to chance with RMS noise
amplitudes of 6’.
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Figure 1:  Sinusoid Detection (de') as a function of RMS amplitude of disparity noise and surface spatial frequency
(0.22, 0.44, 0.88cpd) for 3 human observers (SAP, XF, MH).  Error bars represent standard errors of the mean.
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Figure 2:  Square wave Detection (de') as a function of RMS amplitude of disparity noise and surface spatial
frequency (0.22, 0.44, 0.88cpd) for 3 human observers (SAP, XF, MH).  Error bars represent standard errors of the
mean.

3 Ideal Observer Simulations

We constructed an ideal observer that utilised all of the
available information about each RDS.  We assumed that
this model observer could perform the matching task
correctly and recover the ideal disparity map.  Thus, its
task was to determine from this disparity map, whether
or not a corrugated disparity signal had been displayed.

We wanted the ideal observer to minimise the probability
of detection error.  Given the disparity image map, d, the
probability of error in detection for a disparity
corrugation signal (denoted as si) is (Haykin, 1988):



Minimising the error in detection is equivalent to
maximising the a posteriori probability that the signal
was displayed given the data (Kersten, 1990). From
Bayes’ rule:  
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Since the probability of displaying each signal is equal
and fd(d) is independent of the signal displayed, we can
dispense with the Bayesian formulation. The maximum a
posteriori decision rule reduces to deciding that si was
displayed if
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was the greater for si than for any other disparity
corrugation signal or distracter.  This is the optimal
(maximum-likelihood) decision rule.  An ideal,
maximum likelihood observer for the detection of known
signals in additive, white Gaussian noise is known to be
a matched filter.  Since the ideal observer knew the
stimulus phase of each RDS, detection with a matched
filter was equivalent to cross-correlating with the
expected signal (Burgess & Ghandeharian, 1984). Since
we used periodic signals - sinusoids and square wave
corrugations - sampled at random positions (the dot
locations), the matched filter operation was equivalent to
correlating with a template corresponding to the ideal
disparity corrugations, sampled at the locations of the
texture elements – i.e. at a discrete number of positions.

We ran two sets of simulations – one set where the
signal stimuli were surfaces with sinusoidal modulations
in depth with one of three spatial frequencies (0.22, 0.44,
or 0.88cpd), and the other set where the signal stimuli
were surfaces with square wave modulations in depth
with the same spatial frequencies.  In each set of
simulations, the ideal observer matched the disparity
map from a RDS with three matched filters –
corresponding to the three signal spatial frequencies.  The
noise was orthogonal to each signal and the signals were
orthogonal to each other.  Thus, the presence of a pure
signal should have produced a response along one of the
three axes equal in magnitude to the signal energy.
Theoretically, such a signal should have produced zero
responses along the other orthogonal dimensions.
However, trial to trial random sampling bias in the
position of the dot locations caused fluctuations in the
magnitude along the principle dimension for a given
corrugation and led to small positive or negative
responses along the other dimensions.  This variability
generally cancelled across trials.  The more significant
noise was typically the additive, white Gaussian noise.

For detection of a signal in noise, the signal to noise
ratio at the output of the matched filter would have been
equal to the ratio of the energy in the ideal signal to the
noise spectral density (Haykin, 1988).  Hence, the
matched filter showed selectivity by improving the
signal to noise ratio.

Each stimulus mapped on to a co-ordinate in a three-
dimensional Euclidean signal space.  Along the axis
relevant to a given signal we would have two probability
density functions (PDFs).  One PDF corresponded to the
signal (centred at the signal energy), while the other PDF
corresponded to the distracter (centred at zero).  Each had
a variance proportional to the noise spectral density.  The
perceptual distance between noise stimuli and signal
stimuli was the difference between the filter response to
the signal and the filter response to the distracter relative
to the variation in that difference measure. The d’ value
was the ratio of the difference between signal and
distracter responses scaled by the standard deviation of
that difference (it was basically a measure of signal to
noise ratio along the relevant dimension in terms of z-
scores).  If the response along any one of the axes
exceeded a threshold amount then the ideal observer
declared that one of the signals was present. If equal
noise was present in the distracter and signal stimuli then
the unbiased decision rule would place the decision
threshold halfway between the origin and the expected
response when the signal was present. This would be the
optimal maximum likelihood decision rule since the
probability density functions corresponding to signal and
distracter were equal here.

Results of Simulations.  Monte-Carlo simulations of an
ideal observer performing the experiment were run and
analysed.  One thousand randomly generated trials were
performed for each condition and used to calculated d’
from the hit and false alarm rates.  A signal was declared
present by the ideal observer if response on any of the
signal axes exceeded one half of the expected response.
The ideal observer’s detection performance was far
superior to that of the human observers - remaining very
robust in the presence of substantial amounts of disparity
noise (d’ values never falling below 3).  The ideal
observer was still performing above chance levels with
RMS amplitudes of disparity noise of 10’ and 12’
(which were double the RMS noise amplitudes at which
human observers were performing at chance levels).
These large discrepancies in performance were expected –
since for example, the ideal observer would have used
disparity information from all of the dots, whereas
human observers would have used only a small subset of
these dots (Harris & Parker, 1992).  Figure 3A shows
that for sinusoid corrugations the ideal observer’s
performance declined from di ’ values of ~15 down to ~3
as the standard deviation of the additive disparity noise
increased from 2’-12’.  Figure 3B shows that the ideal



observer’s performance was generally better for square
wave corrugations.  Since a square wave corrugation
segment has more signal energy than a sinusoidal
corrugation segment of the same peak amplitude, this
finding was expected.  For square wave corrugations,
ideal observer performance declined from di ’ values of
~15 down to ~4 as the RMS amplitude of the disparity
noise increased from 2’-12’.  Interestingly, square wave
detection appeared to decline in a more linear fashion

than sinusoid detection with increasing RMS amplitudes
of disparity noise.  However, this difference might have
been due to the very high di ’ values found for displays
with RMS noise amplitudes of 2’-6’.  In general, the
ideal observer’s detection performance was similar for all
three stimulus spatial frequencies - for both sinusoid and
square wave detection.
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Figure 3: (A) Sinusoid and (B) Square wave detection (di') as a function of RMS amplitude of disparity noise and 
surface spatial frequency (0.22, 0.44, 0.88cpd) for ideal observer. Error bars represent standard errors of the mean.
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Figure 4: (A) Sinusoid and (B) Square wave detection efficiency as a function of RMS amplitude of disparity noise and
surface spatial frequency (0.22, 0.44, 0.88cpd).
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4 Surface Detection Efficiencies

We next compared human and ideal detection
performance to calculate the statistical efficiency (F) for
these surface detection tasks, which can be defined as
follows:

F = (de’/d i ’)
2

where de’ is the d’ value for human observers and di ’ is
the d’ value for the ideal observer respectively (Barlow,
1978).  The de’ values were averaged for the three
human observers.  Efficiency fell for both square wave
and sinusoid detection tasks as the amplitude of the
disparity noise increased.  While square wave detection
efficiency fell sharply, sinusoid detection efficiency
declined more gradually.  Figure 4A shows that
efficiencies for sinusoid detection fell from 17%-6%
with 2’ RMS amplitudes of disparity noise down to
2.5%-1% with 8’ RMS amplitudes of disparity noise.



Figure 4B shows that efficiencies for square wave
detection fell dramatically from 10%-3% with 2’ RMS
amplitudes of disparity noise down to 0.7%-0.05%
with only 4’ RMS amplitudes of disparity noise.
Stimulus spatial frequency did appear to have some
effect on efficiency – especially in the case of sinusoid
detection, which was more efficient with low spatial
frequency sinusoids (0.22cpd) than with high spatial
frequency sinusoids (0.88cpd).

5 General Discussion

Contrary to predictions, we found efficiencies for
stereoscopic surface detection (20%-0.1%) were similar
to those found previously by Harris and Parker (1994a
– Experiment 1) for stereoscopic edge detection.
However, before we compare the efficiencies of these
two studies, some checks need to be made.  In
calculating efficiencies, Harris and Parker ensured that
their human d’ values were always close to 1 by
changing the size of disparity step as they increased the
amplitude of the disparity noise.  However, we did not
place the same restriction on our human observers –
human d’ values ranged between ~5 and 0 as the
amplitude of the disparity noise increased (the disparity
range of sinusoids and square waves was always a
constant 4’).  The most similar stimulus in the current
experiments to the Harris and Parker step edge was the
0.22cpd square wave (it had 2 step edges in depth as
opposed to 1).  For two observers, de’ values were
close to 1 when 4’ RMS amplitudes of disparity noise
were added to this stimulus – producing efficiencies of
~1.25% (SAP) and ~1.8%-0.5% (MH).  Since these
efficiencies were within Harris and Parker’s range of
10%-0.1% and close to their efficiencies found with 4’
RMS amplitudes of disparity noise, they would appear
to vindicate our study – since similar tasks produced
similar efficiencies.

In principle, human deviations from ideal performance
could have arisen from a number of sources of error.
Unlike the ideal observer, human observers had an
imperfect knowledge of the stimuli (ie they had no
prior knowledge of stimulus phase, spatial frequency,
correct dot matches, etc).  As a result, they were
vulnerable to matching difficulties, imperfect disparity
recovery and problems combining disparity samples –
which would have been exacerbated by the externally
applied disparity noise.  Human observers also had an
additional source of external noise – the crosstalk
between the left and right stereo half-images (~8%) –
which would have further impaired stereoscopic surface
detection.  Finally, internal noise – ranging from
registration errors, to threshold criterion interactions

and guessing behavior - would have also impaired
performance. 

Efficiencies for sinusoid detection were generally
higher than those for square wave detection – which
was expected since the square wave detection task by
definition produces higher di ’ values for the ideal
observer than the sinusoid detection task.  However,
human observers higher de’ values for sinusoids would
also have contributed to this effect.  This finding
suggests that stereo processes used by the visual
system are specialized for sinusoidal surfaces, just as
those used by the ideal observer were specialized for
square wave surfaces.  For example, the processes used
by visual system might prefer smoothly continuous
surfaces – as opposed to discontinuous surfaces.  A
smoothly continuous surface potentially simplifies the
dot matching process (since adjacent dots would have
very similar disparities) as well as the processes of
combining disparity samples and depth calculation
(since these disparities would be differentiable). 
Irrespective of the particular source of the discrepancy,
this finding highlights the differences in the strategies
used by the visual system and machine vision.

There was some evidence that higher spatial frequency
surfaces produced lower efficiencies than lower spatial
frequency surfaces.  This supports the notion that
detecting a single step edge in depth is a simpler task
for the visual system than detecting a 3-D surface with
numerous variations in curvature and depth (more
dots/disparity samples are required to detect a surface
than a step edge in depth). Since dot density was
constant (4%) for all displays, the more variations in
surface structure the fewer the dots/disparity samples
there were defining each of these variations.  As a
result, high spatial frequency surfaces would have been
especially susceptible to disparity noise.  This noise
would have led to difficulties matching dots –
resulting in fewer disparity samples to define each
segment.  Even if those dots had been matched
correctly, their disparities would have been quite
different from those of their neighbors, which might
have led them to be rejected at the disparity
combination stage.

In conclusion, efficiencies found for stereoscopic
surface detection were similar to those found
previously for detection of a single step edge in depth
(a supposedly simpler task).  It is also possible that the
higher efficiencies found in these experiments for
sinusoidal surfaces indicates that the visual system has
been optimized for perceiving smoothly continuous
surfaces – rather than surfaces with multiple depth
discontinuities.
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