
The Java EE 6 Tutorial

Part No: 821–1841–11
October 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

101006@24661

Contents

Preface ...23

Part I Introduction ...31

1 Overview ...33
Java EE 6 Platform Highlights .. 34
Java EE Application Model ... 35
Distributed Multitiered Applications ... 35

Security .. 37
Java EE Components ... 38
Java EE Clients .. 38
Web Components .. 40
Business Components ... 41
Enterprise Information System Tier .. 42

Java EE Containers .. 43
Container Services ... 43
Container Types ... 44

Web Services Support ... 45
XML ... 45
SOAP Transport Protocol ... 46
WSDL Standard Format .. 46

Java EE Application Assembly and Deployment ... 46
Packaging Applications .. 47
Development Roles ... 48

Java EE Product Provider .. 49
Tool Provider .. 49
Application Component Provider ... 49

3

Application Assembler .. 50
Application Deployer and Administrator ... 50

Java EE 6 APIs .. 51
Enterprise JavaBeans Technology .. 54
Java Servlet Technology .. 55
JavaServer Faces Technology .. 55
JavaServer Pages Technology ... 56
JavaServer Pages Standard Tag Library ... 56
Java Persistence API ... 56
Java Transaction API ... 57
Java API for RESTful Web Services ... 57
Managed Beans .. 57
Contexts and Dependency Injection for the Java EE Platform (JSR 299) 57
Dependency Injection for Java (JSR 330) .. 58
Bean Validation .. 58
Java Message Service API .. 58
Java EE Connector Architecture .. 58
JavaMail API ... 59
Java Authorization Contract for Containers .. 59
Java Authentication Service Provider Interface for Containers ... 59

Java EE 6 APIs in the Java Platform, Standard Edition 6.0 .. 60
Java Database Connectivity API ... 60
Java Naming and Directory Interface API .. 60
JavaBeans Activation Framework .. 61
Java API for XML Processing ... 61
Java Architecture for XML Binding ... 61
SOAP with Attachments API for Java .. 61
Java API for XML Web Services ... 62
Java Authentication and Authorization Service ... 62

GlassFish Server Tools .. 62

2 Using the Tutorial Examples ..65
Required Software ... 65

Java Platform, Standard Edition ... 65
Java EE 6 Software Development Kit ... 66

Contents

The Java EE 6 Tutorial • October 20104

Java EE 6 Tutorial Component ... 66
NetBeans IDE ... 68
Apache Ant ... 69

Starting and Stopping the GlassFish Server .. 69
Starting the Administration Console .. 70

▼ To Start the Administration Console in NetBeans IDE .. 70
Starting and Stopping the Java DB Server ... 71

▼ To Start the Database Server Using NetBeans IDE .. 71
Building the Examples .. 71
Tutorial Example Directory Structure .. 72
Getting the Latest Updates to the Tutorial ... 72

▼ To Update the Tutorial Through the Update Center .. 72
Debugging Java EE Applications ... 73

Using the Server Log .. 73
Using a Debugger ... 73

Part II The Web Tier ... 75

3 Getting Started with Web Applications ... 77
Web Applications .. 77
Web Application Lifecycle ... 79
Web Modules: The hello1 Example ... 81

Examining the hello1 Web Module ... 82
Packaging a Web Module .. 85
Deploying a Web Module ... 86
Running a Deployed Web Module .. 87
Listing Deployed Web Modules ... 87
Updating a Web Module ... 88
Dynamic Reloading ... 88
Undeploying Web Modules .. 89

Configuring Web Applications: The hello2 Example ... 90
Mapping URLs to Web Components .. 90
Examining the hello2 Web Module ... 90
Building, Packaging, Deploying, and Running the hello2 Example 92
Declaring Welcome Files .. 93

Contents

5

Setting Context and Initialization Parameters ... 94
Mapping Errors to Error Screens ... 96
Declaring Resource References .. 97

Further Information about Web Applications ... 99

4 JavaServer Faces Technology ..101
What Is a JavaServer Faces Application? ... 102
JavaServer Faces Technology Benefits .. 103
Creating a Simple JavaServer Faces Application .. 104

Developing the Backing Bean ... 104
Creating the Web Page .. 105
Mapping the FacesServlet Instance .. 106
The Lifecycle of the hello Application ... 106

▼ To Build, Package, Deploy, and Run the Application in NetBeans IDE 107
Further Information about JavaServer Faces Technology .. 108

5 Introduction to Facelets ...109
What Is Facelets? .. 109
Developing a Simple Facelets Application ... 111

Creating a Facelets Application .. 111
Configuring the Application ... 114
Building, Packaging, Deploying, and Running the guessnumber Facelets Example 115

Templating ... 117
Composite Components .. 119
Resources .. 122

6 Expression Language ..123
Overview of the EL .. 123
Immediate and Deferred Evaluation Syntax .. 124

Immediate Evaluation ... 125
Deferred Evaluation ... 125

Value and Method Expressions ... 126
Value Expressions .. 126
Method Expressions .. 130

Contents

The Java EE 6 Tutorial • October 20106

Defining a Tag Attribute Type ... 132
Literal Expressions .. 133
Operators .. 134
Reserved Words ... 134
Examples of EL Expressions ... 135

7 Using JavaServer Faces Technology in Web Pages .. 137
Setting Up a Page ... 137
Adding Components to a Page Using HTML Tags ... 138

Common Component Tag Attributes ... 141
Adding HTML Head and Body Tags ... 143
Adding a Form Component ... 143
Using Text Components ... 144
Using Command Component Tags for Performing Actions and Navigation 149
Adding Graphics and Images with the h:graphicImage Tag ... 151
Laying Out Components with the h:panelGrid and h:panelGroup Tags 151
Displaying Components for Selecting One Value ... 153
Displaying Components for Selecting Multiple Values .. 155
Using the f:selectItem and f:selectItems Tags .. 157
Using Data-Bound Table Components .. 158
Displaying Error Messages with the h:message and h:messages Tags 161
Creating Bookmarkable URLs with the h:button and h:link Tags 162
Using View Parameters to Configure Bookmarkable URLs ... 163
Resource Relocation Using h:output Tags .. 164

Using Core Tags .. 166

8 Using Converters, Listeners, and Validators ... 169
Using the Standard Converters .. 169

Converting a Component’s Value .. 170
Using DateTimeConverter ... 171
Using NumberConverter ... 173

Registering Listeners on Components .. 174
Registering a Value-Change Listener on a Component .. 175
Registering an Action Listener on a Component ... 176

Using the Standard Validators ... 176

Contents

7

Validating a Component’s Value ... 177
Using LongRangeValidator ... 178

Referencing a Backing Bean Method .. 178
Referencing a Method That Performs Navigation ... 179
Referencing a Method That Handles an Action Event .. 179
Referencing a Method That Performs Validation .. 179
Referencing a Method That Handles a Value-Change Event ... 180

9 Developing with JavaServer Faces Technology ... 181
Backing Beans .. 181

Creating a Backing Bean ... 182
Using the EL to Reference Backing Beans ... 183

Writing Bean Properties ... 184
Writing Properties Bound to Component Values ... 185
Writing Properties Bound to Component Instances ... 190
Writing Properties Bound to Converters, Listeners, or Validators 191

Writing Backing Bean Methods .. 192
Writing a Method to Handle Navigation .. 192
Writing a Method to Handle an Action Event .. 194
Writing a Method to Perform Validation ... 194
Writing a Method to Handle a Value-Change Event ... 195

Using Bean Validation .. 196
Validating Null and Empty Strings .. 199

10 Java Servlet Technology ...201
What Is a Servlet? ... 202
Servlet Lifecycle ... 202

Handling Servlet Lifecycle Events .. 202
Handling Servlet Errors ... 204

Sharing Information ... 204
Using Scope Objects .. 204
Controlling Concurrent Access to Shared Resources ... 205

Creating and Initializing a Servlet ... 205
Writing Service Methods .. 206

Getting Information from Requests .. 206

Contents

The Java EE 6 Tutorial • October 20108

Constructing Responses .. 207
Filtering Requests and Responses .. 208

Programming Filters .. 208
Programming Customized Requests and Responses .. 210
Specifying Filter Mappings ... 210

Invoking Other Web Resources ... 212
Including Other Resources in the Response ... 213
Transferring Control to Another Web Component .. 213

Accessing the Web Context .. 213
Maintaining Client State ... 214

Accessing a Session .. 214
Associating Objects with a Session .. 214
Session Management ... 215
Session Tracking .. 215

Finalizing a Servlet ... 216
Tracking Service Requests .. 216
Notifying Methods to Shut Down .. 217
Creating Polite Long-Running Methods ... 217

The mood Example Application .. 218
Components of the mood Example Application ... 218
Building, Packaging, Deploying, and Running the mood Example 219

Further Information about Java Servlet Technology .. 220

Part III Web Services ..221

11 Introduction to Web Services ..223
What Are Web Services? ... 223
Types of Web Services ... 223

“Big” Web Services ... 224
RESTful Web Services ... 224

Deciding Which Type of Web Service to Use .. 226

12 Building Web Services with JAX-WS ... 227
Creating a Simple Web Service and Clients with JAX-WS ... 228

Contents

9

Requirements of a JAX-WS Endpoint ... 229
Coding the Service Endpoint Implementation Class .. 230
Building, Packaging, and Deploying the Service .. 230
Testing the Methods of a Web Service Endpoint ... 231
A Simple JAX-WS Application Client ... 232
A Simple JAX-WS Web Client ... 234

Types Supported by JAX-WS ... 236
Web Services Interoperability and JAX-WS .. 237
Further Information about JAX-WS ... 237

13 Building RESTful Web Services with JAX-RS ... 239
What Are RESTful Web Services? ... 239
Creating a RESTful Root Resource Class .. 240

Developing RESTful Web Services with JAX-RS ... 240
Overview of a JAX-RS Application .. 242
The @Path Annotation and URI Path Templates ... 243
Responding to HTTP Resources .. 245
Using @Consumes and @Produces to Customize Requests and Responses 248
Extracting Request Parameters .. 250

Example Applications for JAX-RS ... 254
A RESTful Web Service ... 254
The rsvp Example Application .. 256
Real-World Examples ... 258

Further Information about JAX-RS .. 259

Part IV Enterprise Beans ..261

14 Enterprise Beans ..263
What Is an Enterprise Bean? .. 263

Benefits of Enterprise Beans ... 264
When to Use Enterprise Beans ... 264
Types of Enterprise Beans ... 264

What Is a Session Bean? .. 265
Types of Session Beans .. 265

Contents

The Java EE 6 Tutorial • October 201010

When to Use Session Beans .. 266
What Is a Message-Driven Bean? .. 267

What Makes Message-Driven Beans Different from Session Beans? 267
When to Use Message-Driven Beans ... 268

Accessing Enterprise Beans .. 269
Using Enterprise Beans in Clients .. 269
Deciding on Remote or Local Access ... 270
Local Clients ... 271
Remote Clients ... 273
Web Service Clients ... 274
Method Parameters and Access .. 275

The Contents of an Enterprise Bean ... 275
Packaging Enterprise Beans in EJB JAR Modules .. 275
Packaging Enterprise Beans in WAR Modules .. 276

Naming Conventions for Enterprise Beans ... 277
The Lifecycles of Enterprise Beans .. 278

The Lifecycle of a Stateful Session Bean .. 278
The Lifecycle of a Stateless Session Bean ... 279
The Lifecycle of a Singleton Session Bean ... 279
The Lifecycle of a Message-Driven Bean ... 280

Further Information about Enterprise Beans .. 281

15 Getting Started with Enterprise Beans .. 283
Creating the Enterprise Bean ... 283

Coding the Enterprise Bean Class .. 284
Creating the converter Web Client .. 284
Building, Packaging, Deploying, and Running the converter Example 285

Modifying the Java EE Application ... 287
▼ To Modify a Class File .. 287

16 Running the Enterprise Bean Examples .. 289
The cart Example ... 289

The Business Interface ... 290
Session Bean Class ... 290
The @Remove Method ... 293

Contents

11

Helper Classes ... 294
Building, Packaging, Deploying, and Running the cart Example 294

A Singleton Session Bean Example: counter ... 296
Creating a Singleton Session Bean ... 296
The Architecture of the counter Example .. 300
Building, Packaging, Deploying, and Running the counter Example 302

A Web Service Example: helloservice ... 303
The Web Service Endpoint Implementation Class .. 304
Stateless Session Bean Implementation Class .. 304
Building, Packaging, Deploying, and Testing the helloservice Example 305

Using the Timer Service .. 306
Creating Calendar-Based Timer Expressions .. 307
Programmatic Timers ... 309
Automatic Timers .. 311
Canceling and Saving Timers ... 312
Getting Timer Information .. 312
Transactions and Timers .. 313
The timersession Example ... 313
Building, Packaging, Deploying, and Running the timersession Example 315

Handling Exceptions ... 316

17 A Message-Driven Bean Example ...319
simplemessage Example Application Overview ... 319
The simplemessage Application Client ... 320
The Message-Driven Bean Class ... 321

The onMessage Method ... 322
Packaging, Deploying, and Running the simplemessage Example .. 323

Creating the Administered Objects for the simplemessage Example 323
▼ To Build, Deploy, and Run the simplemessage Application Using NetBeans IDE 324
▼ To Build, Deploy, and Run the simplemessage Application Using Ant 325

Removing the Administered Objects for the simplemessage Example 325

Contents

The Java EE 6 Tutorial • October 201012

Part V Contexts and Dependency Injection for the Java EE Platform ...327

18 Introduction to Contexts and Dependency Injection for the Java EE Platform329
Overview of CDI .. 330
About Beans ... 331
About Managed Beans .. 331
Beans as Injectable Objects ... 332
Using Qualifiers ... 333
Injecting Beans ... 334
Using Scopes .. 334
Giving Beans EL Names .. 336
Adding Setter and Getter Methods .. 336
Using a Managed Bean in a Facelets Page ... 337
Injecting Objects by Using Producer Methods .. 337
Configuring a CDI Application ... 338
Further Information about CDI .. 338

19 Running the Basic Contexts and Dependency Injection Examples .. 339
The simplegreeting CDI Example .. 339

The simplegreeting Source Files ... 340
The Facelets Template and Page ... 340
Configuration Files .. 341
Building, Packaging, Deploying, and Running the simplegreeting CDI Example 342

The guessnumber CDI Example .. 344
The guessnumber Source Files ... 344
The Facelets Page ... 348
Building, Packaging, Deploying, and Running the guessnumber CDI Example 350

Part VI Persistence ..353

20 Introduction to the Java Persistence API .. 355
Entities .. 355

Requirements for Entity Classes .. 356
Persistent Fields and Properties in Entity Classes .. 356

Contents

13

Primary Keys in Entities .. 361
Multiplicity in Entity Relationships ... 363
Direction in Entity Relationships ... 363
Embeddable Classes in Entities .. 366

Entity Inheritance .. 367
Abstract Entities ... 367
Mapped Superclasses ... 367
Non-Entity Superclasses ... 368
Entity Inheritance Mapping Strategies .. 368

Managing Entities .. 371
The EntityManager Interface .. 371
Persistence Units .. 375

Querying Entities ... 376
Further Information about Persistence .. 377

21 Running the Persistence Examples ..379
The order Application .. 379

Entity Relationships in the order Application ... 380
Primary Keys in the order Application ... 382
Entity Mapped to More Than One Database Table ... 385
Cascade Operations in the order Application ... 385
BLOB and CLOB Database Types in the order Application .. 386
Temporal Types in the order Application .. 387
Managing the order Application’s Entities ... 387
Building, Packaging, Deploying, and Running the order Application 389

The roster Application .. 390
Relationships in the roster Application ... 391
Entity Inheritance in the roster Application ... 392
Criteria Queries in the roster Application .. 393
Automatic Table Generation in the roster Application .. 395
Building, Packaging, Deploying, and Running the roster Application 395

The address-book Application ... 398
Bean Validation Constraints in address-book .. 398
Specifying Error Messages for Constraints in address-book .. 399
Validating Contact Input from a JavaServer Faces Application .. 399

Contents

The Java EE 6 Tutorial • October 201014

Building, Packaging, Deploying, and Running the address-book Application 400

22 The Java Persistence Query Language .. 403
Query Language Terminology ... 404
Creating Queries Using the Java Persistence Query Language .. 404

Named Parameters in Queries .. 405
Positional Parameters in Queries ... 405

Simplified Query Language Syntax ... 406
Select Statements .. 406
Update and Delete Statements ... 406

Example Queries .. 407
Simple Queries ... 407
Queries That Navigate to Related Entities .. 408
Queries with Other Conditional Expressions .. 409
Bulk Updates and Deletes ... 411

Full Query Language Syntax .. 411
BNF Symbols .. 411
BNF Grammar of the Java Persistence Query Language ... 412
FROM Clause ... 416
Path Expressions .. 419
WHERE Clause ... 421
SELECT Clause ... 431
ORDER BY Clause ... 433
GROUP BY and HAVING Clauses .. 433

23 Using the Criteria API to Create Queries .. 435
Overview of the Criteria and Metamodel APIs .. 435
Using the Metamodel API to Model Entity Classes ... 437

Using Metamodel Classes ... 438
Using the Criteria API and Metamodel API to Create Basic Typesafe Queries 438

Creating a Criteria Query .. 438
Query Roots .. 439
Querying Relationships Using Joins .. 440
Path Navigation in Criteria Queries .. 441
Restricting Criteria Query Results ... 441

Contents

15

Managing Criteria Query Results .. 444
Executing Queries .. 445

Part VII Security ...447

24 Introduction to Security in the Java EE Platform ... 449
Overview of Java EE Security ... 450

A Simple Security Example ... 450
Features of a Security Mechanism .. 453
Characteristics of Application Security ... 454

Security Mechanisms .. 455
Java SE Security Mechanisms ... 455
Java EE Security Mechanisms ... 456

Securing Containers .. 458
Using Annotations to Specify Security Information ... 458
Using Deployment Descriptors for Declarative Security .. 459
Using Programmatic Security .. 459

Securing the GlassFish Server .. 460
Working with Realms, Users, Groups, and Roles .. 460

What Are Realms, Users, Groups, and Roles? .. 461
Managing Users and Groups on the GlassFish Server ... 464
Setting Up Security Roles .. 466
Mapping Roles to Users and Groups ... 467

Establishing a Secure Connection Using SSL ... 468
Verifying and Configuring SSL Support ... 469
Working with Digital Certificates .. 470

Further Information about Security .. 473

25 Getting Started Securing Web Applications ... 475
Overview of Web Application Security .. 475
Securing Web Applications .. 477

Specifying Security Constraints ... 477
Specifying Authentication Mechanisms ... 481
Declaring Security Roles ... 487

Contents

The Java EE 6 Tutorial • October 201016

Using Programmatic Security with Web Applications ... 488
Authenticating Users Programmatically ... 488
Checking Caller Identity Programmatically ... 490
Example Code for Programmatic Security ... 491
Declaring and Linking Role References .. 492

Examples: Securing Web Applications ... 493
▼ To Set Up Your System for Running the Security Examples .. 493

Example: Basic Authentication with a Servlet .. 494
Example: Form-Based Authentication with a JavaServer Faces Application 498

26 Getting Started Securing Enterprise Applications .. 503
Securing Enterprise Beans .. 503

Securing an Enterprise Bean Using Declarative Security .. 506
Securing an Enterprise Bean Programmatically .. 510
Propagating a Security Identity (Run-As) ... 511
Deploying Secure Enterprise Beans ... 513

Examples: Securing Enterprise Beans ... 513
Example: Securing an Enterprise Bean with Declarative Security 514
Example: Securing an Enterprise Bean with Programmatic Security 518

Securing Application Clients ... 521
Using Login Modules .. 521
Using Programmatic Login .. 522

Securing Enterprise Information Systems Applications ... 522
Container-Managed Sign-On .. 523
Component-Managed Sign-On ... 523
Configuring Resource Adapter Security ... 523

▼ To Map an Application Principal to EIS Principals ... 525

Part VIII Java EE Supporting Technologies ... 527

27 Introduction to Java EE Supporting Technologies ... 529
Transactions ... 529
Resources .. 530

The Java EE Connector Architecture and Resource Adapters ... 530

Contents

17

Java Database Connectivity Software .. 530
Java Message Service ... 531

28 Transactions .. 533
What Is a Transaction? ... 533
Container-Managed Transactions .. 534

Transaction Attributes .. 535
Rolling Back a Container-Managed Transaction .. 539
Synchronizing a Session Bean’s Instance Variables ... 539
Methods Not Allowed in Container-Managed Transactions ... 539

Bean-Managed Transactions ... 540
JTA Transactions ... 540
Returning without Committing ... 541
Methods Not Allowed in Bean-Managed Transactions .. 541

Transaction Timeouts ... 541
▼ To Set a Transaction Timeout .. 541

Updating Multiple Databases .. 542
Transactions in Web Components ... 543
Further Information about Transactions ... 543

29 Resource Connections ..545
Resources and JNDI Naming ... 545
DataSource Objects and Connection Pools ... 546
Resource Injection ... 547

Field-Based Injection ... 548
Method-Based Injection .. 549
Class-Based Injection .. 550

Resource Adapters and Contracts ... 550
Management Contracts ... 551
Generic Work Context Contract ... 553
Outbound and Inbound Contracts .. 553

Metadata Annotations .. 554
Common Client Interface .. 556
Further Information about Resources .. 557

Contents

The Java EE 6 Tutorial • October 201018

30 Java Message Service Concepts ..559
Overview of the JMS API .. 559

What Is Messaging? ... 559
What Is the JMS API? .. 560
When Can You Use the JMS API? ... 560
How Does the JMS API Work with the Java EE Platform? ... 561

Basic JMS API Concepts ... 562
JMS API Architecture .. 563
Messaging Domains ... 563
Message Consumption .. 566

The JMS API Programming Model ... 566
JMS Administered Objects ... 567
JMS Connections ... 569
JMS Sessions ... 569
JMS Message Producers .. 570
JMS Message Consumers .. 571
JMS Messages ... 573
JMS Queue Browsers ... 575
JMS Exception Handling ... 575

Creating Robust JMS Applications .. 576
Using Basic Reliability Mechanisms .. 577
Using Advanced Reliability Mechanisms ... 581

Using the JMS API in Java EE Applications ... 585
Using @Resource Annotations in Enterprise Bean or Web Components 585
Using Session Beans to Produce and to Synchronously Receive Messages 586
Using Message-Driven Beans to Receive Messages Asynchronously 587
Managing Distributed Transactions .. 589
Using the JMS API with Application Clients and Web Components 591

Further Information about JMS ... 592

31 Java Message Service Examples ...593
Writing Simple JMS Applications ... 594

A Simple Example of Synchronous Message Receives .. 594
A Simple Example of Asynchronous Message Consumption .. 603
A Simple Example of Browsing Messages in a Queue ... 608

Contents

19

Running JMS Clients on Multiple Systems ... 613
Undeploying and Cleaning the Simple JMS Examples .. 619

Writing Robust JMS Applications ... 619
A Message Acknowledgment Example ... 620
A Durable Subscription Example ... 623
A Local Transaction Example .. 625

An Application That Uses the JMS API with a Session Bean ... 631
Writing the Application Components for the clientsessionmdb Example 631
Creating Resources for the clientsessionmdb Example ... 633

▼ To Build, Package, Deploy, and Run the clientsessionmdb Example Using NetBeans
IDE ... 634

▼ To Build, Package, Deploy, and Run the clientsessionmdb Example Using Ant 635
An Application That Uses the JMS API with an Entity ... 635

Overview of the clientmdbentity Example Application .. 636
Writing the Application Components for the clientmdbentity Example 637
Creating Resources for the clientmdbentity Example ... 639

▼ To Build, Package, Deploy, and Run the clientmdbentity Example Using NetBeans
IDE ... 640

▼ To Build, Package, Deploy, and Run the clientmdbentity Example Using Ant 641
An Application Example That Consumes Messages from a Remote Server 643

Overview of the consumeremote Example Modules .. 644
Writing the Module Components for the consumeremote Example 645
Creating Resources for the consumeremote Example ... 645
Using Two Application Servers for the consumeremote Example 645

▼ To Build, Package, Deploy, and Run the consumeremoteModules Using NetBeans IDE . 646
▼ To Build, Package, Deploy, and Run the consumeremote Modules Using Ant 647

An Application Example That Deploys a Message-Driven Bean on Two Servers 649
Overview of the sendremote Example Modules .. 650
Writing the Module Components for the sendremote Example ... 651
Creating Resources for the sendremote Example .. 652

▼ To Use Two Application Servers for the sendremote Example ... 653
▼ To Build, Package, Deploy, and Run the sendremote Modules Using NetBeans IDE 653
▼ To Build, Package, Deploy, and Run the sendremote Modules Using Ant 656

32 Advanced Bean Validation Concepts and Examples ... 659
Creating Custom Constraints .. 659

Contents

The Java EE 6 Tutorial • October 201020

Using the Built-In Constraints To Make a New Constraint ... 659
Customizing Validator Messages .. 660

The ValidationMessages Resource Bundle .. 660
Grouping Constraints ... 661

Customizing Group Validation Order .. 661

Index ... 663

Contents

21

22

Preface

This tutorial is a guide to developing enterprise applications for the Java Platform, Enterprise
Edition 6 (Java EE 6) using GlassFish Server Open Source Edition.

Oracle GlassFish Server, a Java EE compatible application server, is based on GlassFish Server
Open Source Edition, the leading open-source and open-community platform for building and
deploying next-generation applications and services. GlassFish Server Open Source Edition,
developed by the GlassFish project open-source community at https://
glassfish.dev.java.net/, is the first compatible implementation of the Java EE 6 platform
specification. This lightweight, flexible, and open-source application server enables
organizations not only to leverage the new capabilities introduced within the Java EE 6
specification, but also to add to their existing capabilities through a faster and more streamlined
development and deployment cycle. Oracle GlassFish Server, the product version, and
GlassFish Server Open Source Edition, the open-source version, are hereafter referred to as
GlassFish Server.

The following topics are addressed here:

■ “Before You Read This Book” on page 23
■ “Oracle GlassFish Server Documentation Set” on page 24
■ “Related Documentation” on page 25
■ “Symbol Conventions” on page 26
■ “Typographic Conventions” on page 26
■ “Default Paths and File Names” on page 27
■ “Documentation, Support, and Training” on page 28
■ “Searching Oracle Product Documentation” on page 28
■ “Third-Party Web Site References” on page 28

Before You Read This Book
Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java Tutorial,
Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006).

23

https://glassfish.dev.java.net/
https://glassfish.dev.java.net/

Oracle GlassFish Server Documentation Set
The GlassFish Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for GlassFish Server documentation is
http://docs.sun.com/coll/1343.13. For an introduction to GlassFish Server, refer to the
books in the order in which they are listed in the following table.

TABLE P–1 Books in the GlassFish Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK), and
database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server. This guide
also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications.

Administration Guide Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Application Deployment Guide Explains how to assemble and deploy applications to the GlassFish Server
and provides information about deployment descriptors.

Your First Cup: An Introduction
to the Java EE Platform

For beginning Java EE programmers, provides a short tutorial that explains
the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on
the Enterprise JavaBeans specification, a JAX-RS web service, and a
JavaServer Faces component for the web front end.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the GlassFish
Server. These applications follow the open Java standards model for Java EE
components and application programmer interfaces (APIs). This guide
provides information about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to develop
add-on components for GlassFish Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for GlassFish Server.

Preface

The Java EE 6 Tutorial • October 201024

http://docs.sun.com/coll/1343.13
http://docs.sun.com/doc/821-1759
http://docs.sun.com/doc/821-1757
http://docs.sun.com/doc/821-1756
http://docs.sun.com/doc/821-1762
http://docs.sun.com/doc/821-1751
http://docs.sun.com/doc/821-1758/asadmin-1m?a=view
http://docs.sun.com/doc/821-1750
http://docs.sun.com/doc/821-1770
http://docs.sun.com/doc/821-1770
http://docs.sun.com/doc/821-1752
http://docs.sun.com/doc/821-1749
http://docs.sun.com/doc/821-1749

TABLE P–1 Books in the GlassFish Server Documentation Set (Continued)
Book Title Description

Embedded Server Guide Explains how to run applications in embedded GlassFish Server and to
develop applications in which GlassFish Server is embedded.

Scripting Framework Guide Explains how to develop scripting applications in such languages as Ruby on
Rails and Groovy on Grails for deployment to GlassFish Server.

Troubleshooting Guide Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using GlassFish
Server.

Reference Manual Provides reference information in man page format for GlassFish Server
administration commands, utility commands, and related concepts.

Domain File Format Reference Describes the format of the GlassFish Server configuration file, domain.xml.

Java EE 6 Tutorial Explains how to use Java EE 6 platform technologies and APIs to develop
Java EE applications.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for GlassFish
Message Queue.

Message Queue Administration
Guide

Explains how to set up and manage a Message Queue messaging system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue for
programmatically configuring and monitoring Message Queue resources in
conformance with the Java Management Extensions (JMX).

Related Documentation
Javadoc tool reference documentation for packages that are provided with GlassFish Server is
available as follows.

■ The API specification for version 6 of Java EE is located at http://download.oracle.com/
javaee/6/api/.

■ The API specification for GlassFish Server 3.0.1, including Java EE 6 platform packages and
nonplatform packages that are specific to the GlassFish Server product, is located at
https://glassfish.dev.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications at http://www.oracle.com/technetwork/java/
javaee/tech/index.html might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/.

Preface

25

http://docs.sun.com/doc/821-1754
http://docs.sun.com/doc/821-1760
http://docs.sun.com/doc/821-1761
http://docs.sun.com/doc/821-1755
http://docs.sun.com/doc/821-1758
http://docs.sun.com/doc/821-1753
http://docs.sun.com/doc/821-1841
http://docs.sun.com/doc/821-1799
http://docs.sun.com/doc/821-1794
http://docs.sun.com/doc/821-1794
http://docs.sun.com/doc/821-1797
http://docs.sun.com/doc/821-1797
http://download.oracle.com/javaee/6/api/
http://download.oracle.com/javaee/6/api/
https://glassfish.dev.java.net/nonav/docs/v3/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/

For information about the Java DB database for use with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad
range of Java EE technologies. The GlassFish Samples are bundled with the Java EE Software
Development Kit (SDK) and are also available from the GlassFish Samples project page at
https://glassfish-samples.dev.java.net/.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–2 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Preface

The Java EE 6 Tutorial • October 201026

http://www.oracle.com/technetwork/java/javadb/overview/index.html
https://glassfish-samples.dev.java.net/

TABLE P–3 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation
directory for the GlassFish Server
or the SDK of which the
GlassFish Server is a part.

Installations on the Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfishv3/glassfish

Windows, all installations:

SystemDrive:\glassfishv3\glassfish

as-install-parent Represents the parent of the base
installation directory for
GlassFish Server.

Installations on the Solaris operating system, Linux
operating system, and Mac operating system:

user’s-home-directory/glassfishv3

Windows, all installations:

SystemDrive:\glassfishv3

tut-install Represents the base installation
directory for the Java EE Tutorial
after you install the GlassFish
Server or the SDK and run the
Update Tool.

as-install/docs/javaee-tutorial

domain-root-dir Represents the directory in which
a domain is created by default.

as-install/domains/

Preface

27

TABLE P–4 Default Paths and File Names (Continued)
Placeholder Description Default Value

domain-dir Represents the directory in which
a domain’s configuration is
stored.

In configuration files, domain-dir
is represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.sun.com/)
■ Support (http://www.sun.com/support/)
■ Training (http://education.oracle.com/)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the http://docs.sun.com web site, you
can use a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Oracle web sites in your search (for example, the Java Developer site on the
Oracle Technology Network at http://www.oracle.com/technetwork/java/index.html),
use oracle.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Preface

The Java EE 6 Tutorial • October 201028

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/
http://docs.sun.com
http://www.oracle.com/technetwork/java/index.html

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Preface

29

30

Introduction
Part I introduces the platform, the tutorial, and the examples. This part contains the
following chapters:

■ Chapter 1, “Overview”
■ Chapter 2, “Using the Tutorial Examples”

P A R T I

31

32

Overview

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology.
Enterprise applications provide the business logic for an enterprise. They are centrally managed
and often interact with other enterprise software. In the world of information technology,
enterprise applications must be designed, built, and produced for less money, with greater
speed, and with fewer resources.

With the Java Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to provide
developers with a powerful set of APIs while shortening development time, reducing
application complexity, and improving application performance.

The Java EE platform is developed through the Java Community Process (the JCP), which is
responsible for all Java technologies. Expert groups, composed of interested parties, have
created Java Specification Requests (JSRs) to define the various Java EE technologies. The work
of the Java Community under the JCP program helps to ensure Java technology’s standard of
stability and cross-platform compatibility.

The Java EE platform uses a simplified programming model. XML deployment descriptors are
optional. Instead, a developer can simply enter the information as an annotation directly into a
Java source file, and the Java EE server will configure the component at deployment and
runtime. These annotations are generally used to embed in a program data that would
otherwise be furnished in a deployment descriptor. With annotations, you put the specification
information in your code next to the program element affected.

In the Java EE platform, dependency injection can be applied to all resources that a component
needs, effectively hiding the creation and lookup of resources from application code.
Dependency injection can be used in EJB containers, web containers, and application clients.
Dependency injection allows the Java EE container to automatically insert references to other
required components or resources, using annotations.

1C H A P T E R 1

33

This tutorial uses examples to describe the features available in the Java EE platform for
developing enterprise applications. Whether you are a new or experienced Enterprise
developer, you should find the examples and accompanying text a valuable and accessible
knowledge base for creating your own solutions.

If you are new to Java EE enterprise application development, this chapter is a good place to
start. Here you will review development basics, learn about the Java EE architecture and APIs,
become acquainted with important terms and concepts, and find out how to approach Java EE
application programming, assembly, and deployment.

The following topics are addressed here:

■ “Java EE 6 Platform Highlights” on page 34
■ “Java EE Application Model” on page 35
■ “Distributed Multitiered Applications” on page 35
■ “Java EE Containers” on page 43
■ “Web Services Support” on page 45
■ “Java EE Application Assembly and Deployment” on page 46
■ “Packaging Applications” on page 47
■ “Development Roles” on page 48
■ “Java EE 6 APIs” on page 51
■ “Java EE 6 APIs in the Java Platform, Standard Edition 6.0” on page 60
■ “GlassFish Server Tools” on page 62

Java EE 6 Platform Highlights
The most important goal of the Java EE 6 platform is to simplify development by providing a
common foundation for the various kinds of components in the Java EE platform. Developers
benefit from productivity improvements with more annotations and less XML configuration,
more Plain Old Java Objects (POJOs), and simplified packaging. The Java EE 6 platform
includes the following new features:

■ Profiles: configurations of the Java EE platform targeted at specific classes of applications.
Specifically, the Java EE 6 platform introduces a lightweight Web Profile targeted at
next-generation web applications, as well as a Full Profile that contains all Java EE
technologies and provides the full power of the Java EE 6 platform for enterprise
applications.

■ New technologies, including the following:
■ Java API for RESTful Web Services (JAX-RS)
■ Managed Beans
■ Contexts and Dependency Injection for the Java EE Platform (JSR 299), informally

known as CDI
■ Dependency Injection for Java (JSR 330)

Java EE 6 Platform Highlights

The Java EE 6 Tutorial • October 201034

■ Bean Validation (JSR 303)
■ Java Authentication Service Provider Interface for Containers (JASPIC)

■ New features for Enterprise JavaBeans (EJB) components (see “Enterprise JavaBeans
Technology” on page 54 for details)

■ New features for servlets (see “Java Servlet Technology” on page 55 for details)
■ New features for JavaServer Faces components (see “JavaServer Faces Technology” on

page 55 for details)

Java EE Application Model
The Java EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide forms the
basis of the application model. Java EE is designed to support applications that implement
enterprise services for customers, employees, suppliers, partners, and others who make
demands on or contributions to the enterprise. Such applications are inherently complex,
potentially accessing data from a variety of sources and distributing applications to a variety of
clients.

To better control and manage these applications, the business functions to support these
various users are conducted in the middle tier. The middle tier represents an environment that
is closely controlled by an enterprise’s information technology department. The middle tier is
typically run on dedicated server hardware and has access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by
enterprise-level applications. This model partitions the work needed to implement a multitier
service into the following parts:

■ The business and presentation logic to be implemented by the developer
■ The standard system services provided by the Java EE platform

The developer can rely on the platform to provide solutions for the hard systems-level problems
of developing a multitier service.

Distributed Multitiered Applications
The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
application components that make up a Java EE application are installed on various machines,
depending on the tier in the multitiered Java EE environment to which the application
component belongs.

Distributed Multitiered Applications

Chapter 1 • Overview 35

Figure 1–1 shows two multitiered Java EE applications divided into the tiers described in the
following list. The Java EE application parts shown in Figure 1–1 are presented in “Java EE
Components” on page 38.

■ Client-tier components run on the client machine.
■ Web-tier components run on the Java EE server.
■ Business-tier components run on the Java EE server.
■ Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in Figure 1–1, Java
EE multitiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine, and the
database or legacy machines at the back end. Three-tiered applications that run in this way
extend the standard two-tiered client-and-server model by placing a multithreaded application
server between the client application and back-end storage.

Distributed Multitiered Applications

The Java EE 6 Tutorial • October 201036

Security
Although other enterprise application models require platform-specific security measures in
each application, the Java EE security environment enables security constraints to be defined at
deployment time. The Java EE platform makes applications portable to a wide variety of
security implementations by shielding application developers from the complexity of
implementing security features.

The Java EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Java EE also provides
standard login mechanisms so application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of security
environments without changing the source code.

FIGURE 1–1 Multitiered Applications

Java EE
Application 1

Java EE
Application 2

Client
Tier

Client
Machine

Java EE
Server

Database
Server

Web
Tier

Database

JavaServer
Faces
Pages

Business
Tier

EIS
Tier

Enterprise
Beans

Database

Web
Pages

Application
Client

Enterprise
Beans

Distributed Multitiered Applications

Chapter 1 • Overview 37

Java EE Components
Java EE applications are made up of components. A Java EE component is a self-contained
functional software unit that is assembled into a Java EE application with its related classes and
files and that communicates with other components.

The Java EE specification defines the following Java EE components.

■ Application clients and applets are components that run on the client.
■ Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology components are web

components that run on the server.
■ Enterprise JavaBeans (EJB) components (enterprise beans) are business components that

run on the server.

Java EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The difference between Java EE components and
“standard” Java classes is that Java EE components are assembled into a Java EE application, are
verified to be well formed and in compliance with the Java EE specification, and are deployed to
production, where they are run and managed by the Java EE server.

Java EE Clients
A Java EE client is usually either a web client or an application client.

Web Clients
A web client consists of two parts:

■ Dynamic web pages containing various types of markup language (HTML, XML, and so
on), which are generated by web components running in the web tier

■ A web browser, which renders the pages received from the server

A web client is sometimes called a thin client. Thin clients usually do not query databases,
execute complex business rules, or connect to legacy applications. When you use a thin client,
such heavyweight operations are off-loaded to enterprise beans executing on the Java EE server,
where they can leverage the security, speed, services, and reliability of Java EE server-side
technologies.

Application Clients
An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. An application client
typically has a graphical user interface (GUI) created from the Swing or the Abstract Window
Toolkit (AWT) API, but a command-line interface is certainly possible.

Distributed Multitiered Applications

The Java EE 6 Tutorial • October 201038

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Java EE servers, enabling the Java EE platform to
interoperate with legacy systems, clients, and non-Java languages.

Applets
A web page received from the web tier can include an embedded applet. Written in the Java
programming language, an applet is a small client application that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in
and possibly a security policy file for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program, because no plug-ins
or security policy files are needed on the client systems. Also, web components enable cleaner
and more modular application design because they provide a way to separate applications
programming from web page design. Personnel involved in web page design thus do not need
to understand Java programming language syntax to do their jobs.

The JavaBeans Component Architecture
The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between the following:

■ An application client or applet and components running on the Java EE server
■ Server components and a database

JavaBeans components are not considered Java EE components by the Java EE specification.

JavaBeans components have properties and have get and set methods for accessing the
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Java EE Server Communications
Figure 1–2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or, as in the
case of a client running in a browser, by going through web pages or servlets running in the web
tier.

Distributed Multitiered Applications

Chapter 1 • Overview 39

Web Components
Java EE web components are either servlets or web pages created using JavaServer Faces
technology and/or JSP technology (JSP pages). Servlets are Java programming language classes
that dynamically process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static content. JavaServer
Faces technology builds on servlets and JSP technology and provides a user interface component
framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly
but are not considered web components by the Java EE specification. Server-side utility classes
can also be bundled with web components and, like HTML pages, are not considered web
components.

As shown in Figure 1–3, the web tier, like the client tier, might include a JavaBeans component
to manage the user input and send that input to enterprise beans running in the business tier for
processing.

FIGURE 1–2 Server Communication

Application Client and
Optional JavaBeans
Components

Web Browser, Web
Pages, Applets,
and Optional
JavaBeans
Components Client

Tier

Web Tier

Java EE
Server

Business Tier

Distributed Multitiered Applications

The Java EE 6 Tutorial • October 201040

Business Components
Business code, which is logic that solves or meets the needs of a particular business domain,
such as banking, retail, or finance, is handled by enterprise beans running in either the business
tier or the web tier. Figure 1–4 shows how an enterprise bean receives data from client
programs, processes it (if necessary), and sends it to the enterprise information system tier for
storage. An enterprise bean also retrieves data from storage, processes it (if necessary), and
sends it back to the client program.

FIGURE 1–3 Web Tier and Java EE Applications

Application Client
and Optional
JavaBeans
Components

JavaBeans
Components
(Optional)

Web Pages
Servlets

Web Browser, Web
Pages, Applets,
and Optional
JavaBeans
Components

Client
Tier

Web
Tier

Java EE
ServerBusiness

Tier

Distributed Multitiered Applications

Chapter 1 • Overview 41

Enterprise Information System Tier
The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems, such as enterprise resource planning (ERP), mainframe transaction
processing, database systems, and other legacy information systems. For example, Java EE
application components might need access to enterprise information systems for database
connectivity.

FIGURE 1–4 Business and EIS Tiers

Application Client and
Optional JavaBeans
Components

JavaBeans
Components
(Optional)

Web Pages
Servlets

Web Browser, Web
Pages, Applets, and
Optional JavaBeans
Components

Client
Tier

Web
Tier

EIS
Tier

Database
and Legacy
Systems

Java EE
Server

Java Persistence Entities
Session Beans
Message-Driven Beans

Business
Tier

Distributed Multitiered Applications

The Java EE 6 Tutorial • October 201042

Java EE Containers
Normally, thin-client multitiered applications are hard to write because they involve many lines
of intricate code to handle transaction and state management, multithreading, resource
pooling, and other complex low-level details. The component-based and platform-independent
Java EE architecture makes Java EE applications easy to write because business logic is
organized into reusable components. In addition, the Java EE server provides underlying
services in the form of a container for every component type. Because you do not have to
develop these services yourself, you are free to concentrate on solving the business problem at
hand.

Container Services
Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise bean, or
application client component must be assembled into a Java EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Java EE
application and for the Java EE application itself. Container settings customize the underlying
support provided by the Java EE server, including such services as security, transaction
management, Java Naming and Directory Interface (JNDI) API lookups, and remote
connectivity. Here are some of the highlights.

■ The Java EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

■ The Java EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

■ JNDI lookup services provide a unified interface to multiple naming and directory services
in the enterprise so that application components can access these services.

■ The Java EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if
it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application components within
the same Java EE application can behave differently based on where they are deployed. For
example, an enterprise bean can have security settings that allow it a certain level of access to
database data in one production environment and another level of database access in another
production environment.

The container also manages nonconfigurable services, such as enterprise bean and servlet
lifecycles, database connection resource pooling, data persistence, and access to the Java EE
platform APIs (see “Java EE 6 APIs” on page 51).

Java EE Containers

Chapter 1 • Overview 43

Container Types
The deployment process installs Java EE application components in the Java EE containers as
illustrated in Figure 1–5.

■ Java EE server: The runtime portion of a Java EE product. A Java EE server provides EJB and
web containers.

■ Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans for Java
EE applications. Enterprise beans and their container run on the Java EE server.

■ Web container: Manages the execution of web pages, servlets, and some EJB components
for Java EE applications. Web components and their container run on the Java EE server.

FIGURE 1–5 Java EE Server and Containers

Application Client
Container

Client
Machine

Java EE
Server

Web
Container

Web PageServlet

EJB
Container

Enterprise
Bean

Web
BrowserApplication

Client

Enterprise
Bean

Database

Java EE Containers

The Java EE 6 Tutorial • October 201044

■ Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

■ Applet container: Manages the execution of applets. Consists of a web browser and Java
Plug-in running on the client together.

Web Services Support
Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Java EE platform provides the
XML APIs and tools you need to quickly design, develop, test, and deploy web services and
clients that fully interoperate with other web services and clients running on Java-based or
non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass parameter data
to the method calls and process the data returned; for document-oriented web services, you
send documents containing the service data back and forth. No low-level programming is
needed, because the XML API implementations do the work of translating the application data
to and from an XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web services
and clients written with the Java EE XML APIs fully interoperable. This does not necessarily
mean that the data being transported includes XML tags, because the transported data can itself
be plain text, XML data, or any kind of binary data, such as audio, video, maps, program files,
computer-aided design (CAD) documents, and the like. The next section introduces XML and
explains how parties doing business can use XML tags and schemas to exchange data in a
meaningful way.

XML
Extensible Markup Language (XML) is a cross-platform, extensible, text-based standard for
representing data. Parties that exchange XML data can create their own tags to describe the
data, set up schemas to specify which tags can be used in a particular kind of XML document,
and use XML style sheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies
that receive the price lists and schema can have their own style sheets to handle the data in a way
that best suits their needs. Here are examples.
■ One company might put XML pricing information through a program to translate the XML

to HTML so that it can post the price lists to its intranet.
■ A partner company might put the XML pricing information through a tool to create a

marketing presentation.

Web Services Support

Chapter 1 • Overview 45

■ Another company might read the XML pricing information into an application for
processing.

SOAP Transport Protocol
Client requests and web service responses are transmitted as Simple Object Access Protocol
(SOAP) messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet.
HTTP is a familiar request-and-response standard for sending messages over the Internet, and
SOAP is an XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message does the following:

■ Defines an XML-based envelope to describe what is in the message and explain how to
process the message

■ Includes XML-based encoding rules to express instances of application-defined data types
within the message

■ Defines an XML-based convention for representing the request to the remote service and
the resulting response

WSDL Standard Format
The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service,
and ways to communicate with the service. WSDL service descriptions can be published on the
Web. GlassFish Server provides a tool for generating the WSDL specification of a web service
that uses remote procedure calls to communicate with clients.

Java EE Application Assembly and Deployment
A Java EE application is packaged into one or more standard units for deployment to any Java
EE platform-compliant system. Each unit contains

■ A functional component or components, such as an enterprise bean, web page, servlet, or
applet

■ An optional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment typically
involves using a platform’s deployment tool to specify location-specific information, such as a
list of local users who can access it and the name of the local database. Once deployed on a local
platform, the application is ready to run.

Java EE Application Assembly and Deployment

The Java EE 6 Tutorial • October 201046

Packaging Applications
A Java EE application is delivered in a Java Archive (JAR) file, a Web Archive (WAR) file, or an
Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (.jar) file with a .war or
.ear extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a
number of different Java EE applications using some of the same components. No extra coding
is needed; it is only a matter of assembling (or packaging) various Java EE modules into Java EE
JAR, WAR, or EAR files.

An EAR file (see Figure 1–6) contains Java EE modules and, optionally, deployment descriptors.
A deployment descriptor, an XML document with an .xml extension, describes the deployment
settings of an application, a module, or a component. Because deployment descriptor
information is declarative, it can be changed without the need to modify the source code. At
runtime, the Java EE server reads the deployment descriptor and acts upon the application,
module, or component accordingly.

The two types of deployment descriptors are Java EE and runtime. A Java EE deployment
descriptor is defined by a Java EE specification and can be used to configure deployment settings
on any Java EE-compliant implementation. A runtime deployment descriptor is used to
configure Java EE implementation-specific parameters. For example, the GlassFish Server
runtime deployment descriptor contains such information as the context root of a web
application, as well as GlassFish Server implementation-specific parameters, such as caching

FIGURE 1–6 EAR File Structure

Assembly Root

Web
Module

Application Client
Module

Resource Adapter
Module

EJB
Module

META-INF

application.xml
sun-application.xml
(optional)

Packaging Applications

Chapter 1 • Overview 47

directives. The GlassFish Server runtime deployment descriptors are named
sun-moduleType.xml and are located in the same META-INF directory as the Java EE
deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container type and,
optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations
for an enterprise bean. A Java EE module can be deployed as a stand-alone module.

Java EE modules are of the following types:
■ EJB modules, which contain class files for enterprise beans and an EJB deployment

descriptor. EJB modules are packaged as JAR files with a .jar extension.
■ Web modules, which contain servlet class files, web files, supporting class files, GIF and

HTML files, and a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (web archive) extension.

■ Application client modules, which contain class files and an application client deployment
descriptor. Application client modules are packaged as JAR files with a .jar extension.

■ Resource adapter modules, which contain all Java interfaces, classes, native libraries, and
other documentation, along with the resource adapter deployment descriptor. Together,
these implement the Connector architecture (see “Java EE Connector Architecture” on
page 58) for a particular EIS. Resource adapter modules are packaged as JAR files with an
.rar (resource adapter archive) extension.

Development Roles
Reusable modules make it possible to divide the application development and deployment
process into distinct roles so that different people or companies can perform different parts of
the process.

The first two roles, Java EE product provider and tool provider, involve purchasing and
installing the Java EE product and tools. After software is purchased and installed, Java EE
components can be developed by application component providers, assembled by application
assemblers, and deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works because each
of the earlier roles outputs a portable file that is the input for a subsequent role. For example, in
the application component development phase, an enterprise bean software developer delivers
EJB JAR files. In the application assembly role, another developer may combine these EJB JAR
files into a Java EE application and save it in an EAR file. In the application deployment role, a
system administrator at the customer site uses the EAR file to install the Java EE application into
a Java EE server.

The different roles are not always executed by different people. If you work for a small company,
for example, or if you are prototyping a sample application, you might perform the tasks in
every phase.

Development Roles

The Java EE 6 Tutorial • October 201048

Java EE Product Provider
The Java EE product provider is the company that designs and makes available for purchase the
Java EE platform APIs and other features defined in the Java EE specification. Product providers
are typically application server vendors that implement the Java EE platform according to the
Java EE 6 Platform specification.

Tool Provider
The tool provider is the company or person who creates development, assembly, and packaging
tools used by component providers, assemblers, and deployers.

Application Component Provider
The application component provider is the company or person who creates web components,
enterprise beans, applets, or application clients for use in Java EE applications.

Enterprise Bean Developer
An enterprise bean developer performs the following tasks to deliver an EJB JAR file that
contains one or more enterprise beans:
■ Writes and compiles the source code
■ Specifies the deployment descriptor (optional)
■ Packages the .class files and deployment descriptor into the EJB JAR file

Web Component Developer
A web component developer performs the following tasks to deliver a WAR file containing one
or more web components:

■ Writes and compiles servlet source code
■ Writes JavaServer Faces, JSP, and HTML files
■ Specifies the deployment descriptor (optional)
■ Packages the .class, .jsp, and.html files and deployment descriptor into the WAR file

Application Client Developer
An application client developer performs the following tasks to deliver a JAR file containing the
application client:

■ Writes and compiles the source code
■ Specifies the deployment descriptor for the client (optional)

Development Roles

Chapter 1 • Overview 49

■ Packages the .class files and deployment descriptor into the JAR file

Application Assembler
The application assembler is the company or person who receives application modules from
component providers and may assemble them into a Java EE application EAR file. The
assembler or deployer can edit the deployment descriptor directly or can use tools that correctly
add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing the Java EE
application:

■ Assembles EJB JAR and WAR files created in the previous phases into a Java EE application
(EAR) file

■ Specifies the deployment descriptor for the Java EE application (optional)
■ Verifies that the contents of the EAR file are well formed and comply with the Java EE

specification

Application Deployer and Administrator
The application deployer and administrator is the company or person who configures and
deploys the Java EE application, administers the computing and networking infrastructure
where Java EE applications run, and oversees the runtime environment. Duties include setting
transaction controls and security attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the application component
provider to resolve external dependencies, specify security settings, and assign transaction
attributes. During installation, the deployer moves the application components to the server
and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and configure a Java
EE application:

■ Configures the Java EE application for the operational environment
■ Verifies that the contents of the EAR file are well formed and comply with the Java EE

specification
■ Deploys (installs) the Java EE application EAR file into the Java EE server

Development Roles

The Java EE 6 Tutorial • October 201050

Java EE 6 APIs
Figure 1–7 shows the relationships among the Java EE containers.

Figure 1–8 shows the availability of the Java EE 6 APIs in the web container.

FIGURE 1–7 Java EE Containers

HTTP
SSL

Applet
Container

Web Container EJB
Container

Application Client
Container

Application Client

EJB
JavaServer
Faces

Applet
Servlet

HTTP
SSL

Database

Java EE 6 APIs

Chapter 1 • Overview 51

Figure 1–9 shows the availability of the Java EE 6 APIs in the EJB container.

FIGURE 1–8 Java EE APIs in the Web Container

Web
Container

JavaServer
Faces

Servlet

New in Java EE 6

JSR 330

Interceptors

Managed Beans

JSR 299

Bean Validation

EJB Lite

EL

JavaMail

JSP

Connectors

Java Persistence

JMS

Management

WS Metadata

Web Services

JACC

JASPIC

JAX-RS

JAX-WS

JAX-RPC S
A

A
J

Java SE

Java EE 6 APIs

The Java EE 6 Tutorial • October 201052

Figure 1–10 shows the availability of the Java EE 6 APIs in the application client container.

FIGURE 1–9 Java EE APIs in the EJB Container

EJB
Container

EJB

New in Java EE 6

JSR 330

Interceptors

Managed Beans

JSR 299

Bean Validation

JavaMail

Java Persistence

JTA

Connectors

JMS

Management

WS Management

Web Services

JACC

JASPIC

JAXR

JAX-RS

JAX-WS

JAX-RPC S
A

A
J

Java SE

Java EE 6 APIs

Chapter 1 • Overview 53

The following sections give a brief summary of the technologies required by the Java EE
platform and the APIs used in Java EE applications.

Enterprise JavaBeans Technology
An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having fields
and methods to implement modules of business logic. You can think of an enterprise bean as a
building block that can be used alone or with other enterprise beans to execute business logic on
the Java EE server.

Enterprise beans are either session beans or message-driven beans.

■ A session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone.

■ A message-driven bean combines features of a session bean and a message listener, allowing
a business component to receive messages asynchronously. Commonly, these are Java
Message Service (JMS) messages.

FIGURE 1–10 Java EE APIs in the Application Client Container

Application
Client
Container

Java SE

Application
Client

Java Persistence

Management

WS Metadata

Web Services

JSR 299

JMS

JAXR

JAX-WS

JAX-RPC S
A

A
J

New in Java EE 6

Java EE 6 APIs

The Java EE 6 Tutorial • October 201054

In the Java EE 6 platform, new enterprise bean features include the following:

■ The ability to package local enterprise beans in a WAR file
■ Singleton session beans, which provide easy access to shared state
■ A lightweight subset of Enterprise JavaBeans functionality (EJB Lite) that can be provided

within Java EE Profiles, such as the Java EE Web Profile.

The Interceptors specification, which is part of the EJB 3.1 specification, makes more generally
available the interceptor facility originally defined as part of the EJB 3.0 specification.

Java Servlet Technology
Java Servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications accessed by way of a request-response
programming model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java Servlet technology features include the following:

■ Annotation support
■ Asynchronous support
■ Ease of configuration
■ Enhancements to existing APIs
■ Pluggability

JavaServer Faces Technology
JavaServer Faces technology is a user interface framework for building web applications. The
main components of JavaServer Faces technology are as follows:

■ A GUI component framework.
■ A flexible model for rendering components in different kinds of HTML or different markup

languages and technologies. A Renderer object generates the markup to render the
component and converts the data stored in a model object to types that can be represented
in a view.

■ A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

■ Input validation
■ Event handling
■ Data conversion between model objects and components
■ Managed model object creation
■ Page navigation configuration

Java EE 6 APIs

Chapter 1 • Overview 55

■ Expression Language (EL)

All this functionality is available using standard Java APIs and XML-based configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

■ The ability to use annotations instead of a configuration file to specify managed beans
■ Facelets, a display technology that replaces JavaServer Pages (JSP) technology using

XHTML files
■ Ajax support
■ Composite components
■ Implicit navigation

JavaServer Pages Technology
JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a text-based
document. A JSP page is a text-based document that contains two types of text:

■ Static data, which can be expressed in any text-based format such as HTML or XML
■ JSP elements, which determine how the page constructs dynamic content

JavaServer Pages Standard Tag Library
The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality common to
many JSP applications. Instead of mixing tags from numerous vendors in your JSP applications,
you use a single, standard set of tags. This standardization allows you to deploy your
applications on any JSP container that supports JSTL and makes it more likely that the
implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating XML
documents, internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

Java Persistence API
The Java Persistence API is a Java standards-based solution for persistence. Persistence uses an
object/relational mapping approach to bridge the gap between an object-oriented model and a
relational database. The Java Persistence API can also be used in Java SE applications, outside of
the Java EE environment. Java Persistence consists of the following areas:

■ The Java Persistence API
■ The query language

Java EE 6 APIs

The Java EE 6 Tutorial • October 201056

■ Object/relational mapping metadata

Java Transaction API
The Java Transaction API (JTA) provides a standard interface for demarcating transactions.
The Java EE architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data will see the
updated data after each database read or write operation. However, if your application performs
two separate database access operations that depend on each other, you will want to use the JTA
API to demarcate where the entire transaction, including both operations, begins, rolls back,
and commits.

Java API for RESTful Web Services
The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of web
services built according to the Representational State Transfer (REST) architectural style. A
JAX-RS application is a web application that consists of classes that are packaged as a servlet in a
WAR file along with required libraries.

The JAX-RS API is new to the Java EE 6 platform.

Managed Beans
Managed Beans, lightweight container-managed objects (POJOs) with minimal requirements,
support a small set of basic services, such as resource injection, lifecycle callbacks, and
interceptors. Managed Beans represent a generalization of the managed beans specified by
JavaServer Faces technology and can be used anywhere in a Java EE application, not just in web
modules.

The Managed Beans specification is part of the Java EE 6 platform specification (JSR 316).

Managed Beans are new to the Java EE 6 platform.

Contexts and Dependency Injection for the Java EE
Platform (JSR 299)
Contexts and Dependency Injection (CDI) for the Java EE platform defines a set of contextual
services, provided by Java EE containers, that make it easy for developers to use enterprise beans
along with JavaServer Faces technology in web applications. Designed for use with stateful
objects, CDI also has many broader uses, allowing developers a great deal of flexibility to
integrate different kinds of components in a loosely coupled but type-safe way.

Java EE 6 APIs

Chapter 1 • Overview 57

CDI is new to the Java EE 6 platform.

Dependency Injection for Java (JSR 330)
Dependency Injection for Java defines a standard set of annotations (and one interface) for use
on injectable classes.

In the Java EE platform, CDI provides support for Dependency Injection. Specifically, you can
use DI injection points only in a CDI-enabled application.

Dependency Injection for Java is new to the Java EE 6 platform.

Bean Validation
The Bean Validation specification defines a metadata model and API for validating data in
JavaBeans components. Instead of distributing validation of data over several layers, such as the
browser and the server side, you can define the validation constraints in one place and share
them across the different layers.

Bean Validation is new to the Java EE 6 platform.

Java Message Service API
The Java Message Service (JMS) API is a messaging standard that allows Java EE application
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous.

Java EE Connector Architecture
The Java EE Connector architecture is used by tools vendors and system integrators to create
resource adapters that support access to enterprise information systems that can be plugged in
to any Java EE product. A resource adapter is a software component that allows Java EE
application components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, a different resource adapter
typically exists for each type of database or enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure, scalable, and
message-based transactional integration of Java EE based web services with existing EISs that
can be either synchronous or asynchronous. Existing applications and EISs integrated through
the Java EE Connector architecture into the Java EE platform can be exposed as XML-based web
services by using JAX-WS and Java EE component models. Thus JAX-WS and the Java EE
Connector architecture are complementary technologies for enterprise application integration
(EAI) and end-to-end business integration.

Java EE 6 APIs

The Java EE 6 Tutorial • October 201058

JavaMail API
Java EE applications use the JavaMail API to send email notifications. The JavaMail API has two
parts:

■ An application-level interface used by the application components to send mail
■ A service provider interface

The Java EE platform includes the JavaMail API with a service provider that allows application
components to send Internet mail.

Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) specification defines a contract
between a Java EE application server and an authorization policy provider. All Java EE
containers support this contract.

The JACC specification defines java.security.Permission classes that satisfy the Java EE
authorization model. The specification defines the binding of container access decisions to
operations on instances of these permission classes. It defines the semantics of policy providers
that use the new permission classes to address the authorization requirements of the Java EE
platform, including the definition and use of roles.

Java Authentication Service Provider Interface for
Containers
The Java Authentication Service Provider Interface for Containers (JASPIC) specification
defines a service provider interface (SPI) by which authentication providers that implement
message authentication mechanisms may be integrated in client or server message-processing
containers or runtimes. Authentication providers integrated through this interface operate on
network messages provided to them by their calling container. The authentication providers
transform outgoing messages so that the source of the message can be authenticated by the
receiving container, and the recipient of the message can be authenticated by the message
sender. Authentication providers authenticate incoming messages and return to their calling
container the identity established as a result of the message authentication.

JASPIC is new to the Java EE 6 platform.

Java EE 6 APIs

Chapter 1 • Overview 59

Java EE 6 APIs in the Java Platform, Standard Edition 6.0
Several APIs that are required by the Java EE 6 platform are included in the Java Platform,
Standard Edition 6.0 (Java SE 6) platform and are thus available to Java EE applications.

Java Database Connectivity API
The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC API in an enterprise bean when you have a
session bean access the database. You can also use the JDBC API from a servlet or a JSP page to
access the database directly without going through an enterprise bean.

The JDBC API has two parts:

■ An application-level interface used by the application components to access a database
■ A service provider interface to attach a JDBC driver to the Java EE platform

Java Naming and Directory Interface API
The Java Naming and Directory Interface (JNDI) API provides naming and directory
functionality, enabling applications to access multiple naming and directory services, including
existing naming and directory services, such as LDAP, NDS, DNS, and NIS. The JNDI API
provides applications with methods for performing standard directory operations, such as
associating attributes with objects and searching for objects using their attributes. Using JNDI,
a Java EE application can store and retrieve any type of named Java object, allowing Java EE
applications to coexist with many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a JNDI naming
context.

A Java EE component can locate its environment naming context by using JNDI interfaces. A
component can create a javax.naming.InitialContext object and look up the environment
naming context in InitialContext under the name java:comp/env. A component’s naming
environment is stored directly in the environment naming context or in any of its direct or
indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects. The names
of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context java:comp/env. The Java EE platform allows a component to
name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

The Java EE 6 Tutorial • October 201060

objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java:comp/env/ejb, and JDBC DataSource references are
named within the subcontext java:comp/env/jdbc.

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides standard
services to determine the type of an arbitrary piece of data, encapsulate access to it, discover the
operations available on it, and create the appropriate JavaBeans component to perform those
operations.

Java API for XML Processing
The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing
of XML documents using Document Object Model (DOM), Simple API for XML (SAX), and
Extensible Stylesheet Language Transformations (XSLT). JAXP enables applications to parse
and transform XML documents independently of a particular XML processing
implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or
XSL processor from within your application and supports the Worldwide Web Consortium
(W3C) schema. You can find information on the W3C schema at this URL:
http://www.w3.org/XML/Schema.

Java Architecture for XML Binding
The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java language programs. JAXB can be used independently or in
combination with JAX-WS, where it provides a standard data binding for web service messages.
All Java EE application client containers, web containers, and EJB containers support the JAXB
API.

SOAP with Attachments API for Java
The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS depends.
SAAJ enables the production and consumption of messages that conform to the SOAP 1.1 and
1.2 specifications and SOAP with Attachments note. Most developers do not use the SAAJ API,
instead using the higher-level JAX-WS API.

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

Chapter 1 • Overview 61

http://www.w3.org/XML/Schema

Java API for XML Web Services
The Java API for XML Web Services (JAX-WS) specification provides support for web services
that use the JAXB API for binding XML data to Java objects. The JAX-WS specification defines
client APIs for accessing web services as well as techniques for implementing web service
endpoints. The Implementing Enterprise Web Services specification describes the deployment
of JAX-WS-based services and clients. The EJB and Java Servlet specifications also describe
aspects of such deployment. It must be possible to deploy JAX-WS-based applications using any
of these deployment models.

The JAX-WS specification describes the support for message handlers that can process message
requests and responses. In general, these message handlers execute in the same container and
with the same privileges and execution context as the JAX-WS client or endpoint component
with which they are associated. These message handlers have access to the same JNDI
java:comp/env namespace as their associated component. Custom serializers and deserializers,
if supported, are treated in the same way as message handlers.

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) provides a way for a Java EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication
Module (PAM) framework, which extends the Java Platform security architecture to support
user-based authorization.

GlassFish Server Tools
The GlassFish Server is a compliant implementation of the Java EE 6 platform. In addition to
supporting all the APIs described in the previous sections, the GlassFish Server includes a
number of Java EE tools that are not part of the Java EE 6 platform but are provided as a
convenience to the developer.

This section briefly summarizes the tools that make up the GlassFish Server. Instructions for
starting and stopping the GlassFish Server, starting the Administration Console, and starting
and stopping the Java DB server are in Chapter 2, “Using the Tutorial Examples.”

The GlassFish Server contains the tools listed in Table 1–1. Basic usage information for many of
the tools appears throughout the tutorial. For detailed information, see the online help in the
GUI tools.

GlassFish Server Tools

The Java EE 6 Tutorial • October 201062

TABLE 1–1 GlassFish Server Tools

Tool Description

Administration Console A web-based GUI GlassFish Server administration utility. Used to stop the
GlassFish Server and manage users, resources, and applications.

asadmin A command-line GlassFish Server administration utility. Used to start and stop
the GlassFish Server and manage users, resources, and applications.

appclient A command-line tool that launches the application client container and invokes
the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database, producing
a schema file that the GlassFish Server can use for container-managed
persistence.

package-appclient A command-line tool to package the application client container libraries and
JAR files.

Java DB database A copy of the Java DB server.

xjc A command-line tool to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace referenced in
your Java classes.

wsimport A command-line tool to generate JAX-WS portable artifacts for a given WSDL
file. After generation, these artifacts can be packaged in a WAR file with the
WSDL and schema documents, along with the endpoint implementation, and
then deployed.

wsgen A command-line tool to read a web service endpoint class and generate all the
required JAX-WS portable artifacts for web service deployment and invocation.

GlassFish Server Tools

Chapter 1 • Overview 63

64

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the examples. The
following topics are addressed here:
■ “Required Software” on page 65
■ “Starting and Stopping the GlassFish Server” on page 69
■ “Starting the Administration Console” on page 70
■ “Starting and Stopping the Java DB Server” on page 71
■ “Building the Examples” on page 71
■ “Tutorial Example Directory Structure” on page 72
■ “Getting the Latest Updates to the Tutorial” on page 72
■ “Debugging Java EE Applications” on page 73

Required Software
The following software is required to run the examples:
■ “Java Platform, Standard Edition” on page 65
■ “Java EE 6 Software Development Kit” on page 66
■ “Java EE 6 Tutorial Component” on page 66
■ “NetBeans IDE” on page 68
■ “Apache Ant” on page 69

Java Platform, Standard Edition
To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
6.0 Development Kit (JDK 6). You can download the JDK 6 software from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Download the current JDK update that does not include any other software, such as NetBeans
IDE or the Java EE SDK.

2C H A P T E R 2

65

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java EE 6 Software Development Kit
GlassFish Server Open Source Edition 3.0.1 is targeted as the build and runtime environment
for the tutorial examples. To build, deploy, and run the examples, you need a copy of the
GlassFish Server and, optionally, NetBeans IDE. To obtain the GlassFish Server, you must
install the Java EE 6 Software Development Kit (SDK), which you can download from
http://www.oracle.com/technetwork/java/javaee/downloads/index.html. Make sure
you download the Java EE 6 SDK, not the Java EE 6 Web Profile SDK.

SDK Installation Tips
During the installation of the SDK, do the following.

■ Configure the GlassFish Server administration user name as admin, and specify no
password. This is the default setting.

■ Accept the default port values for the Admin Port (4848) and the HTTP Port (8080).
■ Allow the installer to download and configure the Update Tool. If you access the Internet

through a firewall, provide the proxy host and port.

This tutorial refers to as-install-parent, the directory where you install the GlassFish Server. For
example, the default installation directory on Microsoft Windows is C:\glassfishv3, so
as-install-parent is C:\glassfishv3. The GlassFish Server itself is installed in as-install, the
glassfish directory under as-install-parent. So on Microsoft Windows, as-install is
C:\glassfishv3\glassfish.

After you install the GlassFish Server, add the following directories to your PATH to avoid having
to specify the full path when you use commands:

as-install-parent/bin

as-install/bin

Java EE 6 Tutorial Component
The tutorial example source is contained in the tutorial component. To obtain the tutorial
component, use the Update Tool.

If you are behind a firewall that prevents you from using the Update Tool to obtain
components, you can obtain the tutorial from the java.net web site.

Required Software

The Java EE 6 Tutorial • October 201066

http://www.oracle.com/technetwork/java/javaee/downloads/index.html

▼ To Obtain the Tutorial Component Using the Update Tool

Start the Update Tool.

■ From the command line, type the command updatetool.

■ On a Windows system, select Start → All Programs → Java EE 6 SDK → Start Update Tool.

Expand the GlassFish Server Open Source Edition node.

Select the Available Add-ons node.

From the list, select the Java EE 6 Tutorial check box.

Click Install.

Accept the license agreement.
After installation, the Java EE 6 Tutorial appears in the list of installed components. The tool is
installed in the as-install/docs/javaee-tutorial directory. This directory contains two
subdirectories: docs and examples. The examples directory contains subdirectories for each of
the technologies discussed in the tutorial.

Updates to the Java EE 6 Tutorial are published periodically. For details on obtaining these
updates, see “Getting the Latest Updates to the Tutorial” on page 72.

▼ To Obtain the Tutorial Component from the java.netWeb Site
Follow these steps exactly. If you place the tutorial in the wrong location, the examples will not
work.

Open the following URL in a web browser:
https://javaeetutorial.dev.java.net/

Click the Documents & Files link in the left sidebar.

In the table on the Documents & Files page, locate the latest stable version of the Java EE 6
Tutorial zip file.

Right-click the zip file name and save it to your system.

Copy or move the zip file into the GlassFish SDK directory.
By default, this directory is named glassfishv3.

1

2

3

4

5

6

Next Steps

1

2

3

4

5

Required Software

Chapter 2 • Using the Tutorial Examples 67

https://javaeetutorial.dev.java.net/

Unzip the zip file.

The tutorial unzips into the directory glassfish/docs/javaee-tutorial.

NetBeans IDE
The NetBeans integrated development environment (IDE) is a free, open-source IDE for
developing Java applications, including enterprise applications. NetBeans IDE supports the Java
EE platform. You can build, package, deploy, and run the tutorial examples from within
NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from http://www.netbeans.org/downloads/index.html.

▼ To Install NetBeans IDE without GlassFish Server
When you install NetBeans IDE, do not install the version of GlassFish Server that comes with
NetBeans IDE. To skip the installation of GlassFish Server, follow these steps.

Click Customize on the first page of the NetBeans IDE Installer wizard.

In the Customize Installation dialog, deselect the check box for GlassFish Server and click OK.

Continue with the installation of NetBeans IDE.

▼ To Add GlassFish Server as a Server in NetBeans IDE
To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as a server
in NetBeans IDE. Follow these instructions to add the GlassFish Server to NetBeans IDE.

Select Tools → Servers to open the Servers dialog.

Click Add Server.

Under Choose Server, select GlassFish Server 3 and click Next.

Under Server Location, browse the location of your GlassFish Server installation and click Next.

Under Domain Location, select Register Local Domain.

Click Finish.

6

1

2

3

1

2

3

4

5

6

Required Software

The Java EE 6 Tutorial • October 201068

http://www.netbeans.org/downloads/index.html

Apache Ant
Ant is a Java technology-based build tool developed by the Apache Software Foundation
(http://ant.apache.org/) and is used to build, package, and deploy the tutorial examples. To
run the tutorial examples, you need Ant 1.7.1. If you do not already have Ant 1.7.1, you can
install it from the Update Tool that is part of the GlassFish Server.

▼ To Obtain Apache Ant

Start the Update Tool.

■ From the command line, type the command updatetool.

■ On a Windows system, select Start → All Programs → Java EE 6 SDK → Start Update Tool.

Expand the GlassFish Server Open Source Edition node.

Select the Available Add-ons node.

From the list, select the Apache Ant Build Tool check box.

Click Install.

Accept the license agreement.
After installation, Apache Ant appears in the list of installed components. The tool is installed
in the as-install-parent/ant directory.

To use the ant command, add as-install/ant/bin to your PATH environment variable.

Starting and Stopping the GlassFish Server
To start the GlassFish Server, open a terminal window or command prompt and execute the
following:

asadmin start-domain --verbose

1

2

3

4

5

6

Next Steps

Starting and Stopping the GlassFish Server

Chapter 2 • Using the Tutorial Examples 69

http://ant.apache.org/

A domain is a set of one or more GlassFish Server instances managed by one administration
server. Associated with a domain are the following:

■ The GlassFish Server’s port number. The default is 8080.
■ The administration server’s port number. The default is 4848.
■ An administration user name and password.

You specify these values when you install the GlassFish Server. The examples in this tutorial
assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which is
domain1. The --verbose flag causes all logging and debugging output to appear on the terminal
window or command prompt. The output also goes into the server log, which is located in
domain-dir/logs/server.log.

Or, on Windows, choose Start → All Programs → Java EE 6 SDK → Start Application Server.

After the server has completed its startup sequence, you will see the following output:

Domain domain1 started.

To stop the GlassFish Server, open a terminal window or command prompt and execute:

asadmin stop-domain domain1

Or, on Windows, choose Start → All Programs → Java EE 6 SDK → Stop Application Server.

When the server has stopped, you will see the following output:

Domain domain1 stopped.

Starting the Administration Console
To administer the GlassFish Server and manage users, resources, and Java EE applications, use
the Administration Console tool. The GlassFish Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://localhost:4848/.

Or, on Windows, choose Start → All Programs → Java EE 6 SDK → Administration Console.

▼ To Start the Administration Console in NetBeans IDE
Click the Services tab.

Expand the Servers node.

1

2

Starting the Administration Console

The Java EE 6 Tutorial • October 201070

Right-click the GlassFish Server instance and select View Admin Console.

Note – NetBeans IDE uses your default web browser to open the Administration Console.

Starting and Stopping the Java DB Server
The GlassFish Server includes the Java DB database server.

To start the Java DB server, open a terminal window or command prompt and execute:

asadmin start-database

To stop the Java DB server, open a terminal window or command prompt and execute:

asadmin stop-database

For information about the Java DB included with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

▼ To Start the Database Server Using NetBeans IDE
Click the Services tab.

Expand the Databases node.

Right-click Java DB and choose Start Server.

To stop the database using NetBeans IDE, right-click Java DB and choose Stop Server.

Building the Examples
The tutorial examples are distributed with a configuration file for either NetBeans IDE or Ant.
Directions for building the examples are provided in each chapter. Either NetBeans IDE or Ant
may be used to build, package, deploy, and run the examples.

3

1

2

3

Next Steps

Building the Examples

Chapter 2 • Using the Tutorial Examples 71

http://www.oracle.com/technetwork/java/javadb/overview/index.html

Tutorial Example Directory Structure
To facilitate iterative development and keep application source separate from compiled files,
the tutorial examples use the Java BluePrints application directory structure.

Each application module has the following structure:

■ build.xml: Ant build file
■ src/java: Java source files for the module
■ src/conf: configuration files for the module, with the exception of web applications
■ web: web pages, style sheets, tag files, and images (web applications only)
■ web/WEB-INF: configuration files for web applications (web applications only)
■ nbproject: NetBeans project files

Examples that have multiple application modules packaged into an EAR file have submodule
directories that use the following naming conventions:

■ example-name-app-client: application clients
■ example-name-ejb: enterprise bean JAR files
■ example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create a build
subdirectory and to copy and compile files into that directory; a dist subdirectory, which holds
the packaged module file; and a client-jar directory, which holds the retrieved application
client JAR.

Getting the Latest Updates to the Tutorial
Check for any updates to the tutorial by using the Update Center included with the Java EE 6
SDK.

▼ To Update the Tutorial Through the Update Center
Open the Services tab in NetBeans IDE and expand Servers.

Right-click the GlassFish Server 3 instance and select View Update Center to display the Update
Tool.

Select Available Updates in the tree to display a list of updated packages.

Look for updates to the Java EE 6 Tutorial (javaee-tutorial) package.

1

2

3

4

Tutorial Example Directory Structure

The Java EE 6 Tutorial • October 201072

If there is an updated version of the Tutorial, select Java EE 6 Tutorial (javaee-tutorial) and click
Install.

Debugging Java EE Applications
This section explains how to determine what is causing an error in your application deployment
or execution.

Using the Server Log
One way to debug applications is to look at the server log in domain-dir/logs/server.log. The
log contains output from the GlassFish Server and your applications. You can log messages
from any Java class in your application with System.out.println and the Java Logging APIs
(documented at http://download.oracle.com/javase/6/docs/technotes/guides/
logging/index.html) and from web components with the ServletContext.log method.

If you start the GlassFish Server with the --verbose flag, all logging and debugging output will
appear on the terminal window or command prompt and the server log. If you start the
GlassFish Server in the background, debugging information is available only in the log. You can
view the server log with a text editor or with the Administration Console log viewer.

▼ To Use the Log Viewer

Select the GlassFish Server node.

Click the View Log Files button.
The log viewer opens and displays the last 40 entries.

To display other entries, follow these steps.

a. Click the Modify Search button.

b. Specify any constraints on the entries you want to see.

c. Click the Search button at the top of the log viewer.

Using a Debugger
The GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With JPDA,
you can configure the GlassFish Server to communicate debugging information using a socket.

5

1

2

3

Debugging Java EE Applications

Chapter 2 • Using the Tutorial Examples 73

http://download.oracle.com/javase/6/docs/technotes/guides/logging/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/logging/index.html

▼ To Debug an Application Using a Debugger

Enable debugging in the GlassFish Server using the Administration Console:

a. Expand the Configuration node.

b. Select the JVM Settings node. The default debug options are set to:
-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not in
use by the GlassFish Server or another service.

c. Select the Debug Enabled check box.

d. Click the Save button.

Stop the GlassFish Server and then restart it.

1

2

Debugging Java EE Applications

The Java EE 6 Tutorial • October 201074

The Web Tier
Part II explores the technologies in the web tier. This part contains the following chapters:

■ Chapter 3, “Getting Started with Web Applications”
■ Chapter 4, “JavaServer Faces Technology”
■ Chapter 5, “Introduction to Facelets”
■ Chapter 6, “Expression Language”
■ Chapter 7, “Using JavaServer Faces Technology in Web Pages”
■ Chapter 8, “Using Converters, Listeners, and Validators”
■ Chapter 9, “Developing with JavaServer Faces Technology”
■ Chapter 10, “Java Servlet Technology”

P A R T I I

75

76

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. Web applications are of
the following types:
■ Presentation-oriented: A presentation-oriented web application generates interactive web

pages containing various types of markup language (HTML, XHTML, XML, and so on) and
dynamic content in response to requests. Development of presentation-oriented web
applications is covered in Chapter 4, “JavaServer Faces Technology,” through Chapter 9,
“Developing with JavaServer Faces Technology.”

■ Service-oriented: A service-oriented web application implements the endpoint of a web
service. Presentation-oriented applications are often clients of service-oriented web
applications. Development of service-oriented web applications is covered in Chapter 12,
“Building Web Services with JAX-WS,” and Chapter 13, “Building RESTful Web Services
with JAX-RS,” in Part III, “Web Services.”

The following topics are addressed here:
■ “Web Applications” on page 77
■ “Web Application Lifecycle” on page 79
■ “Web Modules: The hello1 Example” on page 81
■ “Configuring Web Applications: The hello2 Example” on page 90
■ “Further Information about Web Applications” on page 99

Web Applications
In the Java EE platform, web components provide the dynamic extension capabilities for a web
server. Web components can be Java servlets, web pages implemented with JavaServer Faces
technology, web service endpoints, or JSP pages. Figure 3–1 illustrates the interaction between a
web client and a web application that uses a servlet. The client sends an HTTP request to the
web server. A web server that implements Java Servlet and JavaServer Pages technology
converts the request into an HTTPServletRequest object. This object is delivered to a web
component, which can interact with JavaBeans components or a database to generate dynamic

3C H A P T E R 3

77

content. The web component can then generate an HTTPServletResponse or can pass the
request to another web component. A web component eventually generates a
HTTPServletResponse object. The web server converts this object to an HTTP response and
returns it to the client.

Servlets are Java programming language classes that dynamically process requests and
construct responses. Java technologies, such as JavaServer Faces and Facelets, are used for
building interactive web applications. (Frameworks can also be used for this purpose.)
Although servlets and Java Server Faces and Facelets pages can be used to accomplish similar
things, each has its own strengths. Servlets are best suited for service-oriented applications (web
service endpoints can be implemented as servlets) and the control functions of a
presentation-oriented application, such as dispatching requests and handling nontextual data.
Java Server Faces and Facelets pages are more appropriate for generating text-based markup,
such as XHTML, and are generally used for presentation–oriented applications.

Web components are supported by the services of a runtime platform called a web container. A
web container provides such services as request dispatching, security, concurrency, and
lifecycle management. A web container also gives web components access to such APIs as
naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is installed,
or deployed, to the web container. The configuration information can be specified using Java EE
annotations or can be maintained in a text file in XML format called a web application
deployment descriptor (DD). A web application DD must conform to the schema described in
the Java Servlet specification.

FIGURE 3–1 Java Web Application Request Handling

HTTP
Request

HTTP
Response

Database

Database

Web
Client

HttpServlet
Request

HttpServlet
Response

Web
Components
Web
C
Web
Components

Web
CC
WebWeb Web
CCCC

W
C
W bWeb

ComponentsCCompoonentso tne
WW bWWeb WWeb
CC sCCompoonentsCCompoonentsoooneCC
Web

C
WebWeb Web Web WebWeb

sComponentsp ssCoC mpono entsComponentsoCCCCompoonentsompoonentsComponentsomponentsooooooooooCCoCoC
W bWWeb WWeb
CCC

Web
Components

Web
Components
Web
C
Web
Components

Web
CC
WebWeb Web
CCCC

W
C
W bWeb

ComponentsCCompoonents
WW bWWeb WWeb
C mp en sCCompoonentsCCompoonents
Web

C
WebWeb Web Web WebWeb

sComponentsssCoC mpono entsComponentsCompoonentsompoonentsComponentsComponentsC
W bWWeb WWeb
CCC

JavaBeans
Components

1
4

4

2

5 3

6

Web Applications

The Java EE 6 Tutorial • October 201078

This chapter gives a brief overview of the activities involved in developing web applications.
First, it summarizes the web application lifecycle and explains how to package and deploy very
simple web applications on the GlassFish Server. The chapter moves on to configuring web
applications and discusses how to specify the most commonly used configuration parameters.

Web Application Lifecycle
A web application consists of web components; static resource files, such as images; and helper
classes and libraries. The web container provides many supporting services that enhance the
capabilities of web components and make them easier to develop. However, because a web
application must take these services into account, the process for creating and running a web
application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as
follows:

1. Develop the web component code.

2. Develop the web application deployment descriptor, if necessary.

3. Compile the web application components and helper classes referenced by the components.

4. Optionally, package the application into a deployable unit.

5. Deploy the application into a web container.

6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into an HTML
form (Figure 3–2) and then displays a greeting after the name is submitted (Figure 3–3).

Web Application Lifecycle

Chapter 3 • Getting Started with Web Applications 79

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses the following simple applications:

■ hello1, a JavaServer Faces technology-based application that uses two XHTML pages and a
backing bean

■ hello2, a servlet-based web application in which the components are implemented by two
servlet classes

FIGURE 3–2 Greeting Form for hello1Web Application

FIGURE 3–3 Response Page for hello1Web Application

Web Application Lifecycle

The Java EE 6 Tutorial • October 201080

The applications are used to illustrate tasks involved in packaging, deploying, configuring, and
running an application that contains web components. The source code for the examples is in
the tut-install/examples/web/hello1/ and tut-install/examples/web/hello2/ directories.

Web Modules: The hello1 Example
In the Java EE architecture, web components and static web content files, such as images, are
called web resources. A web module is the smallest deployable and usable unit of web resources.
A Java EE web module corresponds to a web application as defined in the Java Servlet
specification.

In addition to web components and web resources, a web module can contain other files:
■ Server-side utility classes, such as shopping carts
■ Client-side classes, such as applets and utility classes

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where XHTML pages, client-side classes and
archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB-INF, which can contain the following
files and directories:
■ classes: A directory that contains server-side classes: servlets, enterprise bean class files,

utility classes, and JavaBeans components
■ tags: A directory that contains tag files, which are implementations of tag libraries
■ lib: A directory that contains JAR files that contain enterprise beans, and JAR archives of

libraries called by server-side classes
■ Deployment descriptors, such as web.xml (the web application deployment descriptor) and

ejb-jar.xml (an EJB deployment descriptor)

A web module needs a web.xml file if it uses JavaServer Faces technology, if it must specify
certain kinds of security information, or if you want to override information specified by web
component annotations.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a Web Archive (WAR) file. Because the contents and use of WAR files differ from
those of JAR files, WAR file names use a .war extension. The web module just described is
portable; you can deploy it into any web container that conforms to the Java Servlet
specification.

To deploy a WAR on the GlassFish Server, the file must contain a runtime deployment
descriptor. The runtime DD is an XML file that contains such information as the context root of

Web Modules: The hello1 Example

Chapter 3 • Getting Started with Web Applications 81

the web application and the mapping of the portable names of an application’s resources to the
GlassFish Server’s resources. The GlassFish Server web application runtime DD is named
sun-web.xml and is located in the WEB-INF directory. The structure of a web module that can be
deployed on the GlassFish Server is shown in Figure 3–4.

For example, the sun-web.xml file for the hello1 application specifies the following context
root:

<context-root>/hello1</context-root>

Examining the hello1Web Module
The hello1 application is a web module that uses JavaServer Faces technology to display a
greeting and response. You can use a text editor to view the application files, or you can use
NetBeans IDE.

▼ To View the hello1Web Module Using NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/web/

FIGURE 3–4 Web Module Structure

Assembly Root

WEB-INF

lib classes

web.xml
sun-web.xml
(optional)

Library
archive files

All server-side
.class files for
this web module

Web pages

1

2

Web Modules: The hello1 Example

The Java EE 6 Tutorial • October 201082

Select the hello1 folder.

Select the Open as Main Project check box.

Expand the Web Pages node and double-click the index.xhtml file to view it in the right-hand
pane.
The index.html file is the default landing page for a Facelets application. For this application,
the page uses simple tag markup to display a form with a graphic image, a header, a text field,
and two command buttons:
<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Facelets Hello Greeting</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage url="duke.waving.gif"/>
<h2>Hello, my name is Duke. What’s yours?</h2>

<h:inputText id="username"
value="#{hello.name}"
required="true"
requiredMessage="A name is required."
maxlength="25">

</h:inputText>

<p></p>

<h:commandButton id="submit" value="Submit" action="response">
</h:commandButton>

<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>

</h:form>

</h:body>

</html>

The most complex element on the page is the inputText text field. The maxlength attribute
specifies the maximum length of the field. The required attribute specifies that the field must
be filled out; the requiredMessage attribute provides the error message to be displayed if the
field is left empty. Finally, the value attribute contains an expression that will be provided by
the Hello backing bean.

The Submit commandButton element specifies the action as response, meaning that when the
button is clicked, the response.xhtml page is displayed.

Double-click the response.xhtml file to view it.
The response page appears. Even simpler than the greeting page, the response page contains a
graphic image, a header that displays the expression provided by the backing bean, and a single
button whose action element transfers you back to the index.xhtml page:
<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3

4

5

6

Web Modules: The hello1 Example

Chapter 3 • Getting Started with Web Applications 83

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Facelets Hello Response</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage url="duke.waving.gif"/>
<h2>Hello, #{hello.name}!</h2>

<p></p>

<h:commandButton id="back" value="Back" action="index" />

</h:form>

</h:body>

</html>

Expand the Source Packages node, then the hello1node.

Double-click the Hello.javafile to view it.
The Hello class, called a backing bean class, provides getter and setter methods for the name
property used in the Facelets page expressions. By default, the expression language refers to the
class name, with the first letter in lowercase (hello.name).
package hello1;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.RequestScoped;

@ManagedBean

@RequestScoped

public class Hello {

private String name;

public Hello() {

}

public String getName() {

return name;

}

public void setName(String user_name) {

this.name = user_name;

}

}

Under the Web Pages node, expand the WEB-INFnode and double-click the web.xmlfile to view
it.
The web.xml file contains several elements that are required for a Facelets application. All these
are created automatically when you use NetBeans IDE to create an application:
■ A context parameter specifying the project stage:

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>

</context-param>

7

8

9

Web Modules: The hello1 Example

The Java EE 6 Tutorial • October 201084

A context parameter provides configuration information needed by a web application. An
application can define its own context parameters. In addition, JavaServer Faces technology
and Java Servlet technology define context parameters that an application can use.

■ A servlet element and its servlet-mapping element specifying the FacesServlet:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

■ A welcome-file-list element specifying the location of the landing page; note that the
location is faces/index.xhtml, not just index.xhtml:

<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>

</welcome-file-list>

Packaging a Web Module
A web module must be packaged into a WAR in certain deployment scenarios and whenever
you want to distribute the web module. You package a web module into a WAR by executing
the jar command in a directory laid out in the format of a web module, by using the Ant utility,
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or
Ant to build, package, and deploy the hello1 sample application.

▼ To Set the Context Root
A context root identifies a web application in a Java EE server. A context root must start with a
forward slash (/) and end with a string.

In a packaged web module for deployment on the GlassFish Server, the context root is stored in
sun-web.xml.

To view or edit the context root, follow these steps.

Expand the Web Pages and WEB-INF nodes of the hello1project.

Double-click sun-web.xml.

In the General tab, observe that the Context Root field is set to /hello1.
If you needed to edit this value, you could do so here. When you create a new application, you
type the context root here.

1

2

3

Web Modules: The hello1 Example

Chapter 3 • Getting Started with Web Applications 85

(Optional) Click the XML tab.
Observe that the context root value /hello1 is enclosed by the context-root element. You
could also edit the value here.

▼ To Build and Package the hello1Web Module Using NetBeans IDE

Select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/web/

Select the hello1 folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the hello1project and select Build.

▼ To Build and Package the hello1Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hello1/

Type the following command:
ant

This command spawns any necessary compilations, copies files to the directory
tut-install/examples/web/hello1/build/, creates the WAR file, and copies it to the directory
tut-install/examples/web/hello1/dist/.

Deploying a Web Module
You can deploy a WAR file to the GlassFish Server by

■ Using NetBeans IDE
■ Using the Ant utility
■ Using the asadmin command
■ Using the Administration Console
■ Copying the WAR file into the domain-dir/autodeploy/ directory

Throughout the tutorial, you will use NetBeans IDE or Ant for packaging and deploying.

4

1

2

3

4

5

6

1

2

Web Modules: The hello1 Example

The Java EE 6 Tutorial • October 201086

▼ To Deploy the hello1Web Module Using NetBeans IDE

Right-click the hello1project and select Deploy.

▼ To Deploy the hello1Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hello1/

Type the following command:
ant deploy

Running a Deployed Web Module
Now that the web module is deployed, you can view it by opening the application in a web
browser. By default, the application is deployed to host localhost on port 8080. The context
root of the web application is hello1.

▼ To Run a Deployed Web Module

Open a web browser.

Type the following URL:
http://localhost:8080/hello1/

Type your name and click Submit.
The response page displays the name you submitted. Click the Back button to try again.

Listing Deployed Web Modules
The GlassFish Server provides two ways to view the deployed web modules: the Administration
Console and the asadmin command.

▼ To List Deployed Web Modules Using the Administration Console

Open the URL http://localhost:4848/ in a browser.

Select the Applications node.
The deployed web modules appear in the Deployed Applications table.

●

1

2

1

2

3

1

2

Web Modules: The hello1 Example

Chapter 3 • Getting Started with Web Applications 87

▼ To List Deployed Web Modules Using the asadminCommand

Type the following command:
asadmin list-applications

Updating a Web Module
A typical iterative development cycle involves deploying a web module and then making
changes to the application components. To update a deployed web module, follow these steps.

▼ To Update a Deployed Web Module

Recompile any modified classes.

Redeploy the module.

Reload the URL in the client.

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or module when
you change its code or deployment descriptors. All you have to do is copy the changed pages or
class files into the deployment directory for the application or module. The deployment
directory for a web module named context-root is domain-dir/applications/context-root. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

This capability is useful in a development environment because it allows code changes to be
tested quickly. Dynamic reloading is not recommended for a production environment,
however, because it may degrade performance. In addition, whenever a reload is done, the
sessions at that time become invalid, and the client must restart the session.

In the GlassFish Server, dynamic reloading is enabled by default.

▼ To Disable or Modify Dynamic Reloading
If for some reason you do not want the default dynamic reloading behavior, follow these steps in
the Administration Console.

Open the URL http://localhost:4848/ in a browser.

Select the GlassFish Server node.

●

1

2

3

1

2

Web Modules: The hello1 Example

The Java EE 6 Tutorial • October 201088

Select the Advanced tab.

To disable dynamic reloading, deselect the Reload Enabled check box.

To change the interval at which applications and modules are checked for code changes and
dynamically reloaded, type a number of seconds in the Reload Poll Interval field.
The default value is 2 seconds.

Click the Save button.

Undeploying Web Modules
You can undeploy web modules and other types of enterprise applications by using either
NetBeans IDE or the Ant tool.

▼ To Undeploy the hello1Web Module Using NetBeans IDE

Ensure that the GlassFish Server is running.

In the Services window, expand the Servers node, GlassFish Server instance, and the
Applications node.

Right-click the hello1module and choose Undeploy.

To delete the class files and other build artifacts, right-click the project and choose Clean.

▼ To Undeploy the hello1Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hello1/

Type the following command:
ant undeploy

To delete the class files and other build artifacts, type the following command:
ant clean

3

4

5

6

1

2

3

4

1

2

3

Web Modules: The hello1 Example

Chapter 3 • Getting Started with Web Applications 89

Configuring Web Applications: The hello2 Example
Web applications are configured by means of annotations or by elements contained in the web
application deployment descriptor.

The following sections give a brief introduction to the web application features you will usually
want to configure. Examples demonstrate procedures for configuring the Hello, World
application.

Mapping URLs to Web Components
When it receives a request, the web container must determine which web component should
handle the request. The web container does so by mapping the URL path contained in the
request to a web application and a web component. A URL path contains the context root and,
optionally, a URL pattern:

http://host:port/context-root[/url-pattern]

You set the URL pattern for a servlet by using the @WebServlet annotation in the servlet source
file. For example, the GreetingServlet.java file in the hello2 application contains the
following annotation, specifying the URL pattern as /greeting:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

...

This annotation indicates that the URL pattern /greeting follows the context root. Therefore,
when the servlet is deployed locally, it is accessed with the following URL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

Examining the hello2Web Module
The hello2 application behaves almost identically to the hello1 application, but it is
implemented using Java Servlet technology instead of JavaServer Faces technology. You can use
a text editor to view the application files, or you can use NetBeans IDE.

▼ To View the hello2Web Module Using NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/web/

1

2

Configuring Web Applications: The hello2 Example

The Java EE 6 Tutorial • October 201090

Select the hello2 folder.

Select the Open as Main Project check box.

Expand the Source Packages node, then the servletsnode.

Double-click the GreetingServlet.java file to view it.

This servlet overrides the doGet method, implementing the GET method of HTTP. The servlet
displays a simple HTML greeting form whose Submit button, like that of hello1, specifies a
response page for its action. The following excerpt begins with the @WebServlet annotation
that specifies the URL pattern, relative to the context root:
@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the data of the response

out.println("<html>"
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response

out.println("<body bgcolor=\"#ffffff\">"
+ ""
+ "<h2>Hello, my name is Duke. What’s yours?</h2>"
+ "<form method=\"get\">"
+ "<input type=\"text\" name=\"username\" size=\"25\">"
+ "<p></p>"
+ "<input type=\"submit\" value=\"Submit\">"
+ "<input type=\"reset\" value=\"Reset\">"
+ "</form>");

String username = request.getParameter("username");
if (username != null && username.length() > 0) {

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/response");

if (dispatcher != null) {

dispatcher.include(request, response);

}

}

out.println("</body></html>");
out.close();

}

...

3

4

5

6

Configuring Web Applications: The hello2 Example

Chapter 3 • Getting Started with Web Applications 91

Double-click the ResponseServlet.java file to view it.
This servlet also overrides the doGet method, displaying only the response. The following
excerpt begins with the @WebServlet annotation, which specifies the URL pattern, relative to
the context root:
@WebServlet("/response")
public class ResponseServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

// then write the data of the response

String username = request.getParameter("username");
if (username != null && username.length() > 0) {

out.println("<h2>Hello, " + username + "!</h2>");
}

}

...

Under the Web Pages node, expand the WEB-INFnode and double-click the sun-web.xml file to
view it.
In the General tab, observe that the Context Root field is set to /hello2.

For this simple servlet application, a web.xml file is not required.

Building, Packaging, Deploying, and Running the
hello2 Example
You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello2 example.

▼ To Build, Package, Deploy, and Run the hello2 Example Using
NetBeans IDE

Select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/web/

Select the hello2 folder.

Select the Open as Main Project check box.

Click Open Project.

7

8

1

2

3

4

5

Configuring Web Applications: The hello2 Example

The Java EE 6 Tutorial • October 201092

In the Projects tab, right-click the hello2project and select Build.

Right-click the project and select Deploy.

In a web browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hello1 application shown in Figure 3–2. The major
difference is that after you click the Submit button, the response appears below the greeting, not
on a separate page.

▼ To Build, Package, Deploy, and Run the hello2 Example Using Ant

In a terminal window, go to:
tut-install/examples/web/hello2/

Type the following command:
ant

This target builds the WAR file and copies it to the tut-install/examples/web/hello2/dist/
directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

In a web browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hello1 application shown in Figure 3–2. The major
difference is that after you click the Submit button, the response appears below the greeting, not
on a separate page.

Declaring Welcome Files
The welcome files mechanism allows you to specify a list of files that the web container will use
for appending to a request for a URL (called a valid partial request) that is not mapped to a web
component. For example, suppose that you define a welcome file welcome.html. When a client
requests a URL such as host:port/webapp/directory, where directory is not mapped to a servlet
or XHTML page, the file host:port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the welcome file
list and appends to the partial request each welcome file in the order specified and checks
whether a static resource or servlet in the WAR is mapped to that request URL. The web
container then sends the request to the first resource that matches in the WAR.

6

7

8

1

2

3

4

Configuring Web Applications: The hello2 Example

Chapter 3 • Getting Started with Web Applications 93

If no welcome file is specified, the GlassFish Server will use a file named index.html as the
default welcome file. If there is no welcome file and no file named index.html, the GlassFish
Server returns a directory listing.

By convention, you specify the welcome file for a JavaServer Faces application as
faces/file-name.xhtml.

Setting Context and Initialization Parameters
The web components in a web module share an object that represents their application context.
You can pass initialization parameters to the context or to a web component.

▼ To Add a Context Parameter Using NetBeans IDE
These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

Double-click web.xml.
If the project does not have a web.xml file, follow the steps in “To Create a web.xml File Using
NetBeans IDE” on page 94.

Click General at the top of the editor pane.

Expand the Context Parameters node.

Click Add.
An Add Context Parameter dialog opens.

In the Parameter Name field, type the name that specifies the context object.

In the Parameter Value field, type the parameter to pass to the context object.

Click OK.

▼ To Create a web.xml File Using NetBeans IDE

Select File→New File.

1

2

3

4

5

6

7

8

9

10

1

Configuring Web Applications: The hello2 Example

The Java EE 6 Tutorial • October 201094

In the New File wizard, select the Web category, then select Standard Deployment Descriptor
under File Types.

Click Next.

Click Finish.

An empty web.xml file appears in web/WEB-INF/.

▼ To Add an Initialization Parameter Using NetBeans IDE
You can use the @WebServlet annotation to specify web component initialization parameters
by using the initParams attribute and the @WebInitParam annotation. For example:

@WebServlet(urlPatterns="/MyPattern", initParams=

{@WebInitParam(name="ccc", value="333")})

Alternatively, you can add an initialization parameter to the web.xml file. To do this using
NetBeans IDE, follow these steps.

These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

Double-click web.xml.

If the project does not have a web.xml file, follow the steps in “To Create a web.xml File Using
NetBeans IDE” on page 94.

Click Servlets at the top of the editor pane.

Click the Add button under the Initialization Parameters table.

An Add Initialization Parameter dialog opens.

In the Parameter Name field, type the name of the parameter.

In the Parameter Value Field, type the parameter’s value.

Click OK.

2

3

4

1

2

3

4

5

6

7

8

9

Configuring Web Applications: The hello2 Example

Chapter 3 • Getting Started with Web Applications 95

Mapping Errors to Error Screens
When an error occurs during execution of a web application, you can have the application
display a specific error screen according to the type of error. In particular, you can specify a
mapping between the status code returned in an HTTP response or a Java programming
language exception returned by any web component and any type of error screen.

You can have multiple error-page elements in your deployment descriptor. Each element
identifies a different error that causes an error page to open. This error page can be the same for
any number of error-page elements.

▼ To Set Up Error Mapping Using NetBeans IDE
These steps apply generally to web applications, but do not apply specifically to the examples in
this chapter.

Open the project.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

Double-click web.xml.

If the project does not have a web.xml file, follow the steps in “To Create a web.xml File Using
NetBeans IDE” on page 94.

Click Pages at the top of the editor pane.

Expand the Error Pages node.

Click Add.

The Add Error Page dialog opens.

Click Browse to locate the page that you want to act as the error page.

In the Error Code field, type the HTTP status code that will cause the error page to be opened, or
leave the field blank to include all error codes.

In the Exception Type field, type the exception that will cause the error page to load.

To specify all exceptions, type java.lang.Throwable.

Click OK.

1

2

3

4

5

6

7

8

9

10

11

Configuring Web Applications: The hello2 Example

The Java EE 6 Tutorial • October 201096

Declaring Resource References
If your web component uses such objects as enterprise beans, data sources, or web services, you
use Java EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Java EE
required.

Although resource injection using annotations can be more convenient for the developer, there
are some restrictions on using it in web applications. First, you can inject resources only into
container-managed objects, since a container must have control over the creation of a
component so that it can perform the injection into a component. As a result, you cannot inject
resources into such objects as simple JavaBeans components. However, JavaServer Faces
managed beans are managed by the container; therefore, they can accept resource injections.

Components that can accept resource injections are listed in Table 3–1.

This section explains how to use a couple of the annotations supported by a servlet container to
inject resources. Chapter 21, “Running the Persistence Examples,” explains how web
applications use annotations supported by the Java Persistence API. Chapter 25, “Getting
Started Securing Web Applications,” explains how to use annotations to specify information
about securing web applications.

TABLE 3–1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttributeListener

javax.servlet.http.HttpSessionListener

javax.servlet.http.HttpSessionAttributeListener

javax.servlet.http.HttpSessionBindingListener

Taglib listeners Same as above

Taglib tag handlers javax.servlet.jsp.tagext.JspTag

Managed beans Plain Old Java Objects

Configuring Web Applications: The hello2 Example

Chapter 3 • Getting Started with Web Applications 97

Declaring a Reference to a Resource
The @Resource annotation is used to declare a reference to a resource, such as a data source, an
enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is
responsible for injecting references to resources declared by the @Resource annotation and
mapping it to the proper JNDI resources.

In the following example, the @Resource annotation is used to inject a data source into a
component that needs to make a connection to the data source, as is done when using JDBC
technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {

// get a connection and execute the query

Connection conn = catalogDS.getConnection();

..

}

The container injects this data source prior to the component’s being made available to the
application. The data source JNDI mapping is inferred from the field name catalogDS and the
type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

@Resources ({

@Resource (name="myDB" type=java.sql.DataSource),

@Resource(name="myMQ" type=javax.jms.ConnectionFactory)

})

The web application examples in this tutorial use the Java Persistence API to access relational
databases. This API does not require you to explicitly create a connection to a data source.
Therefore, the examples do not use the @Resource annotation to inject a data source. However,
this API supports the @PersistenceUnit and @PersistenceContext annotations for injecting
EntityManagerFactory and EntityManager instances, respectively. Chapter 21, “Running the
Persistence Examples,” describes these annotations and the use of the Java Persistence API in
web applications.

Declaring a Reference to a Web Service
The @WebServiceRef annotation provides a reference to a web service. The following example
shows uses the @WebServiceRef annotation to declare a reference to a web service.
WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service’s
WSDL file:

...

import javax.xml.ws.WebServiceRef;

...

Configuring Web Applications: The hello2 Example

The Java EE 6 Tutorial • October 201098

public class ResponseServlet extends HTTPServlet {

@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

Further Information about Web Applications
For more information on web applications, see

■ JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314

■ JavaServer Faces technology web site:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

■ Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ Java Servlet web site:
http://www.oracle.com/technetwork/java/index-jsp-135475.html

Further Information about Web Applications

Chapter 3 • Getting Started with Web Applications 99

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

100

JavaServer Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:
■ An API for representing components and managing their state; handling events, server-side

validation, and data conversion; defining page navigation; supporting internationalization
and accessibility; and providing extensibility for all these features

■ Tag libraries for adding components to web pages and for connecting components to
server-side objects

JavaServer Faces technology provides a well-defined programming model and various tag
libraries. These features significantly ease the burden of building and maintaining web
applications with server-side user interfaces (UIs). With minimal effort, you can complete the
following tasks.
■ Create a web page.
■ Drop components onto a web page by adding component tags.
■ Bind components on a page to server-side data.
■ Wire component-generated events to server-side application code.
■ Save and restore application state beyond the life of server requests.
■ Reuse and extend components through customization.

This chapter provides an overview of JavaServer Faces technology. After explaining what a
JavaServer Faces application is and reviewing some of the primary benefits of using JavaServer
Faces technology, this chapter describes the process of creating a simple JavaServer Faces
application. This chapter also introduces the JavaServer Faces lifecycle by describing the
example JavaServer Faces application progressing through the lifecycle stages.

The following topics are addressed here:
■ “What Is a JavaServer Faces Application?” on page 102
■ “JavaServer Faces Technology Benefits” on page 103

4C H A P T E R 4

101

■ “Creating a Simple JavaServer Faces Application” on page 104
■ “Further Information about JavaServer Faces Technology” on page 108

What Is a JavaServer Faces Application?
The functionality provided by a JavaServer Faces application is similar to that of any other Java
web application. A typical JavaServer Faces application includes the following parts:

■ A set of web pages in which components are laid out
■ A set of tags to add components to the web page
■ A set of backing beans, which are JavaBeans components that define properties and

functions for components on a page
■ A web deployment descriptor (web.xml file)
■ Optionally, one or more application configuration resource files, such as a

faces-config.xml file, which can be used to define page navigation rules and configure
beans and other custom objects, such as custom components

■ Optionally, a set of custom objects, which can include custom components, validators,
converters, or listeners, created by the application developer

■ A set of custom tags for representing custom objects on the page

Figure 4–1 shows the interaction between client and server in a typical JavaServer Faces
application. In response to a client request, a web page is rendered by the web container that
implements JavaServer Faces technology.

FIGURE 4–1 Responding to a Client Request for a JavaServer Faces Page

Web Container

myfacelet.xhtml

myUI

Browser

Renders HTML
HTTP Response

Access page
HTTP Request

What Is a JavaServer Faces Application?

The Java EE 6 Tutorial • October 2010102

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags. Component
tags are used to add components to the view (represented by myUI in the diagram), which is the
server-side representation of the page. In addition to components, the web page can also
reference objects, such as the following:

■ Any event listeners, validators, and converters that are registered on the components
■ The JavaBeans components that capture the data and process the application-specific

functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output, such as HTML or
XHTML, that can be read by the client, such as a browser.

JavaServer Faces Technology Benefits
One of the greatest advantages of JavaServer Faces technology is that it offers a clean separation
between behavior and presentation for web applications. A JavaServer Faces application can
map HTTP requests to component-specific event handling and manage components as stateful
objects on the server. JavaServer Faces technology allows you to build web applications that
implement the finer-grained separation of behavior and presentation that is traditionally
offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process and provides a simple
programming model to link the pieces. For example, page authors with no programming
expertise can use JavaServer Faces technology tags in a web page to link to server-side objects
without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar component and
web-tier concepts without limiting you to a particular scripting technology or markup
language. JavaServer Faces technology APIs are layered directly on top of the Servlet API, as
shown in Figure 4–2.

FIGURE 4–2 Java Web Application Technologies

JavaServer Faces JavaServer Pages
Standard Tag Library

JavaServer Pages

Java Servlet

JavaServer Faces Technology Benefits

Chapter 4 • JavaServer Faces Technology 103

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred presentation
technology for building JavaServer Faces technology-based web applications. For more
information on Facelets technology features, see Chapter 5, “Introduction to Facelets.”

Facelets technology offers several advantages.
■ Code can be reused and extended for components through the templating and composite

component features.
■ When you use the JavaServer Faces Annotations feature, you can automatically register the

backing bean as a resource available for JavaServer Faces applications. In addition, implicit
navigation rules allow developers to quickly configure page navigation. These features
reduce the manual configuration process for applications.

■ Most important, JavaServer Faces technology provides a rich architecture for managing
component state, processing component data, validating user input, and handling events.

Creating a Simple JavaServer Faces Application
JavaServer Faces technology provides an easy and user-friendly process for creating web
applications. Developing a simple JavaServer Faces application typically requires the following
tasks:

■ Developing backing beans
■ Adding managed bean declarations
■ Creating web pages using component tags
■ Mapping the FacesServlet instance

This section describes those tasks through the process of creating a simple JavaServer Faces
Facelets application.

The example is a Hello application that includes a backing bean and a web page. When accessed
by a client, the web page prints out a Hello World message. The example application is located
in the directory tut-install/examples/web/hello. The tasks involved in developing this
application can be examined by looking at the application components in detail.

Developing the Backing Bean
As mentioned earlier in this chapter, a backing bean, a type of managed bean, is a JavaBeans
component that is managed by JavaServer Faces technology. Components in a page are
associated with backing beans that provide application logic. The example backing bean,
Hello.java, contains the following code:

Creating a Simple JavaServer Faces Application

The Java EE 6 Tutorial • October 2010104

package hello;

import javax.faces.bean.ManagedBean;

@ManagedBean

public class Hello {

final String world = "Hello World!";

public String getworld() {

return world;

}

}

The example backing bean sets the value of the variable world with the string "Hello World!".
The @ManagedBean annotation registers the backing bean as a resource with the JavaServer
Faces implementation. For more information on managed beans and annotations, see
Chapter 9, “Developing with JavaServer Faces Technology.”

Creating the Web Page
In a typical Facelets application, web pages are created in XHTML. The example web page,
beanhello.xhtml, is a simple XHTML page. It has the following content:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Facelets Hello World</title>

</h:head>

<h:body>

#{hello.world}

</h:body>

</html>

A Facelets XHTML web page can also contain several other elements, which are covered later in
this tutorial.

The web page connects to the backing bean through the Expression Language (EL) value
expression #{hello.world}, which retrieves the value of the world property from the backing
bean Hello. Note the use of hello to reference the backing bean Hello. If no name is specified
in the @ManagedBean annotation, the backing bean is always accessed with the first letter of the
class name in lowercase.

For more information on using EL expressions, see Chapter 6, “Expression Language.” For
more information about Facelets technology, see Chapter 5, “Introduction to Facelets.” For
more information about the JavaServer Faces programming model and building web pages
using JavaServer Faces technology, see Chapter 7, “Using JavaServer Faces Technology in Web
Pages.”

Creating a Simple JavaServer Faces Application

Chapter 4 • JavaServer Faces Technology 105

Mapping the FacesServlet Instance
The final task requires mapping the FacesServlet, which is done through the web deployment
descriptor (web.xml). A typical mapping of FacesServlet is as follows:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The preceding file segment represents part of a typical JavaServer Faces web deployment
descriptor. The web deployment descriptor can also contain other content relevant to a
JavaServer Faces application configuration, but that information is not covered here.

Mapping the FacesServlet is automatically done for you if you are using an IDE such as
NetBeans IDE.

The Lifecycle of the helloApplication
Every web application has a lifecycle. Common tasks, such as handling incoming requests,
decoding parameters, modifying and saving state, and rendering web pages to the browser, are
all performed during a web application lifecycle. Some web application frameworks hide the
details of the lifecycle from you, whereas others require you to manage them manually.

By default, JavaServer Faces automatically handles most of the lifecycle actions for you.
However, it also exposes the various stages of the request lifecycle, so that you can modify or
perform different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer Faces
application, but the information can be useful for creating more complex applications.

The lifecycle of a JavaServer Faces application starts and ends with the following activity: The
client makes a request for the web page, and the server responds with the page. The lifecycle
consists of two main phases: execute and render.

During the execute phase, several actions can take place:

■ The application view is built or restored.
■ The request parameter values are applied.
■ Conversions and validations are performed for component values.
■ Backing beans are updated with component values.
■ Application logic is invoked.

Creating a Simple JavaServer Faces Application

The Java EE 6 Tutorial • October 2010106

For a first (initial) request, only the view is built. For subsequent (postback) requests, some or all
of the other actions can take place.

In the render phase, the requested view is rendered as a response to the client. Rendering is
typically the process of generating output, such as HTML or XHTML, that can be read by the
client, usually a browser.

The following short description of the example JavaServer Faces application passing through its
lifecycle summarizes the activity that takes place behind the scenes.

The hello example application goes through the following stages when it is deployed on the
GlassFish Server.

1. When the hello application is built and deployed on the GlassFish Server, the application is
in an uninitiated state.

2. When a client makes an initial request for the beanhello.xhtml web page, the hello
Facelets application is compiled.

3. The compiled Facelets application is executed, and a new component tree is constructed for
the hello application and is placed in a FacesContext.

4. The component tree is populated with the component and the backing bean property
associated with it, represented by the EL expression hello.world.

5. A new view is built, based on the component tree.
6. The view is rendered to the requesting client as a response.
7. The component tree is destroyed automatically.
8. On subsequent (postback) requests, the component tree is rebuilt, and the saved state is

applied.

For more detailed information on the JavaServer Faces lifecycle, see the JavaServer Faces
Specification, Version 2.0.

▼ To Build, Package, Deploy, and Run the Application in
NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog box, navigate to:
tut-install/examples/web

Select the hello folder.

Select the Open as Main Project check box.

1

2

3

4

Creating a Simple JavaServer Faces Application

Chapter 4 • JavaServer Faces Technology 107

Click Open Project.

In the Projects tab, right-click the helloproject and select Run.
This step compiles, assembles, and deploys the application and then brings up a web browser
window displaying the following URL:
http://localhost:8080/hello

The output looks like this:

Hello World!

Further Information about JavaServer Faces Technology
For more information on JavaServer Faces technology, see

■ JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314

■ JavaServer Faces technology web site:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

■ JavaServer Faces 2.0 technology download web site:
http://www.oracle.com/technetwork/java/javaee/download-139288.html

■ Mojarra (JavaServer Faces 2.0) Release Notes:
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html

5

6

Further Information about JavaServer Faces Technology

The Java EE 6 Tutorial • October 2010108

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/download-139288.html
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html

Introduction to Facelets

The term Facelets refers to the view declaration language for JavaServer Faces technology.
JavaServer Pages (JSP) technology, previously used as the presentation technology for
JavaServer Faces, does not support all the new features available in JavaServer Faces 2.0. JSP
technology is considered to be a deprecated presentation technology for JavaServer Faces 2.0.
Facelets is a part of the JavaServer Faces specification and also the preferred presentation
technology for building JavaServer Faces technology-based applications.

The following topics are addressed here:

■ “What Is Facelets?” on page 109
■ “Developing a Simple Facelets Application” on page 111
■ “Templating” on page 117
■ “Composite Components” on page 119
■ “Resources” on page 122

What Is Facelets?
Facelets is a powerful but lightweight page declaration language that is used to build JavaServer
Faces views using HTML style templates and to build component trees. Facelets features
include the following:

■ Use of XHTML for creating web pages
■ Support for Facelets tag libraries in addition to JavaServer Faces and JSTL tag libraries
■ Support for the Expression Language (EL)
■ Templating for components and pages

Advantages of Facelets for large-scale development projects include the following:

■ Support for code reuse through templating and composite components
■ Functional extensibility of components and other server-side objects through customization

5C H A P T E R 5

109

■ Faster compilation time
■ Compile-time EL validation
■ High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on development
and deployment.

Facelets views are usually created as XHTML pages. JavaServer Faces implementations support
XHTML pages created in conformance with the XHTML Transitional Document Type
Definition (DTD), as listed at http://www.w3.org/TR/xhtml1/
#a_dtd_XHTML-1.0-Transitional. By convention, web pages built with XHTML have an
.xhtml extension.

JavaServer Faces technology supports various tag libraries to add components to a web page. To
support the JavaServer Faces tag library mechanism, Facelets uses XML namespace
declarations. Table 5–1 lists the tag libraries supported by Facelets.

TABLE 5–1 Tag Libraries Supported by Facelets

Tag Library URI Prefix Example Contents

JavaServer
Faces Facelets
Tag Library

http://java.sun.com/jsf/facelets ui: ui:component

ui:insert

Tags for
templating

JavaServer
Faces HTML
Tag Library

http://java.sun.com/jsf/html h: h:head

h:body

h:outputText

h:inputText

JavaServer
Faces
component
tags for all
UIComponents

JavaServer
Faces Core
Tag Library

http://java.sun.com/jsf/core f: f:actionListener

f:attribute

Tags for
JavaServer
Faces
custom
actions that
are
independent
of any
particular
RenderKit

JSTL Core Tag
Library

http://java.sun.com/jsp/jstl/core c: c:forEach

c:catch

JSTL 1.1
Core Tags

JSTL
Functions Tag
Library

http://java.sun.com/jsp/jstl/

functions

fn: fn:toUpperCase

fn:toLowerCase

JSTL 1.1
Functions
Tags

What Is Facelets?

The Java EE 6 Tutorial • October 2010110

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

In addition, Facelets supports tags for composite components for which you can declare custom
prefixes. For more information on composite components, see “Composite Components” on
page 119.

Based on the JavaServer Faces support for Expression Language (EL) syntax defined by JSP 2.1,
Facelets uses EL expressions to reference properties and methods of backing beans. EL
expressions can be used to bind component objects or values to methods or properties of
managed beans. For more information on using EL expressions, see “Using the EL to Reference
Backing Beans” on page 183.

Developing a Simple Facelets Application
This section describes the general steps involved in developing a JavaServer Faces application.
The following tasks are usually required:

■ Developing the backing beans
■ Creating the pages using the component tags
■ Defining page navigation
■ Mapping the FacesServlet instance
■ Adding managed bean declarations

Creating a Facelets Application
The example used in this tutorial is the guessnumber application. The application presents you
with a page that asks you to guess a number between 0 and 10, validates your input against a
random number, and responds with another page that informs you whether you guessed the
number correctly or incorrectly.

Developing a Backing Bean
In a typical JavaServer Faces application, each page of the application connects to a backing
bean, a type of managed bean. The backing bean defines the methods and properties that are
associated with the components.

The following managed bean class, UserNumberBean.java, generates a random number from 0
to 10:

package guessNumber;

import java.util.Random;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean

@SessionScoped

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 111

public class UserNumberBean {

Integer randomInt = null;

Integer userNumber = null;

String response = null;

private long maximum=10;

private long minimum=0;

public UserNumberBean() {

Random randomGR = new Random();

randomInt = new Integer(randomGR.nextInt(10));

System.out.println("Duke’s number: " + randomInt);

}

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

if ((userNumber != null) && (userNumber.compareTo(randomInt) == 0)) {

return "Yay! You got it!";
} else {

return "Sorry, " + userNumber + " is incorrect.";
}

}

public long getMaximum() {

return (this.maximum);

}

public void setMaximum(long maximum) {

this.maximum = maximum;

}

public long getMinimum() {

return (this.minimum);

}

public void setMinimum(long minimum) {

this.minimum = minimum;

}

}

Note the use of the @ManagedBean annotation, which registers the backing bean as a resource
with JavaServer Faces implementation. The @SessionScoped annotation registers the bean
scope as session.

Creating Facelets Views
Creating a page or view is the responsibility of a page author. This task involves adding
components on the pages, wiring the components to backing bean values and properties, and
registering converters, validators, or listeners onto the components.

Developing a Simple Facelets Application

The Java EE 6 Tutorial • October 2010112

For the example application, XHTML web pages serve as the front end. The first page of the
example application is a page called greeting.xhtml. A closer look at various sections of this
web page provides more information.

The first section of the web page declares the content type for the page, which is XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The next section declares the XML namespace for the tag libraries that are used in the web page:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The next section uses various tags to insert components into the web page:

h:head>

<title>Guess Number Facelets Application</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>

Hi, my name is Duke. I am thinking of a number from

#{userNumberBean.minimum} to #{userNumberBean.maximum}.

Can you guess it?

<p></p>

<h:inputText

id="userNo"
value="#{userNumberBean.userNumber}">
<f:validateLongRange

minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>

</h:inputText>

<h:commandButton id="submit" value="Submit"
action="response.xhtml"/>

<h:message showSummary="true" showDetail="false"
style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline"
id="errors1"
for="userNo"/>

</h2>

</h:form>

</h:body>

Note the use of the following tags:

■ Facelets HTML tags (those beginning with h:) to add components
■ The Facelets core tag f:validateLongRange to validate the user input

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 113

An inputText component accepts user input and sets the value of the backing bean property
userNumber through the EL expression #{userNumberBean.userNumber}. The input value is
validated for value range by the JavaServer Faces standard validator f:validateLongRange.

The image file, wave.med.gif, is added to the page as a resource. For more details about the
resources facility, see “Resources” on page 122.

A commandButton component with the ID submit starts validation of the input data when a user
clicks the button. Using implicit navigation, the component redirects the client to another page,
response.xhtml, which shows the response to your input.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Guess Number Facelets Application</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>

<h:outputText id="result" value="#{userNumberBean.response}"/>
</h2>

<h:commandButton id="back" value="Back" action="greeting.xhtml"/>
</h:form>

</h:body>

</html>

Configuring the Application
Configuring a JavaServer Faces application involves mapping the Faces Servlet in the web
deployment descriptor file, such as a web.xml file, and possibly adding managed bean
declarations, navigation rules, and resource bundle declarations to the application
configuration resource file, faces-config.xml.

If you are using NetBeans IDE, a web deployment descriptor file is automatically created for
you. In such an IDE-created web.xml file, change the default greeting page, which is
index.xhtml, to greeting.xhtml. Here is an example web.xml file, showing this change in
bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

Developing a Simple Facelets Application

The Java EE 6 Tutorial • October 2010114

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>

</context-param>

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>

30

</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>faces/greeting.xhtml</welcome-file>

</welcome-file-list>

</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the status of a
JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user.
If not defined by the user, the default project stage is Production.

Building, Packaging, Deploying, and Running the
guessnumber Facelets Example
You can use either NetBeans IDE or Ant to build, package, deploy, and run the guessnumber
example. The source code for this example is available in the
tut-install/examples/web/guessnumber directory.

▼ To Build, Package, and Deploy the guessnumber Example Using
NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/web/

Select the guessnumber folder.

Select the Open as Main Project check box.

1

2

3

4

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 115

Click Open Project.

In the Projects tab, right-click the guessnumberproject and select Deploy.

This option builds and deploys the example application to your GlassFish Server instance.

▼ To Build, Package, and Deploy the guessnumber Example Using Ant

In a terminal window, go to:
tut-install/examples/web/guessnumber/

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, guessnumber.war, that is located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

▼ To Run the guessnumber Example

Open a web browser.

Type the following URL in your web browser:
http://localhost:8080/guessnumber

The web page shown in Figure 5–1 appears.

5

6

1

2

3

4

1

2

Developing a Simple Facelets Application

The Java EE 6 Tutorial • October 2010116

In the text field, type a number from 0 to 10 and click Submit.
Another page appears, reporting whether your guess is correct or incorrect.

If you guessed incorrectly, click the Back button to return to the main page.
You can continue to guess until you get the correct answer.

Templating
JavaServer Faces technology provides the tools to implement user interfaces that are easy to
extend and reuse. Templating is a useful Facelets feature that allows you to create a page that
will act as the base, or template, for the other pages in an application. By using templates, you
can reuse code and avoid recreating similarly constructed pages. Templating also helps in
maintaining a standard look and feel in an application with a large number of pages.

Table 5–2 lists Facelets tags that are used for templating and their respective functionality.

TABLE 5–2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component tree.

ui:composition Defines a page composition that optionally uses a template. Content outside of this
tag is ignored.

ui:debug Defines a debug component that is created and added to the component tree.

FIGURE 5–1 Running the guessnumberApplication

3

4

Templating

Chapter 5 • Introduction to Facelets 117

TABLE 5–2 Facelets Templating Tags (Continued)
Tag Function

ui:decorate Similar to the composition tag but does not disregard content outside this tag.

ui:define Defines content that is inserted into a page by a template.

ui:fragment Similar to the component tag but does not disregard content outside this tag.

ui:include Encapsulate and reuse content for multiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags, such as c:forEach or h:dataTable.

ui:remove Removes content from a page.

For more information on Facelets templating tags, see the documentation at
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

The Facelets tag library includes the main templating tag ui:insert. A template page that is
created with this tag allows you to define a default structure for a page. A template page is used
as a template for other pages, usually referred to as client pages.

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />

<link href="./resources/css/default.css"
rel="stylesheet" type="text/css" />

<link href="./resources/css/cssLayout.css"
rel="stylesheet" type="text/css" />

<title>Facelets Template</title>

</h:head>

<h:body>

<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>

</div>

<div>

<div id="left">
<ui:insert name="left">Left Section</ui:insert>

</div>

<div id="content" class="left_content">
<ui:insert name="content">Main Content</ui:insert>

</div>

Templating

The Java EE 6 Tutorial • October 2010118

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

</div>

</h:body>

</html>

The example page defines an XHTML page that is divided into three sections: a top section, a
left section, and a main section. The sections have style sheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using the ui:composition tag. In the following
example, a client page named templateclient.xhtml invokes the template page named
template.xhtml from the preceding example. A client page allows content to be inserted with
the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>

<ui:composition template="./template.xhtml">
<ui:define name="top">

Welcome to Template Client Page

</ui:define>

<ui:define name="left">
<h:outputLabel value="You are in the Left Section"/>

</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h:outputText value="You are in the Main Content Section"/>

</ui:define>

</ui:composition>

</h:body>

</html>

You can use NetBeans IDE to create Facelets template and client pages. For more information
on creating these pages, see http://netbeans.org/kb/docs/web/jsf20-intro.html.

Composite Components
JavaServer Faces technology offers the concept of composite components with Facelets. A
composite component is a special type of template that acts as a component.

Any component is essentially a piece of reusable code that behaves in a particular way. For
example, an inputText component accepts user input. A component can also have validators,
converters, and listeners attached to it to perform certain defined actions.

A composite component consists of a collection of markup tags and other existing components.
This reusable, user-created component has a customized, defined functionality and can have
validators, converters, and listeners attached to it like any other component.

Composite Components

Chapter 5 • Introduction to Facelets 119

http://netbeans.org/kb/docs/web/jsf20-intro.html

With Facelets, any XHTML page that contains markup tags and other components can be
converted into a composite component. Using the resources facility, the composite component
can be stored in a library that is available to the application from the defined resources location.

Table 5–3 lists the most commonly used composite tags and their functions.

TABLE 5–3 Composite Component Tags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component whose
feature set is the union of the features declared in the usage contract.

composite:implementation Defines the implementation of the composite component. If a
composite:interface element appears, there must be a
corresponding composite:implementation.

composite:attribute Declares an attribute that may be given to an instance of the
composite component in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be reparented into the
composite component at the point indicated by this tag’s placement
within the composite:implementation section.

composite:valueHolder Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of ValueHolder suitable for use as the target of
attached objects in the using page.

composite:editableValueHolder Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of EditableValueHolder suitable for use as the
target of attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is declared
by the composite:interface in which this element is nested exposes
an implementation of ActionSource2 suitable for use as the target of
attached objects in the using page.

For more information and a complete list of Facelets composite tags, see the documentation at
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

The following example shows a composite component that accepts an email address as input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

Composite Components

The Java EE 6 Tutorial • October 2010120

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

<h:head>

<title>This content will not be displayed</title>

</h:head>

<h:body>

<composite:interface>

<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>

<h:outputLabel value="Email id: "></h:outputLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>

</composite:implementation>

</h:body>

</html>

Note the use of cc.attrs.value when defining the value of the inputText component. The
word cc in JavaServer Faces is a reserved word for composite components. The
#{cc.attrs.attribute-name} expression is used to access the attributes defined for the
composite component’s interface, which in this case happens to be value.

The preceding example content is stored as a file named email.xhtml in a folder named
resources/emcomp, under the application web root directory. This directory is considered a
library by JavaServer Faces, and a component can be accessed from such a library. For more
information on resources, see “Resources” on page 122.

The web page that uses this composite component is generally called a using page. The using
page includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>

<title>Using a sample composite component</title>

</h:head>

<body>

<h:form>

<em:email value="Enter your email id" />

</h:form>

</body>

</html>

The local composite component library is defined in the xml namespace with the declaration
xmlns:em="http://java.sun.com/jsf/composite/emcomp/". The component itself is
accessed through the use of em:email tag. The preceding example content can be stored as a
web page named emuserpage.xhtml under the web root directory. When compiled and
deployed on a server, it can be accessed with the following URL:

http://localhost:8080/application-name/faces/emuserpage.xhtml

Composite Components

Chapter 5 • Introduction to Facelets 121

Resources
Web resources are any software artifacts that the web application requires for proper rendering,
including images, script files, and any user-created component libraries. Resources must be
collected in a standard location, which can be one of the following.

■ A resource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/resource-identifier.

■ A resource packaged in the web application’s classpath must be in a subdirectory of the
META-INF/resources directory within a web application:
META-INF/resources/resource-identifier.

The JavaServer Faces runtime will look for the resources in the preceding listed locations, in
that order.

Resource identifiers are unique strings that conform to the following format:

[locale-prefix/][library-name/][library-version/]resource-name[/resource-version]

Elements of the resource identifier in brackets ([]) are optional, indicating that only a
resource-name, which is usually a file name, is a required element.

Resources can be considered as a library location. Any artifact, such as a composite component
or a template that is stored in the resources directory, becomes accessible to the other
application components, which can use it to create a resource instance.

Resources

The Java EE 6 Tutorial • October 2010122

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which provides an
important mechanism for enabling the presentation layer (web pages) to communicate with the
application logic (backing beans). The EL is used by both JavaServer Faces technology and
JavaServer Pages (JSP) technology. The EL represents a union of the expression languages
offered by JavaServer Faces technology and JSP technology.

The following topics are addressed here:

■ “Overview of the EL” on page 123
■ “Immediate and Deferred Evaluation Syntax” on page 124
■ “Value and Method Expressions” on page 126
■ “Defining a Tag Attribute Type” on page 132
■ “Literal Expressions” on page 133
■ “Operators” on page 134
■ “Reserved Words” on page 134
■ “Examples of EL Expressions” on page 135

Overview of the EL
The EL allows page authors to use simple expressions to dynamically access data from
JavaBeans components. For example, the test attribute of the following conditional tag is
supplied with an EL expression that compares 0 with the number of items in the session-scoped
bean named cart.

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...

</c:if>

JavaServer Faces technology uses the EL for the following functions:

■ Deferred and immediate evaluation of expressions
■ The ability to set as well as get data

6C H A P T E R 6

123

■ The ability to invoke methods

See “Using the EL to Reference Backing Beans” on page 183 for more information on how to use
the EL in JavaServer Faces applications.

To summarize, the EL provides a way to use simple expressions to perform the following tasks:

■ Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

■ Dynamically write data, such as user input into forms, to JavaBeans components
■ Invoke arbitrary static and public methods
■ Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag attribute will
accept:

■ Immediate evaluation expressions or deferred evaluation expressions. An immediate
evaluation expression is evaluated at once by the underlying technology, such as JavaServer
Faces. A deferred evaluation expression can be evaluated later by the underlying technology
using the EL.

■ Value expression or method expression. A value expression references data, whereas a
method expression invokes a method.

■ Rvalue expression or lvalue expression. An rvalue expression can only read a value,
whereas an lvalue expression can both read and write that value to an external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers that can
handle expressions not already supported by the EL can be implemented.

Immediate and Deferred Evaluation Syntax
The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation
means that the expression is evaluated and the result returned as soon as the page is first
rendered. Deferred evaluation means that the technology using the expression language can use
its own machinery to evaluate the expression sometime later during the page’s lifecycle,
whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose
evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology uses mostly deferred evaluation
expressions. During the lifecycle, component events are handled, data is validated, and other
tasks are performed in a particular order. Therefore, a JavaServer Faces implementation must
defer evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

Immediate and Deferred Evaluation Syntax

The Java EE 6 Tutorial • October 2010124

Immediate Evaluation
All expressions using the ${} syntax are evaluated immediately. These expressions can be used
only within template text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression ${sessionScope.cart.total},
converts it, and passes the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The preceding
example expression cannot set the total price, but instead can only get the total price from the
cart bean.

Deferred Evaluation
Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of
a page lifecycle as defined by whatever technology is using the expression. In the case of
JavaServer Faces technology, its controller can evaluate the expression at different phases of the
lifecycle, depending on how the expression is being used in the page.

The following example shows a JavaServer Faces inputText tag, which represents a text field
component into which a user enters a value. The inputText tag’s value attribute references a
deferred evaluation expression that points to the name property of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation
evaluates the #{customer.name} expression during the render-response phase of the lifecycle.
During this phase, the expression merely accesses the value of name from the customer bean, as
is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression at
different phases of the lifecycle, during which the value is retrieved from the request, validated,
and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be

■ Value expressions that can be used to both read and write data
■ Method expressions

Value expressions (both immediate and deferred) and method expressions are explained in the
next section.

Immediate and Deferred Evaluation Syntax

Chapter 6 • Expression Language 125

Value and Method Expressions
The EL defines two kinds of expressions: value expressions and method expressions. Value
expressions can either yield a value or set a value. Method expressions reference methods that
can be invoked and can return a value.

Value Expressions
Value expressions can be further categorized into rvalue and lvalue expressions. Rvalue
expressions can read data but cannot write it. Lvalue expressions can both read and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always rvalue
expressions. Expressions whose evaluation can be deferred use the #{} delimiters and can act as
both rvalue and lvalue expressions. Consider the following two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation
syntax. The first expression accesses the name property, gets its value, adds the value to the
response, and gets rendered on the page. The same can happen with the second expression.
However, the tag handler can defer the evaluation of this expression to a later time in the page
lifecycle, if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated immediately
during an initial request for the page. In this case, this expression acts as an rvalue expression.
During a postback request, this expression can be used to set the value of the name property with
user input. In this case, the expression acts as an lvalue expression.

Referencing Objects Using Value Expressions
Both rvalue and lvalue expressions can refer to the following objects and their properties or
attributes:

■ JavaBeans components
■ Collections
■ Java SE enumerated types
■ Implicit objects

To refer to these objects, you write an expression using a variable that is the name of the object.
The following expression references a backing bean (a JavaBeans component) called customer:

${customer}

Value and Method Expressions

The Java EE 6 Tutorial • October 2010126

The web container evaluates the variable that appears in an expression by looking up its value
according to the behavior of PageContext.findAttribute(String), where the String
argument is the name of the variable. For example, when evaluating the expression
${customer}, the container will look for customer in the page, request, session, and application
scopes and will return its value. If customer is not found, a null value is returned.

You can use a custom EL resolver to alter the way variables are resolved. For instance, you can
provide an EL resolver that intercepts objects with the name customer, so that ${customer}
returns a value in the EL resolver instead.

To reference an enum constant with an expression, use a String literal. For example, consider
this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant Suit.hearts with an expression, use the String literal "hearts".
Depending on the context, the String literal is converted to the enum constant automatically.
For example, in the following expression in which mySuit is an instance of Suit, "hearts" is
first converted to Suit.hearts before it is compared to the instance:

${mySuit == "hearts"}

Referring to Object Properties Using Value Expressions
To refer to properties of a bean or an enum instance, items of a collection, or attributes of an
implicit object, you use the . or [] notation.

To reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the brackets is a
String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the [] and .

notations, as shown here:

${customer.address["street"]}

Properties of an enum constant can also be referenced in this way. However, as with JavaBeans
component properties, the properties of an Enum class must follow JavaBeans component
conventions. This means that a property must at least have an accessor method called
getProperty, where Property is the name of the property that can be referenced by an
expression.

For example, consider an Enum class that encapsulates the names of the planets of our galaxy and
includes a method to get the mass of a planet. You can use the following expression to reference
the method getMass of the Enum class Planet:

${myPlanet.mass}

Value and Method Expressions

Chapter 6 • Expression Language 127

If you are accessing an item in an array or list, you must use either a literal value that can be
converted to int or the [] notation with an int and without quotes. The following examples
could resolve to the same item in a list or array, assuming that socks can be converted to int:

■ ${customer.orders[1]}

■ ${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the result of
arithmetic operations and literal values, as shown by these examples:

■ ${"literal"}
■ ${customer.age + 20}

■ ${true}

■ ${57}

The EL defines the following literals:

■ Boolean: true and false

■ Integer: as in Java
■ Floating-point: as in Java
■ String: with single and double quotes; " is escaped as \", ’ is escaped as \’, and \ is escaped as

\\

■ Null: null

You can also write expressions that perform operations on an enum constant. For example,
consider the following Enum class:

public enum Suit {club, diamond, heart, spade}

After declaring an enum constant called mySuit, you can write the following expression to test
whether mySuit is spade:

${mySuit == "spade"}

When it resolves this expression, the EL resolving mechanism will invoke the valueOf method
of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

Value and Method Expressions

The Java EE 6 Tutorial • October 2010128

Where Value Expressions Can Be Used
Value expressions using the ${} delimiters can be used in
■ Static text
■ Any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here
is an example of an expression embedded in static text:

<some:tag>

some text ${expr} some text

</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if the body is
declared to be tagdependent.

Lvalue expressions can be used only in tag attributes that can accept lvalue expressions.

A tag attribute value using either an rvalue or lvalue expression can be set in the following ways:
■ With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute’s expected type.
■ With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expr}text${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left to right. Each
expression embedded in the composite expression is converted to a String and then
concatenated with any intervening text. The resulting String is then converted to the
attribute’s expected type.

■ With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s String value is
converted to the attribute’s expected type. Literal value expressions have special syntax rules.
See “Literal Expressions” on page 133 for more information. When a tag attribute has an
enum type, the expression that the attribute uses must be a literal expression. For example,
the tag attribute can use the expression "hearts" to mean Suit.hearts. The literal is
converted to Suit, and the attribute gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected type. If
the result of the expression evaluation does not match the expected type exactly, a type
conversion will be performed. For example, the expression ${1.2E4} provided as the value of
an attribute of type float will result in the following conversion:

Value and Method Expressions

Chapter 6 • Expression Language 129

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.2 Expression Language specification (available from
http://jcp.org/aboutJava/communityprocess/final/jsr245/) for the complete type
conversion rules.

Method Expressions
Another feature of the EL is its support of deferred method expressions. A method expression is
used to invoke an arbitrary public method of a bean, which can return a result.

In JavaServer Faces technology, a component tag represents a component on a page. The
component tag uses method expressions to invoke methods that perform some processing for
the component. These methods are necessary for handling events that the components generate
and for validating component data, as shown in this example:

<h:form>

<h:inputText

id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>

<h:commandButton

id="submit"
action="#{customer.submit}" />

</h:form>

The inputText tag displays as a text field. The validator attribute of this inputText tag
references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method expressions
must always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For example,
#{object.method} is equivalent to #{object["method"]}. The literal inside the [] is converted
to String and is used to find the name of the method that matches it. Once the method is found,
it is invoked, or information about the method is returned.

Method expressions can be used only in tag attributes and only in the following ways:

■ With a single expression construct, where bean refers to a JavaBeans component and
method refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

■ With text only:

<some:tag value="sometext"/>

Value and Method Expressions

The Java EE 6 Tutorial • October 2010130

http://jcp.org/aboutJava/communityprocess/final/jsr245/

Method expressions support literals primarily to support action attributes in JavaServer
Faces technology. When the method referenced by this method expression is invoked, the
method returns the String literal, which is then converted to the expected return type, as
defined in the tag’s tag library descriptor.

Parameterized Method Calls
The EL offers support for parameterized method calls. Method calls can use parameters without
having to use static EL functions.

Both the . and [] operators can be used for invoking method calls with parameters, as shown in
the following expression syntax:

■ expr-a[expr-b](parameters)
■ expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The expression
expr-b is evaluated and cast to a string that represents a method in the bean represented by
expr-a. In the second expression syntax, expr-a is evaluated to represent a bean object, and
identifier-b is a string that represents a method in the bean object. The parameters in
parentheses are the arguments for the method invocation. Parameters can be zero or more
values or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the following
example, which is a modified tag from the guessnumber application, a random number is
provided as an argument rather than from user input to the method call:

<h:inputText value="#{userNumberBean.userNumber(’5’)}">

The preceding example uses a value expression.

Consider the following example of a JavaServer Faces component tag that uses a method
expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader.buy calls the trader bean’s buy method. You can modify the tag to
pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy(’SOMESTOCK’)}" value="buy"/>

In the preceding example, you are passing the string ’SOMESTOCK’ (a stock symbol) as a
parameter to the buy method.

For more information on the updated EL, see https://uel.dev.java.net.

Value and Method Expressions

Chapter 6 • Expression Language 131

https://uel.dev.java.net

Defining a Tag Attribute Type
As explained in the previous section, all kinds of expressions can be used in tag attributes.
Which kind of expression and how it is evaluated, whether immediately or deferred, are
determined by the type attribute of the tag’s definition in the Page Description Language (PDL)
that defines the tag.

If you plan to create custom tags, for each tag in the PDL, you need to specify what kind of
expression to accept. Table 6–1 shows the kinds of tag attributes that accept EL expressions,
gives examples of expressions they accept, and provides the type definitions of the attributes
that must be added to the PDL. You cannot use #{} syntax for a dynamic attribute, meaning an
attribute that accepts dynamically calculated values at runtime. Similarly, you also cannot use
the ${} syntax for a deferred attribute.

TABLE 6–1 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition

Dynamic "literal" <rtexprvalue>true</rtexprvalue>

${literal} <rtexprvalue>true</rtexprvalue>

Deferred value "literal" <deferred-value>

<type>java.lang.String</type>

</deferred-value>

#{customer.age} <deferred-value>

<type>int</type>

</deferred-value>

Deferred method "literal" <deferred-method>

<method-signature>

java.lang.String submit()

</method-signature>

<deferred-method>

#{customer.calcTotal} <deferred-method>

<method-signature>

double calcTotal(int, double)

</method-signature>

</deferred-method>

In addition to the tag attribute types shown in Table 6–1, you can define an attribute to accept
both dynamic and deferred expressions. In this case, the tag attribute definition contains both
an rtexprvalue definition set to true and either a deferred-value or deferred-method
definition.

Defining a Tag Attribute Type

The Java EE 6 Tutorial • October 2010132

Literal Expressions
A literal expression is evaluated to the text of the expression, which is of type String. A literal
expression does not use the ${} or #{} delimiters.

If you have a literal expression that includes the reserved ${} or #{} syntax, you need to escape
these characters as follows:

■ By creating a composite expression as shown here:

${’${’}exprA}

#{’#{’}exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.
■ By using the escape characters \$ and \# to escape what would otherwise be treated as an

eval-expression:

\${exprA}

\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6–2 shows
examples of various literal expressions and their expected types and resulting values.

TABLE 6–2 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE

42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or method
expressions. At what point a literal expression is evaluated depends on where it is being used. If
the tag attribute that uses the literal expression is defined to accept a deferred value expression,
when referencing a value, the literal expression is evaluated at a point in the lifecycle that is
determined by other factors, such as where the expression is being used and to what it is
referring.

In the case of a method expression, the method that is referenced is invoked and returns the
specified String literal. For example, the commandButton tag of the guessnumber application
uses a literal method expression as a logical outcome to tell the JavaServer Faces navigation
system which page to display next.

Literal Expressions

Chapter 6 • Expression Language 133

Operators
In addition to the . and [] operators discussed in “Value and Method Expressions” on
page 126, the EL provides the following operators, which can be used in rvalue expressions only:

■ Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
■ Logical: and, &&, or, ||, not, !
■ Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be made against other

values or against Boolean, string, integer, or floating-point literals.
■ Empty: The empty operator is a prefix operation that can be used to determine whether a

value is null or empty.
■ Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

The precedence of operators highest to lowest, left to right is as follows:

■ [] .

■ () (used to change the precedence of operators)
■ - (unary) not ! empty

■ * / div % mod

■ + - (binary)
■ < > <= >= lt gt le ge

■ == != eq ne

■ && and

■ || or

■ ? :

Reserved Words
The following words are reserved for the EL and should not be used as identifiers:

and or not eq

ne lt gt le

ge true false null

instanceof empty div mod

Operators

The Java EE 6 Tutorial • October 2010134

Examples of EL Expressions
Table 6–3 contains example EL expressions and the result of evaluating them.

TABLE 6–3 Example Expressions

EL Expression Result

${1 > (4/2)} false

${4.0 >= 3} true

${100.0 == 100} true

${(10*10) ne 100} false

${’a’ < ’b’} true

${’hip’ gt ’hit’} false

${4 > 3} true

${1.2E4 + 1.4} 12001.4

${3 div 4} 0.75

${10 mod 4} 2

${!empty param.Add} False if the request parameter named Add is null or an
empty string.

${pageContext.request.contextPath} The context path.

${sessionScope.cart.numberOfItems} The value of the numberOfItems property of the
session-scoped attribute named cart.

${param[’mycom.productId’]} The value of the request parameter named
mycom.productId.

${header["host"]} The host.

${departments[deptName]} The value of the entry named deptName in the
departments map.

${requestScope[’javax.servlet.forward.

servlet_path’]}

The value of the request-scoped attribute named
javax.servlet.forward.servlet_path.

#{customer.lName} Gets the value of the property lName from the customer
bean during an initial request. Sets the value of lName
during a postback.

#{customer.calcTotal} The return value of the method calcTotal of the
customer bean.

Examples of EL Expressions

Chapter 6 • Expression Language 135

136

Using JavaServer Faces Technology in Web
Pages

Web pages represent the presentation layer for web applications. The process of creating web
pages of a JavaServer Faces application includes adding components to the page and wiring
them to backing beans, validators, converters, and other server-side objects that are associated
with the page.

This chapter explains how to create web pages using various types of component and core tags.
In the next chapter, you will learn about adding converters, validators, and listeners to
component tags to provide additional functionality to components.

The following topics are addressed here:

■ “Setting Up a Page” on page 137
■ “Adding Components to a Page Using HTML Tags” on page 138
■ “Using Core Tags” on page 166

Setting Up a Page
A typical JavaServer Faces web page includes the following elements:

■ A set of namespace declarations that declare the JavaServer Faces tag libraries
■ Optionally, the new HTML head (h:head) and body (h:body) tags
■ A form tag (h:form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the page access
to the two standard tag libraries: the JavaServer Faces HTML tag library and the JavaServer
Faces core tag library. The JavaServer Faces standard HTML tag library defines tags that
represent common HTML user interface components. This library is linked to the HTML
render kit at http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/
renderkitdocs/. The JavaServer Faces core tag library defines tags that perform core actions.

7C H A P T E R 7

137

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/renderkitdocs/
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/renderkitdocs/

For a complete list of JavaServer Faces Facelets tags and their attributes, refer to the
documentation at http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/
pdldocs/facelets/.

To use any of the JavaServer Faces tags, you need to include appropriate directives at the top of
each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library URI
and the tag prefix.

For example, when creating a Facelets XHTML page, include namespace directives as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead
of the standard h or f. However, when including the tag in the page, you must use the prefix that
you have chosen for the tag library. For example, in the following web page, the form tag must
be referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in HTML tag library:

<h:form ...>

The sections “Adding Components to a Page Using HTML Tags” on page 138 and “Using Core
Tags” on page 166 describe how to use the component tags from the JavaServer Faces standard
HTML tag library and the core tags from the JavaServer Faces core tag library.

Adding Components to a Page Using HTML Tags
The tags defined by the JavaServer Faces standard HTML tag library represent HTML form
components and other basic HTML elements. These components display data or accept data
from the user. This data is collected as part of a form and is submitted to the server, usually
when the user clicks a button. This section explains how to use each of the component tags
shown in Table 7–1.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010138

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

TABLE 7–1 The Component Tags

Tag Functions Rendered as Appearance

column Represents a column of data
in a data component

A column of data in an
HTML table

A column in a table

commandButton Submits a form to the
application

An HTML <input

type=type> element,
where the type value can
be submit, reset, or
image

A button

commandLink Links to another page or
location on a page

An HTML <a href>

element
A hyperlink

dataTable Represents a data wrapper An HTML <table>

element
A table that can be
updated dynamically

form Represents an input form
(inner tags of the form receive
the data that will be
submitted with the form)

An HTML <form>

element
No appearance

graphicImage Displays an image An HTML element An image

inputHidden Allows a page author to
include a hidden variable in a
page

An HTML <input

type=hidden> element
No appearance

inputSecret Allows a user to input a string
without the actual string
appearing in the field

An HTML <input

type=password> element
A text field, which
displays a row of
characters instead of
the actual string
entered

inputText Allows a user to input a string An HTML <input

type=text> element
A text field

inputTextarea Allows a user to enter a
multiline string

An HTML <textarea>

element
A multi-row text
field

message Displays a localized message An HTML tag if
styles are used

A text string

messages Displays localized messages A set of HTML

tags if styles are used
A text string

outputFormat Displays a localized message Plain text Plain text

outputLabel Displays a nested component
as a label for a specified input
field

An HTML <label>

element
Plain text

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 139

TABLE 7–1 The Component Tags (Continued)
Tag Functions Rendered as Appearance

outputLink Links to another page or
location on a page without
generating an action event

An HTML <a> element A hyperlink

outputText Displays a line of text Plain text Plain text

panelGrid Displays a table An HTML <table>

element with <tr> and
<td> elements

A table

panelGroup Groups a set of components
under one parent

A HTML <div> or
 element

A row in a table

selectBooleanCheckbox Allows a user to change the
value of a Boolean choice

An HTML <input

type=checkbox>

element.

A check box

selectItem Represents one item in a list
of items from which the user
must select one

An HTML <option>

element
No appearance

selectItems Represents a list of items from
which the user must select
one

A list of HTML <option>

elements
No appearance

selectManyCheckbox Displays a set of check boxes
from which the user can
select multiple values

A set of HTML <input>

elements of type
checkbox

A set of check boxes

selectManyListbox Allows a user to select
multiple items from a set of
items, all displayed at once

An HTML <select>

element
A list box

selectManyMenu Allows a user to select
multiple items from a set of
items

An HTML <select>

element
A scrollable combo
box

selectOneListbox Allows a user to select one
item from a set of items, all
displayed at once

An HTML <select>

element
A list box

selectOneMenu Allows a user to select one
item from a set of items

An HTML <select>

element
A scrollable combo
box

selectOneRadio Allows a user to select one
item from a set of items

An HTML <input

type=radio> element
A set of radio
buttons

The next section explains the important tag attributes that are common to most component
tags. For each of the components discussed in the following sections, “Writing Bean Properties”
on page 184 explains how to write a bean property bound to a particular component or its value.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010140

Common Component Tag Attributes
Most of the component tags support the attributes shown in Table 7–2.

TABLE 7–2 Common Component Tag Attributes

Attribute Description

binding Identifies a bean property and binds the component instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and conversion associated with
the component should happen when request parameter values are applied,

rendered Specifies a condition under which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.

styleClass Specifies a CSS class that contains definitions of the styles.

value Identifies an external data source and binds the component’s value to it.

All the tag attributes (except id) can accept expressions, as defined by the EL, described in
Chapter 6, “Expression Language.”

The idAttribute
The id attribute is not usually required for a component tag but is used when another
component or a server-side class must refer to the component. If you don’t include an id

attribute, the JavaServer Faces implementation automatically generates a component ID. Unlike
most other JavaServer Faces tag attributes, the id attribute takes expressions using only the
evaluation syntax described in “The immediate Attribute” on page 141, which uses the ${}
delimiters. For more information on expression syntax, see “Value Expressions” on page 126.

The immediateAttribute
Input components and command components (those that implement the ActionSource
interface, such as buttons and hyperlinks) can set the immediate attribute to true to force
events, validations, and conversions to be processed when request parameter values are applied.

You need to carefully consider how the combination of an input component’s immediate value
and a command component’s immediate value determines what happens when the command
component is activated.

Assume that you have a page with a button and a field for entering the quantity of a book in a
shopping cart. If the immediate attributes of both the button and the field are set to true, the

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 141

new value entered in the field will be available for any processing associated with the event that
is generated when the button is clicked. The event associated with the button as well as the event
validation and conversion associated with the field are all handled when request parameter
values are applied.

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to
false, the event associated with the button is processed without updating the field’s local value
to the model layer. The reason is that any events, conversion, or validation associated with the
field occurs after request parameter values are applied.

The renderedAttribute
A component tag uses a Boolean EL expression along with the rendered attribute to determine
whether the component will be rendered. For example, the commandLink component in the
following section of a page is not rendered if the cart contains no items:

<h:commandLink id="check"
...

rendered="#{cart.numberOfItems > 0}">
<h:outputText

value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is restricted to
using rvalue expressions. As explained in “Value and Method Expressions” on page 126, these
rvalue expressions can only read data; they cannot write the data back to the data source.
Therefore, expressions used with rendered attributes can use the arithmetic operators and
literals that rvalue expressions can use but lvalue expressions cannot use. For example, the
expression in the preceding example uses the > operator.

The style and styleClassAttributes
The style and styleClass attributes allow you to specify CSS styles for the rendered output of
your tags. “Displaying Error Messages with the h:message and h:messages Tags” on page 161
describes an example of using the style attribute to specify styles directly in the attribute. A
component tag can instead refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class
list-background:

<h:dataTable id="books"
...

styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The style sheet that defines this class is stylesheet.css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets Specification at
http://www.w3.org/Style/CSS/.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010142

http://www.w3.org/Style/CSS/

The value and bindingAttributes
A tag representing an output component uses the value and binding attributes to bind its
component’s value or instance, respectively, to an external data source.

Adding HTML Head and Body Tags
The HTML head (h:head) and body (h:body) tags add HTML page structure to JavaServer
Faces web pages.
■ The h:head tag represents the head element of an HTML page
■ The h:body tag represents the body element of an HTML page

The following is an example of an XHTML page using the usual head and body markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Add a title</title>

</head>

<body>

Add Content

</body>

The following is an example of an XHTML page using h:head and h:body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

Add a title

</h:head>

<h:body>

Add Content

</h:body>

Both of the preceding example code segments render the same HTML elements. The head and
body tags are useful mainly for resource relocation. For more information on resource
relocation, see “Resource Relocation Using h:output Tags” on page 164.

Adding a Form Component
An h:form tag represents an input form, which includes child components that can contain
data that is either presented to the user or submitted with the form.

Figure 7–1 shows a typical login form in which a user enters a user name and password, then
submits the form by clicking the Login button.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 143

The h:form tag represents the form on the page and encloses all the components that display or
collect data from the user, as shown here:

<h:form>

... other JavaServer Faces tags and other content...

</h:form>

The h:form tag can also include HTML markup to lay out the components on the page. Note
that the h:form tag itself does not perform any layout; its purpose is to collect data and to
declare attributes that can be used by other components in the form.

A page can include multiple h:form tags, but only the values from the form submitted by the
user will be included in the postback request.

Using Text Components
Text components allow users to view and edit text in web applications. The basic types of text
components are as follows:

■ Label, which displays read-only text
■ Text field, which allows users to enter text, often to be submitted as part of a form
■ Text area, which is a type of text field that allows users to enter multiple lines of text
■ Password field, which is a type of text field that displays a set of characters, such as asterisks,

instead of the password text that the user enters

Figure 7–2 shows examples of these text components.

FIGURE 7–1 A Typical Form

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010144

Text components can be categorized as either input or output. A JavaServer Faces output
component is rendered as read-only text. An example is a label. A JavaServer Faces input
component is rendered as editable text. An example is a text field.

The input and output components can each be rendered in various ways to display more
specialized text.

Table 7–3 lists the tags that represent the input components.

TABLE 7–3 Input Tags

Tag Function

h:inputHidden Allows a page author to include a hidden variable in a page

h:inputSecret The standard password field: accepts one line of text with no spaces and displays it
as a set of asterisks as it is typed

h:inputText The standard text field: accepts a one-line text string

h:inputTextarea The standard text area: accepts multiple lines of text

The input tags support the tag attributes shown in Table 7–4 in addition to those described in
“Common Component Tag Attributes” on page 141. Note that this table does not include all the
attributes supported by the input tags but just those that are used most often. For the complete
list of attributes, refer to the documentation at http://download.oracle.com/javaee/6/
javaserverfaces/2.0/docs/pdldocs/facelets/.

TABLE 7–4 Input Tag Attributes

Attribute Description

converter Identifies a converter that will be used to convert the component’s local
data. See “Using the Standard Converters” on page 169 for more
information on how to use this attribute.

converterMessage Specifies an error message to display when the converter registered on
the component fails.

FIGURE 7–2 Example Text Components

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 145

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

TABLE 7–4 Input Tag Attributes (Continued)
Attribute Description

dir Specifies the direction of the text displayed by this component.
Acceptable values are LTR, meaning left-to-right, and RTL, meaning
right-to-left.

label Specifies a name that can be used to identify this component in error
messages.

lang Specifies the code for the language used in the rendered markup, such as
en_US.

required Takes a boolean value that indicates whether the user must enter a value
in this component.

requiredMessage Specifies an error message to display when the user does not enter a
value into the component.

validator Identifies a method expression pointing to a backing bean method that
performs validation on the component’s data. See “Referencing a
Method That Performs Validation” on page 179 for an example of using
the f:validator tag.

f:validatorMessage Specifies an error message to display when the validator registered on
the component fails to validate the component’s local value.

valueChangeListener Identifies a method expression that points to a backing bean method that
handles the event of entering a value in this component. See
“Referencing a Method That Handles a Value-Change Event” on
page 180 for an example of using valueChangeListener.

Table 7–5 lists the tags that represent the output components.

TABLE 7–5 Output Tags

Tag Function

h:outputFormat Displays a localized message

h:outputLabel The standard read-only label: displays a component as a label for a specified input
field

h:outputLink Displays an <a href> tag that links to another page without generating an action
event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in “Common
Component Tag Attributes” on page 141.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010146

The rest of this section explains how to use some of the tags listed in Table 7–3 and Table 7–5.
The other tags are written in a similar way.

Rendering a Text Field with the h:inputText Tag
The h:inputText tag is used to display a text field. A similar tag, the h:outputText tag, displays
a read-only, single-line string. This section shows you how to use the h:inputText tag. The
h:outputText tag is written in a similar way.

Here is an example of an h:inputText tag:

<h:inputText id="name" label="Customer Name" size="50"
value="#{cashier.name}"
required="true"
requiredMessage="#{customMessages.CustomerName}">
<f:valueChangeListener

type="com.sun.bookstore6.listeners.NameChanged" />

</h:inputText>

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a backing bean named CashierBean. This
property holds the data for the name component. After the user submits the form, the value of
the name property in CashierBean will be set to the text entered in the field corresponding to
this tag.

The required attribute causes the page to reload, displaying errors, if the user does not enter a
value in the name text field. The JavaServer Faces implementation checks whether the value of
the component is null or is an empty string.

If your component must have a non-null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a
required attribute that is set to true and the value is null or a zero-length string, no other
validators that are registered on the tag are called. If your tag does not have a required attribute
set to true, other validators that are registered on the tag are called, but those validators must
handle the possibility of a null or zero-length string. See “Validating Null and Empty Strings”
on page 199 for more information.

Rendering a Password Field with the h:inputSecret Tag
The h:inputSecret tag renders an <input type="password"> HTML tag. When the user types
a string into this field, a row of asterisks is displayed instead of the text typed by the user. Here is
an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from
being displayed in a query string or in the source file of the resulting HTML page.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 147

Rendering a Label with the h:outputLabel Tag
The h:outputLabel tag is used to attach a label to a specified input field for the purpose of
making it accessible. The following page uses an h:outputLabel tag to render the label of a
check box:

<h:selectBooleanCheckbox

id="fanClub"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

The for attribute of the h:outputLabel tag maps to the id of the input field to which the label is
attached. The h:outputText tag nested inside the h:outputLabel tag represents the label
component. The value attribute on the h:outputText tag indicates the text that is displayed
next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply use the
h:outputLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h:outputLabel tag to specify the text
of the label:

<h:selectBooleanCheckbox

id="fanClub"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

Rendering a Hyperlink with the h:outputLink Tag
The h:outputLink tag is used to render a hyperlink that, when clicked, loads another page but
does not generate an action event. You should use this tag instead of the h:commandLink tag if
you always want the URL specified by the h:outputLink tag’s value attribute to open and do
not want any processing to be performed when the user clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo

</h:outputLink>

The text in the body of the outputLink tag identifies the text that the user clicks to get to the
next page.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010148

Displaying a Formatted Message with the h:outputFormat Tag
The h:outputFormat tag allows display of concatenated messages as a MessageFormat pattern,
as described in the API documentation for java.text.MessageFormat. Here is an example of
an outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>

</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0} in the
sentence. If the value of "#{hello.name}" is “Bill”, the message displayed in the page is as
follows:

Hello, Bill!

An h:outputFormat tag can include more than one param tag for those messages that have
more than one parameter that must be concatenated into the message. If you have more than
one parameter for one message, make sure that you put the param tags in the proper order so
that the data is inserted in the correct place in the message. Here is the preceding example
modified with an additional parameter:

<h:outputFormat value="Hello, {0}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />

<f:param value="#{bean.numVisitor}"/>
</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression,
bean.numVisitor, where the property numVisitor of the backing bean bean keeps track of
visitors to the page. This is an example of a value-expression-enabled tag attribute accepting an
EL expression. The message displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Component Tags for Performing
Actions and Navigation
In JavaServer Faces applications, the button and hyperlink component tags are used to perform
actions, such as submitting a form, and for navigating to another page. These tags are called
command component tags because they perform an action when activated.

The h:commandButton tag is rendered as a button. The h:commandLink tag is rendered as a
hyperlink.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 149

In addition to the tag attributes listed in “Common Component Tag Attributes” on page 141,
the h:commandButton and h:commandLink tags can use the following attributes:
■ action, which is either a logical outcome String or a method expression pointing to a bean

method that returns a logical outcome String. In either case, the logical outcome String is
used to determine what page to access when the command component tag is activated.

■ actionListener, which is a method expression pointing to a bean method that processes an
action event fired by the command component tag.

See “Referencing a Method That Performs Navigation” on page 179 for more information on
using the action attribute. See “Referencing a Method That Handles an Action Event” on
page 179 for details on using the actionListener attribute.

Rendering a Button with the h:commandButton Tag
If you are using a commandButton component tag, the data from the current page is processed
when a user clicks the button, and the next page is opened. Here is an example of the
h:commandButton tag:

<h:commandButton value="Submit"
action="#{cashier.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked because the
action attribute references this method. The submit method performs some processing and
returns a logical outcome.

The value attribute of the example commandButton tag references the button’s label. For
information on how to use the action attribute, see “Referencing a Method That Performs
Navigation” on page 179.

Rendering a Hyperlink with the h:commandLink Tag
The h:commandLink tag represents an HTML hyperlink and is rendered as an HTML <a>

element. This tag acts like a form’s Submit button and is used to submit an action event to the
application.

A h:commandLink tag must include a nested h:outputText tag, which represents the text that
the user clicks to generate the event. Here is an example:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.English}" />

</h:commandLink>

This tag will render the following HTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms[’_id3’][’_id3:NAmerica’].

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010150

value=’_id3:NAmerica’;

document.forms[’_id3’].submit();

return false;">English

Note – The h:commandLink tag will render JavaScript programming language. If you use this tag,
make sure that your browser is enabled for JavaScript technology.

Adding Graphics and Images with the h:graphicImage
Tag
In a JavaServer Faces application, use the h:graphicImage tag to render an image on a page:

<h:graphicImage id="mapImage" url="/template/world.jpg"/>

The url attribute specifies the path to the image. The URL of the example tag begins with a /,
which adds the relative context path of the web application to the beginning of the path to the
image.

Alternatively, you can use the facility described in “Resources” on page 122 to point to the
image location. Here is an example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

Laying Out Components with the h:panelGrid and
h:panelGroup Tags
In a JavaServer Faces application, you use a panel as a layout container for a set of other
components. A panel is rendered as an HTML table. Table 7–6 lists the tags used to create
panels.

TABLE 7–6 Panel Component Tags

Tag Attributes Function

h:panelGrid columns,columnClasses, footerClass,
headerClass, panelClass, rowClasses

Displays a table

h:panelGroup layout Groups a set of components under one
parent

The h:panelGrid tag is used to represent an entire table. The h:panelGroup tag is used to
represent rows in a table. Other tags are used to represent individual cells in the rows.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 151

The columns attribute defines how to group the data in the table and therefore is required if you
want your table to have more than one column. The h:panelGrid tag also has a set of optional
attributes that specify CSS classes: columnClasses, footerClass, headerClass, panelClass,
and rowClasses.

If the headerClass attribute value is specified, the panelGrid must have a header as its first
child. Similarly, if a footerClass attribute value is specified, the panelGrid must have a footer
as its last child.

Here is an example:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputText value="#{bundle.Name}" />

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="listeners.NameChanged" />

</h:inputText>

<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"

converter="CreditCardConverter" required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|
9999 9999 9999 9999|9999-9999-9999-9999"/>

</h:inputText>

<h:message styleClass="validationMessage" for="ccno"/>
...

</h:panelGrid>

The preceding h:panelGrid tag is rendered as a table that contains components in which a
customer inputs personal information. This h:panelGrid tag uses style sheet classes to format
the table. The following code shows the list-header definition:

.list-header {

background-color: #ffffff;

color: #000000;

text-align: center;

}

Because the h:panelGrid tag specifies a headerClass, the panelGrid must contain a header.
The example panelGrid tag uses a facet tag for the header. Facets can have only one child, so
an h:panelGroup tag is needed if you want to group more than one component within a facet.
The example h:panelGrid tag has only one cell of data, so an h:panelGroup tag is not needed.

The h:panelGroup tag has an attribute, layout, in addition to those listed in “Common
Component Tag Attributes” on page 141. If the layout attribute has the value block, an HTML

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010152

div element is rendered to enclose the row; otherwise, an HTML span element is rendered to
enclose the row. If you are specifying styles for the h:panelGroup tag, you should set the layout
attribute to block in order for the styles to be applied to the components within the
h:panelGroup tag. You should do this because styles, such as those that set width and height,
are not applied to inline elements, which is how content enclosed by the span element is
defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so that the
tree of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h:panelGrid tag. The columns attribute in the example is set to 3, and therefore
the table will have three columns. The column in which each component is displayed is
determined by the order in which the component is listed on the page modulo 3. So, if a
component is the fifth one in the list of components, that component will be in the 5 modulo 3
column, or column 2.

Displaying Components for Selecting One Value
Another commonly used component is one that allows a user to select one value, whether it is
the only value available or one of a set of choices. The most common tags for this kind of
component are as follows:

■ An h:selectBooleanCheckbox tag, displayed as a check box, which represents a Boolean
state

■ An h:selectOneRadio tag, displayed as a set of radio buttons
■ An h:selectOneMenu tag, displayed as a drop-down menu, with a scrollable list
■ An h:selectOneListbox tag, displayed as a list box, with an unscrollable list

Figure 7–3 shows examples of these components.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 153

Displaying a Check Box Using the h:selectBooleanCheckbox Tag
The h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology provides
for representing a Boolean state.

Here is an example that shows how to use the h:selectBooleanCheckbox tag:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel

for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText

id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

This example tag displays a check box to allow users to indicate whether they want to join the
Duke Fan Club. The label for the check box is rendered by the outputLabel tag. The text is
represented by the nested outputText tag.

Displaying a Menu Using the h:selectOneMenu Tag
A component that allows the user to select one value from a set of values can be rendered as a list
box, a set of radio buttons, or a menu. This section describes the h:selectOneMenu tag. The
h:selectOneRadio and h:selectOneListbox tags are used in a similar way. The
h:selectOneListbox tag is similar to the h:selectOneMenu tag except that
h:selectOneListbox defines a size attribute that determines how many of the items are
displayed at once.

FIGURE 7–3 Example Components for Selecting One Item

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010154

The h:selectOneMenu tag represents a component that contains a list of items from which a
user can choose one item. This menu component is also commonly known as a drop-down list
or a combo box. The following code snippet shows how the h:selectOneMenu tag is used to
allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The value attribute of the h:selectOneMenu tag maps to the property that holds the currently
selected item’s value. You are not required to provide a value for the currently selected item. If
you don’t provide a value, the first item in the list is selected by default.

Like the h:selectOneRadio tag, the selectOneMenu tag must contain either an f:selectItems

tag or a set of f:selectItem tags for representing the items in the list. “Using the f:selectItem
and f:selectItems Tags” on page 157 describes these tags.

Displaying Components for Selecting Multiple Values
In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. You can do this using one of the following component tags:

■ An h:selectManyCheckbox tag, displayed as a set of check boxes
■ An h:selectManyMenu tag, displayed as a drop-down menu
■ An h:selectManyListbox tag, displayed as a list box

Figure 7–4 shows examples of these components.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 155

These tags allow the user to select zero or more values from a set of values. This section explains
the h:selectManyCheckbox tag. The h:selectManyListbox and h:selectManyMenu tags are
used in a similar way.

Unlike a menu, a list box displays a subset of items in a box; a menu displays only one item at a
time when the user is not selecting the menu. The size attribute of the h:selectManyListbox
tag determines the number of items displayed at one time. The list box includes a scroll bar for
scrolling through any remaining items in the list.

The h:selectManyCheckbox tag renders a set of check boxes, with each check box representing
one value that can be selected:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the h:selectManyCheckbox tag identifies the newsletters property of
the Cashier backing bean. This property holds the values of the currently selected items from
the set of check boxes. You are not required to provide a value for the currently selected items. If
you don’t provide a value, the first item in the list is selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page. Because
layout is set to pageDirection, the check boxes are arranged vertically. The default is
lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of
check boxes. To represent a set of items, you use the f:selectItems tag. To represent each item
individually, you use a f:selectItem tag. The following subsection explains these tags in more
detail.

FIGURE 7–4 Example Components for Selecting Multiple Values

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010156

Using the f:selectItem and f:selectItems Tags
The f:selectItem and f:selectItems tags represent components that can be nested inside a
component that allows you to select one or multiple items. An f:selectItem tag contains the
value, label, and description of a single item. An f:selectItems tag contains the values, labels,
and descriptions of the entire list of items.

You can use either a set of f:selectItem tags or a single f:selectItems tag within your
component tag.

The advantages of using the f:selectItems tag are as follows.
■ Items can be represented by using different data structures, including Array, Map, and

Collection. The value of the f:selectItems tag can represent even a generic collection of
POJOs.

■ Different lists can be concatenated into a single component, and the lists can be grouped
within the component.

■ Values can be generated dynamically at runtime.

The advantages of using f:selectItem are as follows:
■ Items in the list can be defined from the page.
■ Less code is needed in the bean for the selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem tags.

Using the f:selectItems Tag
The following example from “Displaying Components for Selecting Multiple Values” on
page 155 shows how to use the h:selectManyCheckbox tag:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tag is bound to the backing bean newsletters.

You can also create the list of items programmatically in the backing bean. See “Writing Bean
Properties” on page 184 for information on how to write a backing bean property for one of
these tags.

Using the f:selectItem Tag
The f:selectItem tag represents a single item in a list of items. Here is the example from
“Displaying a Menu Using the h:selectOneMenu Tag” on page 154 once again:

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 157

<h:selectOneMenu

id="shippingOption" required="true"
value="#{cashier.shippingOption}">

<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The itemValue attribute represents the default value for the selectItem tag. The itemLabel
attribute represents the String that appears in the drop-down menu component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that they can use
value-binding expressions to refer to values in external objects. These attributes can also define
literal values, as shown in the example h:selectOneMenu tag.

Using Data-Bound Table Components
Data-bound table components display relational data in a tabular format. In a JavaServer Faces
application, the h:dataTable component tag supports binding to a collection of data objects
and displays the data as an HTML table. The h:column tag represents a column of data within
the table, iterating over each record in the data source, which is displayed as a row. Here is an
example:

<h:dataTable id="items"
captionClass="list-caption"
columnClasses="list-column-center, list-column-left,

list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background">
<h:column headerClass="list-header-left">

<f:facet name="header">
<h:outputText value=Quantity"" />

</f:facet>

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

...

</h:inputText>

...

</h:column>

<h:column>

<f:facet name="header">
<h:outputText value="Title"/>

</f:facet>

<h:commandLink>

<h:outputText value="#{item.title}"/>

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010158

</h:commandLink>

</h:column>

...

<f:facet name="footer"
<h:panelGroup>

<h:outputText value="Total}"/>
<h:outputText value="#{cart.total}" />

<f:convertNumber type="currency" />

</h:outputText>

</h:panelGroup>

</f:facet>

</h:dataTable>

Figure 7–5 shows a data grid that this h:dataTable tag can display.

The example h:dataTable tag displays the books in the shopping cart, as well as the quantity of
each book in the shopping cart, the prices, and a set of buttons the user can click to remove
books from the shopping cart.

The h:column tags represent columns of data in a data component. While the data component
is iterating over the rows of data, it processes the column component associated with each
h:column tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time the
h:dataTable tag iterates through the list of books, it renders one cell in each column.

The h:dataTable and h:column tags use facets to represent parts of the table that are not
repeated or updated. These parts include headers, footers, and captions.

In the preceding example, h:column tags include f:facet tags for representing column headers
or footers. The h:column tag allows you to control the styles of these headers and footers by
supporting the headerClass and footerClass attributes. These attributes accept
space-separated lists of CSS classes, which will be applied to the header and footer cells of the
corresponding column in the rendered table.

FIGURE 7–5 Table on a Web Page

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 159

Facets can have only one child, so an h:panelGroup tag is needed if you want to group more
than one component within an f:facet. Because the facet tag representing the footer includes
more than one tag, the panelGroup is needed to group those tags. Finally, this h:dataTable tag
includes an f:facet tag with its name attribute set to caption, causing a table caption to be
rendered below the table.

This table is a classic use case for a data component because the number of books might not be
known to the application developer or the page author when that application is developed. The
data component can dynamically adjust the number of rows of the table to accommodate the
underlying data.

The value attribute of an h:dataTable tag references the data to be included in the table. This
data can take the form of any of the following:

■ A list of beans
■ An array of beans
■ A single bean
■ A javax.faces.model.DataModel object
■ A java.sql.ResultSet object
■ A javax.servlet.jsp.jstl.sql.Result object
■ A javax.sql.RowSet object

All data sources for data components have a DataModel wrapper. Unless you explicitly
construct a DataModel wrapper, the JavaServer Faces implementation will create one around
data of any of the other acceptable types. See “Writing Bean Properties” on page 184 for more
information on how to write properties for use with a data component.

The var attribute specifies a name that is used by the components within the h:dataTable tag
as an alias to the data referenced in the value attribute of dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute
points to a single book in that list. As the h:dataTable tag iterates through the list, each
reference to item points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying data. This
feature is not shown in the preceding example. To display a subset of the data, you use the
optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the
number of rows, starting with the first row, to be displayed. For example, if you wanted to
display records 2 through 10 of the underlying data, you would set first to 2 and rows to 9.
When you display a subset of the data in your pages, you might want to consider including a
link or button that causes subsequent rows to display when clicked. By default, both first and
rows are set to zero, and this causes all the rows of the underlying data to display.

Table 7–7 shows the optional attributes for the h:dataTable tag.

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010160

TABLE 7–7 Optional Attributes for the h:dataTableTag

Attribute Defines Styles for

captionClass Table caption

columnClasses All the columns

footerClass Footer

headerClass Header

rowClasses Rows

styleClass The entire table

Each of the attributes in Table 7–7 can specify more than one style. If columnClasses or
rowClasses specifies more than one style, the styles are applied to the columns or rows in the
order that the styles are listed in the attribute. For example, if columnClasses specifies styles
list-column-center and list-column-right and if the table has two columns, the first
column will have style list-column-center, and the second column will have style
list-column-right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles
will be assigned to columns or rows starting from the first column or row. Similarly, if the style
attribute specifies fewer styles than there are columns or rows, the remaining columns or rows
will be assigned styles starting from the first style.

Displaying Error Messages with the h:message and
h:messages Tags
The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input
component, whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessnumber application:

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

<h:commandButton id="submit"
action="success" value="Submit" /><p>

<h:message

style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline" id="errors1" for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h:message tag appears in the page. In this
case, the error message will appear after the Submit button.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 161

The style attribute allows you to specify the style of the text of the message. In the example in
this section, the text will be red, New Century Schoolbook, serif font family, and oblique style,
and a line will appear over the text. The message and messages tags support many other
attributes for defining styles. For more information on these attributes, refer to the
documentation at http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/
pdldocs/facelets/.

Another attribute supported by the h:messages tag is the layout attribute. Its default value is
list, which indicates that the messages are displayed in a bullet list using the HTML ul and li

elements. If you set the attribute value to table, the messages will be rendered in a table using
the HTML table element.

The preceding example shows a standard validator that is registered on the input component.
The message tag displays the error message that is associated with this validator when the
validator cannot validate the input component’s value. In general, when you register a converter
or validator on a component, you are queueing the error messages associated with the converter
or validator on the component. The h:message and h:messages tags display the appropriate
error messages that are queued on the component when the validators or converters registered
on that component fail to convert or validate the component’s value.

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for
custom converters and validators by registering custom error messages with the application.

Creating Bookmarkable URLs with the h:button and
h:link Tags
The ability to create bookmarkable URLs refers to the ability to generate hyperlinks based on a
specified navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST requests for
data processing. The GET requests can have query parameters and can be cached, which is not
advised for POST requests, which send data to the external servers. The other JavaServer Faces
tags capable of generating hyperlinks use either simple GET requests, as in the case of
h:outputlink, or POST requests, as in the case of h:commandLink or h:commandButton tags.
GET requests with query parameters provide finer granularity to URL strings. These URLs are
created with one or more name=value parameters appended to the simple URL after a ?
character and separated by either &; or & strings.

To create a bookmarkable URL, use an h:link or h:button tag. Both of these tags can generate
a hyperlink based on the outcome attribute of the component. For example:

<h:link outcome="response" value="Message">
<f:param name="Result" value="#{sampleBean.result}"/>

</h:link>

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010162

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

The h:link tag will generate a URL link that points to the response.xhtml file on the same
server, appended with the single query parameter created by the f:param tag. When processed,
the parameter Result is assigned the value of backing bean’s result method
#{sampleBean.result}. The following sample HTML is generated from the preceding set of
tags, assuming that the value of the parameter is success:

Response

This is a simple GET request. To create more complex GET requests and utilize the complete
functionality of the h:link tag, you can use view parameters.

Using View Parameters to Configure Bookmarkable
URLs
The core tags f:metadata and f:viewparam are used as a source of parameters for configuring
the URLs. View parameters are declared as part of f:metadata for a page, as shown in the
following example:

<h:body>

<f:metadata>

<f:viewParam id="name" name="Name" value="#{sampleBean.username}"/>
<f:viewParam id="ID" name="uid" value="#{sampleBean.useridentity}"/>

</f:metadata>

<h:link outcome="response" value="Message" includeViewParams="true">
</h:link>

</h:body>

View parameters are declared with the f:viewparam tag and are placed inside the f:metadata
tag. If the includeViewParams attribute is set on the component, the view parameters are added
to the hyperlink.

The resulting URL will look like this:

http://localhost:8080/guessnumber/response.xhtml?Name=Duke&;uid=2001

Because the URL can be the result of various parameter values, the order of the URL creation
has been predefined. The order in which the various parameter values are read is as follows:

1. Component
2. Navigation-case parameters
3. View parameters

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 163

Resource Relocation Using h:output Tags
Resource relocation refers to the ability of a JavaServer Faces application to specify the location
where a resource can be rendered. Resource relocation can be defined with the following HTML
tags:

■ h:outputScript

■ h:outputStylesheet

These tags have name and target attributes, which can be used to define the render location. For
a complete list of attributes for these tags, see the documentation at http://
download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

For the h:outputScript tag, the name and target attributes define where the output of a
resource may appear. Here is an example:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head id="head">
<title>Resource Relocation</title>

</h:head>

<h:body id="body">
<h:form id="form">

<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>

</h:form>

</h:body>

</html>

Since the target attribute is not defined in the tag, the style sheet hello.css is rendered in the
head, and the hello.js script is rendered in the body of the page as defined by the h:head tag.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Resource Relocation</title>

<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>

</head>

<body>

<form id="form" name="form" method="post" action="..." enctype="...">
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>

</form>

</body>

</html>

Adding Components to a Page Using HTML Tags

The Java EE 6 Tutorial • October 2010164

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

The original page can be recreated by setting the target attribute for the h:outputScript tag,
which allows the incoming GET request to provide the location parameter. Here is an example:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head id="head">
<title>Resource Relocation</title>

</h:head>

<h:body id="body">
<h:form id="form">

<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>

</h:form>

</h:body>

</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: The style sheet is rendered in the head, and the script is rendered inline.
However, if the incoming request provides the location parameter as the head, both the style
sheet and the script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Resource Relocation</title>

<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>

<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>

</head>

<body>

<form id="form" name="form" method="post" action="..." enctype="...">
</form>

</body>

</html>

Similarly, if the incoming request provides the location parameter as the body, the script will be
rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can add even
more functionality for the components and pages. A page author does not have to know the
location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors can
define the resources for the component, such as a style sheet and script. This allows the page
authors freedom from defining resource locations.

Adding Components to a Page Using HTML Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 165

Using Core Tags
The tags included in the JavaServer Faces core tag library are used to perform core actions that
are not performed by HTML tags. Commonly used core tags, along with the functions they
perform, are listed in Table 7–8.

TABLE 7–8 The Core Tags

Tag Categories Tags Functions

Event handling f:actionListener Adds an action listener to a parent component

f:phaseListener Adds a PhaseListener to a page

f:setPropertyActionListener Registers a special action listener whose sole
purpose is to push a value into a backing bean when
a form is submitted

f:valueChangeListener Adds a value-change listener to a parent component

Attribute
configuration

f:attribute Adds configurable attributes to a parent component

Data conversion f:converter Adds an arbitrary converter to the parent
component

f:convertDateTime Adds a DateTimeConverter instance to the parent
component

f:convertNumber Adds a NumberConverter instance to the parent
component

Facet f:facet Adds a nested component that has a special
relationship to its enclosing tag

f:metadata Registers a facet on a parent component

Localization f:loadBundle Specifies a ResourceBundle that is exposed as a Map

Parameter
substitution

f:param Substitutes parameters into a MessageFormat
instance and adds query string name-value pairs to
a URL

Representing
items in a list

f:selectItem Represents one item in a list of items

f:selectItems Represents a set of items

Using Core Tags

The Java EE 6 Tutorial • October 2010166

TABLE 7–8 The Core Tags (Continued)
Tag Categories Tags Functions

Validator f:validateDoubleRange Adds a DoubleRangeValidator to a component

f:validateLength Adds a LengthValidator to a component

f:validateLongRange Adds a LongRangeValidator to a component

f:validator Adds a custom validator to a component

f:validateRegEx Adds a RegExValidator to a component

f:validateBean Delegates the validation of a local value to a
BeanValidator

f:validateRequired Enforces the presence of a value in a component

Ajax f:ajax Associates an Ajax action with a single component
or a group of components based on placement

Event f:event Allows installing a
ComponentSystemEventListener on a component

These tags, which are used in conjunction with component tags, are explained in other sections
of this tutorial. Table 7–9 lists the sections that explain how to use specific core tags.

TABLE 7–9 Where the Core Tags Are Explained

Tags Where Explained

Event handling tags “Registering Listeners on Components” on page 174

Data conversion tags “Using the Standard Converters” on page 169

facet “Using Data-Bound Table Components” on page 158 and “Laying Out Components
with the h:panelGrid and h:panelGroup Tags” on page 151

loadBundle “Displaying Components for Selecting Multiple Values” on page 155

param “Displaying a Formatted Message with the h:outputFormat Tag” on page 149

selectItem and
selectItems

“Using the f:selectItem and f:selectItems Tags” on page 157

Validator tags “Using the Standard Validators” on page 176

Using Core Tags

Chapter 7 • Using JavaServer Faces Technology in Web Pages 167

168

Using Converters, Listeners, and Validators

The previous chapter described components and explained how to add them to a web page.
This chapter provides information on adding more functionality to the components through
converters, listeners, and validators.
■ Converters are used to convert data that is received from the input components.
■ Listeners are used to listen to the events happening in the page and perform actions as

defined.
■ Validators are used to validate the data that is received from the input components.

The following topics are addressed here:
■ “Using the Standard Converters” on page 169
■ “Registering Listeners on Components” on page 174
■ “Using the Standard Validators” on page 176
■ “Referencing a Backing Bean Method” on page 178

Using the Standard Converters
The JavaServer Faces implementation provides a set of Converter implementations that you
can use to convert component data. The standard Converter implementations, located in the
javax.faces.convert package, are as follows:
■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

■ EnumConverter

■ FloatConverter

8C H A P T E R 8

169

■ IntegerConverter

■ LongConverter

■ NumberConverter

■ ShortConverter

A standard error message is associated with each of these converters. If you have registered one
of these converters onto a component on your page, and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the
following error message appears if BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own
tags, which allow you to configure the format of the component data using the tag attributes.
For more information about using DateTimeConverter, see “Using DateTimeConverter” on
page 171. For more information about using NumberConverter, see “Using NumberConverter”
on page 173. The following section explains how to convert a component’s value, including how
to register other standard converters with a component.

Converting a Component’s Value
To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following
ways:

■ Nest one of the standard converter tags inside the component’s tag. These tags are
convertDateTime and convertNumber, which are described in “Using DateTimeConverter”
on page 171 and “Using NumberConverter” on page 173, respectively.

■ Bind the value of the component to a backing bean property of the same type as the
converter.

■ Refer to the converter from the component tag’s converter attribute.
■ Nest a converter tag inside of the component tag, and use either the converter tag’s

converterId attribute or its binding attribute to refer to the converter.

As an example of the second method, if you want a component’s data to be converted to an
Integer, you can simply bind the component’s value to a backing bean property. Here is an
example:

Integer age = 0;

public Integer getAge(){ return age;}

public void setAge(Integer age) {this.age = age;}

Using the Standard Converters

The Java EE 6 Tutorial • October 2010170

If the component is not bound to a bean property, you can use the third method by using the
converter attribute directly on the component tag:

<h:inputText

converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully qualified class name of the
converter. The converter attribute can also take the ID of the component.

The data from the inputText tag in the this example will be converted to a java.lang.Integer
value. The Integer type is a supported type of NumberConverter. If you don’t need to specify
any formatting instructions using the convertNumber tag attributes, and if one of the standard
converters will suffice, you can simply reference that converter by using the component tag’s
converter attribute.

Finally, you can nest a converter tag within the component tag and use either the converter
tag’s converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example:

<h:inputText value="#{LoginBean.Age}" />

<f:converter converterId="Integer" />

</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding attribute.
The binding attribute must resolve to a bean property that accepts and returns an appropriate
Converter instance.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag
inside the component tag. The convertDateTime tag has several attributes that allow you to
specify the format and type of the data. Table 8–1 lists the attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText id= "shipDate" value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

When binding the DateTimeConverter to a component, ensure that the backing bean property
to which the component is bound is of type java.util.Date. In the preceding example,
cashier.shipDate must be of type java.util.Date.

The example tag can display the following output:

Saturday, September 25, 2010

Using the Standard Converters

Chapter 8 • Using Converters, Listeners, and Validators 171

You can also display the same date and time by using the following tag where the date format is
specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime

pattern="EEEEEEEE, MMM dd, yyyy" />

</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"

locale="Locale.SPAIN"
timeStyle="long" type="both" />

</h:inputText>

This tag would display the following output:

sabado 25 de septiembre de 2010

Refer to the “Customizing Formats” lesson of the Java Tutorial at http://
download.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html for more
information on how to format the output using the pattern attribute of the convertDateTime
tag.

TABLE 8–1 Attributes for the convertDateTimeTag

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a backing bean property.

dateStyle String Defines the format, as specified by java.text.DateFormat, of a date
or the date part of a date string. Applied only if type is date or both
and if pattern is not defined. Valid values: default, short, medium,
long, and full. If no value is specified, default is used.

for String Used with composite components. Refers to one of the objects within
the composite component inside which this tag is nested.

locale String or Locale Locale whose predefined styles for dates and times are used during
formatting or parsing. If not specified, the Locale returned by
FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the date/time string
should be formatted and parsed. If this attribute is specified,
dateStyle, timeStyle, and type attributes are ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat, of a time
or the time part of a date string. Applied only if type is time and
pattern is not defined. Valid values: default, short, medium, long,
and full. If no value is specified, default is used.

Using the Standard Converters

The Java EE 6 Tutorial • October 2010172

http://download.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
http://download.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

TABLE 8–1 Attributes for the convertDateTimeTag (Continued)
Attribute Type Description

timeZone String or TimeZone Time zone in which to interpret any time information in the date
string.

type String Specifies whether the string value will contain a date, a time, or both.
Valid values are date, time, or both. If no value is specified, date is
used.

Using NumberConverter

You can convert a component’s data to a java.lang.Number by nesting the convertNumber tag
inside the component tag. The convertNumber tag has several attributes that allow you to
specify the format and type of the data. Table 8–2 lists the attributes.

The following example uses a convertNumber tag to display the total prices of the contents of a
shopping cart:

<h:outputText value="#{cart.total}" >

<f:convertNumber type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the backing bean property to
which the component is bound is of a primitive type or has a type of java.lang.Number. In the
preceding example, cart.total is of type java.lang.Number.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag, where the currency pattern is
specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >

<f:convertNumber pattern="$####" />

</h:outputText>

See the “Customizing Formats” lesson of the Java Tutorial at http://download.oracle.com/
javase/tutorial/i18n/format/decimalFormat.html for more information on how to
format the output by using the pattern attribute of the convertNumber tag.

TABLE 8–2 Attributes for the convertNumberTag

Attribute Type Description

binding NumberConverter Used to bind a converter to a backing bean property.

Using the Standard Converters

Chapter 8 • Using Converters, Listeners, and Validators 173

http://download.oracle.com/javase/tutorial/i18n/format/decimalFormat.html
http://download.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

TABLE 8–2 Attributes for the convertNumberTag (Continued)
Attribute Type Description

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting currencies.

for String Used with composite components. Refers to one of the
objects within the composite component inside which this
tag is nested.

groupingUsed Boolean Specifies whether formatted output contains grouping
separators.

integerOnly Boolean Specifies whether only the integer part of the value will be
parsed.

locale String or Locale Locale whose number styles are used to format or parse data.

maxFractionDigits int Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer part of
the output.

minFractionDigits int Minimum number of digits formatted in the fractional part
of the output.

minIntegerDigits int Minimum number of digits formatted in the integer part of
the output.

pattern String Custom formatting pattern that determines how the number
string is formatted and parsed.

type String Specifies whether the string value is parsed and formatted as
a number, currency, or percentage. If not specified, number
is used.

Registering Listeners on Components
An application developer can implement listeners as classes or as backing bean methods. If a
listener is a backing bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is
a class, the page author can reference the listener from either a valueChangeListener tag or an
actionListener tag and nest the tag inside the component tag to register the listener on the
component.

Registering Listeners on Components

The Java EE 6 Tutorial • October 2010174

“Referencing a Method That Handles an Action Event” on page 179 and “Referencing a Method
That Handles a Value-Change Event” on page 180 explain how a page author uses the
valueChangeListener and actionListener attributes to reference backing bean methods that
handle events.

This section explains how to register the NameChanged value-change listener and a hypothetical
LocaleChange action listener implementation on components.

Registering a Value-Change Listener on a Component
A ValueChangeListener implementation can be registered on a component that implements
EditableValueHolder by nesting a valueChangeListener tag within the component’s tag on
the page. The valueChangeListener tag supports the attributes shown in Table 8–3, one of
which must be used.

TABLE 8–3 Attributes for the valueChangeListenerTag

Attribute Description

type References the fully qualified class name of a ValueChangeListener implementation.
Can accept a literal or a value expression.

binding References an object that implements ValueChangeListener. Can accept only a value
expression, which must point to a backing bean property that accepts and returns a
ValueChangeListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
ValueChangeListener implementation registered on the name component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the ValueChangeEvent associated with the specified
ValueChangeListener to the component.

The binding attribute is used to bind a ValueChangeListener implementation to a backing
bean property. This attribute works in a similar way to the binding attribute supported by the
standard converter tags.

Registering Listeners on Components

Chapter 8 • Using Converters, Listeners, and Validators 175

Registering an Action Listener on a Component
A page author can register an ActionListener implementation on a command component by
nesting an actionListener tag within the component’s tag on the page. Similarly to the
valueChangeListener tag, the actionListener tag supports both the type and binding

attributes. One of these attributes must be used to reference the action listener.

Here is an example of a commandLink tag that references an ActionListener implementation
rather than a backing bean method:

<h:commandLink id="NAmerica" action="bookstore">
<f:actionListener type="listeners.LocaleChange" />

</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the valueChangeListener tag, the
actionListener tag also supports the binding attribute.

Using the Standard Validators
JavaServer Faces technology provides a set of standard classes and associated tags that page
authors and application developers can use to validate a component’s data. Table 8–4 lists all the
standard validator classes and the tags that allow you to use the validators from the page.

TABLE 8–4 The Validator Classes

Validator Class Tag Function

BeanValidator validateBean Registers a bean validator for the component.

DoubleRangeValidator validateDoubleRange Checks whether the local value of a
component is within a certain range. The
value must be floating-point or convertible to
floating-point.

LengthValidator validateLength Checks whether the length of a component’s
local value is within a certain range. The value
must be a java.lang.String.

LongRangeValidator validateLongRange Checks whether the local value of a
component is within a certain range. The
value must be any numeric type or String
that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a
component is a match against a regular
expression from the java.util.regex
package.

Using the Standard Validators

The Java EE 6 Tutorial • October 2010176

TABLE 8–4 The Validator Classes (Continued)
Validator Class Tag Function

RequiredValidator validateRequired Ensures that the local value is not empty on an
EditableValueHolder component.

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page, and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the
{0} substitution parameter is replaced with the maximum value allowed by the validator.

Instead of using the standard validators, you can use Bean Validation to validate data. See
“Using Bean Validation” on page 196 for more information.

Validating a Component’s Value
To validate a component’s value using a particular validator, you need to register that validator
on the component. You can do this in one of the following ways:

■ Nest the validator’s corresponding tag (shown in Table 8–4) inside the component’s tag.
“Using LongRangeValidator” on page 178 explains how to use the validateLongRange tag.
You can use the other standard tags in the same way.

■ Refer to a method that performs the validation from the component tag’s validator
attribute.

■ Nest a validator tag inside the component tag, and use either the validator tag’s
validatorId attribute or its binding attribute to refer to the validator.

See “Referencing a Method That Performs Validation” on page 179 for more information on
using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag,
as described in “Converting a Component’s Value” on page 170.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

Using the Standard Validators

Chapter 8 • Using Converters, Listeners, and Validators 177

Using LongRangeValidator

The following example shows how to use the validateLongRange validator on an input
component named quantity:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

<f:validateLongRange minimum="1"/>
</h:inputText>

<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The size attribute specifies that the
number can have no more than four digits. The validateLongRange tag also has a maximum
attribute, which sets a maximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This means that the
attributes can reference backing bean properties rather than specify literal values. For example,
the validateLongRange tag in the preceding example can reference a backing bean property
called minimum to get the minimum value acceptable to the validator implementation, as shown
here:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Referencing a Backing Bean Method
A component tag has a set of attributes for referencing backing bean methods that can perform
certain functions for the component associated with the tag. These attributes are summarized in
Table 8–5.

TABLE 8–5 Component Tag Attributes That Reference Backing Bean Methods

Attribute Function

action Refers to a backing bean method that performs navigation processing for the
component and returns a logical outcome String

actionListener Refers to a backing bean method that handles action events

validator Refers to a backing bean method that performs validation on the component’s value

valueChangeListener Refers to a backing bean method that handles value-change events

Only components that implement ActionSource can use the action and actionListener

attributes. Only components that implement EditableValueHolder can use the validator or
valueChangeListener attributes.

The component tag refers to a backing bean method using a method expression as a value of
one of the attributes. The method referenced by an attribute must follow a particular signature,

Referencing a Backing Bean Method

The Java EE 6 Tutorial • October 2010178

which is defined by the tag attribute’s definition in the documentation at
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/. For
example, the definition of the validator attribute of the inputText tag is the following:

void validate(javax.faces.context.FacesContext,

javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

Referencing a Method That Performs Navigation
If your page includes a component, such as a button or a hyperlink, that causes the application
to navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following:

■ Specifies a logical outcome String that tells the application which page to access next
■ References a backing bean method that performs some processing and returns a logical

outcome String

The following example shows how to reference a navigation method:

<h:commandButton

value="#{bundle.Submit}"
action="#{cashier.submit}" />

Referencing a Method That Handles an Action Event
If a component on your page generates an action event, and if that event is handled by a backing
bean method, you refer to the method by using the component’s actionListener attribute.

The following example shows how the method is referenced:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

The actionListener attribute of this component tag references the chooseLocaleFromLink
method using a method expression. The chooseLocaleFromLink method handles the event
when the user clicks the hyperlink rendered by this component.

Referencing a Method That Performs Validation
If the input of one of the components on your page is validated by a backing bean method, refer
to the method from the component’s tag by using the validator attribute.

The following example shows how to reference a method that performs validation on email, an
input component:

Referencing a Backing Bean Method

Chapter 8 • Using Converters, Listeners, and Validators 179

http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

Referencing a Method That Handles a Value-Change
Event
If you want a component on your page to generate a value-change event and you want that
event to be handled by a backing bean method, you refer to the method by using the
component’s valueChangeListener attribute.

The following example shows how a component references a ValueChangeListener
implementation that handles the event when a user enters a name in the name input field:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

To refer to this backing bean method, the tag uses the valueChangeListener attribute:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChange}" />

</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean by using a method expression. The
processValueChange method handles the event of a user entering a name in the input field
rendered by this component.

Referencing a Backing Bean Method

The Java EE 6 Tutorial • October 2010180

Developing with JavaServer Faces Technology

Chapter 7, “Using JavaServer Faces Technology in Web Pages,” and Chapter 8, “Using
Converters, Listeners, and Validators,” show how to add components to a page and connect
them to server-side objects by using component tags and core tags, as well as how to provide
additional functionality to the components through converters, listeners, and validators.
Developing a JavaServer Faces application also involves the task of programming the
server-side objects: backing beans, converters, event handlers, and validators.

This chapter provides an overview of backing beans and explains how to write methods and
properties of backing beans that are used by a JavaServer Faces application. This chapter also
introduces the Bean Validation feature.

The following topics are addressed here:

■ “Backing Beans” on page 181
■ “Writing Bean Properties” on page 184
■ “Writing Backing Bean Methods” on page 192
■ “Using Bean Validation” on page 196

Backing Beans
A typical JavaServer Faces application includes one or more backing beans, each of which is a
type of JavaServer Faces managed bean that can be associated with the components used in a
particular page. This section introduces the basic concepts of creating, configuring, and using
backing beans in an application.

9C H A P T E R 9

181

Creating a Backing Bean
A backing bean is created with a constructor with no arguments (like all JavaBeans
components) and a set of properties and a set of methods that perform functions for a
component. Each of the backing bean properties can be bound to one of the following:

■ A component value
■ A component instance
■ A converter instance
■ A listener instance
■ A validator instance

The most common functions that backing bean methods perform include the following:

■ Validating a component’s data
■ Handling an event fired by a component
■ Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of
accessor methods, as shown by this code:

Integer userNumber = null;

...

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

...

}

When bound to a component’s value, a bean property can be any of the basic primitive and
numeric types or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type Date if the application has access to a
converter that can convert the Date type to a String and back again. See “Writing Bean
Properties” on page 184 for information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same
as the component object. For example, if a javax.faces.component.UISelectBoolean
component is bound to the property, the property must accept and return a UISelectBoolean
object. Likewise, if the property is bound to a converter, validator, or listener instance, the
property must be of the appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see “Writing Bean Properties” on
page 184.

Backing Beans

The Java EE 6 Tutorial • October 2010182

Using the EL to Reference Backing Beans
To bind component values and objects to backing bean properties or to reference backing bean
methods from component tags, page authors use the Expression Language syntax. As explained
in “Overview of the EL” on page 123, the following are some of the features that EL offers:
■ Deferred evaluation of expressions
■ The ability to use a value expression to both read and write data
■ Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle is split
into several phases in which component event handling, data conversion and validation, and
data propagation to external objects are all performed in an orderly fashion. The
implementation must be able to delay the evaluation of expressions until the proper phase of
the lifecycle has been reached. Therefore, the implementation’s tag attributes always use
deferred-evaluation syntax, which is distinguished by the #{} delimiter.

To store data in external objects, almost all JavaServer Faces tag attributes use lvalue
expressions, which are expressions that allow both getting and setting data on external objects.

Finally, some component tag attributes accept method expressions that reference methods that
handle component events or validate or convert component data.

To illustrate a JavaServer Faces tag using the EL, suppose that a tag of an application referenced
a method to perform the validation of user input:

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean.userNumber backing bean
property by using an lvalue expression. The tag uses a method expression to refer to the
UserNumberBean.validate method, which performs validation of the component’s local value.
The local value is whatever the user enters into the field corresponding to this tag. This method
is invoked when the expression is evaluated.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to referencing
bean properties, value expressions can reference lists, maps, arrays, implicit objects, and
resource bundles.

Another use of value expressions is binding a component instance to a backing bean property.
A page author does this by referencing the property from the binding attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

In addition to using expressions with the standard component tags, you can configure your
custom component properties to accept expressions by creating javax.el.ValueExpression
or javax.el.MethodExpression instances for them.

Backing Beans

Chapter 9 • Developing with JavaServer Faces Technology 183

For information on the EL, see Chapter 6, “Expression Language.”

For information on referencing backing bean methods from component tags, see “Referencing
a Backing Bean Method” on page 178.

Writing Bean Properties
As explained in “Backing Beans” on page 181, a backing bean property can be bound to one of
the following items:

■ A component value
■ A component instance
■ A converter implementation
■ A listener implementation
■ A validator implementation

These properties follow the conventions of JavaBeans components (also called beans). For more
information on JavaBeans components, see the JavaBeans Tutorial at http://
download.oracle.com/javase/tutorial/javabeans/index.html.

The component’s tag binds the component’s value to a backing bean property by using its value
attribute and binds the component’s instance to a backing bean property by using its binding
attribute. Likewise, all the converter, listener, and validator tags use their binding attributes to
bind their associated implementations to backing bean properties.

To bind a component’s value to a backing bean property, the type of the property must match
the type of the component’s value to which it is bound. For example, if a backing bean property
is bound to a UISelectBoolean component’s value, the property should accept and return a
boolean value or a Boolean wrapper Object instance.

To bind a component instance to a backing bean property, the property must match the type of
component. For example, if a backing bean property is bound to a UISelectBoolean instance,
the property should accept and return a UISelectBoolean value.

Similarly, to bind a converter, listener, or validator implementation to a backing bean property,
the property must accept and return the same type of converter, listener, or validator object. For
example, if you are using the convertDateTime tag to bind a DateTimeConverter to a property,
that property must accept and return a DateTimeConverter instance.

The rest of this section explains how to write properties that can be bound to component values,
to component instances for the component objects described in “Adding Components to a Page
Using HTML Tags” on page 138, and to converter, listener, and validator implementations.

Writing Bean Properties

The Java EE 6 Tutorial • October 2010184

http://download.oracle.com/javase/tutorial/javabeans/index.html
http://download.oracle.com/javase/tutorial/javabeans/index.html

Writing Properties Bound to Component Values
To write a backing bean property that is bound to a component’s value, you must match the
property type to the component’s value.

Table 9–1 lists the javax.faces.component classes and the acceptable types of their values.

TABLE 9–1 Acceptable Types of Component Values

Component Class Acceptable Types of Component Values

UIInput, UIOutput,
UISelectItem, UISelectOne

Any of the basic primitive and numeric types or any Java programming
language object type for which an appropriate Converter implementation
is available

UIData array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

UISelectBoolean boolean or Boolean

UISelectItems java.lang.String, Collection, Array, Map

UISelectMany array or List, though elements of the array or List can be any of the
standard types

When they bind components to properties by using the value attributes of the component tags,
page authors need to ensure that the corresponding properties match the types of the
components’ values.

UIInput and UIOutputProperties
In the following example, an h:inputText tag binds the name component to the name property
of a backing bean called CashierBean.

<h:inputText id="name" size="50"
value="#{cashier.name}">

</h:inputText>

The following code snippet from the backing bean CashierBean shows the bean property type
bound by the preceding component tag:

protected String name = null;

public void setName(String name) {

this.name = name;

}

public String getName() {

return this.name;

}

Writing Bean Properties

Chapter 9 • Developing with JavaServer Faces Technology 185

As described in “Using the Standard Converters” on page 169, to convert the value of an input
or output component, you can either apply a converter or create the bean property bound to the
component with the matching type. Here is the example tag, from “Using DateTimeConverter”
on page 171, that displays the date when items will be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

The bean property represented by this tag must have a type of java.util.Date. The following
code snippet shows the shipDate property, from the backing bean CashierBean, that is bound
by the tag’s value in the preceding example:

protected Date shipDate;

public Date getShipDate() {

return this.shipDate;

}

public void setShipDate(Date shipDate) {

this.shipDate = shipDate;

}

UIDataProperties
Data components must be bound to one of the backing bean property types listed in Table 9–1.
Data components are discussed in “Using Data-Bound Table Components” on page 158. Here
is part of the start tag of dataTable from that section:

<h:dataTable id="items"
...

value="#{cart.items}"
var="item" >

The value expression points to the items property of a shopping cart bean named cart. The
cart bean maintains a map of ShoppingCartItem beans.

The getItems method from the cart bean populates a List with ShoppingCartItem instances
that are saved in the items map when the customer adds items to the cart, as shown in the
following code segment:

public synchronized List getItems() {

List results = new ArrayList();

results.addAll(this.items.values());

return results;

}

All the components contained in the data component are bound to the properties of the cart
bean that is bound to the entire data component. For example, here is the h:outputText tag
that displays the item name in the table:

Writing Bean Properties

The Java EE 6 Tutorial • October 2010186

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.name}"/>

</h:commandLink>

UISelectBooleanProperties
Backing bean properties that hold a UISelectBoolean component’s data must be of boolean or
Boolean type. The example selectBooleanCheckbox tag from the section “Displaying
Components for Selecting One Value” on page 153 binds a component to a property. The
following example shows a tag that binds a component value to a boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the example
tag:

protected boolean receiveEmails = false;

...

public void setReceiveEmails(boolean receiveEmails) {

this.receiveEmails = receiveEmails;

}

public boolean getReceiveEmails() {

return receiveEmails;

}

UISelectManyProperties
Because a UISelectMany component allows a user to select one or more items from a list of
items, this component must map to a bean property of type List or array. This bean property
represents the set of currently selected items from the list of available items.

The following example of the selectManyCheckbox tag comes from“Displaying Components
for Selecting Multiple Values” on page 155:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>

</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from the
preceding example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {

this.newsletters = newsletters;

}

Writing Bean Properties

Chapter 9 • Developing with JavaServer Faces Technology 187

public String[] getNewsletters() {

return this.newsletters;

}

The UISelectItem and UISelectItems components are used to represent all the values in a
UISelectMany component. See “UISelectItem Properties” on page 189 and “UISelectItems
Properties” on page 189 for information on writing the bean properties for the UISelectItem
and UISelectItems components.

UISelectOneProperties
UISelectOne properties accept the same types as UIInput and UIOutput properties, because a
UISelectOne component represents the single selected item from a set of items. This item can
be any of the primitive types and anything else for which you can apply a converter.

Here is an example of the selectOneMenu tag from “Displaying a Menu Using the
h:selectOneMenu Tag” on page 154:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

Here is the bean property corresponding to this tag:

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {

this.shippingOption = shippingOption;

}

public String getShippingOption() {

return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items in the
UISelectOne component.

The UISelectItem and UISelectItems components are used to represent all the values in a
UISelectOne component. This is explained in the section “Displaying a Menu Using the
h:selectOneMenu Tag” on page 154.

For information on how to write the backing bean properties for the UISelectItem and
UISelectItems components, see “UISelectItem Properties” on page 189 and “UISelectItems
Properties” on page 189.

Writing Bean Properties

The Java EE 6 Tutorial • October 2010188

UISelectItemProperties
A UISelectItem component represents a single value in a set of values in a UISelectMany or a
UISelectOne component. A UISelectItem component must be bound to a backing bean
property of type javax.faces.model.SelectItem. A SelectItem object is composed of an
Object representing the value, along with two Strings representing the label and description of
the UISelectItem object.

The example selectOneMenu tag from “Displaying a Menu Using the h:selectOneMenu Tag”
on page 154 contains selectItem tags that set the values of the list of items in the page. Here is
an example of a bean property that can set the values for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){

return itemOne;

}

void setItemOne(SelectItem item) {

itemOne = item;

}

UISelectItemsProperties
UISelectItems components are children of UISelectMany and UISelectOne components.
Each UISelectItems component is composed of a set of either
javax.faces.model.SelectItem instances or any collection of objects, such as an array, a list,
or even POJOs.

This section explains how to write the properties for selectItems tags containing SelectItem
instances.

You can populate the UISelectItems with SelectItem instances programmatically in the
backing bean.

1. In your backing bean, create a list that is bound to the SelectItem component.
2. Define a set of SelectItem objects, set their values, and populate the list with the

SelectItem objects.

The following example code snippet from a backing bean shows how to create a SelectItems
property:

import javax.faces.model.SelectItem;

...

protected ArrayList options = null;

protected SelectItem newsletter0 =

new SelectItem("200", "Duke’s Quarterly", "");
...

//in constructor, populate the list

options.add(newsletter0);

options.add(newsletter1);

Writing Bean Properties

Chapter 9 • Developing with JavaServer Faces Technology 189

options.add(newsletter2);

...

public SelectItem getNewsletter0(){

return newsletter0;

}

void setNewsletter0(SelectItem firstNL) {

newsletter0 = firstNL;

}

// Other SelectItem properties

public Collection[] getOptions(){

return options;

}

public void setOptions(Collection[] options){

this.options = new ArrayList(options);

}

The code first initializes options as a list. Each newsletter property is defined with values. Then
each newsletter SelectItem is added to the list. Finally, the code includes the obligatory
setOptions and getOptions accessor methods.

Writing Properties Bound to Component Instances
A property bound to a component instance returns and accepts a component instance rather
than a component value. The following components bind a component instance to a backing
bean property:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub UISelectBoolean
component to the specialOffer property of CashierBean. The outputLabel tag binds the
fanClubLabel component, which represents the check box’s label, to the specialOfferText
property of CashierBean. If the user orders more than $100 worth of items and clicks the
Submit button, the submit method of CashierBean sets both components’ rendered properties
to true, causing the check box and label to display when the page is rerendered.

Because the components corresponding to the example tags are bound to the backing bean
properties, these properties must match the components’ types. This means that the
specialOfferText property must be of type UIOutput, and the specialOffer property must
be of type UISelectBoolean:

Writing Bean Properties

The Java EE 6 Tutorial • October 2010190

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {

return this.specialOfferText;

}

public void setSpecialOfferText(UIOutput specialOfferText) {

this.specialOfferText = specialOfferText;

}

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {

return this.specialOffer;

}

public void setSpecialOffer(UISelectBoolean specialOffer) {

this.specialOffer = specialOffer;

}

For more general information on component binding, see “Backing Beans” on page 181.

For information on how to reference a backing bean method that performs navigation when a
button is clicked, see “Referencing a Method That Performs Navigation” on page 179.

For more information on writing backing bean methods that handle navigation, see “Writing a
Method to Handle Navigation” on page 192.

Writing Properties Bound to Converters, Listeners, or
Validators
All the standard converter, listener, and validator tags included with JavaServer Faces
technology support binding attributes that allow you to bind converter, listener, or validator
implementations to backing bean properties.

The following example shows a standard convertDateTime tag using a value expression with its
binding attribute to bind the DateTimeConverter instance to the convertDate property of
LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />

</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter object, as
shown here:

private DateTimeConverter convertDate;

public DateTimeConverter getConvertDate() {

...

return convertDate;

{

public void setConvertDate(DateTimeConverter convertDate) {

Writing Bean Properties

Chapter 9 • Developing with JavaServer Faces Technology 191

convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

Because the converter is bound to a backing bean property, the backing bean property can
modify the attributes of the converter or add new functionality to it. In the case of the preceding
example, the property sets the date pattern that the converter uses to parse the user’s input into a
Date object.

The backing bean properties that are bound to validator or listener implementations are written
in the same way and have the same general purpose.

Writing Backing Bean Methods
Methods of a backing bean can perform several application-specific functions for components
on the page. These functions include

■ Performing processing associated with navigation
■ Handling action events
■ Performing validation on the component’s value
■ Handling value-change events

By using a backing bean to perform these functions, you eliminate the need to implement the
Validator interface to handle the validation or one of the listener interfaces to handle events.
Also, by using a backing bean instead of a Validator implementation to perform validation,
you eliminate the need to create a custom tag for the Validator implementation.

In general, it’s good practice to include these methods in the same backing bean that defines the
properties for the components referencing these methods. The reason for doing so is that the
methods might need to access the component’s data to determine how to handle the event or to
perform the validation associated with the component.

The following sections explain how to write various types of backing bean methods.

Writing a Method to Handle Navigation
An action method, a backing bean method that handles navigation processing, must be a public
method that takes no parameters and returns an Object, which is the logical outcome that the
navigation system uses to determine the page to display next. This method is referenced using
the component tag’s action attribute.

The following action method is from a backing bean named CashierBean, which is invoked
when a user clicks the Submit button on the page. If the user has ordered more than $100 worth
of items, this method sets the rendered properties of the fanClub and specialOffer

components to true, causing them to be displayed on the page the next time that page is
rendered.

Writing Backing Bean Methods

The Java EE 6 Tutorial • October 2010192

After setting the components’ rendered properties to true, this method returns the logical
outcome null. This causes the JavaServer Faces implementation to rerender the page without
creating a new view of the page, retaining the customer’s input. If this method were to return
purchase, which is the logical outcome to use to advance to a payment page, the page would
rerender without retaining the customer’s input.

If the user does not purchase more than $100 worth of items, or if the thankYou component has
already been rendered, the method returns receipt. The JavaServer Faces implementation
loads the page after this method returns:

public String submit() {

...

if(cart().getTotal() > 100.00 &&

!specialOffer.isRendered())

{

specialOfferText.setRendered(true);

specialOffer.setRendered(true);

return null;

} else if (specialOffer.isRendered() &&

!thankYou.isRendered()){

thankYou.setRendered(true);

return null;

} else {

clear();

return ("receipt");
}

}

Typically, an action method will return a String outcome, as shown in the previous example.
Alternatively, you can define an Enum class that encapsulates all possible outcome strings and
then make an action method return an enum constant, which represents a particular String
outcome defined by the Enum class.

The following example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation {

main, accountHist, accountList, atm, atmAck, transferFunds,

transferAck, error

}

When it returns an outcome, an action method uses the dot notation to reference the outcome
from the Enum class:

public Object submit(){

...

return Navigation.accountHist;

}

The section “Referencing a Method That Performs Navigation” on page 179 explains how a
component tag references this method. The section “Writing Properties Bound to Component
Instances” on page 190 explains how to write the bean properties to which the components are
bound.

Writing Backing Bean Methods

Chapter 9 • Developing with JavaServer Faces Technology 193

Writing a Method to Handle an Action Event
A backing bean method that handles an action event must be a public method that accepts an
action event and returns void. This method is referenced using the component tag’s
actionListener attribute. Only components that implement
javax.faces.component.ActionSource can refer to this method.

In the following example, a method from a backing bean named LocaleBean processes the
event of a user clicking one of the hyperlinks on the page:

public void chooseLocaleFromLink(ActionEvent event) {

String current = event.getComponent().getId();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

This method gets the component that generated the event from the event object; then it gets the
component’s ID, which indicates a region of the world. The method matches the ID against a
HashMap object that contains the locales available for the application. Finally, the method sets
the locale by using the selected value from the HashMap object.

“Referencing a Method That Handles an Action Event” on page 179 explains how a component
tag references this method.

Writing a Method to Perform Validation
Instead of implementing the Validator interface to perform validation for a component, you
can include a method in a backing bean to take care of validating input for the component. A
backing bean method that performs validation must accept a FacesContext, the component
whose data must be validated, and the data to be validated, just as the validate method of the
Validator interface does. A component refers to the backing bean method by using its
validator attribute. Only values of UIInput components or values of components that extend
UIInput can be validated.

Here is an example of a backing bean method that validates user input:

public void validateEmail(FacesContext context,

UIComponent toValidate, Object value) {

String message = "";
String email = (String) value;

if (email.contains(’@’)) {

((UIInput)toValidate).setValid(false);

message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,

"EMailError");
context.addMessage(toValidate.getClientId(context),

Writing Backing Bean Methods

The Java EE 6 Tutorial • October 2010194

new FacesMessage(message));

}

}

Take a closer look at the preceding code segment:

1. The validateEmail method first gets the local value of the component.
2. The method then checks whether the @ character is contained in the value.
3. If not, the method sets the component’s valid property to false.
4. The method then loads the error message and queues it onto the FacesContext instance,

associating the message with the component ID.

See “Referencing a Method That Performs Validation” on page 179 for information on how a
component tag references this method.

Writing a Method to Handle a Value-Change Event
A backing bean that handles a value-change event must use a public method that accepts a
value-change event and returns void. This method is referenced using the component’s
valueChangeListener attribute. This section explains how to write a backing bean method to
replace the ValueChangeListener implementation.

The following example tag comes from “Registering a Value-Change Listener on a
Component” on page 175, where the h:inputText tag with the id of name has a
ValueChangeListener instance registered on it. This ValueChangeListener instance handles
the event of entering a value in the field corresponding to the component. When the user enters
a value, a value-change event is generated, and the processValueChange(ValueChangeEvent)
method of the ValueChangeListener class is invoked:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

Instead of implementing ValueChangeListener, you can write a backing bean method to
handle this event. To do this, you move the processValueChange(ValueChangeEvent) method
from the ValueChangeListener class, called NameChanged, to your backing bean.

Here is the backing bean method that processes the event of entering a value in the name field on
the page:

public void processValueChange(ValueChangeEvent event)

throws AbortProcessingException {

if (null != event.getNewValue()) {

FacesContext.getCurrentInstance().

getExternalContext().getSessionMap().

put("name", event.getNewValue());

}

}

Writing Backing Bean Methods

Chapter 9 • Developing with JavaServer Faces Technology 195

To make this method handle the ValueChangeEvent generated by an input component,
reference this method from the component tag’s valueChangeListener attribute. See
“Referencing a Method That Handles a Value-Change Event” on page 180 for more
information.

Using Bean Validation
Validating input received from the user to maintain data integrity is an important part of
application logic. Validation of data can take place at different layers in even the simplest of
applications, as shown in the guessnumber example application from an earlier chapter. The
guessnumber example application validates the user input (in the h:inputText tag) for
numerical data at the presentation layer and for a valid range of numbers at the business layer.

JavaBeans Validation (Bean Validation) is a new validation model available as part of Java EE 6
platform. The Bean Validation model is supported by constraints in the form of annotations
placed on a field, method, or class of a JavaBeans component, such as a backing bean.

Constraints can be built in or user defined. User-defined constraints are called custom
constraints. Several built-in constraints are available in the javax.validation.constraints
package. Table 9–2 lists all the built-in constraints.

TABLE 9–2 Built-In Bean Validation Constraints

Constraint Description Example

@AssertFalse The value of the field or property
must be false.

@AssertFalse

boolean isUnsupported;

@AssertTrue The value of the field or property
must be true.

@AssertTrue

boolean isActive;

@DecimalMax The value of the field or property
must be a decimal value lower
than or equal to the number in
the value element.

@DecimalMax("30.00")
BigDecimal discount;

@DecimalMin The value of the field or property
must be a decimal value greater
than or equal to the number in
the value element.

@DecimalMin("5.00")
BigDecimal discount;

Using Bean Validation

The Java EE 6 Tutorial • October 2010196

TABLE 9–2 Built-In Bean Validation Constraints (Continued)
Constraint Description Example

@Digits The value of the field or property
must be a number within a
specified range. The integer
element specifies the maximum
integral digits for the number,
and the fraction element
specifies the maximum fractional
digits for the number.

@Digits(integer=6, fraction=2)

BigDecimal price;

@Future The value of the field or property
must be a date in the future.

@Future

Date eventDate;

@Max The value of the field or property
must be an integer value lower
than or equal to the number in
the value element.

@Max(10)

int quantity;

@Min The value of the field or property
must be an integer value greater
than or equal to the number in
the value element.

@Min(5)

int quantity;

@NotNull The value of the field or property
must not be null.

@NotNull

String username;

@Null The value of the field or property
must be null.

@Null

String unusedString;

@Past The value of the field or property
must be a date in the past.

@Past

Date birthday;

@Pattern The value of the field or property
must match the regular
expression defined in the regexp
element.

@Pattern(regexp="\\(\\d{3}\\)\\d{3}-\\d{4}")
String phoneNumber;

Using Bean Validation

Chapter 9 • Developing with JavaServer Faces Technology 197

TABLE 9–2 Built-In Bean Validation Constraints (Continued)
Constraint Description Example

@Size The size of the field or property is
evaluated and must match the
specified boundaries. If the field
or property is a String, the size
of the string is evaluated. If the
field or property is a Collection,
the size of the Collection is
evaluated. If the field or property
is a Map, the size of the Map is
evaluated. If the field or property
is an array, the size of the array is
evaluated. Use one of the
optional max or min elements to
specify the boundaries.

@Size(min=2, max=240)

String briefMessage;

In the following example, a constraint is placed on a field using the built-in @NotNull

constraint:

public class Name {

@NotNull

private String firstname;

@NotNull

private String lastname;

}

You can also place more than one constraint on a single JavaBeans component object. For
example, you can place an additional constraint for size of field on the firstname and the
lastname fields:

public class Name {

@NotNull

@Size(min=1, max=16)

private String firstname;

@NotNull

@Size(min=1, max=16)

private String lastname;

}

The following example shows a method with a user-defined constraint that checks for a
predefined email address pattern such as a corporate email account:

@ValidEmail

public String getEmailAddress() {

return emailAddress;

}

Using Bean Validation

The Java EE 6 Tutorial • October 2010198

For a built-in constraint, a default implementation is available. A user-defined or custom
constraint needs a validation implementation. In the above example, the @ValidEmail custom
constraint needs an implementation class.

Any validation failures are gracefully handled and can be displayed by the h:messages tag.

Any backing bean that contains Bean Validation annotations automatically gets validation
constraints placed on the fields on a JavaServer Faces application’s web pages.

See “Validating Persistent Fields and Properties” on page 359 for more information on using
validation constraints.

Validating Null and Empty Strings
The Java programming language distinguishes between null and empty strings. An empty string
is a string instance of zero length, whereas a null string has no value at all.

An empty string is represented as "". It is a character array of zero characters. A null string is
represented by null. It can be described as the absence of a string instance.

Backing bean elements represented as a JavaServer Faces text component such as inputText are
initialized with the value of the empty string by the JavaServer Faces implementation.
Validating these strings can be an issue when user input for such fields is not required. Consider
the following example, where the string testString is a bean variable that will be set using
input typed by the user. In this case, the user input for the field is not required.

if (testString.equals(null)) {

doSomething();

} else {

doAnotherThing();

}

By default, the doAnotherThing method is called even when the user enters no data, because the
testString element has been initialized with the value of an empty string.

In order for the Bean Validation model to work as intended, you must set the context parameter
javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true in the web
deployment descriptor file, web.xml:

<context-param>

<param-name>

javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL

</param-name>

<param-value>true</param-value>

</context-param>

This parameter enables the JavaServer Faces implementation to treat empty strings as null.

Using Bean Validation

Chapter 9 • Developing with JavaServer Faces Technology 199

Suppose, on the other hand, that you have a @NotNull constraint on an element, meaning that
input is required. In this case, an empty string will pass this validation constraint. However, if
you set the context parameter
javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true, the value of the
backing bean attribute is passed to the Bean Validation runtime as a null value, causing the
@NotNull constraint to fail.

Using Bean Validation

The Java EE 6 Tutorial • October 2010200

Java Servlet Technology

Shortly after the Web began to be used for delivering services, service providers recognized the
need for dynamic content. Applets, one of the earliest attempts toward this goal, focused on
using the client platform to deliver dynamic user experiences. At the same time, developers also
investigated using the server platform for the same purpose. Initially, Common Gateway
Interface (CGI) server-side scripts were the main technology used to generate dynamic content.
Although widely used, CGI scripting technology had many shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java Servlet technology was
created as a portable way to provide dynamic, user-oriented content.

The following topics are addressed here:

■ “What Is a Servlet?” on page 202
■ “Servlet Lifecycle” on page 202
■ “Sharing Information” on page 204
■ “Creating and Initializing a Servlet” on page 205
■ “Writing Service Methods” on page 206
■ “Filtering Requests and Responses” on page 208
■ “Invoking Other Web Resources” on page 212
■ “Accessing the Web Context” on page 213
■ “Maintaining Client State” on page 214
■ “Finalizing a Servlet” on page 216
■ “The mood Example Application” on page 218
■ “Further Information about Java Servlet Technology” on page 220

10C H A P T E R 1 0

201

What Is a Servlet?
A servlet is a Java programming language class used to extend the capabilities of servers that
host applications accessed by means of a request-response programming model. Although
servlets can respond to any type of request, they are commonly used to extend the applications
hosted by web servers. For such applications, Java Servlet technology defines HTTP-specific
servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes for
writing servlets. All servlets must implement the Servlet interface, which defines lifecycle
methods. When implementing a generic service, you can use or extend the GenericServlet
class provided with the Java Servlet API. The HttpServlet class provides methods, such as
doGet and doPost, for handling HTTP-specific services.

Servlet Lifecycle
The lifecycle of a servlet is controlled by the container in which the servlet has been deployed.
When a request is mapped to a servlet, the container performs the following steps.

1. If an instance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.
c. Initializes the servlet instance by calling the init method. Initialization is covered in

“Creating and Initializing a Servlet” on page 205.
2. Invokes the service method, passing request and response objects. Service methods are

discussed in “Writing Service Methods” on page 206.

If it needs to remove the servlet, the container finalizes the servlet by calling the servlet’s
destroy method. For more information, see “Finalizing a Servlet” on page 216.

Handling Servlet Lifecycle Events
You can monitor and react to events in a servlet’s lifecycle by defining listener objects whose
methods get invoked when lifecycle events occur. To use these listener objects, you must define
and specify the listener class.

Defining the Listener Class
You define a listener class as an implementation of a listener interface. Table 10–1 lists the
events that can be monitored and the corresponding interface that must be implemented.
When a listener method is invoked, it is passed an event that contains information appropriate
to the event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

What Is a Servlet?

The Java EE 6 Tutorial • October 2010202

TABLE 10–1 Servlet Lifecycle Events

Object Event Listener Interface and Event Class

Web context (see
“Accessing the Web
Context” on page 213)

Initialization and
destruction

javax.servlet.ServletContextListener and
ServletContextEvent

Attribute added,
removed, or replaced

javax.servlet.ServletContextAttributeListener and
ServletContextAttributeEvent

Session (See
“Maintaining Client
State” on page 214)

Creation,
invalidation,
activation,
passivation, and
timeout

javax.servlet.http.HttpSessionListener,
javax.servlet.http.HttpSessionActivationListener,
and HttpSessionEvent

Attribute added,
removed, or replaced

javax.servlet.http.HttpSessionAttributeListener and
HttpSessionBindingEvent

Request A servlet request has
started being
processed by web
components

javax.servlet.ServletRequestListener and
ServletRequestEvent

Attribute added,
removed, or replaced

javax.servlet.ServletRequestAttributeListener and
ServletRequestAttributeEvent

Use the @WebListener annotation to define a listener to get events for various operations on the
particular web application context. Classes annotated with @WebListener must implement one
of the following interfaces:

javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttributeListener

javax.servlet..http.HttpSessionListener

javax.servlet..http.HttpSessionAttributeListener

For example, the following code snippet defines a listener that implements two of these
interfaces:

import javax.servlet.ServletContextAttributeListener;

import javax.servlet.ServletContextListener;

import javax.servlet.annotation.WebListener;

@WebListener()

public class SimpleServletListener implements ServletContextListener,

ServletContextAttributeListener {

...

Servlet Lifecycle

Chapter 10 • Java Servlet Technology 203

Handling Servlet Errors
Any number of exceptions can occur when a servlet executes. When an exception occurs, the
web container generates a default page containing the following message:

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given
exception.

Sharing Information
Web components, like most objects, usually work with other objects to accomplish their tasks.
Web components can do so by

■ Using private helper objects (for example, JavaBeans components).
■ Sharing objects that are attributes of a public scope.
■ Using a database.
■ Invoking other web resources. The Java Servlet technology mechanisms that allow a web

component to invoke other web resources are described in “Invoking Other Web
Resources” on page 212.

Using Scope Objects
Collaborating web components share information by means of objects that are maintained as
attributes of four scope objects. You access these attributes by using the getAttribute and
setAttribute methods of the class representing the scope. Table 10–2 lists the scope objects.

TABLE 10–2 Scope Objects

Scope Object Class Accessible from

Web context javax.servlet.

ServletContext

Web components within a web context. See “Accessing the
Web Context” on page 213.

Session javax.servlet.

http.HttpSession

Web components handling a request that belongs to the
session. See “Maintaining Client State” on page 214.

Request Subtype of javax.servlet.
ServletRequest

Web components handling the request.

Page javax.servlet.

jsp.JspContext

The JSP page that creates the object.

Sharing Information

The Java EE 6 Tutorial • October 2010204

Controlling Concurrent Access to Shared Resources
In a multithreaded server, shared resources can be accessed concurrently. In addition to scope
object attributes, shared resources include in-memory data, such as instance or class variables,
and external objects, such as files, database connections, and network connections.

Concurrent access can arise in several situations:

■ Multiple web components accessing objects stored in the web context.
■ Multiple web components accessing objects stored in a session.
■ Multiple threads within a web component accessing instance variables. A web container will

typically create a thread to handle each request. To ensure that a servlet instance handles
only one request at a time, a servlet can implement the SingleThreadModel interface. If a
servlet implements this interface, no two threads will execute concurrently in the servlet’s
service method. A web container can implement this guarantee by synchronizing access to a
single instance of the servlet or by maintaining a pool of web component instances and
dispatching each new request to a free instance. This interface does not prevent
synchronization problems that result from web components’ accessing shared resources,
such as static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent fashion. You
prevent this by controlling the access using the synchronization techniques described in the
Threads lesson at http://download.oracle.com/javase/tutorial/essential/
concurrency/index.html in The Java Tutorial, Fourth Edition, by Sharon Zakhour et al.
(Addison-Wesley, 2006).

Creating and Initializing a Servlet
Use the @WebServlet annotation to define a servlet component in a web application. This
annotation is specified on a class and contains metadata about the servlet being declared. The
annotated servlet must specify at least one URL pattern. This is done by using the urlPatterns
or value attribute on the annotation. All other attributes are optional, with default settings. Use
the value attribute when the only attribute on the annotation is the URL pattern; otherwise use
the urlPatterns attribute when other attributes are also used.

Classes annotated with @WebServlet must extend the javax.servlet.http.HttpServlet
class. For example, the following code snippet defines a servlet with the URL pattern /report:

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

...

Creating and Initializing a Servlet

Chapter 10 • Java Servlet Technology 205

http://download.oracle.com/javase/tutorial/essential/concurrency/index.html
http://download.oracle.com/javase/tutorial/essential/concurrency/index.html

The web container initializes a servlet after loading and instantiating the servlet class and before
delivering requests from clients. To customize this process to allow the servlet to read persistent
configuration data, initialize resources, and perform any other one-time activities, you can
either override the init method of the Servlet interface or specify the initParams attribute of
the @WebServlet annotation. The initParams attribute contains a @WebInitParam annotation.
If it cannot complete its initialization process, a servlet throws an UnavailableException.

Writing Service Methods
The service provided by a servlet is implemented in the service method of a GenericServlet,
in the doMethod methods (where Method can take the value Get, Delete, Options, Post, Put, or
Trace) of an HttpServlet object, or in any other protocol-specific methods defined by a class
that implements the Servlet interface. The term service method is used for any method in a
servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the request, access
external resources, and then populate the response, based on that information. For HTTP
servlets, the correct procedure for populating the response is to do the following:

1. Retrieve an output stream from the response.
2. Fill in the response headers.
3. Write any body content to the output stream.

Response headers must always be set before the response has been committed. The web
container will ignore any attempt to set or add headers after the response has been committed.
The next two sections describe how to get information from requests and generate responses.

Getting Information from Requests
A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following
information:

■ Parameters, which are typically used to convey information between clients and servlets
■ Object-valued attributes, which are typically used to pass information between the servlet

container and a servlet or between collaborating servlets
■ Information about the protocol used to communicate the request and about the client and

server involved in the request
■ Information relevant to localization

You can also retrieve an input stream from the request and manually parse the data. To read
character data, use the BufferedReader object returned by the request’s getReader method. To
read binary data, use the ServletInputStream returned by getInputStream.

Writing Service Methods

The Java EE 6 Tutorial • October 2010206

HTTP servlets are passed an HTTP request object, HttpServletRequest, which contains the
request URL, HTTP headers, query string, and so on. An HTTP request URL contains the
following parts:

http://[host]:[port][request-path]?[query-string]

The request path is further composed of the following elements:
■ Context path: A concatenation of a forward slash (/) with the context root of the servlet’s

web application.
■ Servlet path: The path section that corresponds to the component alias that activated this

request. This path starts with a forward slash (/).
■ Path info: The part of the request path that is not part of the context path or the servlet path.

You can use the getContextPath, getServletPath, and getPathInfo methods of the
HttpServletRequest interface to access this information. Except for URL encoding differences
between the request URI and the path parts, the request URI is always comprised of the context
path plus the servlet path plus the path info.

Query strings are composed of a set of parameters and values. Individual parameters are
retrieved from a request by using the getParameter method. There are two ways to generate
query strings.

■ A query string can explicitly appear in a web page.
■ A query string is appended to a URL when a form with a GET HTTP method is submitted.

Constructing Responses
A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to

■ Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getWriter method. To send binary data in a
Multipurpose Internet Mail Extensions (MIME) body response, use the
ServletOutputStream returned by getOutputStream. To mix binary and text data, as in a
multipart response, use a ServletOutputStream and manage the character sections
manually.

■ Indicate the content type (for example, text/html) being returned by the response with the
setContentType(String) method. This method must be called before the response is
committed. A registry of content type names is kept by the Internet Assigned Numbers
Authority (IANA) at http://www.iana.org/assignments/media-types/.

■ Indicate whether to buffer output with the setBufferSize(int) method. By default, any
content written to the output stream is immediately sent to the client. Buffering allows
content to be written before anything is sent back to the client, thus providing the servlet

Writing Service Methods

Chapter 10 • Java Servlet Technology 207

http://www.iana.org/assignments/media-types/

with more time to set appropriate status codes and headers or forward to another web
resource. The method must be called before any content is written or before the response is
committed.

■ Set localization information, such as locale and character encoding.

HTTP response objects, javax.servlet.http.HttpServletResponse, have fields representing
HTTP headers, such as the following:
■ Status codes, which are used to indicate the reason a request is not satisfied or that a request

has been redirected.
■ Cookies, which are used to store application-specific information at the client. Sometimes,

cookies are used to maintain an identifier for tracking a user’s session (see “Session
Tracking” on page 215).

Filtering Requests and Responses
A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be “attached” to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting
as a filter; this way, it can be composed with more than one type of web resource.

The main tasks that a filter can perform are as follows:
■ Query the request and act accordingly.
■ Block the request-and-response pair from passing any further.
■ Modify the request headers and data. You do this by providing a customized version of the

request.
■ Modify the response headers and data. You do this by providing a customized version of the

response.
■ Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filters in a
specific order. This chain is specified when the web application containing the component is
deployed and is instantiated when a web container loads the component.

Programming Filters
The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces in the
javax.servlet package. You define a filter by implementing the Filter interface.

Filtering Requests and Responses

The Java EE 6 Tutorial • October 2010208

Use the @WebFilter annotation to define a filter in a web application. This annotation is
specified on a class and contains metadata about the filter being declared. The annotated filter
must specify at least one URL pattern. This is done by using the urlPatterns or value attribute
on the annotation. All other attributes are optional, with default settings. Use the value
attribute when the only attribute on the annotation is the URL pattern; use the urlPatterns
attribute when other attributes are also used.

Classes annotated with the @WebFilter annotation must implement the
javax.servlet.Filter interface.

To add configuration data to the filter, specify the initParams attribute of the @WebFilter
annotation. The initParams attribute contains a @WebInitParam annotation. The following
code snippet defines a filter, specifying an initialization parameter:

import javax.servlet.Filter;

import javax.servlet.annotation.WebFilter;

import javax.servlet.annotation.WebInitParam;

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

....

The most important method in the Filter interface is doFilter, which is passed request,
response, and filter chain objects. This method can perform the following actions:

■ Examine the request headers.
■ Customize the request object if the filter wishes to modify request headers or data.
■ Customize the response object if the filter wishes to modify response headers or data.
■ Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that

ends with the target web component or static resource, the next entity is the resource at the
end of the chain; otherwise, it is the next filter that was configured in the WAR. The filter
invokes the next entity by calling the doFilter method on the chain object, passing in the
request and response it was called with or the wrapped versions it may have created.
Alternatively, the filter can choose to block the request by not making the call to invoke the
next entity. In the latter case, the filter is responsible for filling out the response.

■ Examine response headers after invoking the next filter in the chain.
■ Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The init
method is called by the container when the filter is instantiated. If you wish to pass initialization
parameters to the filter, you retrieve them from the FilterConfig object passed to init.

Filtering Requests and Responses

Chapter 10 • Java Servlet Technology 209

Programming Customized Requests and Responses
There are many ways for a filter to modify a request or a response. For example, a filter can add
an attribute to the request or can insert data in the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The
stand-in stream prevents the servlet from closing the original response stream when it
completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides
the getWriter or getOutputStream method to return this stand-in stream. The wrapper is
passed to the doFilter method of the filter chain. Wrapper methods default to calling through
to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends either
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you
wrap the response in an object that extends either ServletResponseWrapper or
HttpServletResponseWrapper.

Specifying Filter Mappings
A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name or to web resources by URL pattern. The
filters are invoked in the order in which filter mappings appear in the filter mapping list of a
WAR. You specify a filter mapping list for a WAR in its deployment descriptor by either using
NetBeans IDE or coding the list by hand with XML.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*.

You can map a filter to one or more web resources, and you can map more than one filter to a
web resource. This is illustrated in Figure 10–1, where filter F1 is mapped to servlets S1, S2, and
S3; filter F2 is mapped to servlet S2; and filter F3 is mapped to servlets S1 and S2.

Filtering Requests and Responses

The Java EE 6 Tutorial • October 2010210

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This
chain is formed indirectly by means of filter mappings. The order of the filters in the chain is the
same as the order in which filter mappings appear in the web application deployment
descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1.
The doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the
chain by means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and
F3, F1’s call to chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter
method completes, control returns to F1’s doFilter method.

▼ To Specify Filter Mappings Using NetBeans IDE

Expand the application’s project node in the Project pane.

Expand the Web Pages and WEB-INF nodes under the project node.

Double-click web.xml.

Click Filters at the top of the editor pane.

Expand the Servlet Filters node in the editor pane.

Click Add Filter Element to map the filter to a web resource by name or by URL pattern.

In the Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.

Click Browse to locate the servlet class to which the filter applies.
You can include wildcard characters so that you can apply the filter to more than one servlet.

FIGURE 10–1 Filter-to-Servlet Mapping

F1

F2

F3 S1

S2

S3

1

2

3

4

5

6

7

8

Filtering Requests and Responses

Chapter 10 • Java Servlet Technology 211

Click OK.

To constrain how the filter is applied to requests, follow these steps.

a. Expand the Filter Mappings node.

b. Select the filter from the list of filters.

c. Click Add.

d. In the Add Filter Mapping dialog, select one of the following dispatcher types:

■ REQUEST: Only when the request comes directly from the client
■ ASYNC: Only when the asynchronous request comes from the client
■ FORWARD: Only when the request has been forwarded to a component (see “Transferring

Control to Another Web Component” on page 213)
■ INCLUDE: Only when the request is being processed by a component that has been

included (see “Including Other Resources in the Response” on page 213)
■ ERROR: Only when the request is being processed with the error page mechanism (see

“Handling Servlet Errors” on page 204)

You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is REQUEST.

Invoking Other Web Resources
Web components can invoke other web resources both indirectly and directly. A web
component indirectly invokes another web resource by embedding a URL that points to
another web component in content returned to a client. While it is executing, a web component
directly invokes another resource by either including the content of another resource or
forwarding a request to another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object by using the getRequestDispatcher("URL") method. You
can get a RequestDispatcher object from either a request or the web context; however, the two
methods have slightly different behavior. The method takes the path to the requested resource
as an argument. A request can take a relative path (that is, one that does not begin with a /), but
the web context requires an absolute path. If the resource is not available or if the server has not
implemented a RequestDispatcher object for that type of resource, getRequestDispatcher
will return null. Your servlet should be prepared to deal with this condition.

9

10

Invoking Other Web Resources

The Java EE 6 Tutorial • October 2010212

Including Other Resources in the Response
It is often useful to include another web resource, such as banner content or copyright
information) in the response returned from a web component. To include another resource,
invoke the include method of a RequestDispatcher object:

include(request, response);

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request
object but is limited in what it can do with the response object.
■ It can write to the body of the response and commit a response.
■ It cannot set headers or call any method, such as setCookie, that affects the headers of the

response.

Transferring Control to Another Web Component
In some applications, you might want to have one web component do preliminary processing of
a request and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component, depending on the nature of
the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of the
forwarded page. The original URI and its constituent parts are saved as request attributes
javax.servlet.forward.[request-uri|context-path|servlet-path|path-info|query-string].

The forward method should be used to give another resource responsibility for replying to the
user. If you have already accessed a ServletOutputStream or PrintWriter object within the
servlet, you cannot use this method; doing so throws an IllegalStateException.

Accessing the Web Context
The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context by using the getServletContext
method. The web context provides methods for accessing
■ Initialization parameters
■ Resources associated with the web context
■ Object-valued attributes
■ Logging capabilities

Accessing the Web Context

Chapter 10 • Java Servlet Technology 213

The counter’s access methods are synchronized to prevent incompatible operations by servlets
that are running concurrently. A filter retrieves the counter object by using the context’s
getAttribute method. The incremented value of the counter is recorded in the log.

Maintaining Client State
Many applications require that a series of requests from a client be associated with one another.
For example, a web application can save the state of a user’s shopping cart across requests.
Web-based applications are responsible for maintaining such state, called a session, because
HTTP is stateless. To support applications that need to maintain state, Java Servlet technology
provides an API for managing sessions and allows several mechanisms for implementing
sessions.

Accessing a Session
Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session associated
with this request; or, if the request does not have a session, this method creates one.

Associating Objects with a Session
You can associate object-valued attributes with a session by name. Such attributes are accessible
by any web component that belongs to the same web context and is handling a request that is
part of the same session.

Recall that your application can notify web context and session listener objects of servlet
lifecycle events (“Handling Servlet Lifecycle Events” on page 202). You can also notify objects of
certain events related to their association with a session such as the following:

■ When the object is added to or removed from a session. To receive this notification, your
object must implement the javax.servlet.http.HttpSessionBindingListener interface.

■ When the session to which the object is attached will be passivated or activated. A session
will be passivated or activated when it is moved between virtual machines or saved to and
restored from persistent storage. To receive this notification, your object must implement
the javax.servlet.http.HttpSessionActivationListener interface.

Maintaining Client State

The Java EE 6 Tutorial • October 2010214

Session Management
Because an HTTP client has no way to signal that it no longer needs a session, each session has
an associated timeout so that its resources can be reclaimed. The timeout period can be accessed
by using a session’s getMaxInactiveInterval and setMaxInactiveInterval methods.

■ To ensure that an active session is not timed out, you should periodically access the session
by using service methods because this resets the session’s time-to-live counter.

■ When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data.

▼ To Set the Timeout Period Using NetBeans IDE
To set the timeout period in the deployment descriptor using NetBeans IDE, follow these steps.

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.

Double-click web.xml.

Click General at the top of the editor.

In the Session Timeout field, type an integer value.

The integer value represents the number of minutes of inactivity that must pass before the
session times out.

Session Tracking
To associate a session with a user, a web container can use several methods, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned
to the client.

If your application uses session objects, you must ensure that session tracking is enabled by
having the application rewrite URLs whenever the client turns off cookies. You do this by
calling the response’s encodeURL(URL) method on all URLs returned by a servlet. This method
includes the session ID in the URL only if cookies are disabled; otherwise, the method returns
the URL unchanged.

1

2

3

4

5

6

Maintaining Client State

Chapter 10 • Java Servlet Technology 215

Finalizing a Servlet
A servlet container may determine that a servlet should be removed from service (for example,
when a container wants to reclaim memory resources or when it is being shut down). In such a
case, the container calls the destroy method of the Servlet interface. In this method, you
release any resources the servlet is using and save any persistent state. The destroy method
releases the database object created in the init method .

A servlet’s service methods should all be complete when a servlet is removed. The server tries to
ensure this by calling the destroy method only after all service requests have returned or after a
server-specific grace period, whichever comes first. If your servlet has operations that may run
longer than the server’s grace period, the operations could still be running when destroy is
called. You must make sure that any threads still handling client requests complete.

The remainder of this section explains how to do the following:

■ Keep track of how many threads are currently running the service method.
■ Provide a clean shutdown by having the destroy method notify long-running threads of the

shutdown and wait for them to complete.
■ Have the long-running methods poll periodically to check for shutdown and, if necessary,

stop working, clean up, and return.

Tracking Service Requests
To track service requests, include in your servlet class a field that counts the number of service
methods that are running. The field should have synchronized access methods to increment,
decrement, and return its value:

public class ShutdownExample extends HttpServlet {

private int serviceCounter = 0;

...

// Access methods for serviceCounter

protected synchronized void enteringServiceMethod() {

serviceCounter++;

}

protected synchronized void leavingServiceMethod() {

serviceCounter--;

}

protected synchronized int numServices() {

return serviceCounter;

}

}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that
your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

Finalizing a Servlet

The Java EE 6 Tutorial • October 2010216

protected void service(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException,IOException {

enteringServiceMethod();

try {

super.service(req, resp);

} finally {

leavingServiceMethod();

}

}

Notifying Methods to Shut Down
To ensure a clean shutdown, your destroy method should not release any shared resources
until all the service requests have completed. One part of doing this is to check the service
counter. Another part is to notify the long-running methods that it is time to shut down. For
this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {

private boolean shuttingDown;

...

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {

shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {

return shuttingDown;

}

}

Here is an example of the destroy method using these fields to provide a clean shutdown:

public void destroy() {

/* Check to see whether there are still service methods /*

/* running, and if there are, tell them to stop. */

if (numServices() > 0) {

setShuttingDown(true);

}

/* Wait for the service methods to stop. */

while(numServices() > 0) {

try {

Thread.sleep(interval);

} catch (InterruptedException e) {

}

}

}

Creating Polite Long-Running Methods
The final step in providing a clean shutdown is to make any long-running methods behave
politely. Methods that might run for a long time should check the value of the field that notifies
them of shutdowns and should interrupt their work, if necessary:

Finalizing a Servlet

Chapter 10 • Java Servlet Technology 217

public void doPost(...) {

...

for(i = 0; ((i < lotsOfStuffToDo) &&

!isShuttingDown()); i++) {

try {

partOfLongRunningOperation(i);

} catch (InterruptedException e) {

...

}

}

}

The mood Example Application
The mood example application, located in tut-install/examples/web/mood, is a simple example
that displays Duke’s moods at different times during the day. The example shows how to
develop a simple application by using the @WebServlet, @WebFilter, and @WebListener

annotations to create a servlet, a listener, and a filter.

Components of the mood Example Application
The mood example application is comprised of three components: mood.web.MoodServlet,
mood.web.TimeOfDayFilter, and mood.web.SimpleServletListener.

MoodServlet, the presentation layer of the application, displays Duke’s mood in a graphic,
based on the time of day. The @WebServlet annotation specifies the URL pattern:

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

...

TimeOfDayFilter sets an initialization parameter indicating that Duke is awake:

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

...

The filter calls the doFilter method, which contains a switch statement that sets Duke’s mood
based on the current time.

SimpleServletListener logs changes in the servlet’s lifecycle. The log entries appear in the
server log.

The mood Example Application

The Java EE 6 Tutorial • October 2010218

Building, Packaging, Deploying, and Running the mood
Example
You can use either NetBeans IDE or Ant to build, package, deploy, and run the mood example.

▼ To Build, Package, Deploy, and Run the mood Example Using NetBeans
IDE

Select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/web/

Select the mood folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the moodproject and select Build.

Right-click the project and select Deploy.

In a web browser, open the URL http://localhost:8080/mood/report.
The URL specifies the context root, followed by the URL pattern specified for the servlet.

A web page appears with the title “Servlet MoodServlet at /mood” a text string describing Duke’s
mood, and an illustrative graphic.

▼ To Build, Package, Deploy, and Run the mood Example Using Ant

In a terminal window, go to:
tut-install/examples/web/mood/

Type the following command:
ant

This target builds the WAR file and copies it to the tut-install/examples/web/mood/dist/
directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

1

2

3

4

5

6

7

8

1

2

3

The mood Example Application

Chapter 10 • Java Servlet Technology 219

In a web browser, open the URL http://localhost:8080/mood/report.
The URL specifies the context root, followed by the URL pattern.

A web page appears with the title “Servlet MoodServlet at /mood” a text string describing Duke’s
mood, and an illustrative graphic.

Further Information about Java Servlet Technology
For more information on Java Servlet technology, see

■ Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ Java Servlet web site:
http://www.oracle.com/technetwork/java/index-jsp-135475.html

4

Further Information about Java Servlet Technology

The Java EE 6 Tutorial • October 2010220

http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

Web Services
Part III explores web services. This part contains the following chapters:

■ Chapter 11, “Introduction to Web Services”
■ Chapter 12, “Building Web Services with JAX-WS”
■ Chapter 13, “Building RESTful Web Services with JAX-RS”

P A R T I I I

221

222

Introduction to Web Services

Part III of the tutorial discusses Java EE 6 web services technologies. For this book, these
technologies include Java API for XML Web Services (JAX-WS) and Java API for RESTful Web
Services (JAX-RS).

The following topics are addressed here:

■ “What Are Web Services?” on page 223
■ “Types of Web Services” on page 223
■ “Deciding Which Type of Web Service to Use” on page 226

What Are Web Services?
Web services are client and server applications that communicate over the World Wide Web’s
(WWW) HyperText Transfer Protocol (HTTP). As described by the World Wide Web
Consortium (W3C), web services provide a standard means of interoperating between software
applications running on a variety of platforms and frameworks. Web services are characterized
by their great interoperability and extensibility, as well as their machine-processable
descriptions, thanks to the use of XML. Web services can be combined in a loosely coupled way
to achieve complex operations. Programs providing simple services can interact with each other
to deliver sophisticated added-value services.

Types of Web Services
On the conceptual level, a service is a software component provided through a
network-accessible endpoint. The service consumer and provider use messages to exchange
invocation request and response information in the form of self-containing documents that
make very few assumptions about the technological capabilities of the receiver.

11C H A P T E R 1 1

223

On a technical level, web services can be implemented in various ways. The two types of web
services discussed in this section can be distinguished as “big” web services and “RESTful” web
services.

“Big”Web Services
In Java EE 6, JAX-WS provides the functionality for “big” web services, which are described in
Chapter 12, “Building Web Services with JAX-WS.” Big web services use XML messages that
follow the Simple Object Access Protocol (SOAP) standard, an XML language defining a
message architecture and message formats. Such systems often contain a machine-readable
description of the operations offered by the service, written in the Web Services Description
Language (WSDL), an XML language for defining interfaces syntactically.

The SOAP message format and the WSDL interface definition language have gained
widespread adoption. Many development tools, such as NetBeans IDE, can reduce the
complexity of developing web service applications.

A SOAP-based design must include the following elements.

■ A formal contract must be established to describe the interface that the web service offers.
WSDL can be used to describe the details of the contract, which may include messages,
operations, bindings, and the location of the web service. You may also process SOAP
messages in a JAX-WS service without publishing a WSDL.

■ The architecture must address complex nonfunctional requirements. Many web service
specifications address such requirements and establish a common vocabulary for them.
Examples include transactions, security, addressing, trust, coordination, and so on.

■ The architecture needs to handle asynchronous processing and invocation. In such cases,
the infrastructure provided by standards, such as Web Services Reliable Messaging
(WSRM), and APIs, such as JAX-WS, with their client-side asynchronous invocation
support, can be leveraged out of the box.

RESTful Web Services
In Java EE 6, JAX-RS provides the functionality for Representational State Transfer (RESTful)
web services. REST is well suited for basic, ad hoc integration scenarios. RESTful web services,
often better integrated with HTTP than SOAP-based services are, do not require XML messages
or WSDL service–API definitions.

Project Jersey is the production-ready reference implementation for the JAX-RS specification.
Jersey implements support for the annotations defined in the JAX-RS specification, making it
easy for developers to build RESTful web services with Java and the Java Virtual Machine
(JVM).

Types of Web Services

The Java EE 6 Tutorial • October 2010224

Because RESTful web services use existing well-known W3C and Internet Engineering Task
Force (IETF) standards (HTTP, XML, URI, MIME) and have a lightweight infrastructure that
allows services to be built with minimal tooling, developing RESTful web services is inexpensive
and thus has a very low barrier for adoption. You can use a development tool such as NetBeans
IDE to further reduce the complexity of developing RESTful web services.

A RESTful design may be appropriate when the following conditions are met.

■ The web services are completely stateless. A good test is to consider whether the interaction
can survive a restart of the server.

■ A caching infrastructure can be leveraged for performance. If the data that the web service
returns is not dynamically generated and can be cached, the caching infrastructure that web
servers and other intermediaries inherently provide can be leveraged to improve
performance. However, the developer must take care because such caches are limited to the
HTTP GET method for most servers.

■ The service producer and service consumer have a mutual understanding of the context and
content being passed along. Because there is no formal way to describe the web services
interface, both parties must agree out of band on the schemas that describe the data being
exchanged and on ways to process it meaningfully. In the real world, most commercial
applications that expose services as RESTful implementations also distribute so-called
value-added toolkits that describe the interfaces to developers in popular programming
languages.

■ Bandwidth is particularly important and needs to be limited. REST is particularly useful for
limited-profile devices, such as PDAs and mobile phones, for which the overhead of headers
and additional layers of SOAP elements on the XML payload must be restricted.

■ Web service delivery or aggregation into existing web sites can be enabled easily with a
RESTful style. Developers can use such technologies as JAX-RS and Asynchronous
JavaScript with XML (AJAX) and such toolkits as Direct Web Remoting (DWR) to consume
the services in their web applications. Rather than starting from scratch, services can be
exposed with XML and consumed by HTML pages without significantly refactoring the
existing web site architecture. Existing developers will be more productive because they are
adding to something they are already familiar with rather than having to start from scratch
with new technology.

RESTful web services are discussed in Chapter 13, “Building RESTful Web Services with
JAX-RS.” This chapter contains information about generating the skeleton of a RESTful web
service using both NetBeans IDE and the Maven project management tool.

Types of Web Services

Chapter 11 • Introduction to Web Services 225

Deciding Which Type of Web Service to Use
Basically, you would want to use RESTful web services for integration over the web and use big
web services in enterprise application integration scenarios that have advanced quality of
service (QoS) requirements.

■ JAX-WS: addresses advanced QoS requirements commonly occurring in enterprise
computing. When compared to JAX-RS, JAX-WS makes it easier to support the WS-* set of
protocols, which provide standards for security and reliability, among other things, and
interoperate with other WS-* conforming clients and servers.

■ JAX-RS: makes it easier to write web applications that apply some or all of the constraints of
the REST style to induce desirable properties in the application, such as loose coupling
(evolving the server is easier without breaking existing clients), scalability (start small and
grow), and architectural simplicity (use off-the-shelf components, such as proxies or HTTP
routers). You would choose to use JAX-RS for your web application because it is easier for
many types of clients to consume RESTful web services while enabling the server side to
evolve and scale. Clients can choose to consume some or all aspects of the service and mash
it up with other web-based services.

Note – For an article that provides more in-depth analysis of this issue, see “RESTful Web
Services vs. “Big” Web Services: Making the Right Architectural Decision,” by Cesare Pautasso,
Olaf Zimmermann, and Frank Leymann from WWW '08: Proceedings of the 17th International
Conference on the World Wide Web (2008), pp. 805–814 (http://www2008.org/papers/pdf/
p805-pautassoA.pdf).

Deciding Which Type of Web Service to Use

The Java EE 6 Tutorial • October 2010226

http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://www2008.org/papers/pdf/p805-pautassoA.pdf

Building Web Services with JAX-WS

Java API for XML Web Services (JAX-WS) is a technology for building web services and clients
that communicate using XML. JAX-WS allows developers to write message-oriented as well as
Remote Procedure Call-oriented (RPC-oriented) web services.

In JAX-WS, a web service operation invocation is represented by an XML-based protocol, such
as SOAP. The SOAP specification defines the envelope structure, encoding rules, and
conventions for representing web service invocations and responses. These calls and responses
are transmitted as SOAP messages (XML files) over HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity from the
application developer. On the server side, the developer specifies the web service operations by
defining methods in an interface written in the Java programming language. The developer also
codes one or more classes that implement those methods. Client programs are also easy to code.
A client creates a proxy (a local object representing the service) and then simply invokes
methods on the proxy. With JAX-WS, the developer does not generate or parse SOAP messages.
It is the JAX-WS runtime system that converts the API calls and responses to and from SOAP
messages.

With JAX-WS, clients and web services have a big advantage: the platform independence of the
Java programming language. In addition, JAX-WS is not restrictive: A JAX-WS client can access
a web service that is not running on the Java platform, and vice versa. This flexibility is possible
because JAX-WS uses technologies defined by the W3C: HTTP, SOAP, and WSDL. WSDL
specifies an XML format for describing a service as a set of endpoints operating on messages.

Note – Several files in the JAX-WS examples depend on the port that you specified when you
installed the GlassFish Server. These tutorial examples assume that the server runs on the
default port, 8080. They do not run with a nondefault port setting.

12C H A P T E R 1 2

227

The following topics are addressed here:

■ “Creating a Simple Web Service and Clients with JAX-WS” on page 228
■ “Types Supported by JAX-WS” on page 236
■ “Web Services Interoperability and JAX-WS” on page 237
■ “Further Information about JAX-WS” on page 237

Creating a Simple Web Service and Clients with JAX-WS
This section shows how to build and deploy a simple web service and two clients: an application
client and a web client. The source code for the service is in the directory
tut-install/examples/jaxws/helloservice/, and the clients are in the directories
tut-install/examples/jaxws/appclient/ and tut-install/examples/jaxws/webclient/.

Figure 12–1 illustrates how JAX-WS technology manages communication between a web
service and a client.

The starting point for developing a JAX-WS web service is a Java class annotated with the
javax.jws.WebService annotation. The @WebService annotation defines the class as a web
service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or class,
respectively, that declares the methods that a client can invoke on the service. An interface is not
required when building a JAX-WS endpoint. The web service implementation class implicitly
defines an SEI.

You may specify an explicit interface by adding the endpointInterface element to the
@WebService annotation in the implementation class. You must then provide an interface that
defines the public methods made available in the endpoint implementation class.

The basic steps for creating a web service and client are as follows:

1. Code the implementation class.
2. Compile the implementation class.
3. Package the files into a WAR file.

FIGURE 12–1 Communication between a JAX-WS Web Service and a Client

SOAP
Message

Client

JAX-WS Runtime

Web Service

JAX-WS Runtime

Creating a Simple Web Service and Clients with JAX-WS

The Java EE 6 Tutorial • October 2010228

4. Deploy the WAR file. The web service artifacts, which are used to communicate with clients,
are generated by the GlassFish Server during deployment.

5. Code the client class.
6. Use a wsimport Ant task to generate and compile the web service artifacts needed to connect

to the service.
7. Compile the client class.
8. Run the client.

If you use NetBeans IDE to create a service and client, the IDE performs the wsimport task for
you.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint
JAX-WS endpoints must follow these requirements.

■ The implementing class must be annotated with either the javax.jws.WebService or the
javax.jws.WebServiceProvider annotation.

■ The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

■ The business methods of the implementing class must be public and must not be declared
static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

■ Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See the list of JAXB default data type bindings at
http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs.

■ The implementing class must not be declared final and must not be abstract.
■ The implementing class must have a default public constructor.
■ The implementing class must not define the finalize method.
■ The implementing class may use the javax.annotation.PostConstruct or the

javax.annotation.PreDestroy annotations on its methods for lifecycle event callbacks.
The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.
The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Creating a Simple Web Service and Clients with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 229

http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs

Coding the Service Endpoint Implementation Class
In this example, the implementation class, Hello, is annotated as a web service endpoint using
the @WebService annotation. Hello declares a single method named sayHello, annotated with
the @WebMethod annotation, which exposes the annotated method to web service clients. The
sayHello method returns a greeting to the client, using the name passed to it to compose the
greeting. The implementation class also must define a default, public, no-argument
constructor.

package helloservice.endpoint;

import javax.jws.WebService;

import javax.jws.webMethod;

@WebService

public class Hello {

private String message = new String("Hello, ");

public void Hello() {

}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, and Deploying the Service
You can build, package, and deploy the helloservice application by using either NetBeans
IDE or Ant.

▼ To Build, Package, and Deploy the Service Using NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jaxws/

Select the helloservice folder.

Select the Open as Main Project check box.

Click Open Project.

1

2

3

4

5

Creating a Simple Web Service and Clients with JAX-WS

The Java EE 6 Tutorial • October 2010230

In the Projects tab, right-click the helloserviceproject and select Deploy.
This command builds and packages the application into helloservice.war, located in
tut-install/examples/jaxws/helloservice/dist/, and deploys this WAR file to the GlassFish
Server.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now you are
ready to create a client that accesses this service.

▼ To Build, Package, and Deploy the Service Using Ant

In a terminal window, go to:
tut-install/examples/jaxws/helloservice/

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, helloservice.war, located in the dist directory.

Make sure that the GlassFish Server is started.

Type the following:
ant deploy

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now you are
ready to create a client that accesses this service.

Testing the Methods of a Web Service Endpoint
GlassFish Server allows you to test the methods of a web service endpoint.

▼ To Test the Service without a Client
To test the sayHello method of HelloService, follow these steps.

Open the web service test interface by typing the following URL in a web browser:
http://localhost:8080/helloservice/HelloService?Tester

Under Methods, type a name as the parameter to the sayHellomethod.

6

Next Steps

1

2

3

4

Next Steps

1

2

Creating a Simple Web Service and Clients with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 231

Click the sayHellobutton.
This takes you to the sayHello Method invocation page.

Under Method returned, you’ll see the response from the endpoint.

A Simple JAX-WS Application Client
The HelloAppClient class is a stand-alone application client that accesses the sayHello
method of HelloService. This call is made through a port, a local object that acts as a proxy for
the remote service. The port is created at development time by the wsimport task, which
generates JAX-WS portable artifacts based on a WSDL file.

Coding the Application Client
When invoking the remote methods on the port, the client performs these steps:

1. Uses the generated helloservice.endpoint.HelloService class, which represents the
service at the URI of the deployed service’s WSDL file:

import helloservice.endpoint.HelloService;

import javax.xml.ws.WebServiceRef;

public class HelloAppClient {

@WebServiceRef(wsdlLocation =

"META-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")
private static HelloService service;

2. Retrieves a proxy to the service, also known as a port, by invoking getHelloPort on the
service:

helloservice.endpoint.Hello port = service.getHelloPort();

The port implements the SEI defined by the service.
3. Invokes the port’s sayHello method, passing a string to the service:

return port.sayHello(arg0);

Here is the full source of HelloAppClient, which is located in the following directory:

tut-install/examples/jaxws/appclient/src/appclient/

package appclient;

import helloservice.endpoint.HelloService;

import javax.xml.ws.WebServiceRef;

public class HelloAppClient {

@WebServiceRef(wsdlLocation =

"META-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")
private static HelloService service;

3

Creating a Simple Web Service and Clients with JAX-WS

The Java EE 6 Tutorial • October 2010232

/**

* @param args the command line arguments

*/

public static void main(String[] args) {

System.out.println(sayHello("world"));
}

private static String sayHello(java.lang.String arg0) {

helloservice.endpoint.Hello port = service.getHelloPort();

return port.sayHello(arg0);

}

}

Building, Packaging, Deploying, and Running the Application Client
You can build, package, deploy, and run the appclient application by using either NetBeans
IDE or Ant. To build the client, you must first have deployed helloservice, as described in
“Building, Packaging, and Deploying the Service” on page 230.

▼ To Build, Package, Deploy, and Run the Application Client Using
NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jaxws/

Select the appclient folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the appclientproject and select Run.
You will see the output of the application client in the Output pane.

▼ To Build, Package, Deploy, and Run the Application Client Using Ant

In a terminal window, go to:
tut-install/examples/jaxws/appclient/

Type the following command:
ant

This command calls the default target, which runs the wsimport task and builds and packages
the application into a JAR file, appclient.jar, located in the dist directory.

1

2

3

4

5

6

1

2

Creating a Simple Web Service and Clients with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 233

To run the client, type the following command:
ant run

A Simple JAX-WS Web Client
HelloServlet is a servlet that, like the Java client, calls the sayHello method of the web service.
Like the application client, it makes this call through a port.

Coding the Servlet
To invoke the method on the port, the client performs these steps:

1. Imports the HelloService endpoint and the WebServiceRef annotation:

import helloservice.endpoint.HelloService;

...

import javax.xml.ws.WebServiceRef;

2. Defines a reference to the web service by specifying the WSDL location:

@WebServiceRef(wsdlLocation =

"WEB-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")

3. Declares the web service, then defines a private method that calls the sayHello method on
the port:

private HelloService service;

...

private String sayHello(java.lang.String arg0) {

helloservice.endpoint.Hello port = service.getHelloPort();

return port.sayHello(arg0);

}

4. In the servlet, calls this private method:

out.println("<p>" + sayHello("world") + "</p>");

The significant parts of the HelloServlet code follow. The code is located in the
tut-install/examples/jaxws/src/java/webclient directory.

package webclient;

import helloservice.endpoint.HelloService;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.ws.WebServiceRef;

@WebServlet(name="HelloServlet", urlPatterns={"/HelloServlet"})
public class HelloServlet extends HttpServlet {

@WebServiceRef(wsdlLocation =

3

Creating a Simple Web Service and Clients with JAX-WS

The Java EE 6 Tutorial • October 2010234

"WEB-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")
private HelloService service;

/**

* Processes requests for both HTTP <code>GET</code>

* and <code>POST</code> methods.

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs

* @throws IOException if an I/O error occurs

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet HelloServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet HelloServlet at " +

request.getContextPath () + "</h1>");
out.println("<p>" + sayHello("world") + "</p>");
out.println("</body>");
out.println("</html>");

} finally {

out.close();

}

}

// doGet and doPost methods, which call processRequest, and

// getServletInfo method

private String sayHello(java.lang.String arg0) {

helloservice.endpoint.Hello port = service.getHelloPort();

return port.sayHello(arg0);

}

}

Building, Packaging, Deploying, and Running the Web Client
You can build, package, deploy, and run the webclient application by using either NetBeans
IDE or Ant. To build the client, you must first have deployed helloservice, as described in
“Building, Packaging, and Deploying the Service” on page 230.

▼ To Build, Package, Deploy, and Run the Web Client Using NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jaxws/

1

2

Creating a Simple Web Service and Clients with JAX-WS

Chapter 12 • Building Web Services with JAX-WS 235

Select the webclient folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the webclientproject and select Deploy.
This task runs the wsimport tasks, builds and packages the application into a WAR file,
webclient.war, located in the dist directory, and deploys it to the server.

In a web browser, navigate to the following URL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHello method appears in the window.

▼ To Build, Package, Deploy, and Run the Web Client Using Ant

In a terminal window, go to:
tut-install/examples/jaxws/webclient/

Type the following command:
ant

This command calls the default target, which runs the wsimport tasks, then builds and
packages the application into a WAR file, webclient.war, located in the dist directory.

Type the following command:
ant deploy

This task deploys the WAR file to the server.

In a web browser, navigate to the following URL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHello method appears in the window.

Types Supported by JAX-WS
JAX-WS delegates the mapping of Java programming language types to and from XML
definitions to JAXB. Application developers don’t need to know the details of these mappings
but should be aware that not every class in the Java language can be used as a method parameter
or return type in JAX-WS. For information on which types are supported by JAXB, see the list of
JAXB default data type bindings at http://download.oracle.com/javaee/5/tutorial/doc/
bnazq.html#bnazs.

3

4

5

6

7

1

2

3

4

Types Supported by JAX-WS

The Java EE 6 Tutorial • October 2010236

http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs
http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs

Web Services Interoperability and JAX-WS
JAX-WS supports the Web Services Interoperability (WS-I) Basic Profile Version 1.1. The WS-I
Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1 specifications to promote
SOAP interoperability. For links related to WS-I, see “Further Information about JAX-WS” on
page 237.

To support WS-I Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal and
rpc/literal encodings for services, static ports, dynamic proxies, and the Dynamic Invocation
Interface (DII).

Further Information about JAX-WS
For more information about JAX-WS and related technologies, see

■ Java API for XML Web Services 2.2 specification:
https://jax-ws.dev.java.net/spec-download.html

■ JAX-WS home:
https://jax-ws.dev.java.net/

■ Simple Object Access Protocol (SOAP) 1.2 W3C Note:
http://www.w3.org/TR/soap/

■ Web Services Description Language (WSDL) 1.1 W3C Note:
http://www.w3.org/TR/wsdl

■ WS-I Basic Profile 1.1:
http://www.ws-i.org

Further Information about JAX-WS

Chapter 12 • Building Web Services with JAX-WS 237

https://jax-ws.dev.java.net/spec-download.html
https://jax-ws.dev.java.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

238

Building RESTful Web Services with JAX-RS

This chapter describes the REST architecture, RESTful web services, and the Java API for
RESTful Web Services (JAX-RS, defined in JSR 311).

Jersey, the reference implementation of JAX-RS, implements support for the annotations
defined in JSR 311, making it easy for developers to build RESTful web services by using the Java
programming language.

If you are developing with GlassFish Server, you can install the Jersey samples and
documentation by using the Update Tool. Instructions for using the Update Tool can be found
in “Java EE 6 Tutorial Component” on page 66. The Jersey samples and documentation are
provided in the Available Add-ons area of the Update Tool.

The following topics are addressed here:

■ “What Are RESTful Web Services?” on page 239
■ “Creating a RESTful Root Resource Class” on page 240
■ “Example Applications for JAX-RS” on page 254
■ “Further Information about JAX-RS” on page 259

What Are RESTful Web Services?
RESTful web services are built to work best on the Web. Representational State Transfer (REST)
is an architectural style that specifies constraints, such as the uniform interface, that if applied to
a web service induce desirable properties, such as performance, scalability, and modifiability,
that enable services to work best on the Web. In the REST architectural style, data and
functionality are considered resources and are accessed using Uniform Resource Identifiers
(URIs), typically links on the Web. The resources are acted upon by using a set of simple,
well-defined operations. The REST architectural style constrains an architecture to a
client/server architecture and is designed to use a stateless communication protocol, typically
HTTP. In the REST architecture style, clients and servers exchange representations of resources
by using a standardized interface and protocol.

13C H A P T E R 1 3

239

The following principles encourage RESTful applications to be simple, lightweight, and fast:

■ Resource identification through URI: A RESTful web service exposes a set of resources
that identify the targets of the interaction with its clients. Resources are identified by URIs,
which provide a global addressing space for resource and service discovery. See “The @Path
Annotation and URI Path Templates” on page 243 for more information.

■ Uniform interface: Resources are manipulated using a fixed set of four create, read, update,
delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can be then
deleted by using DELETE. GET retrieves the current state of a resource in some representation.
POST transfers a new state onto a resource. See “Responding to HTTP Resources” on
page 245 for more information.

■ Self-descriptive messages: Resources are decoupled from their representation so that their
content can be accessed in a variety of formats, such as HTML, XML, plain text, PDF, JPEG,
JSON, and others. Metadata about the resource is available and used, for example, to control
caching, detect transmission errors, negotiate the appropriate representation format, and
perform authentication or access control. See “Responding to HTTP Resources” on page 245
and “Using Entity Providers to Map HTTP Response and Request Entity Bodies” on
page 247 for more information.

■ Stateful interactions through hyperlinks: Every interaction with a resource is stateless; that
is, request messages are self-contained. Stateful interactions are based on the concept of
explicit state transfer. Several techniques exist to exchange state, such as URI rewriting,
cookies, and hidden form fields. State can be embedded in response messages to point to
valid future states of the interaction. See “Using Entity Providers to Map HTTP Response
and Request Entity Bodies” on page 247 and “Building URIs” in the JAX-RS Overview
document for more information.

Creating a RESTful Root Resource Class
Root resource classes are POJOs that are either annotated with @Path or have at least one method
annotated with @Path or a request method designator, such as @GET, @PUT, @POST, or @DELETE.
Resource methods are methods of a resource class annotated with a request method designator.
This section explains how to use JAX-RS to annotate Java classes to create RESTful web services.

Developing RESTful Web Services with JAX-RS
JAX-RS is a Java programming language API designed to make it easy to develop applications
that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with JAX-RS
annotations to define resources and the actions that can be performed on those resources.
JAX-RS annotations are runtime annotations; therefore, runtime reflection will generate the

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010240

helper classes and artifacts for the resource. A Java EE application archive containing JAX-RS
resource classes will have the resources configured, the helper classes and artifacts generated,
and the resource exposed to clients by deploying the archive to a Java EE server.

Table 13–1 lists some of the Java programming annotations that are defined by JAX-RS, with a
brief description of how each is used. Further information on the JAX-RS APIs can be viewed at
http://download.oracle.com/javaee/6/api/.

TABLE 13–1 Summary of JAX-RS Annotations

Annotation Description

@Path The @Path annotation’s value is a relative URI path indicating where the Java class will
be hosted: for example, /helloworld. You can also embed variables in the URIs to
make a URI path template. For example, you could ask for the name of a user and pass
it to the application as a variable in the URI: /helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP GET requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@POST The @POST annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP POST requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PUT The @PUT annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP PUT requests. The behavior of a resource is determined
by the HTTP method to which the resource is responding.

@DELETE The @DELETE annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request method
designator will process HTTP DELETE requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@HEAD The @HEAD annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method
designator will process HTTP HEAD requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use in your
resource class. URI path parameters are extracted from the request URI, and the
parameter names correspond to the URI path template variable names specified in the
@Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for use in your
resource class. Query parameters are extracted from the request URI query parameters.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 241

http://download.oracle.com/javaee/6/api/

TABLE 13–1 Summary of JAX-RS Annotations (Continued)
Annotation Description

@Consumes The @Consumes annotation is used to specify the MIME media types of representations
a resource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify the MIME media types of representations
a resource can produce and send back to the client: for example, "text/plain".

@Provider The @Provider annotation is used for anything that is of interest to the JAX-RS
runtime, such as MessageBodyReader and MessageBodyWriter. For HTTP requests,
the MessageBodyReader is used to map an HTTP request entity body to method
parameters. On the response side, a return value is mapped to an HTTP response entity
body by using a MessageBodyWriter. If the application needs to supply additional
metadata, such as HTTP headers or a different status code, a method can return a
Response that wraps the entity and that can be built using
Response.ResponseBuilder.

Overview of a JAX-RS Application
The following code sample is a very simple example of a root resource class that uses JAX-RS
annotations:

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

// The Java method will process HTTP GET requests

@GET

// The Java method will produce content identified by the MIME Media

// type "text/plain"
@Produces("text/plain")
public String getClichedMessage() {

// Return some cliched textual content

return "Hello World";
}

}

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010242

The following sections describe the annotations used in this example.

■ The @Path annotation’s value is a relative URI path. In the preceding example, the Java class
will be hosted at the URI path /helloworld. This is an extremely simple use of the @Path
annotation, with a static URI path. Variables can be embedded in the URIs. URI path
templates are URIs with variables embedded within the URI syntax.

■ The @GET annotation is a request method designator, along with @POST, @PUT, @DELETE, and
@HEAD, defined by JAX-RS and corresponding to the similarly named HTTP methods. In the
example, the annotated Java method will process HTTP GET requests. The behavior of a
resource is determined by the HTTP method to which the resource is responding.

■ The @Produces annotation is used to specify the MIME media types a resource can produce
and send back to the client. In this example, the Java method will produce representations
identified by the MIME media type "text/plain".

■ The @Consumes annotation is used to specify the MIME media types a resource can consume
that were sent by the client. The example could be modified to set the message returned by
the getClichedMessage method, as shown in this code example:

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

The @PathAnnotation and URI Path Templates
The @Path annotation identifies the URI path template to which the resource responds and is
specified at the class or method level of a resource. The @Path annotation’s value is a partial URI
path template relative to the base URI of the server on which the resource is deployed, the
context root of the application, and the URL pattern to which the JAX-RS runtime responds.

URI path templates are URIs with variables embedded within the URI syntax. These variables
are substituted at runtime in order for a resource to respond to a request based on the
substituted URI. Variables are denoted by braces ({ and }). For example, look at the following
@Path annotation:

@Path("/users/{username}")

In this kind of example, a user is prompted to type his or her name, and then a JAX-RS web
service configured to respond to requests to this URI path template responds. For example, if
the user types the user name “Galileo,” the web service responds to the following URL:

http://example.com/users/Galileo

To obtain the value of the user name, the @PathParam annotation may be used on the method
parameter of a request method, as shown in the following code example:

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 243

@Path("/users/{username}")
public class UserResource {

@GET

@Produces("text/xml")
public String getUser(@PathParam("username") String userName) {

...

}

}

By default, the URI variable must match the regular expression "[^/]+?". This variable may be
customized by specifying a different regular expression after the variable name. For example, if
a user name must consist only of lowercase and uppercase alphanumeric characters, override
the default regular expression in the variable definition:

@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]}")

In this example the username variable will match only user names that begin with one
uppercase or lowercase letter and zero or more alphanumeric characters and the underscore
character. If a user name does not match that template, a 404 (Not Found) response will be sent
to the client.

A @Path value isn’t required to have leading or trailing slashes (/). The JAX-RS runtime parses
URI path templates the same whether or not they have leading or trailing spaces.

A URI path template has one or more variables, with each variable name surrounded by braces:
{ to begin the variable name and } to end it. In the preceding example, username is the variable
name. At runtime, a resource configured to respond to the preceding URI path template will
attempt to process the URI data that corresponds to the location of {username} in the URI as
the variable data for username.

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/resources/{name1}/{name2}/, you must deploy the
application to a Java EE server that responds to requests to the
http://example.com/myContextRoot URI and then decorate your resource with the following
@Path annotation:

@Path("/{name1}/{name2}/")
public class SomeResource {

...

}

In this example, the URL pattern for the JAX-RS helper servlet, specified in web.xml, is the
default:

<servlet-mapping>

<servlet-name>My JAX-RS Resource</servlet-name>

<url-pattern>/resources/*</url-pattern>

</servlet-mapping>

A variable name can be used more than once in the URI path template.

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010244

If a character in the value of a variable would conflict with the reserved characters of a URI, the
conflicting character should be substituted with percent encoding. For example, spaces in the
value of a variable should be substituted with %20.

When defining URI path templates, be careful that the resulting URI after substitution is valid.

Table 13–2 lists some examples of URI path template variables and how the URIs are resolved
after substitution. The following variable names and values are used in the examples:

■ name1: james
■ name2: gatz
■ name3:
■ location: Main%20Street
■ question: why

Note – The value of the name3 variable is an empty string.

TABLE 13–2 Examples of URI Path Templates

URI Path Template URI After Substitution

http://example.com/{name1}/{name2}/ http://example.com/james/gatz/

http://example.com/{question}/

{question}/{question}/

http://example.com/why/why/why/

http://example.com/maps/{location} http://example.com/maps/Main%20Street

http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Resources
The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT,
DELETE) to which the resource is responding.

The Request Method Designator Annotations
Request method designator annotations are runtime annotations, defined by JAX-RS, that
correspond to the similarly named HTTP methods. Within a resource class file, HTTP methods
are mapped to Java programming language methods by using the request method designator
annotations. The behavior of a resource is determined by which HTTP method the resource is
responding to. JAX-RS defines a set of request method designators for the common HTTP
methods @GET, @POST, @PUT, @DELETE, and @HEAD; you can also create your own custom request
method designators. Creating custom request method designators is outside the scope of this
document.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 245

The following example, an extract from the storage service sample, shows the use of the PUT
method to create or update a storage container:

@PUT

public Response putContainer() {

System.out.println("PUT CONTAINER " + container);

URI uri = uriInfo.getAbsolutePath();

Container c = new Container(container, uri.toString());

Response r;

if (!MemoryStore.MS.hasContainer(c)) {

r = Response.created(uri).build();

} else {

r = Response.noContent().build();

}

MemoryStore.MS.createContainer(c);

return r;

}

By default, the JAX-RS runtime will automatically support the methods HEAD and OPTIONS if not
explicitly implemented. For HEAD, the runtime will invoke the implemented GET method, if
present, and ignore the response entity, if set. For OPTIONS, the Allow response header will be
set to the set of HTTP methods supported by the resource. In addition, the JAX-RS runtime will
return a Web Application Definition Language (WADL) document describing the resource; see
https://wadl.dev.java.net/ for more information.

Methods decorated with request method designators must return void, a Java programming
language type, or a javax.ws.rs.core.Response object. Multiple parameters may be extracted
from the URI by using the PathParam or QueryParam annotations as described in “Extracting
Request Parameters” on page 250. Conversion between Java types and an entity body is the
responsibility of an entity provider, such as MessageBodyReader or MessageBodyWriter.
Methods that need to provide additional metadata with a response should return an instance of
the Response class. The ResponseBuilder class provides a convenient way to create a Response
instance using a builder pattern. The HTTP PUT and POST methods expect an HTTP request
body, so you should use a MessageBodyReader for methods that respond to PUT and POST

requests.

Both @PUT and @POST can be used to create or update a resource. POST can mean anything, so
when using POST, it is up to the application to define the semantics. PUT has well-defined
semantics. When using PUT for creation, the client declares the URI for the newly created
resource.

PUT has very clear semantics for creating and updating a resource. The representation the client
sends must be the same representation that is received using a GET, given the same media type.
PUT does not allow a resource to be partially updated, a common mistake when attempting to
use the PUT method. A common application pattern is to use POST to create a resource and
return a 201 response with a location header whose value is the URI to the newly created
resource. In this pattern, the web service declares the URI for the newly created resource.

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010246

https://wadl.dev.java.net/

Using Entity Providers to Map HTTP Response and Request Entity
Bodies
Entity providers supply mapping services between representations and their associated Java
types. The two types of entity providers are MessageBodyReader and MessageBodyWriter. For
HTTP requests, the MessageBodyReader is used to map an HTTP request entity body to
method parameters. On the response side, a return value is mapped to an HTTP response entity
body by using a MessageBodyWriter. If the application needs to supply additional metadata,
such as HTTP headers or a different status code, a method can return a Response that wraps the
entity and that can be built by using Response.ResponseBuilder.

Table 13–3 shows the standard types that are supported automatically for entities. You need to
write an entity provider only if you are not choosing one of these standard types.

TABLE 13–3 Types Supported for Entities

Java Type Supported Media Types

byte[] All media types (*/*)

java.lang.String All text media types (text/*)

java.io.InputStream All media types (*/*)

java.io.Reader All media types (*/*)

java.io.File All media types (*/*)

javax.activation.DataSource All media types (*/*)

javax.xml.transform.Source XML media types (text/xml, application/xml, and
application/*+xml)

javax.xml.bind.JAXBElement and
application-supplied JAXB classes

XML media types (text/xml, application/xml, and
application/*+xml)

MultivaluedMap<String, String> Form content
(application/x-www-form-urlencoded)

StreamingOutput All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @Consumes and
@Provider annotations:

@Consumes("application/x-www-form-urlencoded")
@Provider

public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriter with the @Produces and
@Provider annotations:

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 247

@Produces("text/html")
@Provider

public class FormWriter implements

MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET

public Response getItem() {

System.out.println("GET ITEM " + container + " " + item);

Item i = MemoryStore.MS.getItem(container, item);

if (i == null)

throw new NotFoundException("Item not found");
Date lastModified = i.getLastModified().getTime();

EntityTag et = new EntityTag(i.getDigest());

ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);

if (rb != null)

return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).

lastModified(lastModified).tag(et).build();

}

Using @Consumes and @Produces to Customize
Requests and Responses
The information sent to a resource and then passed back to the client is specified as a MIME
media type in the headers of an HTTP request or response. You can specify which MIME media
types of representations a resource can respond to or produce by using the following
annotations:
■ javax.ws.rs.Consumes

■ javax.ws.rs.Produces

By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

The @ProducesAnnotation
The @Produces annotation is used to specify the MIME media types or representations a
resource can produce and send back to the client. If @Produces is applied at the class level, all
the methods in a resource can produce the specified MIME types by default. If applied at the
method level, the annotation overrides any @Produces annotations applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the JAX-RS
runtime sends back an HTTP “406 Not Acceptable” error.

The value of @Produces is an array of String of MIME types. For example:

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010248

@Produces({"image/jpeg,image/png"})

The following example shows how to apply @Produces at both the class and method levels:

@Path("/myResource")
@Produces("text/plain")
public class SomeResource {

@GET

public String doGetAsPlainText() {

...

}

@GET

@Produces("text/html")
public String doGetAsHtml() {

...

}

}

The doGetAsPlainText method defaults to the MIME media type of the @Produces annotation
at the class level. The doGetAsHtml method’s @Produces annotation overrides the class-level
@Produces setting and specifies that the method can produce HTML rather than plain text.

If a resource class is capable of producing more than one MIME media type, the resource
method chosen will correspond to the most acceptable media type as declared by the client.
More specifically, the Accept header of the HTTP request declares what is most acceptable. For
example, if the Accept header is Accept: text/plain, the doGetAsPlainText method will be
invoked. Alternatively, if the Accept header is Accept: text/plain;q=0.9, text/html, which
declares that the client can accept media types of text/plain and text/html but prefers the
latter, the doGetAsHtml method will be invoked.

More than one media type may be declared in the same @Produces declaration. The following
code example shows how this is done:

@Produces({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

...

}

The doGetAsXmlOrJson method will get invoked if either of the media types application/xml
and application/json is acceptable. If both are equally acceptable, the former will be chosen
because it occurs first. The preceding examples refer explicitly to MIME media types for clarity.
It is possible to refer to constant values, which may reduce typographical errors. For more
information, see the constant field values of MediaType at https://jsr311.dev.java.net/
nonav/releases/1.0/javax/ws/rs/core/MediaType.html.

The @ConsumesAnnotation
The @Consumes annotation is used to specify which MIME media types of representations a
resource can accept, or consume, from the client. If @Consumes is applied at the class level, all the
response methods accept the specified MIME types by default. If applied at the method level,
@Consumes overrides any @Consumes annotations applied at the class level.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 249

https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html
https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/MediaType.html

If a resource is unable to consume the MIME type of a client request, the JAX-RS runtime sends
back an HTTP 415 (“Unsupported Media Type”) error.

The value of @Consumes is an array of String of acceptable MIME types. For example:

@Consumes({"text/plain,text/html"})

The following example shows how to apply @Consumes at both the class and method levels:

@Path("/myResource")
@Consumes("multipart/related")
public class SomeResource {

@POST

public String doPost(MimeMultipart mimeMultipartData) {

...

}

@POST

@Consumes("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

...

}

}

The doPost method defaults to the MIME media type of the @Consumes annotation at the class
level. The doPost2 method overrides the class level @Consumes annotation to specify that it can
accept URL-encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415 (“Unsupported
Media Type”) error is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set the
message by using @Consumes, as shown in the following code example:

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

In this example, the Java method will consume representations identified by the MIME media
type text/plain. Note that the resource method returns void. This means that no
representation is returned and that a response with a status code of HTTP 204 (“No Content”)
will be returned.

Extracting Request Parameters
Parameters of a resource method may be annotated with parameter-based annotations to
extract information from a request. A previous example presented the use of the @PathParam
parameter to extract a path parameter from the path component of the request URL that
matched the path declared in @Path.

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010250

You can extract the following types of parameters for use in your resource class:

■ Query
■ URI path
■ Form
■ Cookie
■ Header
■ Matrix

Query parameters are extracted from the request URI query parameters and are specified by
using the javax.ws.rs.QueryParam annotation in the method parameter arguments. The
following example, from the sparklines sample application, demonstrates using @QueryParam
to extract query parameters from the Query component of the request URL:

@Path("smooth")
@GET

public Response smooth(

@DefaultValue("2") @QueryParam("step") int step,

@DefaultValue("true") @QueryParam("min-m") boolean hasMin,

@DefaultValue("true") @QueryParam("max-m") boolean hasMax,

@DefaultValue("true") @QueryParam("last-m") boolean hasLast,

@DefaultValue("blue") @QueryParam("min-color") ColorParam minColor,

@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,

@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor

) { ... }

If the query parameter step exists in the query component of the request URI, the value of step
will be extracted and parsed as a 32-bit signed integer and assigned to the step method
parameter. If step does not exist, a default value of 2, as declared in the @DefaultValue
annotation, will be assigned to the step method parameter. If the step value cannot be parsed
as a 32-bit signed integer, an HTTP 400 (“Client Error”) response is returned.

User-defined Java programming language types may be used as query parameters. The
following code example shows the ColorParam class used in the preceding query parameter
example:

public class ColorParam extends Color {

public ColorParam(String s) {

super(getRGB(s));

}

private static int getRGB(String s) {

if (s.charAt(0) == ’#’) {

try {

Color c = Color.decode("0x" + s.substring(1));

return c.getRGB();

} catch (NumberFormatException e) {

throw new WebApplicationException(400);

}

} else {

try {

Field f = Color.class.getField(s);

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 251

return ((Color)f.get(null)).getRGB();

} catch (Exception e) {

throw new WebApplicationException(400);

}

}

}

}

The constructor for ColorParam takes a single String parameter.

Both @QueryParam and @PathParam can be used only on the following Java types:
■ All primitive types except char
■ All wrapper classes of primitive types except Character
■ Any class with a constructor that accepts a single String argument
■ Any class with the static method named valueOf(String) that accepts a single String

argument
■ List<T>, Set<T>, or SortedSet<T>, where T matches the already listed criteria. Sometimes,

parameters may contain more than one value for the same name. If this is the case, these
types may be used to obtain all values

If @DefaultValue is not used in conjunction with @QueryParam, and the query parameter is not
present in the request, the value will be an empty collection for List, Set, or SortedSet; null for
other object types; and the default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names correspond
to the URI path template variable names specified in the @Path class-level annotation. URI
parameters are specified using the javax.ws.rs.PathParam annotation in the method
parameter arguments. The following example shows how to use @Path variables and the
@PathParam annotation in a method:

@Path("/{username}")
public class MyResourceBean {

...

@GET

public String printUsername(@PathParam("username") String userId) {

...

}

}

In the preceding snippet, the URI path template variable name username is specified as a
parameter to the printUsername method. The @PathParam annotation is set to the variable
name username. At runtime, before printUsername is called, the value of username is extracted
from the URI and cast to a String. The resulting String is then available to the method as the
userId variable.

If the URI path template variable cannot be cast to the specified type, the JAX-RS runtime
returns an HTTP 400 (“Bad Request”) error to the client. If the @PathParam annotation cannot
be cast to the specified type, the JAX-RS runtime returns an HTTP 404 (“Not Found”) error to
the client.

Creating a RESTful Root Resource Class

The Java EE 6 Tutorial • October 2010252

The @PathParam parameter and the other parameter-based annotations (@MatrixParam,
@HeaderParam, @CookieParam, and @FormParam) obey the same rules as @QueryParam.

Cookie parameters, indicated by decorating the parameter with javax.ws.rs.CookieParam,
extract information from the cookies declared in cookie-related HTTP headers. Header
parameters, indicated by decorating the parameter with javax.ws.rs.HeaderParam, extract
information from the HTTP headers. Matrix parameters, indicated by decorating the parameter
with javax.ws.rs.MatrixParam, extract information from URL path segments.

Form parameters, indicated by decorating the parameter with javax.ws.rs.FormParam, extract
information from a request representation that is of the MIME media type
application/x-www-form-urlencoded and conforms to the encoding specified by HTML
forms, as described in http://www.w3.org/TR/html401/interact/

forms.html#h-17.13.4.1. This parameter is very useful for extracting information sent by
POST in HTML forms.

The following example extracts the name form parameter from the POST form data:

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(@FormParam("name") String name) {

// Store the message

}

To obtain a general map of parameter names and values for query and path parameters, use the
following code:

@GET

public String get(@Context UriInfo ui) {

MultivaluedMap<String, String> queryParams = ui.getQueryParameters();

MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

The following method extracts header and cookie parameter names and values into a map:

@GET

public String get(@Context HttpHeaders hh) {

MultivaluedMap<String, String> headerParams = ui.getRequestHeaders();

Map<String, Cookie> pathParams = ui.getCookies();

}

In general, @Context can be used to obtain contextual Java types related to the request or
response.

For form parameters, it is possible to do the following:

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(MultivaluedMap<String, String> formParams) {

// Store the message

}

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTful Web Services with JAX-RS 253

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

Example Applications for JAX-RS
This section provides an introduction to creating, deploying, and running your own JAX-RS
applications. This section demonstrates the steps that are needed to create, build, deploy, and
test a very simple web application that uses JAX-RS annotations.

A RESTful Web Service
This section explains how to use NetBeans IDE to create a RESTful web service. NetBeans IDE
generates a skeleton for the application, and you simply need to implement the appropriate
methods. If you do not use an IDE, try using one of the example applications that ship with
Jersey as a template to modify.

▼ To Create a RESTful Web Service Using NetBeans IDE

In NetBeans IDE, create a simple web application. This example creates a very simple“Hello,
World”web application.

a. In NetBeans IDE, select File → New Project.

b. From Categories, select Java Web. From Projects, select Web Application. Click Next.

Note – For this step, you could also create a RESTful web service in a Maven web project by
selecting Maven as the category and Maven Web Project as the project. The remaining steps
would be the same.

c. Type a project name, HelloWorldApplication, and click Next.

d. Make sure that the Server is GlassFish Server (or similar wording.)

e. Click Finish.

The project is created. The file index.jsp appears in the Source pane.

Right-click the project and select New; then select RESTful Web Services from Patterns.

a. Select Simple Root Resource and click Next.

b. Type a Resource Package name, such as helloWorld.

c. Type helloworld in the Path field. Type HelloWorld in the Class Name field. For MIME Type,
select text/html.

1

2

Example Applications for JAX-RS

The Java EE 6 Tutorial • October 2010254

d. Click Finish.

The REST Resources Configuration page appears.

e. Click OK.

A new resource, HelloWorld.java, is added to the project and appears in the Source pane.
This file provides a template for creating a RESTful web service.

In HelloWorld.java, find the getHtml()method. Replace the //TODO comment and the
exception with the following text, so that the finished product resembles the following method.

Note – Because the MIME type produced is HTML, you can use HTML tags in your return
statement.

/**

* Retrieves representation of an instance of helloWorld.HelloWorld

* @return an instance of java.lang.String

*/

@GET

@Produces("text/html")
public String getHtml() {

return "<html><body><h1>Hello, World!!</body></h1></html>";
}

Test the web service. To do this, right-click the project node and click Test RESTful Web Services.

This step deploys the application and brings up a test client in the browser.

When the test client appears, select the helloworld resource in the left pane, and click the Test
button in the right pane.

The words Hello, World!! appear in the Response window below.

Set the Run Properties:

a. Right-click the project node and select Properties.

b. In the dialog, select the Run category.

c. Set the Relative URL to the location of the RESTful web service relative to the Context Path,
which for this example is resources/helloworld.

3

4

5

6

Example Applications for JAX-RS

Chapter 13 • Building RESTful Web Services with JAX-RS 255

Tip – You can find the value for the Relative URL in the Test RESTful Web Services browser
window. In the top of the right pane, after Resource, is the URL for the RESTful web service
being tested. The part following the Context Path (http://localhost:8080/HelloWorldApp)
is the Relative URL that needs to be entered here.

If you don’t set this property, the file index.jsp will appear by default when the application is
run. As this file also contains Hello World as its default value, you might not notice that your
RESTful web service isn’t running, so just be aware of this default and the need to set this
property, or update index.jsp to provide a link to the RESTful web service.

Right-click the project and select Deploy.

Right-click the project and select Run.
A browser window opens and displays the return value of Hello, World!!

For other sample applications that demonstrate deploying and running JAX-RS applications
using NetBeans IDE, see “The rsvp Example Application” on page 256 and Your First Cup: An
Introduction to the Java EE Platform at http://download.oracle.com/javaee/6/firstcup/
doc/. You may also look at the tutorials on the NetBeans IDE tutorial site, such as the one titled
“Getting Started with RESTful Web Services” at http://www.netbeans.org/kb/docs/websvc/
rest.html. This tutorial includes a section on creating a CRUD application from a database.
Create, read, update, and delete (CRUD) are the four basic functions of persistent storage and
relational databases.

The rsvp Example Application
The rsvp example application, located in tut-install/examples/jaxrs/rsvp, allows invitees to
an event to indicate whether they will attend. The events, people invited to the event, and the
responses to the invite are stored in a Java DB database using the Java Persistence API. The
JAX-RS resources in rsvp are exposed in a stateless session enterprise bean.

Components of the rsvp Example Application
The three enterprise beans in the rsvp example application are rsvp.ejb.ConfigBean,
rsvp.ejb.StatusBean, and rsvp.ejb.ResponseBean.

ConfigBean is a singleton session bean that initializes the data in the database.

StatusBean exposes a JAX-RS resource for displaying the current status of all invitees to an
event. The URI path template is declared as follows:

@Path("/status/{eventId}/"}

7

8

See Also

Example Applications for JAX-RS

The Java EE 6 Tutorial • October 2010256

http://download.oracle.com/javaee/6/firstcup/doc/
http://download.oracle.com/javaee/6/firstcup/doc/
http://www.netbeans.org/kb/docs/websvc/rest.html
http://www.netbeans.org/kb/docs/websvc/rest.html

The URI path variable eventId is a @PathParam variable in the getResponse method, which
responds to HTTP GET requests and has been annotated with @GET. The eventId variable is
used to look up all the current responses in the database for that particular event.

ResponseBean exposes a JAX-RS resource for setting an invitee's response to a particular event.
The URI path template for ResponseBean is declared as follows:

@Path("/{eventId}/{inviteId}

Two URI path variables are declared in the path template: eventId and inviteId. As in
StatusBean, eventId is the unique ID for a particular event. Each invitee to that event has a
unique ID for the invitation, and that is the inviteId. Both of these path variables are used in
two JAX-RS methods in ResponseBean: getResponse and putResponse. The getResponse
method responds to HTTP GET requests and displays the invitee's current response and a form
to change the response.

An invitee who wants to change his or her response selects the new response and submits the
form data, which is processed as an HTTP PUT request by the putResponse method. One of the
parameters to the putResponse method, the userResponse string, is annotated with
@FormParam("attendeeResponse"). The HTML form created by getResponse stores the
changed response in the select list with an ID of attendeeResponse. The annotation
@FormParam("attendeeResponse") indicates that the value of the select response is extracted
from the HTTP PUT request and stored as the userResponse string. The putResponse method
uses userResponse, eventId, and inviteId to update the invitee's response in the database.

The events, people, and responses in rsvp are encapsulated in Java Persistence API entities. The
rsvp.entity.Event, rsvp.entity.Person, and rsvp.entity.Response entities respectively
represent events, invitees, and responses to an event.

The rsvp.util.ResponseEnum class declares an enumerated type that represents all the
possible response statuses an invitee may have.

Running the rsvp Example Application
Both NetBeans IDE and Ant can be used to deploy and run the rsvp example application.

▼ To Run the rsvp Example Application in NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jaxrs/

Select the rsvp folder.

Select the Open as Main Project check box.

1

2

3

4

Example Applications for JAX-RS

Chapter 13 • Building RESTful Web Services with JAX-RS 257

Click Open Project.

Right-click the rsvpproject in the left pane and select Run.
The project will be compiled, assembled, and deployed to GlassFish Server. A web browser
window will open to http://localhost:8080/rsvp.

In the web browser window, click the Event Status link for the Duke’s Birthday event.
You’ll see the current invitees and their responses.

Click on the name of one of the invitees, select a response, and click Submit response; then click
Back to event page.
The invitee’s new status should now be displayed in the table of invitees and their response
statuses.

▼ To Run the rsvp Example Application Using Ant
You must have started the Java DB database before running rsvp.

In a terminal window, go to:
tut-install/examples/jaxrs/rsvp

Type the following command:
ant all

This command builds, assembles, and deploys rsvp to GlassFish Server.

Open a web browser window to http://localhost:8080/rsvp.

In the web browser window, click the Event Status link for the Duke’s Birthday event.
You’ll see the current invitees and their responses.

Click on the name of one of the invitees, select a response, and click Submit response, then click
Back to event page.
The invitee’s new status should now be displayed in the table of invitees and their response
statuses.

Real-World Examples
Most blog sites use RESTful web services. These sites involve downloading XML files, in RSS or
Atom format, that contain lists of links to other resources. Other web sites and web applications
that use REST-like developer interfaces to data include Twitter and Amazon S3 (Simple Storage
Service). With Amazon S3, buckets and objects can be created, listed, and retrieved using either
a REST-style HTTP interface or a SOAP interface. The examples that ship with Jersey include a

5

6

7

8

Before You Begin

1

2

3

4

5

Example Applications for JAX-RS

The Java EE 6 Tutorial • October 2010258

storage service example with a RESTful interface. The tutorial at http://netbeans.org/kb/
docs/websvc/twitter-swing.html uses NetBeans IDE to create a simple, graphical,
REST-based client that displays Twitter public timeline messages and lets you view and update
your Twitter status.

Further Information about JAX-RS
For more information about RESTful web services and JAX-RS, see

■ “RESTful Web Services vs. 'Big' Web Services: Making the Right Architectural Decision”:
http://www2008.org/papers/pdf/p805-pautassoA.pdf

■ The Community Wiki for Project Jersey, the JAX-RS reference implementation:
http://wikis.sun.com/display/Jersey/Main

■ “Fielding Dissertation: Chapter 5: Representational State Transfer (REST)”:
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

■ RESTful Web Services, by Leonard Richardson and Sam Ruby, available from O’Reilly Media
at http://oreilly.com/catalog/9780596529260/

■ JSR 311: JAX-RS: The Java API for RESTful Web Services:
http://jcp.org/en/jsr/detail?id=311

■ JAX-RS project:
https://jsr311.dev.java.net/

■ Jersey project:
https://jersey.dev.java.net/

■ JAX-RS Overview document:
http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features

Further Information about JAX-RS

Chapter 13 • Building RESTful Web Services with JAX-RS 259

http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://netbeans.org/kb/docs/websvc/twitter-swing.html
http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://wikis.sun.com/display/Jersey/Main
http://www.ics.uci.edu/|P5fielding/pubs/dissertation/rest_arch_style.htm
http://oreilly.com/catalog/9780596529260/
http://jcp.org/en/jsr/detail?id=311
https://jsr311.dev.java.net/
https://jersey.dev.java.net/
http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features

260

Enterprise Beans
Part IV explores Enterprise JavaBeans components. This part contains the following
chapters:

■ Chapter 14, “Enterprise Beans”
■ Chapter 15, “Getting Started with Enterprise Beans”
■ Chapter 16, “Running the Enterprise Bean Examples”
■ Chapter 17, “A Message-Driven Bean Example”

P A R T I V

261

262

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within the
GlassFish Server (see “Container Types” on page 44). Although transparent to the application
developer, the EJB container provides system-level services, such as transactions and security,
to its enterprise beans. These services enable you to quickly build and deploy enterprise beans,
which form the core of transactional Java EE applications.

The following topics are addressed here:

■ “What Is an Enterprise Bean?” on page 263
■ “What Is a Session Bean?” on page 265
■ “What Is a Message-Driven Bean?” on page 267
■ “Accessing Enterprise Beans” on page 269
■ “The Contents of an Enterprise Bean” on page 275
■ “Naming Conventions for Enterprise Beans” on page 277
■ “The Lifecycles of Enterprise Beans” on page 278
■ “Further Information about Enterprise Beans” on page 281

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side component that
encapsulates the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the enterprise
beans might implement the business logic in methods called checkInventoryLevel and
orderProduct. By invoking these 32–bit methods, clients can access the inventory services
provided by the application.

14C H A P T E R 1 4

263

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to enterprise beans,
the bean developer can concentrate on solving business problems. The EJB container, rather
than the bean developer, is responsible for system-level services, such as transaction
management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic, the
client developer can focus on the presentation of the client. The client developer does not have
to code the routines that implement business rules or access databases. As a result, the clients
are thinner, a benefit that is particularly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assembler can build
new applications from existing beans. Provided that they use the standard APIs, these
applications can run on any compliant Java EE server.

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the following
requirements.

■ The application must be scalable. To accommodate a growing number of users, you may
need to distribute an application’s components across multiple machines. Not only can the
enterprise beans of an application run on different machines, but also their location will
remain transparent to the clients.

■ Transactions must ensure data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared objects.

■ The application will have a variety of clients. With only a few lines of code, remote clients
can easily locate enterprise beans. These clients can be thin, various, and numerous.

Types of Enterprise Beans
Table 14–1 summarizes the two types of enterprise beans. The following sections discuss each
type in more detail.

What Is an Enterprise Bean?

The Java EE 6 Tutorial • October 2010264

TABLE 14–1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; optionally, may implement a web service

Message-driven Acts as a listener for a particular messaging type, such as the Java Message
Service API

What Is a Session Bean?
A session bean encapsulates business logic that can be invoked programmatically by a client
over local, remote, or web service client views. To access an application that is deployed on the
server, the client invokes the session bean’s methods. The session bean performs work for its
client, shielding it from complexity by executing business tasks inside the server.

A session bean is not persistent. (That is, its data is not saved to a database.)

For code samples, see Chapter 16, “Running the Enterprise Bean Examples.”

Types of Session Beans
Session beans are of three types: stateful, stateless, and singleton.

Stateful Session Beans
The state of an object consists of the values of its instance variables. In a stateful session bean, the
instance variables represent the state of a unique client/bean session. Because the client
interacts (“talks”) with its bean, this state is often called the conversational state.

As its name suggests, a session bean is similar to an interactive session. A session bean is not
shared; it can have only one client, in the same way that an interactive session can have only one
user. When the client terminates, its session bean appears to terminate and is no longer
associated with the client.

The state is retained for the duration of the client/bean session. If the client removes the bean,
the session ends and the state disappears. This transient nature of the state is not a problem,
however, because when the conversation between the client and the bean ends, there is no need
to retain the state.

Stateless Session Beans
A stateless session bean does not maintain a conversational state with the client. When a client
invokes the methods of a stateless bean, the bean’s instance variables may contain a state specific
to that client but only for the duration of the invocation. When the method is finished, the

What Is a Session Bean?

Chapter 14 • Enterprise Beans 265

client-specific state should not be retained. Clients may, however, change the state of instance
variables in pooled stateless beans, and this state is held over to the next invocation of the
pooled stateless bean. Except during method invocation, all instances of a stateless bean are
equivalent, allowing the EJB container to assign an instance to any client. That is, the state of a
stateless session bean should apply across all clients.

Because they can support multiple clients, stateless session beans can offer better scalability for
applications that require large numbers of clients. Typically, an application requires fewer
stateless session beans than stateful session beans to support the same number of clients.

A stateless session bean can implement a web service, but a stateful session bean cannot.

Singleton Session Beans
A singleton session bean is instantiated once per application and exists for the lifecycle of the
application. Singleton session beans are designed for circumstances in which a single enterprise
bean instance is shared across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session beans but differ from
them in that there is only one singleton session bean per application, as opposed to a pool of
stateless session beans, any of which may respond to a client request. Like stateless session
beans, singleton session beans can implement web service endpoints.

Singleton session beans maintain their state between client invocations but are not required to
maintain their state across server crashes or shutdowns.

Applications that use a singleton session bean may specify that the singleton should be
instantiated upon application startup, which allows the singleton to perform initialization tasks
for the application. The singleton may perform cleanup tasks on application shutdown as well,
because the singleton will operate throughout the lifecycle of the application.

When to Use Session Beans
Stateful session beans are appropriate if any of the following conditions are true.

■ The bean’s state represents the interaction between the bean and a specific client.
■ The bean needs to hold information about the client across method invocations.
■ The bean mediates between the client and the other components of the application,

presenting a simplified view to the client.
■ Behind the scenes, the bean manages the work flow of several enterprise beans.

What Is a Session Bean?

The Java EE 6 Tutorial • October 2010266

To improve performance, you might choose a stateless session bean if it has any of these traits.

■ The bean’s state has no data for a specific client.
■ In a single method invocation, the bean performs a generic task for all clients. For example,

you might use a stateless session bean to send an email that confirms an online order.
■ The bean implements a web service.

Singleton session beans are appropriate in the following circumstances.

■ State needs to be shared across the application.
■ A single enterprise bean needs to be accessed by multiple threads concurrently.
■ The application needs an enterprise bean to perform tasks upon application startup and

shutdown.
■ The bean implements a web service.

What Is a Message-Driven Bean?
A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. This type of bean normally acts as a JMS message listener, which is
similar to an event listener but receives JMS messages instead of events. The messages can be
sent by any Java EE component (an application client, another enterprise bean, or a web
component) or by a JMS application or system that does not use Java EE technology.
Message-driven beans can process JMS messages or other kinds of messages.

What Makes Message-Driven Beans Different from
Session Beans?
The most visible difference between message-driven beans and session beans is that clients do
not access message-driven beans through interfaces. Interfaces are described in the section
“Accessing Enterprise Beans” on page 269. Unlike a session bean, a message-driven bean has
only a bean class.

What Is a Message-Driven Bean?

Chapter 14 • Enterprise Beans 267

In several respects, a message-driven bean resembles a stateless session bean.

■ A message-driven bean’s instances retain no data or conversational state for a specific client.
■ All instances of a message-driven bean are equivalent, allowing the EJB container to assign a

message to any message-driven bean instance. The container can pool these instances to
allow streams of messages to be processed concurrently.

■ A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state across the
handling of client messages, such as a JMS API connection, an open database connection, or an
object reference to an enterprise bean object.

Client components do not locate message-driven beans and invoke methods directly on them.
Instead, a client accesses a message-driven bean through, for example, JMS by sending messages
to the message destination for which the message-driven bean class is the MessageListener.
You assign a message-driven bean’s destination during deployment by using GlassFish Server
resources.

Message-driven beans have the following characteristics.

■ They execute upon receipt of a single client message.
■ They are invoked asynchronously.
■ They are relatively short-lived.
■ They do not represent directly shared data in the database, but they can access and update

this data.
■ They can be transaction-aware.
■ They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage method to
process the message. The onMessage method normally casts the message to one of the five JMS
message types and handles it in accordance with the application’s business logic. The onMessage
method can call helper methods or can invoke a session bean to process the information in the
message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all
operations within the onMessage method are part of a single transaction. If message processing
is rolled back, the message will be redelivered. For more information, see Chapter 28,
“Transactions.”

When to Use Message-Driven Beans
Session beans allow you to send JMS messages and to receive them synchronously but not
asynchronously. To avoid tying up server resources, do not to use blocking synchronous

What Is a Message-Driven Bean?

The Java EE 6 Tutorial • October 2010268

receives in a server-side component; in general, JMS messages should not be sent or received
synchronously. To receive messages asynchronously, use a message-driven bean.

Accessing Enterprise Beans

Note – The material in this section applies only to session beans and not to message-driven
beans. Because they have a different programming model, message-driven beans do not have
interfaces or no-interface views that define client access.

Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of an
enterprise bean may invoke any public methods in the enterprise bean implementation class or
any superclasses of the implementation class. A business interface is a standard Java
programming language interface that contains the business methods of the enterprise bean.

A client can access a session bean only through the methods defined in the bean’s business
interface or through the public methods of an enterprise bean that has a no-interface view. The
business interface or no-interface view defines the client’s view of an enterprise bean. All other
aspects of the enterprise bean (method implementations and deployment settings) are hidden
from the client.

Well-designed interfaces and no-interface views simplify the development and maintenance of
Java EE applications. Not only do clean interfaces and no-interface views shield the clients from
any complexities in the EJB tier, but they also allow the enterprise beans to change internally
without affecting the clients. For example, if you change the implementation of a session bean
business method, you won’t have to alter the client code. But if you were to change the method
definitions in the interfaces, you might have to modify the client code as well. Therefore, it is
important that you design the interfaces and no-interface views carefully to isolate your clients
from possible changes in the enterprise beans.

Session beans can have more than one business interface. Session beans should, but are not
required to, implement their business interface or interfaces.

Using Enterprise Beans in Clients
The client of an enterprise bean obtains a reference to an instance of an enterprise bean through
either dependency injection, using Java programming language annotations, or JNDI lookup,
using the Java Naming and Directory Interface syntax to find the enterprise bean instance.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 269

Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients that
run within a Java EE server-managed environment, JavaServer Faces web applications, JAX-RS
web services, other enterprise beans, or Java EE application clients, support dependency
injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Java EE components to simplify this explicit lookup.

Portable JNDI Syntax
Three JNDI namespaces are used for portable JNDI lookups: java:global, java:module, and
java:app.
■ The java:global JNDI namespace is the portable way of finding remote enterprise beans

using JNDI lookups. JNDI addresses are of the following form:

java:global[/application name]/module name/enterprise bean name[/interface name]

Application name and module name default to the name of the application and module
minus the file extension. Application names are required only if the application is packaged
within an EAR. The interface name is required only if the enterprise bean implements more
than one business interface.

■ The java:module namespace is used to look up local enterprise beans within the same
module. JNDI addresses using the java:module namespace are of the following form:

java:module/enterprise bean name/[interface name]

The interface name is required only if the enterprise bean implements more than one
business interface.

■ The java:app namespace is used to look up local enterprise beans packaged within the same
application. That is, the enterprise bean is packaged within an EAR file containing multiple
Java EE modules. JNDI addresses using the java:app namespace are of the following form:

java:app[/module name]/enterprise bean name[/interface name]

The module name is optional. The interface name is required only if the enterprise bean
implements more than one business interface.

For example, if an enterprise bean, MyBean, is packaged within the web application archive
myApp.war, the module name is myApp. The portable JNDI name is java:module/MyBean An
equivalent JNDI name using the java:global namespace is java:global/myApp/MyBean.

Deciding on Remote or Local Access
When you design a Java EE application, one of the first decisions you make is the type of client
access allowed by the enterprise beans: remote, local, or web service.

Accessing Enterprise Beans

The Java EE 6 Tutorial • October 2010270

Whether to allow local or remote access depends on the following factors.

■ Tight or loose coupling of related beans: Tightly coupled beans depend on one another.
For example, if a session bean that processes sales orders calls a session bean that emails a
confirmation message to the customer, these beans are tightly coupled. Tightly coupled
beans are good candidates for local access. Because they fit together as a logical unit, they
typically call each other often and would benefit from the increased performance that is
possible with local access.

■ Type of client: If an enterprise bean is accessed by application clients, it should allow remote
access. In a production environment, these clients almost always run on machines other
than those on which the GlassFish Server is running. If an enterprise bean’s clients are web
components or other enterprise beans, the type of access depends on how you want to
distribute your components.

■ Component distribution: Java EE applications are scalable because their server-side
components can be distributed across multiple machines. In a distributed application, for
example, the server that the web components run on may not be the one on which the
enterprise beans they access are deployed. In this distributed scenario, the enterprise beans
should allow remote access.

■ Performance: Owing to such factors as network latency, remote calls may be slower than
local calls. On the other hand, if you distribute components among different servers, you
may improve the application’s overall performance. Both of these statements are
generalizations; performance can vary in different operational environments. Nevertheless,
you should keep in mind how your application design might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote access.
This decision gives you more flexibility. In the future, you can distribute your components to
accommodate the growing demands on your application.

Although it is uncommon, it is possible for an enterprise bean to allow both remote and local
access. If this is the case, either the business interface of the bean must be explicitly designated as
a business interface by being decorated with the @Remote or @Local annotations, or the bean
class must explicitly designate the business interfaces by using the @Remote and @Local

annotations. The same business interface cannot be both a local and a remote business
interface.

Local Clients
A local client has these characteristics.

■ It must run in the same application as the enterprise bean it accesses.
■ It can be a web component or another enterprise bean.
■ To the local client, the location of the enterprise bean it accesses is not transparent.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 271

The no-interface view of an enterprise bean is a local view. The public methods of the enterprise
bean implementation class are exposed to local clients that access the no-interface view of the
enterprise bean. Enterprise beans that use the no-interface view do not implement a business
interface.

The local business interface defines the bean’s business and lifecycle methods. If the bean’s
business interface is not decorated with @Local or @Remote, and if the bean class does not
specify the interface using @Local or @Remote, the business interface is by default a local
interface.

To build an enterprise bean that allows only local access, you may, but are not required to, do
one of the following:

■ Create an enterprise bean implementation class that does not implement a business
interface, indicating that the bean exposes a no-interface view to clients. For example:

@Session

public class MyBean { ... }

■ Annotate the business interface of the enterprise bean as a @Local interface. For example:

@Local

public interface InterfaceName { ... }

■ Specify the interface by decorating the bean class with @Local and specify the interface
name. For example:

@Local(InterfaceName.class)
public class BeanName implements InterfaceName { ... }

Accessing Local Enterprise Beans Using the No-Interface View
Client access to an enterprise bean that exposes a local, no-interface view is accomplished
through either dependency injection or JNDI lookup.

■ To obtain a reference to the no-interface view of an enterprise bean through dependency
injection, use the javax.ejb.EJB annotation and specify the enterprise bean’s
implementation class:

@EJB

ExampleBean exampleBean;

■ To obtain a reference to the no-interface view of an enterprise bean through JNDI lookup,
use the javax.naming.InitialContext interface’s lookup method:

ExampleBean exampleBean = (ExampleBean)

InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an enterprise bean that uses a
no-interface view.

Accessing Enterprise Beans

The Java EE 6 Tutorial • October 2010272

Accessing Local Enterprise Beans That Implement Business Interfaces
Client access to enterprise beans that implement local business interfaces is accomplished
through either dependency injection or JNDI lookup.

■ To obtain a reference to the local business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the enterprise bean’s
local business interface name:

@EJB

Example example;

■ To obtain a reference to a local business interface of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface’s lookup method:

ExampleLocal example = (ExampleLocal)

InitialContext.lookup("java:module/ExampleLocal");

Remote Clients
A remote client of an enterprise bean has the following traits.

■ It can run on a different machine and a different JVM from the enterprise bean it accesses.
(It is not required to run on a different JVM.)

■ It can be a web component, an application client, or another enterprise bean.
■ To a remote client, the location of the enterprise bean is transparent.
■ The enterprise bean must implement a business interface. That is, remote clients may not

access an enterprise bean through a no-interface view.

To create an enterprise bean that allows remote access, you must either

■ Decorate the business interface of the enterprise bean with the @Remote annotation:

@Remote

public interface InterfaceName { ... }

■ Decorate the bean class with @Remote, specifying the business interface or interfaces:

@Remote(InterfaceName.class)

public class BeanName implements InterfaceName { ... }

The remote interface defines the business and lifecycle methods that are specific to the bean. For
example, the remote interface of a bean named BankAccountBean might have business methods
named deposit and credit. Figure 14–1 shows how the interface controls the client’s view of
an enterprise bean.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 273

Client access to an enterprise bean that implements a remote business interface is accomplished
through either dependency injection or JNDI lookup.

■ To obtain a reference to the remote business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the enterprise bean’s
remote business interface name:

@EJB

Example example;

■ To obtain a reference to a remote business interface of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface’s lookup method:

ExampleRemote example = (ExampleRemote)

InitialContext.lookup("java:global/myApp/ExampleRemote");

Web Service Clients
A web service client can access a Java EE application in two ways. First, the client can access a
web service created with JAX-WS. (For more information on JAX-WS, see Chapter 12,
“Building Web Services with JAX-WS.”) Second, a web service client can invoke the business
methods of a stateless session bean. Message beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web service client can
access a stateless session bean, whether or not the client is written in the Java programming
language. The client doesn’t even “know” what technology implements the service: stateless
session bean, JAX-WS, or some other technology. In addition, enterprise beans and web
components can be clients of web services. This flexibility enables you to integrate Java EE
applications with web services.

A web service client accesses a stateless session bean through the bean’s web service endpoint
implementation class. By default, all public methods in the bean class are accessible to web
service clients. The @WebMethod annotation may be used to customize the behavior of web
service methods. If the @WebMethod annotation is used to decorate the bean class’s methods,
only those methods decorated with @WebMethod are exposed to web service clients.

For a code sample, see “A Web Service Example: helloservice” on page 303.

FIGURE 14–1 Interfaces for an Enterprise Bean with Remote Access

Remote Client Remote Interface BankAccountBean

deposit()
credit()

Accessing Enterprise Beans

The Java EE 6 Tutorial • October 2010274

Method Parameters and Access
The type of access affects the parameters of the bean methods that are called by clients. The
following sections apply not only to method parameters but also to method return values.

Isolation
The parameters of remote calls are more isolated than those of local calls. With remote calls, the
client and the bean operate on different copies of a parameter object. If the client changes the
value of the object, the value of the copy in the bean does not change. This layer of isolation can
help protect the bean if the client accidentally modifies the data.

In a local call, both the client and the bean can modify the same parameter object. In general,
you should not rely on this side effect of local calls. Perhaps someday you will want to distribute
your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on different copies of parameters than does
the bean that implements the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls, the parameters in remote methods
should be relatively coarse-grained. A coarse-grained object contains more data than a
fine-grained one, so fewer access calls are required. For the same reason, the parameters of the
methods called by web service clients should also be coarse-grained.

The Contents of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

■ Enterprise bean class: Implements the business methods of the enterprise bean and any
lifecycle callback methods.

■ Business interfaces: Define the business methods implemented by the enterprise bean class.
A business interface is not required if the enterprise bean exposes a local, no-interface view.

■ Helper classes: Other classes needed by the enterprise bean class, such as exception and
utility classes.

Package the programming artifacts in the preceding list either into an EJB JAR file (a
stand-alone module that stores the enterprise bean) or within a web application archive (WAR)
module.

Packaging Enterprise Beans in EJB JAR Modules
An EJB JAR file is portable and can be used for various applications.

The Contents of an Enterprise Bean

Chapter 14 • Enterprise Beans 275

To assemble a Java EE application, package one or more modules, such as EJB JAR files, into an
EAR file, the archive file that holds the application. When deploying the EAR file that contains
the enterprise bean’s EJB JAR file, you also deploy the enterprise bean to the GlassFish Server.
You can also deploy an EJB JAR that is not contained in an EAR file. Figure 14–2 shows the
contents of an EJB JAR file.

Packaging Enterprise Beans in WAR Modules
Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application’s WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to the
WEB-INF/lib directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb-jar.xml deployment
descriptor. If the application uses ejb-jar.xml, it must be located in the WAR module’s
WEB-INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not
considered EJB JAR files, even if the bundled JAR file conforms to the format of an EJB JAR file.

FIGURE 14–2 Structure of an Enterprise Bean JAR

Assembly Root

META-INF

ejb-jar.xml
sun-ejb-jar.xml
(optional)

MANIFEST.MF

All .class files
for this module

The Contents of an Enterprise Bean

The Java EE 6 Tutorial • October 2010276

The enterprise beans contained within the JAR file are semantically equivalent to enterprise
beans located in the WAR module’s WEB-INF/classes directory, and the environment
namespace of all the enterprise beans are scoped to the WAR module.

For example, suppose that a web application consists of a shopping cart enterprise bean, a credit
card processing enterprise bean, and a Java servlet front end. The shopping cart bean exposes a
local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless

public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc.jar, exposes a local,
no-interface view, and is defined as follows:

package com.example.cc;

@Stateless

public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet, handles the web front end and uses both
CartBean and CreditCardBean. The WAR module layout for this application looks as follows:

WEB-INF/classes/com/example/cart/CartBean.class

WEB-INF/classes/com/example/web/StoreServlet

WEB-INF/lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Naming Conventions for Enterprise Beans
Because enterprise beans are composed of multiple parts, it’s useful to follow a naming
convention for your applications. Table 14–2 summarizes the conventions for the example
beans in this tutorial.

TABLE 14–2 Naming Conventions for Enterprise Beans

Item Syntax Example

Enterprise bean name nameBean AccountBean

Enterprise bean class nameBean AccountBean

Business interface name Account

Naming Conventions for Enterprise Beans

Chapter 14 • Enterprise Beans 277

The Lifecycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or lifecycle. Each type of
enterprise bean (stateful session, stateless session, singleton session, or message-driven) has a
different lifecycle.

The descriptions that follow refer to methods that are explained along with the code examples
in the next two chapters. If you are new to enterprise beans, you should skip this section and run
the code examples first.

The Lifecycle of a Stateful Session Bean
Figure 14–3 illustrates the stages that a session bean passes through during its lifetime. The
client initiates the lifecycle by obtaining a reference to a stateful session bean. The container
performs any dependency injection and then invokes the method annotated with
@PostConstruct, if any. The bean is now ready to have its business methods invoked by the
client.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by
moving it from memory to secondary storage. (Typically, the EJB container uses a
least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the
method annotated @PrePassivate, if any, immediately before passivating it. If a client invokes
a business method on the bean while it is in the passive stage, the EJB container activates the
bean, calls the method annotated @PostActivate, if any, and then moves it to the ready stage.

FIGURE 14–3 Lifecycle of a Stateful Session Bean

Does Not Exist Ready Passive

PrePassivate
callback, if any

PostActivate
callback, if any

Create
Dependency injection, if any
PostConstruct callback, if any
Init method, or ejbCreate<METHOD>, if any

1

2

Remove
PreDestroy callback, if any

1

2

3

4

The Lifecycles of Enterprise Beans

The Java EE 6 Tutorial • October 2010278

At the end of the lifecycle, the client invokes a method annotated @Remove, and the EJB
container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for
garbage collection.

Your code controls the invocation of only one lifecycle method: the method annotated @Remove.
All other methods in Figure 14–3 are invoked by the EJB container. See Chapter 29, “Resource
Connections,” for more information.

The Lifecycle of a Stateless Session Bean
Because a stateless session bean is never passivated, its lifecycle has only two stages: nonexistent
and ready for the invocation of business methods. Figure 14–4 illustrates the stages of a stateless
session bean.

The EJB container typically creates and maintains a pool of stateless session beans, beginning
the stateless session bean’s lifecycle. The container performs any dependency injection and then
invokes the method annotated @PostConstruct, if it exists. The bean is now ready to have its
business methods invoked by a client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The bean’s instance is then ready for garbage collection.

The Lifecycle of a Singleton Session Bean
Like a stateless session bean, a singleton session bean is never passivated and has only two
stages, nonexistent and ready for the invocation of business methods, as shown in Figure 14–5.

FIGURE 14–4 Lifecycle of a Stateless Session Bean

Does Not Exist Ready

Dependency injection, if any
PostConstruct callback, if any

1

2

PreDestroy callback, if any

The Lifecycles of Enterprise Beans

Chapter 14 • Enterprise Beans 279

The EJB container initiates the singleton session bean lifecycle by creating the singleton
instance. This occurs upon application deployment if the singleton is annotated with the
@Startup annotation The container performs any dependency injection and then invokes the
method annotated @PostConstruct, if it exists. The singleton session bean is now ready to have
its business methods invoked by the client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy, if it
exists. The singleton session bean is now ready for garbage collection.

The Lifecycle of a Message-Driven Bean
Figure 14–6 illustrates the stages in the lifecycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For each instance,
the EJB container performs these tasks.

1. If the message-driven bean uses dependency injection, the container injects these references
before instantiating the instance.

2. The container calls the method annotated @PostConstruct, if any.

FIGURE 14–5 Lifecycle of a Singleton Session Bean

Does Not Exist Ready

Dependency injection, if any
PostConstruct callback, if any

1

2

PreDestroy callback, if any

FIGURE 14–6 Lifecycle of a Message-Driven Bean

Does Not Exist Ready

PreDestroy callback, if any

onMessage

Dependency injection, if any
PostConstruct callback, if any

1

2

The Lifecycles of Enterprise Beans

The Java EE 6 Tutorial • October 2010280

Like a stateless session bean, a message-driven bean is never passivated and has only two states:
nonexistent and ready to receive messages.

At the end of the lifecycle, the container calls the method annotated @PreDestroy, if any. The
bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans
For more information on Enterprise JavaBeans technology, see

■ Enterprise JavaBeans 3.1 specification:
http://jcp.org/en/jsr/summary?id=318

■ Enterprise JavaBeans web site:
http://www.oracle.com/technetwork/java/ejb-141389.html

Further Information about Enterprise Beans

Chapter 14 • Enterprise Beans 281

http://jcp.org/en/jsr/summary?id=318
http://www.oracle.com/technetwork/java/ejb-141389.html

282

Getting Started with Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application named
converter. The purpose of converter is to calculate currency conversions between Japanese
yen and Eurodollars. The converter application consists of an enterprise bean, which performs
the calculations, and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the enterprise bean: ConverterBean.
2. Create the web client.
3. Deploy converter onto the server.
4. Using a browser, run the web client.

Before proceeding, make sure that you’ve done the following:

■ Read Chapter 1, “Overview”
■ Become familiar with enterprise beans (see Chapter 14, “Enterprise Beans”)
■ Started the server (see “Starting and Stopping the GlassFish Server” on page 69)

The following topics are addressed here:

■ “Creating the Enterprise Bean” on page 283
■ “Modifying the Java EE Application” on page 287

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called ConverterBean. The source
code for ConverterBean is in the tut-install/examples/ejb/converter/src/java/ directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s implementation class (the source code is provided)
2. Compiling the source code

15C H A P T E R 1 5

283

Coding the Enterprise Bean Class
The enterprise bean class for this example is called ConverterBean. This class implements two
business methods: dollarToYen and yenToEuro. Because the enterprise bean class doesn’t
implement a business interface, the enterprise bean exposes a local, no-interface view. The
public methods in the enterprise bean class are available to clients that obtain a reference to
ConverterBean. The source code for the ConverterBean class is as follows:

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

@Stateless

public class ConverterBean {

private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071");

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

Note the @Stateless annotation decorating the enterprise bean class. This annotation lets the
container know that ConverterBean is a stateless session bean.

Creating the converterWeb Client
The web client is contained in the following servlet class:

tut-install/examples/ejb/converter/src/java/converter/web/ConverterServlet.java

A Java servlet is a web component that responds to HTTP requests.

The ConverterServlet class uses dependency injection to obtain a reference to
ConverterBean. The javax.ejb.EJB annotation is added to the declaration of the private
member variable converterBean, which is of type ConverterBean. ConverterBean exposes a
local, no-interface view, so the enterprise bean implementation class is the variable type:

@WebServlet

public class ConverterServlet extends HttpServlet {

@EJB

ConverterBean converterBean;

...

}

Creating the Enterprise Bean

The Java EE 6 Tutorial • October 2010284

When the user enters an amount to be converted to yen and euro, the amount is retrieved from
the request parameters; then the ConverterBean.dollarToYen and the
ConverterBean.yenToEuro methods are called:

...

try {

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

// convert the amount to a BigDecimal from the request parameter

BigDecimal d = new BigDecimal(amount);

// call the ConverterBean.dollarToYen() method to get the amount

// in Yen

BigDecimal yenAmount = converter.dollarToYen(d);

// call the ConverterBean.yenToEuro() method to get the amount

// in Euros

BigDecimal euroAmount = converter.yenToEuro(yenAmount);

...

}

...

}

The results are displayed to the user.

Building, Packaging, Deploying, and Running the
converter Example
Now you are ready to compile the enterprise bean class (ConverterBean.java) and the servlet
class (ConverterServlet.java) and to package the compiled classes into a WAR file.

▼ To Build, Package, and Deploy the converter Example in NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the converter folder.

Select the Open as Main Project and Open Required Projects check boxes.

Click Open Project.

In the Projects tab, right-click the converterproject and select Deploy.
A web browser window opens the URL http://localhost:8080/converter.

1

2

3

4

5

6

Creating the Enterprise Bean

Chapter 15 • Getting Started with Enterprise Beans 285

▼ To Build, Package, and Deploy the converter Example Using Ant

In a terminal window, go to:
tut-install/examples/ejb/converter/

Type the following command:
ant all

This command calls the default task, which compiles the source files for the enterprise bean
and the servlet, placing the class files in the build subdirectory (not the src directory) of the
project. The default task packages the project into a WAR module: converter.war. For more
information about the Ant tool, see “Building the Examples” on page 71.

Note – When compiling the code, the ant task includes the Java EE API JAR files in the classpath.
These JARs reside in the modules directory of your GlassFish Server installation. If you plan to
use other tools to compile the source code for Java EE components, make sure that the classpath
includes the Java EE API JAR files.

▼ To Run the converter Example

Open a web browser to the following URL:
http://localhost:8080/converter

The screen shown in Figure 15–1 appears.

FIGURE 15–1 The converterWeb Client

1

2

1

Creating the Enterprise Bean

The Java EE 6 Tutorial • October 2010286

Type 100 in the input field and click Submit.
A second page appears, showing the converted values.

Modifying the Java EE Application
The GlassFish Server supports iterative development. Whenever you make a change to a Java
EE application, you must redeploy the application.

▼ To Modify a Class File
To modify a class file in an enterprise bean, you change the source code, recompile it, and
redeploy the application. For example, if you want to change the exchange rate in the
dollarToYen business method of the ConverterBean class, you would follow these steps.

To modify ConverterServlet, the procedure is the same.

Edit ConverterBean.java and save the file.

Recompile the source file.

■ To recompile ConverterBean.java in NetBeans IDE, right-click the converterproject and
select Run.
This recompiles the ConverterBean.java file, replaces the old class file in the build
directory, and redeploys the application to GlassFish Server.

■ Recompile ConverterBean.java using Ant:

a. In a terminal window, go to the tut-install/examples/ejb/converter/ subdirectory.

b. Type the following command:
ant all

This command repackages, deploys, and runs the application.

2

1

2

Modifying the Java EE Application

Chapter 15 • Getting Started with Enterprise Beans 287

288

Running the Enterprise Bean Examples

Session beans provide a simple but powerful way to encapsulate business logic within an
application. They can be accessed from remote Java clients, web service clients, and
components running in the same server.

In Chapter 15, “Getting Started with Enterprise Beans,” you built a stateless session bean named
ConverterBean. This chapter examines the source code of four more session beans:

■ CartBean: a stateful session bean that is accessed by a remote client
■ CounterBean: a singleton session bean
■ HelloServiceBean: a stateless session bean that implements a web service
■ TimerSessionBean: a stateless session bean that sets a timer

The following topics are addressed here:

■ “The cart Example” on page 289
■ “A Singleton Session Bean Example: counter” on page 296
■ “A Web Service Example: helloservice” on page 303
■ “Using the Timer Service” on page 306
■ “Handling Exceptions” on page 316

The cart Example
The cart example represents a shopping cart in an online bookstore and uses a stateful session
bean to manage the operations of the shopping cart. The bean’s client can add a book to the cart,
remove a book, or retrieve the cart’s contents. To assemble cart, you need the following code:

■ Session bean class (CartBean)
■ Remote business interface (Cart)

All session beans require a session bean class. All enterprise beans that permit remote access
must have a remote business interface. To meet the needs of a specific application, an enterprise

16C H A P T E R 1 6

289

bean may also need some helper classes. The CartBean session bean uses two helper classes,
BookException and IdVerifier, which are discussed in the section “Helper Classes” on
page 294.

The source code for this example is in the tut-install/examples/ejb/cart/ directory.

The Business Interface
The Cart business interface is a plain Java interface that defines all the business methods
implemented in the bean class. If the bean class implements a single interface, that interface is
assumed to the business interface. The business interface is a local interface unless it is
annotated with the javax.ejb.Remote annotation; the javax.ejb.Local annotation is
optional in this case.

The bean class may implement more than one interface. In that case, the business interfaces
must either be explicitly annotated @Local or @Remote or be specified by decorating the bean
class with @Local or @Remote. However, the following interfaces are excluded when
determining whether the bean class implements more than one interface:
■ java.io.Serializable

■ java.io.Externalizable

■ Any of the interfaces defined by the javax.ejb package

The source code for the Cart business interface follows:

package com.sun.tutorial.javaee.ejb;

import java.util.List;

import javax.ejb.Remote;

@Remote

public interface Cart {

public void initialize(String person) throws BookException;

public void initialize(String person, String id)

throws BookException;

public void addBook(String title);

public void removeBook(String title) throws BookException;

public List<String> getContents();

public void remove();

}

Session Bean Class
The session bean class for this example is called CartBean. Like any stateful session bean, the
CartBean class must meet the following requirements.
■ The class is annotated @Stateful.
■ The class implements the business methods defined in the business interface.

The cart Example

The Java EE 6 Tutorial • October 2010290

Stateful session beans also may
■ Implement the business interface, a plain Java interface. It is good practice to implement the

bean’s business interface.
■ Implement any optional lifecycle callback methods, annotated @PostConstruct,

@PreDestroy, @PostActivate, and @PrePassivate.
■ Implement any optional business methods annotated @Remove.

The source code for the CartBean class follows:

package com.sun.tutorial.javaee.ejb;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

@Stateful

public class CartBean implements Cart {

String customerName;

String customerId;

List<String> contents;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(String person, String id)

throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

customerId = id;

} else {

throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

public void addBook(String title) {

contents.add(title);

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 291

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + " not in cart.");
}

}

public List<String> getContents() {

return contents;

}

@Remove

public void remove() {

contents = null;

}

}

Lifecycle Callback Methods
A method in the bean class may be declared as a lifecycle callback method by annotating the
method with the following annotations:
■ javax.annotation.PostConstruct: Methods annotated with @PostConstruct are invoked

by the container on newly constructed bean instances after all dependency injection has
completed and before the first business method is invoked on the enterprise bean.

■ javax.annotation.PreDestroy: Methods annotated with @PreDestroy are invoked after
any method annotated @Remove has completed and before the container removes the
enterprise bean instance.

■ javax.ejb.PostActivate: Methods annotated with @PostActivate are invoked by the
container after the container moves the bean from secondary storage to active status.

■ javax.ejb.PrePassivate: Methods annotated with @PrePassivate are invoked by the
container before it passivates the enterprise bean, meaning that the container temporarily
removes the bean from the environment and saves it to secondary storage.

Lifecycle callback methods must return void and have no parameters.

Business Methods
The primary purpose of a session bean is to run business tasks for the client. The client invokes
business methods on the object reference it gets from dependency injection or JNDI lookup.
From the client’s perspective, the business methods appear to run locally, although they run
remotely in the session bean. The following code snippet shows how the CartClient program
invokes the business methods:

cart.create("Duke DeEarl", "123");
...

cart.addBook("Bel Canto");
...

The cart Example

The Java EE 6 Tutorial • October 2010292

List<String> bookList = cart.getContents();

...

cart.removeBook("Gravity’s Rainbow");

The CartBean class implements the business methods in the following code:

public void addBook(String title) {

contents.addElement(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + "not in cart.");
}

}

public List<String> getContents() {

return contents;

}

The signature of a business method must conform to these rules.
■ The method name must not begin with ejb, to avoid conflicts with callback methods

defined by the EJB architecture. For example, you cannot call a business method ejbCreate

or ejbActivate.
■ The access control modifier must be public.
■ If the bean allows remote access through a remote business interface, the arguments and

return types must be legal types for the Java Remote Method Invocation (RMI) API.
■ If the bean is a web service endpoint, the arguments and return types for the methods

annotated @WebMethod must be legal types for JAX-WS.
■ The modifier must not be static or final.

The throws clause can include exceptions that you define for your application. The removeBook
method, for example, throws a BookException if the book is not in the cart.

To indicate a system-level problem, such as the inability to connect to a database, a business
method should throw a javax.ejb.EJBException. The container will not wrap application
exceptions, such as BookException. Because EJBException is a subclass of RuntimeException,
you do not need to include it in the throws clause of the business method.

The @RemoveMethod
Business methods annotated with javax.ejb.Remove in the stateful session bean class can be
invoked by enterprise bean clients to remove the bean instance. The container will remove the
enterprise bean after a @Remove method completes, either normally or abnormally.

In CartBean, the remove method is a @Remove method:

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 293

@Remove

public void remove() {

contents = null;

}

Helper Classes
The CartBean session bean has two helper classes: BookException and IdVerifier. The
BookException is thrown by the removeBook method, and the IdVerifier validates the
customerId in one of the create methods. Helper classes may reside in an EJB JAR file that
contains the enterprise bean class, a WAR file if the enterprise bean is packaged within a WAR,
or in an EAR that contains an EJB JAR or a WAR file that contains an enterprise bean.

Building, Packaging, Deploying, and Running the cart
Example
Now you are ready to compile the remote interface (Cart.java), the home interface
(CartHome.java), the enterprise bean class (CartBean.java), the client class
(CartClient.java), and the helper classes (BookException.java and IdVerifier.java).
Follow these steps.

You can build, package, deploy, and run the cart application using either NetBeans IDE or the
Ant tool.

▼ To Build, Package, Deploy, and Run the cart Example Using NetBeans
IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the cart folder.

Select the Open as Main Project and Open Required Projects check boxes.

Click Open Project.

In the Projects tab, right-click the cartproject and select Deploy.
This builds and packages the application into cart.ear, located in
tut-install/examples/ejb/cart/dist/, and deploys this EAR file to your GlassFish Server
instance.

1

2

3

4

5

6

The cart Example

The Java EE 6 Tutorial • October 2010294

To run the cart application client, select Run→Run Main Project.
You will see the output of the application client in the Output pane:
...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Java Result: 1

run-cart-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 14 seconds)

▼ To Build, Package, Deploy, and Run the cart Example Using Ant

In a terminal window, go to:
tut-install/examples/ejb/cart/

Type the following command:
ant

This command calls the default target, which builds and packages the application into an EAR
file, cart.ear, located in the dist directory.

Type the following command:
ant deploy

The cart.ear file is deployed to the GlassFish Server.

Type the following command:
ant run

This task retrieves the application client JAR, cartClient.jar, and runs the application client.
The client JAR, cartClient.jar, contains the application client class, the helper class
BookException, and the Cart business interface.

This task is equivalent to running the following command:

appclient -client cartClient.jar

When you run the client, the application client container injects any component references
declared in the application client class, in this case the reference to the Cart enterprise bean.

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To do this,
enter the following command:

ant all

7

1

2

3

4

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 295

A Singleton Session Bean Example: counter
The counter example demonstrates how to create a singleton session bean.

Creating a Singleton Session Bean
The javax.ejb.Singleton annotation is used to specify that the enterprise bean
implementation class is a singleton session bean:

@Singleton

public class SingletonBean { ... }

Initializing Singleton Session Beans
The EJB container is responsible for determining when to initialize a singleton session bean
instance unless the singleton session bean implementation class is annotated with the
javax.ejb.Startup annotation. In this case, sometimes called eager initialization, the EJB
container must initialize the singleton session bean upon application startup. The singleton
session bean is initialized before the EJB container delivers client requests to any enterprise
beans in the application. This allows the singleton session bean to perform, for example,
application startup tasks.

The following singleton session bean stores the status of an application and is eagerly initialized:

@Startup

@Singleton

public class StatusBean {

private String status;

@PostConstruct

void init {

status = "Ready";
}

...

}

Sometimes multiple singleton session beans are used to initialize data for an application and
therefore must be initialized in a specific order. In these cases, use the javax.ejb.DependsOn
annotation to declare the startup dependencies of the singleton session bean. The @DependsOn
annotation’s value attribute is one or more strings that specify the name of the target singleton
session bean. If more than one dependent singleton bean is specified in @DependsOn, the order
in which they are listed is not necessarily the order in which the EJB container will initialize the
target singleton session beans.

The following singleton session bean, PrimaryBean, should be started up first:

@Singleton

public class PrimaryBean { ... }

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial • October 2010296

SecondaryBean depends on PrimaryBean:

@Singleton

@DependsOn("PrimaryBean")
public class SecondaryBean { ... }

This guarantees that the EJB container will initialize PrimaryBean before SecondaryBean.

The following singleton session bean, TertiaryBean, depends on PrimaryBean and
SecondaryBean:

@Singleton

@DependsOn("PrimaryBean", "SecondaryBean")
public class TertiaryBean { ... }

SecondaryBean explicitly requires PrimaryBean to be initialized before it is initialized, through
its own @DependsOn annotation. In this case, the EJB container will first initialize PrimaryBean,
then SecondaryBean, and finally TertiaryBean.

If, however, SecondaryBean did not explicitly depend on PrimaryBean, the EJB container may
initialize either PrimaryBean or SecondaryBean first. That is, the EJB container could initialize
the singletons in the following order: SecondaryBean, PrimaryBean, TertiaryBean.

Managing Concurrent Access in a Singleton Session Bean
Singleton session beans are designed for concurrent access, situations in which many clients
need to access a single instance of a session bean at the same time. A singleton’s client needs
only a reference to a singleton in order to invoke any business methods exposed by the singleton
and doesn’t need to worry about any other clients that may be simultaneously invoking business
methods on the same singleton.

When creating a singleton session bean, concurrent access to the singleton’s business methods
can be controlled in two ways: container-managed concurrency and bean-managed concurrency.

The javax.ejb.ConcurrencyManagement annotation is used to specify container-managed or
bean-managed concurrency for the singleton. With @ConcurrencyManagement, a type attribute
must be set to either javax.ejb.ConcurrencyManagementType.CONTAINER or
javax.ejb.ConcurrencyManagementType.BEAN. If no @ConcurrencyManagement annotation is
present on the singleton implementation class, the EJB container default of container-managed
concurrency is used.

Container-Managed Concurrency

If a singleton uses container-managed concurrency, the EJB container controls client access to
the business methods of the singleton. The javax.ejb.Lock annotation and a
javax.ejb.LockType type are used to specify the access level of the singleton’s business
methods or @Timeout methods.

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 297

Annotate a singleton’s business or timeout method with @Lock(READ) if the method can be
concurrently accessed, or shared, with many clients. Annotate the business or timeout method
with @Lock(WRITE) if the singleton session bean should be locked to other clients while a client
is calling that method. Typically, the @Lock(WRITE) annotation is used when clients are
modifying the state of the singleton.

Annotating a singleton class with @Lock specifies that all the business methods and any timeout
methods of the singleton will use the specified lock type unless they explicitly set the lock type
with a method-level @Lock annotation. If no @Lock annotation is present on the singleton class,
the default lock type, @Lock(WRITE), is applied to all business and timeout methods.

The following example shows how to use the @ConcurrencyManagement, @Lock(READ), and
@Lock(WRITE) annotations for a singleton that uses container-managed concurrency.

Although by default, singletons use container-managed concurrency, the
@ConcurrencyManagement(CONTAINER) annotation may be added at the class level of the
singleton to explicitly set the concurrency management type:

@ConcurrencyManagement(CONTAINER)

@Singleton

public class ExampleSingletonBean {

private String state;

@Lock(READ)

public String getState() {

return state;

}

@Lock(WRITE)

public void setState(String newState) {

state = newState;

}

}

The getState method can be accessed by many clients at the same time because it is annotated
with @Lock(READ). When the setState method is called, however, all the methods in
ExampleSingletonBean will be locked to other clients because setState is annotated with
@Lock(WRITE). This prevents two clients from attempting to simultaneously change the state
variable of ExampleSingletonBean.

The getData and getStatus methods in the following singleton are of type READ, and the
setStatus method is of type WRITE:

@Singleton

@Lock(READ)

public class SharedSingletonBean {

private String data;

private String status;

public String getData() {

return data;

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial • October 2010298

}

public String getStatus() {

return status;

}

@Lock(WRITE)

public void setStatus(String newStatus) {

status = newStatus;

}

}

If a method is of locking type WRITE, client access to all the singleton’s methods is blocked until
the current client finishes its method call or an access timeout occurs. When an access timeout
occurs, the EJB container throws a javax.ejb.ConcurrentAccessTimeoutException. The
javax.ejb.AccessTimeout annotation is used to specify the number of milliseconds before an
access timeout occurs. If added at the class level of a singleton, @AccessTimeout specifies the
access timeout value for all methods in the singleton unless a method explicitly overrides the
default with its own @AccessTimeout annotation.

The @AccessTimeout annotation can be applied to both @Lock(READ) and @Lock(WRITE)

methods. The @AccessTimeout annotation has one required element, value, and one optional
element, unit. By default, the value is specified in milliseconds. To change the value unit, set
unit to one of the java.util.concurrent.TimeUnit constants: NANOSECONDS, MICROSECONDS,
MILLISECONDS, or SECONDS.

The following singleton has a default access timeout value of 120,000 milliseconds, or 2
minutes. The doTediousOperation method overrides the default access timeout and sets the
value to 360,000 milliseconds, or 6 minutes.

@Singleton

@AccessTimeout(value=120000)

public class StatusSingletonBean {

private String status;

@Lock(WRITE)

public void setStatus(String new Status) {

status = newStatus;

}

@Lock(WRITE)

@AccessTimeout(value=360000)

public void doTediousOperation {

...

}

}

The following singleton has a default access timeout value of 60 seconds, specified using the
TimeUnit.SECONDS constant:

@Singleton

@AccessTimeout(value=60, timeUnit=SECONDS)

public class StatusSingletonBean { ... }

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 299

Bean-Managed Concurrency
Singletons that use bean-managed concurrency allow full concurrent access to all the business
and timeout methods in the singleton. The developer of the singleton is responsible for
ensuring that the state of the singleton is synchronized across all clients. Developers who create
singletons with bean-managed concurrency are allowed to use the Java programming language
synchronization primitives, such as synchronization and volatile, to prevent errors during
concurrent access.

Add a @ConcurrencyManagement annotation at the class level of the singleton to specify
bean-managed concurrency:

@ConcurrencyManagement(BEAN)

@Singleton

public class AnotherSingletonBean { ... }

Handling Errors in a Singleton Session Bean
If a singleton session bean encounters an error when initialized by the EJB container, that
singleton instance will be destroyed.

Unlike other enterprise beans, once a singleton session bean instance is initialized, it is not
destroyed if the singleton’s business or lifecycle methods cause system exceptions. This ensures
that the same singleton instance is used throughout the application lifecycle.

The Architecture of the counter Example
The counter example consists of a singleton session bean, CounterBean, and a JavaServer Faces
Facelets web front end.

CounterBean is a simple singleton with one method, getHits, that returns an integer
representing the number of times a web page has been accessed. Here is the code of
CounterBean:

package counter.ejb;

import javax.ejb.Singleton;

/**

* CounterBean is a simple singleton session bean that records the number

* of hits to a web page.

*/

@Singleton

public class CounterBean {

private int hits = 1;

// Increment and return the number of hits

public int getHits() {

return hits++;

}

}

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial • October 2010300

The @Singleton annotation marks CounterBean as a singleton session bean. CounterBean uses
a local, no-interface view.

CounterBean uses the EJB container’s default metadata values for singletons to simplify the
coding of the singleton implementation class. There is no @ConcurrencyManagement

annotation on the class, so the default of container-managed concurrency access is applied.
There is no @Lock annotation on the class or business method, so the default of @Lock(WRITE) is
applied to the only business method, getHits.

The following version of CounterBean is functionally equivalent to the preceding version:

package counter.ejb;

import javax.ejb.Singleton;

import javax.ejb.ConcurrencyManagement;

import static javax.ejb.ConcurrencyManagementType.CONTAINER;

import javax.ejb.Lock;

import javax.ejb.LockType.WRITE;

/**

* CounterBean is a simple singleton session bean that records the number

* of hits to a web page.

*/

@Singleton

@ConcurrencyManagement(CONTAINER)

public class CounterBean {

private int hits = 1;

// Increment and return the number of hits

@Lock(WRITE)

public int getHits() {

return hits++;

}

}

The web front end of counter consists of a JavaServer Faces managed bean, Count.java, that is
used by the Facelets XHTML files template.xhtml and template-client.xhtml. The Count
JavaServer Faces managed bean obtains a reference to CounterBean through dependency
injection. Count defines a hitCount JavaBeans property. When the getHitCount getter method
is called from the XHTML files, CounterBean's getHits method is called to return the current
number of page hits.

Here’s the Count managed bean class:

@ManagedBean

@SessionScoped

public class Count {

@EJB

private CounterBean counterBean;

private int hitCount;

public Count() {

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 301

this.hitCount = 0;

}

public int getHitCount() {

hitCount = counterBean.getHits();

return hitCount;

}

public void setHitCount(int newHits) {

this.hitCount = newHits;

}

}

The template.xhtml and template-client.xhtml files are used to render a Facelets view that
displays the number of hits to that view. The template-client.xhtml file uses an expression
language statement, #{count.hitCount}, to access the hitCount property of the Count
managed bean. Here is the content of template-client.xhtml:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<body>

This text above will not be displayed.

<ui:composition template="/template.xhtml">

This text will not be displayed.

<ui:define name="title">
This page has been accessed #{count.hitCount} time(s).

</ui:define>

This text will also not be displayed.

<ui:define name="body">
Hooray!

</ui:define>

This text will not be displayed.

</ui:composition>

This text below will also not be displayed.

</body>

</html>

Building, Packaging, Deploying, and Running the
counter Example
The counter example application can be built, deployed, and run using NetBeans IDE or Ant.

A Singleton Session Bean Example: counter

The Java EE 6 Tutorial • October 2010302

▼ To Build, Package, Deploy, and Run the counter Example Using
NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the counter folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the counterproject and select Run.
A web browser will open the URL http://localhost:8080/counter, which displays the
number of hits.

Click the browser’s Refresh button to see the hit count increment.

▼ To Build, Package, Deploy, and Run the counter Example Using Ant

In a terminal window, go to:
tut-install/examples/ejb/counter

Type the following command:
ant all

This will build and deploy counter to your GlassFish Server instance.

In a web browser, type the following URL:
http://localhost:8080/counter

Click the browser’s Refresh button to see the hit count increment.

A Web Service Example: helloservice
This example demonstrates a simple web service that generates a response based on
information received from the client. HelloServiceBean is a stateless session bean that
implements a single method: sayHello. This method matches the sayHello method invoked by
the client described in “A Simple JAX-WS Application Client” on page 232.

1

2

3

4

5

6

7

1

2

3

4

A Web Service Example: helloservice

Chapter 16 • Running the Enterprise Bean Examples 303

The Web Service Endpoint Implementation Class
HelloServiceBean is the endpoint implementation class, typically the primary programming
artifact for enterprise bean web service endpoints. The web service endpoint implementation
class has the following requirements.

■ The class must be annotated with either the javax.jws.WebService or the
javax.jws.WebServiceProvider annotation.

■ The implementing class may explicitly reference an SEI through the endpointInterface
element of the @WebService annotation but is not required to do so. If no
endpointInterface is specified in @WebService, an SEI is implicitly defined for the
implementing class.

■ The business methods of the implementing class must be public and must not be declared
static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

■ Business methods that are exposed to web service clients must have JAXB-compatible
parameters and return types. See the list of JAXB default data type bindings at
http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs.

■ The implementing class must not be declared final and must not be abstract.
■ The implementing class must have a default public constructor.
■ The endpoint class must be annotated @Stateless.
■ The implementing class must not define the finalize method.
■ The implementing class may use the javax.annotation.PostConstruct or

javax.annotation.PreDestroy annotations on its methods for lifecycle event callbacks.
The @PostConstruct method is called by the container before the implementing class
begins responding to web service clients.
The @PreDestroy method is called by the container before the endpoint is removed from
operation.

Stateless Session Bean Implementation Class
The HelloServiceBean class implements the sayHello method, which is annotated
@WebMethod. The source code for the HelloServiceBean class follows:

package com.sun.tutorial.javaee.ejb;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

import javax.jws.WebService;

A Web Service Example: helloservice

The Java EE 6 Tutorial • October 2010304

http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html#bnazs

@Stateless

@WebService

public class HelloServiceBean {

private String message = "Hello, ";

public void HelloServiceBean() {}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, Deploying, and Testing the
helloservice Example
You can build, package, and deploy the helloservice example using either NetBeans IDE or
Ant. You can then use the Administration Console to test the web service endpoint methods.

▼ To Build, Package, and Deploy the helloservice Example Using
NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the helloservice folder.

Select the Open as Main Project and Open Required Projects check boxes.

Click Open Project.

In the Projects tab, right-click the helloserviceproject and select Deploy.
This builds and packages the application into helloservice.ear, located in
tut-install/examples/ejb/helloservice/dist, and deploys this EAR file to the GlassFish
Server.

▼ To Build, Package, and Deploy the helloservice Example Using Ant

In a terminal window, go to:
tut-install/examples/ejb/helloservice/

Type the following command:
ant

1

2

3

4

5

6

1

2

A Web Service Example: helloservice

Chapter 16 • Running the Enterprise Bean Examples 305

This runs the default task, which compiles the source files and packages the application into a
JAR file located at tut-install/examples/ejb/helloservice/dist/helloservice.jar.

To deploy helloservice, type the following command:
ant deploy

Upon deployment, the GlassFish Server generates additional artifacts required for web service
invocation, including the WSDL file.

▼ To Test the Service without a Client
The GlassFish Server Administration Console allows you to test the methods of a web service
endpoint. To test the sayHello method of HelloServiceBean, follow these steps.

Open the Administration Console by opening the following URL in a web browser:
http://localhost:4848/

In the left pane of the Administration Console, select the Applications node.

In the Applications table, click helloservice.

In the Modules and Components table, click View Endpoint.

On the Web Service Endpoint Information page, click the Tester link:
/HelloServiceBeanService/HelloServiceBean?Tester

The tester page opens in a browser window or tab.

Under Methods, type a name as the parameter to the sayHellomethod.

Click the sayHellobutton.
The sayHello Method invocation page opens. Under Method returned, you’ll see the response
from the endpoint.

Using the Timer Service
Applications that model business work flows often rely on timed notifications. The timer
service of the enterprise bean container enables you to schedule timed notifications for all types
of enterprise beans except for stateful session beans. You can schedule a timed notification to
occur according to a calendar schedule, at a specific time, after a duration of time, or at timed
intervals. For example, you could set timers to go off at 10:30 a.m. on May 23, in 30 days, or
every 12 hours.

Enterprise bean timers are either programmatic timers or automatic timers. Programmatic
timers are set by explicitly calling one of the timer creation methods of the TimerService

3

1

2

3

4

5

6

7

Using the Timer Service

The Java EE 6 Tutorial • October 2010306

interface. Automatic timers are created upon the successful deployment of an enterprise bean
that contains a method annotated with the java.ejb.Schedule or java.ejb.Schedules
annotations.

Creating Calendar-Based Timer Expressions
Timers can be set according to a calendar-based schedule, expressed using a syntax similar to
the UNIX cron utility. Both programmatic and automatic timers can use calendar-based timer
expressions. Table 16–1 shows the calendar-based timer attributes.

TABLE 16–1 Calendar-Based Timer Attributes

Attribute Description Allowable Values
Default
Value Examples

second One or more
seconds within a
minute

0 to 59 0 second="30"

minute One or more
minutes within an
hour

0 to 59 0 minute="15"

hour One or more
hours within a day

0 to 23 0 hour="13"

dayOfWeek One or more days
within a week

0 to 7 (both 0 and 7 refer to Sunday)

Sun, Mon, Tue, Wed, Thu, Fri, Sat

* dayOfWeek="3"

dayOfWeek="Mon"

dayOfMonth One or more days
within a month

1 to 31

–7 to –1 (a negative number means the
nth day or days before the end of the
month)

Last

[1st, 2nd, 3rd, 4th, 5th, Last] [Sun, Mon,
Tue, Wed, Thu, Fri, Sat]

* dayOfMonth="15"

dayOfMonth="–3"

dayOfMonth="Last"

dayOfMonth="2nd
Fri"

month One or more
months within a
year

1 to 12

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec

* month="7"

month="July"

year A particular
calendar year

A four–digit calendar year * year="2010"

Specifying Multiple Values in Calendar Expressions
You can specify multiple values in calendar expressions, as described in the following sections.

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 307

Using Wildcards in Calendar Expressions

Setting an attribute to an asterisk symbol (*) represents all allowable values for the attribute.

The following expression represents every minute:

minute="*"

The following expression represents every day of the week:

dayOfWeek="*"

Specifying a List of Values

To specify two or more values for an attribute, use a comma (,) to separate the values. A range
of values is allowed as part of a list. Wildcards and intervals, however, are not allowed.

Duplicates within a list are ignored.

The following expression sets the day of the week to Tuesday and Thursday:

dayOfWeek="Tue, Thu"

The following expression represents 4:00 a.m., every hour from 9:00 a.m. to 5:00 p.m. using a
range, and 10:00 p.m.:

hour="4,9–17,22"

Specifying a Range of Values

Use a dash character (–) to specify an inclusive range of values for an attribute. Members of a
range cannot be wildcards, lists, or intervals. A range of the form x–x, is equivalent to the
single-valued expression x. A range of the form x–y where x is greater than y is equivalent to the
expression x–maximum value, minimum value–y. That is, the expression begins at x, rolls over
to the beginning of the allowable values, and continues up to y.

The following expression represents 9:00 a.m. to 5:00 p.m.:

hour="9–17"

The following expression represents Friday through Monday:

dayOfWeek="5–1"

The following expression represents the twenty-fifth day of the month to the end of the month,
and the beginning of the month to the fifth day of the month:

dayOfMonth="25–5"

Using the Timer Service

The Java EE 6 Tutorial • October 2010308

It is equivalent to the following expression:

dayOfMonth="25–Last,1–5"

Specifying Intervals

The forward slash (/) constrains an attribute to a starting point and an interval and is used to
specify every N seconds, minutes, or hours within the minute, hour, or day. For an expression of
the form x/y, x represents the starting point and y represents the interval. The wildcard
character may be used in the x position of an interval and is equivalent to setting x to 0.

Intervals may be set only for second, minute, and hour attributes.

The following expression represents every 10 minutes within the hour:

minute="*/10"

It is equivalent to:

minute="0,10,20,30,40,50"

The following expression represents every 2 hours starting at noon:

hour="12/2"

Programmatic Timers
When a programmatic timer expires (goes off), the container calls the method annotated
@Timeout in the bean’s implementation class. The @Timeout method contains the business logic
that handles the timed event.

The @TimeoutMethod
Methods annotated @Timeout in the enterprise bean class must return void and optionally take
a javax.ejb.Timer object as the only parameter. They may not throw application exceptions.

@Timeout

public void timeout(Timer timer) {

System.out.println("TimerBean: timeout occurred");
}

Creating Programmatic Timers
To create a timer, the bean invokes one of the create methods of the TimerService interface.
These methods allow single-action, interval, or calendar-based timers to be created.

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 309

For single-action or interval timers, the expiration of the timer can be expressed as either a
duration or an absolute time. The duration is expressed as a the number of milliseconds before a
timeout event is triggered. To specify an absolute time, create a java.util.Date object and
pass it to the TimerService.createSingleActionTimer or the TimerService.createTimer
method.

The following code sets a programmatic timer that will expire in 1 minute (6,000 milliseconds):

long duration = 6000;

Timer timer =

timerService.createSingleActionTimer(duration, new TimerConfig());

The following code sets a programmatic timer that will expire at 12:05 p.m. on May 1, 2010,
specified as a java.util.Date:

SimpleDateFormatter formatter =

new SimpleDateFormatter("MM/dd/yyyy ’at’ HH:mm");
Date date = formatter.parse("05/01/2010 at 12:05");
Timer timer = timerService.createSingleActionTimer(date, new TimerConfig());

For calendar-based timers, the expiration of the timer is expressed as a
javax.ejb.ScheduleExpression object, passed as a parameter to the
TimerService.createCalendarTimer method. The ScheduleExpression class represents
calendar-based timer expressions and has methods that correspond to the attributes described
in “Creating Calendar-Based Timer Expressions” on page 307.

The following code creates a programmatic timer using the ScheduleExpression helper class:

ScheduleExpression schedule = new ScheduleExpression();

schedule.dayOfWeek("Mon");
schedule.hour("12-17, 23");
Timer timer = timerService.createCalendarTimer(schedule);

For details on the method signatures, see the TimerService API documentation at
http://download.oracle.com/javaee/6/api/javax/ejb/TimerService.html.

The bean described in “The timersession Example” on page 313 creates a timer as follows:

Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");

In the timersession example, createTimer is invoked in a business method, which is called by
a client.

Timers are persistent by default. If the server is shut down or crashes, persistent timers are saved
and will become active again when the server is restarted. If a persistent timer expires while the
server is down, the container will call the @Timeout method when the server is restarted.

Nonpersistent programmatic timers are created by calling
TimerConfig.setPersistent(false) and passing the TimerConfig object to one of the
timer-creation methods.

Using the Timer Service

The Java EE 6 Tutorial • October 2010310

http://download.oracle.com/javaee/6/api/javax/ejb/TimerService.html

The Date and long parameters of the createTimer methods represent time with the resolution
of milliseconds. However, because the timer service is not intended for real-time applications, a
callback to the @Timeout method might not occur with millisecond precision. The timer service
is for business applications, which typically measure time in hours, days, or longer durations.

Automatic Timers
Automatic timers are created by the EJB container when an enterprise bean that contains
methods annotated with the @Schedule or @Schedules annotations is deployed. An enterprise
bean can have multiple automatic timeout methods, unlike a programmatic timer, which allows
only one method annotated with the @Timeout annotation in the enterprise bean class.

Automatic timers can be configured through annotations or through the ejb-jar.xml
deployment descriptor.

Adding a @Schedule annotation on an enterprise bean marks that method as a timeout method
according to the calendar schedule specified in the attributes of @Schedule.

The @Schedule annotation has elements that correspond to the calendar expressions detailed in
“Creating Calendar-Based Timer Expressions” on page 307 and the persistent, info, and
timezone elements.

The optional persistent element takes a Boolean value and is used to specify whether the
automatic timer should survive a server restart or crash. By default, all automatic timers are
persistent.

The optional timezone element is used to specify that the automatic timer is associated with a
particular time zone. If set, this element will evaluate all timer expressions in relation to the
specified time zone, regardless of the time zone in which the EJB container is running. By
default, all automatic timers set are in relation to the default time zone of the server.

The optional info element is used to set an informational description of the timer. A timer’s
information can be retrieved later by using Timer.getInfo.

The following timeout method uses @Schedule to set a timer that will expire every Sunday at
midnight:

@Schedule(dayOfWeek="Sun", hour="0")
public void cleanupWeekData() { ... }

The @Schedules annotation is used to specify multiple calendar-based timer expressions for a
given timeout method.

The following timeout method uses the @Schedules annotation to set multiple calendar-based
timer expressions. The first expression sets a timer to expire on the last day of every month. The
second expression sets a timer to expire every Friday at 11:00 p.m.

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 311

@Schedules ({

@Schedule(dayOfMonth="Last"),
@Schedule(dayOfWeek="Fri", hour="23")

})

public void doPeriodicCleanup() { ... }

Canceling and Saving Timers
Timers can be canceled by the following events.

■ When a single-event timer expires, the EJB container calls the associated timeout method
and then cancels the timer.

■ When the bean invokes the cancel method of the Timer interface, the container cancels the
timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and store the
TimerHandle object in a database. (A TimerHandle object is serializable.) To reinstantiate the
Timer object, retrieve the handle from the database and invoke getTimer on the handle. A
TimerHandle object cannot be passed as an argument of a method defined in a remote or web
service interface. In other words, remote clients and web service clients cannot access a bean’s
TimerHandle object. Local clients, however, do not have this restriction.

Getting Timer Information
In addition to defining the cancel and getHandle methods, the Timer interface defines
methods for obtaining information about timers:

public long getTimeRemaining();

public java.util.Date getNextTimeout();

public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the createTimer
invocation. For example, in the createTimer code snippet of the preceding section, this
information parameter is a String object with the value created timer.

To retrieve all of a bean’s active timers, call the getTimers method of the TimerService
interface. The getTimers method returns a collection of Timer objects.

Using the Timer Service

The Java EE 6 Tutorial • October 2010312

Transactions and Timers
An enterprise bean usually creates a timer within a transaction. If this transaction is rolled back,
the timer creation also is rolled back. Similarly, if a bean cancels a timer within a transaction
that gets rolled back, the timer cancellation is rolled back. In this case, the timer’s duration is
reset as if the cancellation had never occurred.

In beans that use container-managed transactions, the @Timeout method usually has the
Required or RequiresNew transaction attribute to preserve transaction integrity. With these
attributes, the EJB container begins the new transaction before calling the @Timeout method. If
the transaction is rolled back, the container will call the @Timeout method at least one more
time.

The timersession Example
The source code for this example is in the tut-install/examples/ejb/timersession/src/java/
directory.

TimerSessionBean is a singleton session bean that shows how to set both an automatic timer
and a programmatic timer. In the source code listing of TimerSessionBean that follows, the
setTimer and @Timeout methods are used to set a programmatic timer. A TimerService

instance is injected by the container when the bean is created. Because it’s a business method,
setTimer is exposed to the local, no-interface view of TimerSessionBean and can be invoked by
the client. In this example, the client invokes setTimer with an interval duration of 30,000
milliseconds. The setTimer method creates a new timer by invoking the createTimer method
of TimerService. Now that the timer is set, the EJB container will invoke the
programmaticTimeout method of TimerSessionBean when the timer expires, in about 30
seconds.

...

public void setTimer(long intervalDuration) {

logger.info("Setting a programmatic timeout for " +

intervalDuration + " milliseconds from now.");
Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");
}

@Timeout

public void programmaticTimeout(Timer timer) {

this.setLastProgrammaticTimeout(new Date());

logger.info("Programmatic timeout occurred.");
}

...

TimerSessionBean also has an automatic timer and timeout method, automaticTimeout. The
automatic timer is set to expire every 3 minutes and is set by using a calendar-based timer
expression in the @Schedule annotation:

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 313

...

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

this.setLastAutomaticTimeout(new Date());

logger.info("Automatic timeout occured");
}

...

TimerSessionBean also has two business methods: getLastProgrammaticTimeout and
getLastAutomaticTimeout. Clients call these methods to get the date and time of the last
timeout for the programmatic timer and automatic timer, respectively.

Here’s the source code for the TimerSessionBean class:

package timersession.ejb;

import java.util.Date;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.ejb.Schedule;

import javax.ejb.Stateless;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerService;

@Singleton

public class TimerSessionBean {

@Resource

TimerService timerService;

private Date lastProgrammaticTimeout;

private Date lastAutomaticTimeout;

private Logger logger = Logger.getLogger(

"com.sun.tutorial.javaee.ejb.timersession.TimerSessionBean");

public void setTimer(long intervalDuration) {

logger.info("Setting a programmatic timeout for "
+ intervalDuration + " milliseconds from now.");

Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");
}

@Timeout

public void programmaticTimeout(Timer timer) {

this.setLastProgrammaticTimeout(new Date());

logger.info("Programmatic timeout occurred.");
}

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

this.setLastAutomaticTimeout(new Date());

logger.info("Automatic timeout occured");
}

public String getLastProgrammaticTimeout() {

if (lastProgrammaticTimeout != null) {

Using the Timer Service

The Java EE 6 Tutorial • October 2010314

return lastProgrammaticTimeout.toString();

} else {

return "never";
}

}

public void setLastProgrammaticTimeout(Date lastTimeout) {

this.lastProgrammaticTimeout = lastTimeout;

}

public String getLastAutomaticTimeout() {

if (lastAutomaticTimeout != null) {

return lastAutomaticTimeout.toString();

} else {

return "never";
}

}

public void setLastAutomaticTimeout(Date lastAutomaticTimeout) {

this.lastAutomaticTimeout = lastAutomaticTimeout;

}

}

Note – GlassFish Server has a default minimum timeout value of 1,000 milliseconds, or 1 second.
If you need to set the timeout value lower than 1,000 milliseconds, change the value of the
minimum-delivery-interval-in-millis element in domain-dir/config/domain.xml. The
lowest practical value for minimum-delivery-interval-in-millis is around 10 milliseconds,
owing to virtual machine constraints.

Building, Packaging, Deploying, and Running the
timersession Example
You can build, package, deploy, and run the timersession example by using either NetBeans
IDE or Ant.

▼ To Build, Package, Deploy, and Run the timersession Example Using
NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the timersession folder.

Select the Open as Main Project check box.

1

2

3

4

Using the Timer Service

Chapter 16 • Running the Enterprise Bean Examples 315

Click Open Project.

Select Run→Run Main Project.
This builds and packages the application into timersession.war, located in
tut-install/examples/ejb/timersession/dist/, deploys this WAR file to your GlassFish
Server instance, and then runs the web client.

▼ To Build, Package, and Deploy the timersession Example Using Ant

In a terminal window, go to:
tut-install/examples/ejb/timersession/

Type the following command:
ant build

This runs the default task, which compiles the source files and packages the application into a
WAR file located at tut-install/examples/ejb/timersession/dist/timersession.war.

To deploy the application, type the following command:
ant deploy

▼ To Run the Web Client

Open a web browser to http://localhost:8080/timersession.

Click the Set Timer button to set a programmatic timer.

Wait for a while and click the browser’s Refresh button.
You will see the date and time of the last programmatic and automatic timeouts.

To see the messages that are logged when a timeout occurs, open the server.log file located in
domain-dir/server/logs/.

Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and application.

A system exception indicates a problem with the services that support an application. For
example, a connection to an external resource cannot be obtained, or an injected resource
cannot be found. If it encounters a system-level problem, your enterprise bean should throw a
javax.ejb.EJBException. Because the EJBException is a subclass of the RuntimeException,
you do not have to specify it in the throws clause of the method declaration. If a system

5

6

1

2

3

1

2

3

Handling Exceptions

The Java EE 6 Tutorial • October 2010316

exception is thrown, the EJB container might destroy the bean instance. Therefore, a system
exception cannot be handled by the bean’s client program, but instead requires intervention by
a system administrator.

An application exception signals an error in the business logic of an enterprise bean. Application
exceptions are typically exceptions that you’ve coded yourself, such as the BookException
thrown by the business methods of the CartBean example. When an enterprise bean throws an
application exception, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back the transaction.
However, if an application exception is thrown within a transaction, the container does not roll
back the transaction.

Handling Exceptions

Chapter 16 • Running the Enterprise Bean Examples 317

318

A Message-Driven Bean Example

Message-driven beans can implement any messaging type. Most commonly, they implement
the Java Message Service (JMS) technology. The example in this chapter uses JMS technology,
so you should be familiar with basic JMS concepts such as queues and messages. To learn about
these concepts, see Chapter 30, “Java Message Service Concepts.”

This chapter describes the source code of a simple message-driven bean example. Before
proceeding, you should read the basic conceptual information in the section “What Is a
Message-Driven Bean?” on page 267 as well as “Using Message-Driven Beans to Receive
Messages Asynchronously” on page 587.

The following topics are addressed here:

■ “simplemessage Example Application Overview” on page 319
■ “The simplemessage Application Client” on page 320
■ “The Message-Driven Bean Class” on page 321
■ “Packaging, Deploying, and Running the simplemessage Example” on page 323

simplemessage Example Application Overview
The simplemessage application has the following components:

■ SimpleMessageClient: An application client that sends several messages to a queue
■ SimpleMessageBean: A message-driven bean that asynchronously receives and processes

the messages that are sent to the queue

Figure 17–1 illustrates the structure of this application. The application client sends messages to
the queue, which was created administratively using the Administration Console. The JMS
provider (in this case, the GlassFish Server) delivers the messages to the instances of the
message-driven bean, which then processes the messages.

17C H A P T E R 1 7

319

The source code for this application is in the tut-install/examples/ejb/simplemessage/
directory.

The simplemessageApplication Client
The SimpleMessageClient sends messages to the queue that the SimpleMessageBean listens to.
The client starts by injecting the connection factory and queue resources:

@Resource(mappedName="jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource(mappedName="jms/Queue")
private static Queue queue;

Next, the client creates the connection, session, and message producer:

connection = connectionFactory.createConnection();

session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

messageProducer = session.createProducer(queue);

Finally, the client sends several messages to the queue:

message = session.createTextMessage();

for (int i = 0; i < NUM_MSGS; i++) {

message.setText("This is message " + (i + 1));

System.out.println("Sending message: " + message.getText());

messageProducer.send(message);

}

FIGURE 17–1 The simplemessageApplication

Queue

Java EE Server

Msg Msg

Sends Delivers
Application

Client

EJB Container

MDB
Instances

The simplemessageApplication Client

The Java EE 6 Tutorial • October 2010320

The Message-Driven Bean Class
The code for the SimpleMessageBean class illustrates the requirements of a message-driven
bean class:

■ It must be annotated with the @MessageDriven annotation if it does not use a deployment
descriptor.

■ The class must be defined as public.
■ The class cannot be defined as abstract or final.
■ It must contain a public constructor with no arguments.
■ It must not define the finalize method.

It is recommended, but not required, that a message-driven bean class implement the message
listener interface for the message type it supports. A bean that supports the JMS API
implements the javax.jms.MessageListener interface.

Unlike session beans and entities, message-driven beans do not have the remote or local
interfaces that define client access. Client components do not locate message-driven beans and
invoke methods on them. Although message-driven beans do not have business methods, they
may contain helper methods that are invoked internally by the onMessage method.

For the GlassFish Server, the @MessageDriven annotation typically contains a mappedName
element that specifies the JNDI name of the destination from which the bean will consume
messages. For complex message-driven beans, there can also be an activationconfig element
containing @ActivationConfigProperty annotations used by the bean.

A message-driven bean can also inject a MessageDrivenContext resource. Commonly you use
this resource to call the setRollbackOnly method to handle exceptions for a bean that uses
container-managed transactions.

Therefore, the first few lines of the SimpleMessageBean class look like this:

@MessageDriven(mappedName="jms/Queue", activationConfig = {

@ActivationConfigProperty(propertyName = "acknowledgeMode",
propertyValue = "Auto-acknowledge"),

@ActivationConfigProperty(propertyName = "destinationType",
propertyValue = "javax.jms.Queue")

})

public class SimpleMessageBean implements MessageListener {

@Resource

private MessageDrivenContext mdc;

...

NetBeans IDE typically creates a message-driven bean with a default set of
@ActivationConfigProperty settings. You can delete those you do not need, or add others.
Table 17–1 lists commonly used properties.

The Message-Driven Bean Class

Chapter 17 • A Message-Driven Bean Example 321

TABLE 17–1 @ActivationConfigProperty Settings for Message-Driven Beans

Property Name Description

acknowledgeMode Acknowledgment mode; see “Controlling Message
Acknowledgment” on page 577 for information

destinationType Either javax.jms.Queue or javax.jms.Topic

subscriptionDurability For durable subscribers, set to Durable; see “Creating
Durable Subscriptions” on page 581 for information

clientId For durable subscribers, the client ID for the
connection

subscriptionName For durable subscribers, the name of the subscription

messageSelector A string that filters messages; see “JMS Message
Selectors” on page 572 for information, and see “An
Application That Uses the JMS API with a Session
Bean” on page 631 for an example

addressList Remote system or systems to communicate with; see
“An Application Example That Consumes Messages
from a Remote Server” on page 643 for an example

The onMessageMethod
When the queue receives a message, the EJB container invokes the message listener method or
methods. For a bean that uses JMS, this is the onMessage method of the MessageListener
interface.

A message listener method must follow these rules:

■ The method must be declared as public.
■ The method must not be declared as final or static.

The onMessage method is called by the bean’s container when a message has arrived for the
bean to service. This method contains the business logic that handles the processing of the
message. It is the message-driven bean’s responsibility to parse the message and perform the
necessary business logic.

The onMessage method has a single argument: the incoming message.

The signature of the onMessage method must follow these rules:

■ The return type must be void.
■ The method must have a single argument of type javax.jms.Message.

In the SimpleMessageBean class, the onMessage method casts the incoming message to a
TextMessage and displays the text:

The Message-Driven Bean Class

The Java EE 6 Tutorial • October 2010322

public void onMessage(Message inMessage) {

TextMessage msg = null;

try {

if (inMessage instanceof TextMessage) {

msg = (TextMessage) inMessage;

logger.info("MESSAGE BEAN: Message received: " +

msg.getText());

} else {

logger.warning("Message of wrong type: " +

inMessage.getClass().getName());

}

} catch (JMSException e) {

e.printStackTrace();

mdc.setRollbackOnly();

} catch (Throwable te) {

te.printStackTrace();

}

}

Packaging, Deploying, and Running the simplemessage
Example

To package, deploy and run this example, go to the tut-install/examples/ejb/simplemessage/
directory.

Creating the Administered Objects for the
simplemessage Example
This example requires the following:

■ A JMS connection factory resource
■ A JMS destination resource

If you have run the simple JMS examples in Chapter 30, “Java Message Service Concepts,” and
have not deleted the resources, you already have these resources and do not need to perform
these steps.

You can use Ant targets to create the resources. The Ant targets, which are defined in the
build.xml file for this example, use the asadmin command. To create the resources needed for
this example, use the following commands:

ant create-cf

ant create-queue

Packaging, Deploying, and Running the simplemessage Example

Chapter 17 • A Message-Driven Bean Example 323

These commands do the following:
■ Create a connection factory resource named jms/ConnectionFactory

■ Create a destination resource named jms/Queue

The Ant targets for these commands refer to other targets that are defined in the
tut-install/examples/bp-project/app-server-ant.xml file.

▼ To Build, Deploy, and Run the simplemessage
Application Using NetBeans IDE
In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the simplemessage folder.

Select the Open as Main Project check box and the Open Required Projects check box.

Click Open Project.

In the Projects tab, right-click the simplemessageproject and choose Build.
This task packages the application client and the message-driven bean, then creates a file named
simplemessage.ear in the dist directory.

Right-click the project and choose Run.
This command deploys the project, returns a JAR file named simplemessageClient.jar, and
then executes it.

The output of the application client in the Output pane looks like this (preceded by application
client container output):
Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

To see if the bean received the messages,

check <install_dir>/domains/domain1/logs/server.log.

The output from the message-driven bean appears in the server log
(domain-dir/logs/server.log), wrapped in logging information.

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

The received messages may appear in a different order from the order in which they were sent.

1

2

3

4

5

6

7

Packaging, Deploying, and Running the simplemessage Example

The Java EE 6 Tutorial • October 2010324

▼ To Build, Deploy, and Run the simplemessage
Application Using Ant

In a terminal window, go to:
tut-install/examples/ejb/simplemessage/

To compile the source files and package the application, use the following command:
ant

This target packages the application client and the message-driven bean, then creates a file
named simplemessage.ear in the dist directory.

By using resource injection and annotations, you avoid having to create deployment descriptor
files for the message-driven bean and application client. You need to use deployment
descriptors only if you want to override the values specified in the annotated source files.

To deploy the application and run the client using Ant, use the following command:
ant run

Ignore the message that states that the application is deployed at a URL.

The output in the terminal window looks like this (preceded by application client container
output):

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

To see if the bean received the messages,

check <install_dir>/domains/domain1/logs/server.log.

In the server log file, the following lines appear, wrapped in logging information:

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

The received messages may appear in a different order from the order in which they were sent.

Removing the Administered Objects for the
simplemessage Example
After you run the example, you can use the following Ant targets to delete the connection
factory and queue:

ant delete-cf

ant delete-queue

1

2

3

Packaging, Deploying, and Running the simplemessage Example

Chapter 17 • A Message-Driven Bean Example 325

326

Contexts and Dependency Injection for the
Java EE Platform
Part V explores Contexts and Dependency Injection for the Java EE Platform. This part
contains the following chapters:

■ Chapter 18, “Introduction to Contexts and Dependency Injection for the Java EE
Platform”

■ Chapter 19, “Running the Basic Contexts and Dependency Injection Examples”

P A R T V

327

328

Introduction to Contexts and Dependency
Injection for the Java EE Platform

Contexts and Dependency Injection (CDI) for the Java EE platform is one of several Java EE 6
features that help to knit together the web tier and the transactional tier of the Java EE platform.
CDI is a set of services that, used together, make it easy for developers to use enterprise beans
along with JavaServer Faces technology in web applications. Designed for use with stateful
objects, CDI also has many broader uses, allowing developers a great deal of flexibility to
integrate various kinds of components in a loosely coupled but typesafe way.

CDI is specified by JSR 299, formerly known as Web Beans. Related specifications that CDI uses
include the following:

■ JSR 330, Dependency Injection for Java
■ The Managed Beans specification, which is an offshoot of the Java EE 6 platform

specification (JSR 316)

The following topics are addressed here:

■ “Overview of CDI” on page 330
■ “About Beans” on page 331
■ “About Managed Beans” on page 331
■ “Beans as Injectable Objects” on page 332
■ “Using Qualifiers” on page 333
■ “Injecting Beans” on page 334
■ “Using Scopes” on page 334
■ “Giving Beans EL Names” on page 336
■ “Adding Setter and Getter Methods” on page 336
■ “Using a Managed Bean in a Facelets Page” on page 337
■ “Injecting Objects by Using Producer Methods” on page 337
■ “Configuring a CDI Application” on page 338
■ “Further Information about CDI” on page 338

18C H A P T E R 1 8

329

Overview of CDI
The most fundamental services provided by CDI are as follows:

■ Contexts: The ability to bind the lifecycle and interactions of stateful components to
well-defined but extensible lifecycle contexts

■ Dependency injection: The ability to inject components into an application in a typesafe
way, including the ability to choose at deployment time which implementation of a
particular interface to inject

In addition, CDI provides the following services:

■ Integration with the Expression Language (EL), which allows any component to be used
directly within a JavaServer Faces page or a JavaServer Pages page

■ The ability to decorate injected components
■ The ability to associate interceptors with components using typesafe interceptor bindings
■ An event-notification model
■ A web conversation scope in addition to the three standard scopes (request, session, and

application) defined by the Java Servlet specification
■ A complete Service Provider Interface (SPI) that allows third-party frameworks to integrate

cleanly in the Java EE 6 environment

A major theme of CDI is loose coupling. CDI does the following:

■ Decouples the server and the client by means of well-defined types and qualifiers, so that the
server implementation may vary

■ Decouples the lifecycles of collaborating components by doing the following:
■ Making components contextual, with automatic lifecycle management
■ Allowing stateful components to interact like services, purely by message passing

■ Completely decouples message producers from consumers, by means of events
■ Decouples orthogonal concerns by means of Java EE interceptors

Along with loose coupling, CDI provides strong typing by

■ Eliminating lookup using string-based names for wiring and correlations, so that the
compiler will detect typing errors

■ Allowing the use of declarative Java annotations to specify everything, largely eliminating
the need for XML deployment descriptors, and making it easy to provide tools that
introspect the code and understand the dependency structure at development time

Overview of CDI

The Java EE 6 Tutorial • October 2010330

About Beans
CDI redefines the concept of a bean beyond its use in other Java technologies, such as the
JavaBeans and Enterprise JavaBeans (EJB) technologies. In CDI, a bean is a source of contextual
objects that define application state and/or logic. A Java EE component is a bean if the lifecycle
of its instances may be managed by the container according to the lifecycle context model
defined in the CDI specification.

More specifically, a bean has the following attributes:

■ A (nonempty) set of bean types
■ A (nonempty) set of qualifiers (see “Using Qualifiers” on page 333)
■ A scope (see “Using Scopes” on page 334)
■ Optionally, a bean EL name (see “Giving Beans EL Names” on page 336)
■ A set of interceptor bindings
■ A bean implementation

A bean type defines a client-visible type of the bean. Almost any Java type may be a bean type of
a bean.

■ A bean type may be an interface, a concrete class, or an abstract class and may be declared
final or have final methods.

■ A bean type may be a parameterized type with type parameters and type variables.
■ A bean type may be an array type. Two array types are considered identical only if the

element type is identical.
■ A bean type may be a primitive type. Primitive types are considered to be identical to their

corresponding wrapper types in java.lang.
■ A bean type may be a raw type.

About Managed Beans
A managed bean is implemented by a Java class, which is called its bean class. A top-level Java
class is a managed bean if it is defined to be a managed bean by any other Java EE technology
specification, such as the JavaServer Faces technology specification, or if it meets all the
following conditions:

■ It is not a nonstatic inner class.
■ It is a concrete class or is annotated @Decorator.
■ It is not annotated with an EJB component-defining annotation or declared as an EJB bean

class in ejb-jar.xml.

About Managed Beans

Chapter 18 • Introduction to Contexts and Dependency Injection for the Java EE Platform 331

■ It has an appropriate constructor. That is, one of the following is the case:
■ The class has a constructor with no parameters.
■ The class declares a constructor annotated @Inject.

No special declaration, such as an annotation, is required to define a managed bean.

Beans as Injectable Objects
The concept of injection has been part of Java technology for some time. Since the Java EE 5
platform was introduced, annotations have made it possible to inject resources and some other
kinds of objects into container-managed objects. CDI makes it possible to inject more kinds of
objects and to inject them into objects that are not container-managed.

The following kinds of objects can be injected:

■ (Almost) any Java class
■ Session beans
■ Java EE resources: data sources, Java Message Service topics, queues, connection factories,

and the like
■ Persistence contexts (JPA EntityManager objects)
■ Producer fields
■ Objects returned by producer methods
■ Web service references
■ Remote enterprise bean references

For example, suppose that you create a simple Java class with a method that returns a string:

package greetings;

public class Greeting {

public String greet(String name) {

return "Hello, " + name + ".";
}

}

This class becomes a bean that you can then inject into another class. This bean is not exposed
to the EL in this form. “Giving Beans EL Names” on page 336 explains how you can make a bean
accessible to the EL.

Beans as Injectable Objects

The Java EE 6 Tutorial • October 2010332

Using Qualifiers
You can use qualifiers to provide various implementations of a particular bean type. A qualifier
is an annotation that you apply to a bean. A qualifier type is a Java annotation defined as
@Target({METHOD, FIELD, PARAMETER, TYPE}) and @Retention(RUNTIME).

For example, you could declare an @Informal qualifier type and apply it to another class that
extends the Greeting class. To declare this qualifier type, you would use the following code:

package greetings;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Informal {}

You can then define a bean class that extends the Greeting class and uses this qualifier:

package greetings;

@Informal

public class InformalGreeting extends Greeting {

public String greet(String name) {

return "Hi, " + name + "!";
}

}

Both implementations of the bean can now be used in the application.

If you define a bean with no qualifier, the bean automatically has the qualifier @Default. The
unannotated Greeting class could be declared as follows:

package greetings;

import javax.enterprise.inject.Default;

@Default

public class Greeting {

public String greet(String name) {

return "Hello, " + name + ".";
}

}

Using Qualifiers

Chapter 18 • Introduction to Contexts and Dependency Injection for the Java EE Platform 333

Injecting Beans
In order to use the beans you create, you inject them into yet another bean that can then be used
by an application, such as a JavaServer Faces application. For example, you might create a bean
called Printer into which you would inject one of the Greeting beans:

import javax.inject.Inject;

public class Printer {

@Inject Greeting greeting;

...

This code injects the @Default Greeting implementation into the bean. The following code
injects the @Informal implementation:

import javax.inject.Inject;

public class Printer {

@Inject @Informal Greeting greeting;

...

More is needed for the complete picture of this bean. Its use of scope needs to be understood. In
addition, for a JavaServer Faces application, the bean needs to be accessible through the EL.

Using Scopes
For a web application to use a bean that injects another bean class, the bean needs to be able to
hold state over the duration of the user’s interaction with the application. The way to define this
state is to give the bean a scope. You can give an object any of the scopes described in
Table 18–1, depending on how you are using it.

TABLE 18–1 Scopes

Scope Annotation Duration

Request @RequestScoped A user’s interaction with a web application in a single
HTTP request.

Session @SessionScoped A user’s interaction with a web application across
multiple HTTP requests.

Application @ApplicationScoped Shared state across all users’ interactions with a web
application.

Dependent @Dependent The default scope if none is specified; it means that an
object exists to serve exactly one client (bean) and has
the same lifecycle as that client (bean).

Injecting Beans

The Java EE 6 Tutorial • October 2010334

TABLE 18–1 Scopes (Continued)
Scope Annotation Duration

Conversation @ConversationScoped A user’s interaction with a JavaServer Faces application,
within explicit developer-controlled boundaries that
extend the scope across multiple invocations of the
JavaServer Faces lifecycle. All long-running
conversations are scoped to a particular HTTP servlet
session and may not cross session boundaries.

The first three scopes are defined by both JSR 299 and the JavaServer Faces API. The last two are
defined by JSR 299.

You can also define and implement custom scopes, but that is an advanced topic. Custom
scopes are likely to be used by those who implement and extend the CDI specification.

A scope gives an object a well-defined lifecycle context. A scoped object can be automatically
created when it is needed and automatically destroyed when the context in which it was created
ends. Moreover, its state is automatically shared by any clients that execute in the same context.

Java EE components, such as servlets and enterprise beans, and JavaBeans components do not
by definition have a well-defined scope. These components are one of the following:

■ Singletons, such as Enterprise JavaBeans singleton beans, whose state is shared among all
clients

■ Stateless objects, such as servlets and stateless session beans, which do not contain
client-visible state

■ Objects that must be explicitly created and destroyed by their client, such as JavaBeans
components and stateful session beans, whose state is shared by explicit reference passing
between clients

If, however, you create a Java EE component that is a managed bean, it becomes a scoped object,
which exists in a well-defined lifecycle context.

The web application for the Printer bean will use a simple request and response mechanism, so
the managed bean can be annotated as follows:

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

...

Beans that use session, application, or conversation scope must be serializable, but beans that
use request scope do not have to be serializable.

Using Scopes

Chapter 18 • Introduction to Contexts and Dependency Injection for the Java EE Platform 335

Giving Beans EL Names
To make a bean accessible through the EL, use the @Named built-in qualifier:

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

...

The @Named qualifier allows you to access the bean by using the bean name, with the first letter
in lowercase. For example, a Facelets page would refer to the bean as printer.

You can specify an argument to the @Named qualifier to use a nondefault name:

@Named("MyPrinter")

With this annotation, the Facelets page would refer to the bean as MyPrinter.

Adding Setter and Getter Methods
To make the state of the managed bean accessible, you need to add setter and getter methods for
that state. The createSalutation method calls the bean’s greet method, and the
getSalutation method retrieves the result.

Once the setter and getter methods have been added, the bean is complete. The final code looks
like this:

package greetings;

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

private String name;

private String salutation;

public void createSalutation() {

this.salutation = greeting.greet(name);

}

Giving Beans EL Names

The Java EE 6 Tutorial • October 2010336

public String getSalutation() {

return salutation;

}

public String setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

}

Using a Managed Bean in a Facelets Page
To use the managed bean in a Facelets page, you typically create a form that uses user interface
elements to call its methods and display their results. This example provides a button that asks
the user to type a name, retrieves the salutation, and then displays the text in a paragraph below
the button:

<h:form id="greetme">
<p><h:outputLabel value="Enter your name: " for="name"/>

<h:inputText id="name" value="#{printer.name}"/></p>
<p><h:commandButton value="Say Hello"

action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/></p>

</h:form>

Injecting Objects by Using Producer Methods
Producer methods provide a way to inject objects that are not beans, objects whose values may
vary at runtime, and objects that require custom initialization. For example, if you want to
initialize a numeric value defined by a qualifier named @MaxNumber, you can define the value in
a managed bean and then define a producer method, getMaxNumber, for it:

private int maxNumber = 100;

...

@Produces @MaxNumber int getMaxNumber() {

return maxNumber;

}

When you inject the object in another managed bean, the container automatically invokes the
producer method, initializing the value to 100:

@Inject @MaxNumber private int maxNumber;

If the value can vary at runtime, the process is slightly different. For example, the following code
defines a producer method that generates a random number defined by a qualifier called
@Random:

Injecting Objects by Using Producer Methods

Chapter 18 • Introduction to Contexts and Dependency Injection for the Java EE Platform 337

private java.util.Random random =

new java.util.Random(System.currentTimeMillis());

java.util.Random getRandom() {

return random;

}

@Produces @Random int next() {

return getRandom().nextInt(maxNumber);

}

When you inject this object in another managed bean, you declare a contextual instance of the
object:

@Inject @Random Instance<Integer> randomInt;

You then call the get method of the Instance:

this.number = randomInt.get();

Configuring a CDI Application
An application that uses CDI must have a file named beans.xml. The file can be completely
empty (it has content only in certain limited situations), but it must be present. For a web
application, the beans.xml file can be in either the WEB-INF directory or the
WEB-INF/classes/META-INF directory. For EJB modules or JAR files, the beans.xml file must
be in the META-INF directory.

Further Information about CDI
For more information about CDI for the Java EE platform, see

■ Contexts and Dependency Injection for the Java EE platform specification:
http://jcp.org/en/jsr/detail?id=299

■ An introduction to Contexts and Dependency Injection for the Java EE platform:
http://docs.jboss.org/weld/reference/latest/en-US/html/

■ Dependency Injection for Java specification:
http://jcp.org/en/jsr/detail?id=330

Configuring a CDI Application

The Java EE 6 Tutorial • October 2010338

http://jcp.org/en/jsr/detail?id=299
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://jcp.org/en/jsr/detail?id=330

Running the Basic Contexts and Dependency
Injection Examples

This chapter describes in detail how to build and run simple examples that use CDI. The
examples are in the following directory:

tut-install/examples/cdi/

To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Ant tool to compile and package the example.
2. Use NetBeans IDE or the Ant tool to deploy the example.
3. Run the example in a web browser.

Each example has a build.xml file that refers to files in the following directory:

tut-install/examples/bp-project/

See Chapter 2, “Using the Tutorial Examples,” for basic information on installing, building, and
running the examples.

The following topics are addressed here:

■ “The simplegreeting CDI Example” on page 339
■ “The guessnumber CDI Example” on page 344

The simplegreetingCDI Example
The simplegreeting example illustrates some of the most basic features of CDI: scopes,
qualifiers, bean injection, and accessing a managed bean in a JavaServer Faces application.
When you run the example, you click a button that presents either a formal or an informal
greeting, depending on how you edited one of the classes. The example includes four source
files, a Facelets page and template, and configuration files.

19C H A P T E R 1 9

339

The simplegreeting Source Files
The four source files for the simplegreeting example are

■ The default Greeting class, shown in “Beans as Injectable Objects” on page 332
■ The @Informal qualifier interface definition and the InformalGreeting class that

implements the interface, both shown in “Using Qualifiers” on page 333
■ The Printer managed bean class, which injects one of the two interfaces, shown in full in

“Adding Setter and Getter Methods” on page 336

The source files are located in the following directory:

tut-install/examples/cdi/simplegreeting/src/java/greetings

The Facelets Template and Page
To use the managed bean in a simple Facelets application, you can use a very simple template
file and index.xhtml page. The template page, template.xhtml, looks like this:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h:head>

<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>

<link href="resources/css/default.css"
rel="stylesheet" type="text/css"/>

<title>

<ui:insert name="title">Default Title</ui:insert>

</title>

</h:head>

<body>

<div id="container">
<div id="header">

<h2><ui:insert name="head">Head</ui:insert></h2>
</div>

<div id="space">
<p></p>

</div>

<div id="content">
<ui:insert name="content"/>

</div>

</div>

</body>

</html>

The simplegreeting CDI Example

The Java EE 6 Tutorial • October 2010340

To create the Facelets page, you can redefine the title and head, then add a small form to the
content:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Simple Greeting</ui:define>

<ui:define name="head">Simple Greeting</ui:define>

<ui:define name="content">
<h:form id="greetme">

<p><h:outputLabel value="Enter your name: " for="name"/>
<h:inputText id="name" value="#{printer.name}"/></p>

<p><h:commandButton value="Say Hello"
action="#{printer.createSalutation}"/></p>

<p><h:outputText value="#{printer.salutation}"/> </p>

</h:form>

</ui:define>

</ui:composition>

</html>

The form asks the user to type a name. The button is labeled Say Hello, and the action defined
for it is to call the createSalutation method of the Printer managed bean. This method in
turn calls the greet method of the defined Greeting class.

The output text for the form is the value of the greeting returned by the setter method.
Depending on whether the default or the @Informal version of the greeting is injected, this is
one of the following, where name is the name typed by the user:

Hello, name.

Hi, name!

The Facelets page and template are located in the following directory:

tut-install/examples/cdi/simplegreeting/web

The simple CSS file that is used by the Facelets page is in the following location:

tut-install/examples/cdi/simplegreeting/web/resources/css/default.css

Configuration Files
You must create an empty beans.xml file to indicate to GlassFish Server that your application is
a CDI application. This file can have content in some situations, but not in simple applications
like this one.

The simplegreeting CDI Example

Chapter 19 • Running the Basic Contexts and Dependency Injection Examples 341

Your application also needs the basic web application deployment descriptors web.xml and
sun-web.xml. These configuration files are located in the following directory:

tut-install/examples/cdi/simplegreeting/web/WEB-INF

Building, Packaging, Deploying, and Running the
simplegreetingCDI Example
You can build, package, deploy, and run the simplegreeting application by using either
NetBeans IDE or the Ant tool.

▼ To Build, Package, and Deploy the simplegreeting Example Using
NetBeans IDE
This procedure builds the application into the following directory:

tut-install/examples/cdi/simplegreeting/build/web

The contents of this directory are deployed to the GlassFish Server.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/cdi/

Select the simplegreeting folder.

Select the Open as Main Project check box.

Click Open Project.

(Optional) To modify the Printer.java file, perform these steps:

a. Expand the Source Packages node.

b. Expand the greetingsnode.

c. Double-click the Printer.java file.

d. In the edit pane, comment out the @Informal annotation:
//@Informal

@Inject

Greeting greeting;

e. Save the file.

1

2

3

4

5

6

The simplegreeting CDI Example

The Java EE 6 Tutorial • October 2010342

In the Projects tab, right-click the simplegreetingproject and select Deploy.

▼ To Build, Package, and Deploy the simplegreeting Example Using Ant

In a terminal window, go to:
tut-install/examples/cdi/simplegreeting/

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, simplegreeting.war, located in the dist directory.

Type the following command:
ant deploy

Typing this command deploys simplegreeting.war to the GlassFish Server.

▼ To Run the simplegreeting Example

In a web browser, type the following URL:
http://localhost:8080/simplegreeting

The Simple Greeting page opens.

Type a name in the text field.

For example, suppose that you type Duke.

Click the Say Hello button.

If you did not modify the Printer.java file, the following text string appears below the button:
Hi, Duke!

If you commented out the @Informal annotation in the Printer.java file, the following text
string appears below the button:

Hello, Duke.

Figure 19–1 shows what the application looks like if you did not modify the Printer.java file.

7

1

2

3

1

2

3

The simplegreeting CDI Example

Chapter 19 • Running the Basic Contexts and Dependency Injection Examples 343

The guessnumberCDI Example
The guessnumber example, somewhat more complex than the simplegreeting example,
illustrates the use of producer methods and of session and application scope. The example is a
game in which you try to guess a number in fewer than ten attempts. It is similar to the
guessnumber example described in Chapter 5, “Introduction to Facelets,” except that you can
keep guessing until you get the right answer or until you use up your ten attempts.

The example includes four source files, a Facelets page and template, and configuration files.
The configuration files and the template are the same as those used for the simplegreeting
example.

The guessnumber Source Files
The four source files for the guessnumber example are
■ The @MaxNumber qualifier interface
■ The @Random qualifier interface
■ The Generator managed bean, which defines producer methods
■ The UserNumberBean managed bean

The source files are located in the following directory:

tut-install/examples/cdi/guessnumber/src/java/guessnumber

The @MaxNumber and @RandomQualifier Interfaces
The @MaxNumber qualifier interface is defined as follows:

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;

FIGURE 19–1 Simple Greeting Application

The guessnumber CDI Example

The Java EE 6 Tutorial • October 2010344

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@Qualifier

public @interface MaxNumber {

}

The @Random qualifier interface is defined as follows:

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@Qualifier

public @interface Random {

}

The GeneratorManaged Bean
The Generator managed bean contains the two producer methods for the application. The
bean has the @ApplicationScoped annotation to specify that its context extends for the
duration of the user’s interaction with the application:

package guessnumber;

import java.io.Serializable;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

The guessnumber CDI Example

Chapter 19 • Running the Basic Contexts and Dependency Injection Examples 345

@ApplicationScoped

public class Generator implements Serializable {

private static final long serialVersionUID = -7213673465118041882L;

private java.util.Random random =

new java.util.Random(System.currentTimeMillis());

private int maxNumber = 100;

java.util.Random getRandom() {

return random;

}

@Produces @Random int next() {

return getRandom().nextInt(maxNumber);

}

@Produces @MaxNumber int getMaxNumber() {

return maxNumber;

}

}

The UserNumberBeanManaged Bean
The UserNumberBean managed bean, the backing bean for the JavaServer Faces application,
provides the basic logic for the game. This bean does the following:

■ Implements setter and getter methods for the bean fields
■ Injects the two qualifier objects
■ Provides a reset method that allows you to begin a new game after you complete one
■ Provides a check method that determines whether the user has guessed the number
■ Provides a validateNumberRange method that determines whether the user’s input is

correct

The bean is defined as follows:

package guessnumber;

import java.io.Serializable;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;

import javax.enterprise.inject.Instance;

import javax.inject.Inject;

import javax.inject.Named;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

@Named

The guessnumber CDI Example

The Java EE 6 Tutorial • October 2010346

@SessionScoped

public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 1L;

private int number;

private Integer userNumber;

private int minimum;

private int remainingGuesses;

@MaxNumber

@Inject

private int maxNumber;

private int maximum;

@Random

@Inject

Instance<Integer> randomInt;

public UserNumberBean() {

}

public int getNumber() {

return number;

}

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public int getMaximum() {

return (this.maximum);

}

public void setMaximum(int maximum) {

this.maximum = maximum;

}

public int getMinimum() {

return (this.minimum);

}

public void setMinimum(int minimum) {

this.minimum = minimum;

}

public int getRemainingGuesses() {

return remainingGuesses;

}

public String check() throws InterruptedException {

if (userNumber > number) {

maximum = userNumber - 1;

}

if (userNumber < number) {

The guessnumber CDI Example

Chapter 19 • Running the Basic Contexts and Dependency Injection Examples 347

minimum = userNumber + 1;

}

if (userNumber == number) {

FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage("Correct!"));
}

remainingGuesses--;

return null;

}

@PostConstruct

public void reset() {

this.minimum = 0;

this.userNumber = 0;

this.remainingGuesses = 10;

this.maximum = maxNumber;

this.number = randomInt.get();

}

public void validateNumberRange(FacesContext context,

UIComponent toValidate,

Object value) {

if (remainingGuesses <= 0) {

FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientId(context), message);

((UIInput) toValidate).setValid(false);

return;

}

int input = (Integer) value;

if (input < minimum || input > maximum) {

((UIInput) toValidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientId(context), message);

}

}

}

The Facelets Page
This example uses the same template that the simplegreeting example uses. The index.xhtml
file, however, is more complex.

The guessnumber CDI Example

The Java EE 6 Tutorial • October 2010348

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Guess My Number</ui:define>

<ui:define name="head">Guess My Number</ui:define>

<ui:define name="content">
<h:form id="GuessMain">

<div style="color: black; font-size: 24px;">
<p>I’m thinking of a number between

#{userNumberBean.minimum} and

#{userNumberBean.maximum}. You have

#{userNumberBean.remainingGuesses}
guesses.</p>

</div>

<h:panelGrid border="0" columns="5" style="font-size: 18px;">
Number:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">

</h:inputText>

<h:commandButton id="GuessButton" value="Guess"
action="#{userNumberBean.check}"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"/>

<h:commandButton id="RestartButton" value="Reset"
action="#{userNumberBean.reset}"
immediate="true" />

<h:outputText id="Higher" value="Higher!"
rendered="#{userNumberBean.number gt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"

style="color: red"/>
<h:outputText id="Lower" value="Lower!"

rendered="#{userNumberBean.number lt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"
style="color: red"/>

</h:panelGrid>

<div style="color: red; font-size: 14px;">
<h:messages id="messages" globalOnly="false"/>

</div>

</h:form>

</ui:define>

</ui:composition>

</html>

The Facelets page presents the user with the minimum and maximum values and the number of
guesses remaining. The user’s interaction with the game takes place within the panelGrid table,
which contains an input field, Guess and Reset buttons, and a text field that appears if the guess
is higher or lower than the correct number. Every time the user clicks the Guess button, the
userNumberBean.check method is called to reset the maximum or minimum value or, if the
guess is correct, to generate a FacesMessage to that effect. The method that determines whether
each guess is valid is userNumberBean.validateNumberRange.

The guessnumber CDI Example

Chapter 19 • Running the Basic Contexts and Dependency Injection Examples 349

Building, Packaging, Deploying, and Running the
guessnumberCDI Example
You can build, package, deploy, and run the guessnumber application by using either NetBeans
IDE or the Ant tool.

▼ To Build, Package, and Deploy the guessnumber Example Using
NetBeans IDE
This procedure builds the application into the following directory:

tut-install/examples/cdi/guessnumber/build/web

The contents of this directory are deployed to the GlassFish Server.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/cdi/

Select the guessnumber folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the guessnumberproject and select Deploy.

▼ To Build, Package, and Deploy the guessnumber Example Using Ant

In a terminal window, go to:
tut-install/examples/cdi/guessnumber/

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, guessnumber.war, located in the dist directory.

1

2

3

4

5

6

1

2

The guessnumber CDI Example

The Java EE 6 Tutorial • October 2010350

Type the following command:
ant deploy

The guessnumber.war file will be deployed to the GlassFish Server.

▼ To Run the guessnumber Example

In a web browser, type the following URL:
http://localhost:8080/guessnumber

The Guess My Number page opens, as shown in Figure 19–2.

Type a number in the Number text field and click Guess.

The minimum and maximum values are modified, along with the remaining number of
guesses.

Keep guessing numbers until you get the right answer or run out of guesses.

If you get the right answer, the input field and Guess button are grayed out, as shown in
Figure 19–3.

FIGURE 19–2 Guess My Number Example

3

1

2

3

The guessnumber CDI Example

Chapter 19 • Running the Basic Contexts and Dependency Injection Examples 351

Click the Reset button to play the game again with a new random number.

FIGURE 19–3 Guess My Number at End of Game

4

The guessnumber CDI Example

The Java EE 6 Tutorial • October 2010352

Persistence
Part VI explores the Java Persistence API. This part contains the following chapters:

■ Chapter 20, “Introduction to the Java Persistence API”
■ Chapter 21, “Running the Persistence Examples”
■ Chapter 22, “The Java Persistence Query Language”
■ Chapter 23, “Using the Criteria API to Create Queries”

P A R T V I

353

354

Introduction to the Java Persistence API

The Java Persistence API provides Java developers with an object/relational mapping facility for
managing relational data in Java applications. Java Persistence consists of four areas:

■ The Java Persistence API
■ The query language
■ The Java Persistence Criteria API
■ Object/relational mapping metadata

The following topics are addressed here:

■ “Entities” on page 355
■ “Entity Inheritance” on page 367
■ “Managing Entities” on page 371
■ “Querying Entities” on page 376
■ “Further Information about Persistence” on page 377

Entities
An entity is a lightweight persistence domain object. Typically, an entity represents a table in a
relational database, and each entity instance corresponds to a row in that table. The primary
programming artifact of an entity is the entity class, although entities can use helper classes.

The persistent state of an entity is represented through either persistent fields or persistent
properties. These fields or properties use object/relational mapping annotations to map the
entities and entity relationships to the relational data in the underlying data store.

20C H A P T E R 2 0

355

Requirements for Entity Classes
An entity class must follow these requirements.

■ The class must be annotated with the javax.persistence.Entity annotation.
■ The class must have a public or protected, no-argument constructor. The class may have

other constructors.
■ The class must not be declared final. No methods or persistent instance variables must be

declared final.
■ If an entity instance is passed by value as a detached object, such as through a session bean’s

remote business interface, the class must implement the Serializable interface.
■ Entities may extend both entity and non-entity classes, and non-entity classes may extend

entity classes.
■ Persistent instance variables must be declared private, protected, or package-private and can

be accessed directly only by the entity class’s methods. Clients must access the entity’s state
through accessor or business methods.

Persistent Fields and Properties in Entity Classes
The persistent state of an entity can be accessed through either the entity’s instance variables or
properties. The fields or properties must be of the following Java language types:

■ Java primitive types
■ java.lang.String

■ Other serializable types, including:
■ Wrappers of Java primitive types
■ java.math.BigInteger

■ java.math.BigDecimal

■ java.util.Date

■ java.util.Calendar

■ java.sql.Date

■ java.sql.Time

■ java.sql.TimeStamp

■ User-defined serializable types
■ byte[]

■ Byte[]

■ char[]

■ Character[]

■ Enumerated types

Entities

The Java EE 6 Tutorial • October 2010356

■ Other entities and/or collections of entities
■ Embeddable classes

Entities may use persistent fields, persistent properties, or a combination of both. If the
mapping annotations are applied to the entity’s instance variables, the entity uses persistent
fields. If the mapping annotations are applied to the entity’s getter methods for JavaBeans-style
properties, the entity uses persistent properties.

Persistent Fields
If the entity class uses persistent fields, the Persistence runtime accesses entity-class instance
variables directly. All fields not annotated javax.persistence.Transient or not marked as
Java transient will be persisted to the data store. The object/relational mapping annotations
must be applied to the instance variables.

Persistent Properties
If the entity uses persistent properties, the entity must follow the method conventions of
JavaBeans components. JavaBeans-style properties use getter and setter methods that are
typically named after the entity class’s instance variable names. For every persistent property
property of type Type of the entity, there is a getter method getProperty and setter method
setProperty. If the property is a Boolean, you may use isProperty instead of getProperty. For
example, if a Customer entity uses persistent properties and has a private instance variable
called firstName, the class defines a getFirstName and setFirstName method for retrieving
and setting the state of the firstName instance variable.

The method signature for single-valued persistent properties are as follows:

Type getProperty()

void setProperty(Type type)

The object/relational mapping annotations for persistent properties must be applied to the
getter methods. Mapping annotations cannot be applied to fields or properties annotated
@Transient or marked transient.

Using Collections in Entity Fields and Properties
Collection-valued persistent fields and properties must use the supported Java collection
interfaces regardless of whether the entity uses persistent fields or properties. The following
collection interfaces may be used:

■ java.util.Collection

■ java.util.Set

Entities

Chapter 20 • Introduction to the Java Persistence API 357

■ java.util.List

■ java.util.Map

If the entity class uses persistent fields, the type in the preceding method signatures must be one
of these collection types. Generic variants of these collection types may also be used. For
example, if it has a persistent property that contains a set of phone numbers, the Customer
entity would have the following methods:

Set<PhoneNumber> getPhoneNumbers() { ... }

void setPhoneNumbers(Set<PhoneNumber>) { ... }

If a field or property of an entity consists of a collection of basic types or embeddable classes, use
the javax.persistence.ElementCollection annotation on the field or property.

The two attributes of @ElementCollection are targetClass and fetch. The targetClass
attribute specifies the class name of the basic or embeddable class and is optional if the field or
property is defined using Java programming language generics. The optional fetch attribute is
used to specify whether the collection should be retrieved lazily or eagerly, using the
javax.persistence.FetchType constants of either LAZY or EAGER, respectively. By default, the
collection will be fetched lazily.

The following entity, Person, has a persistent field, nicknames, which is a collection of String
classes that will be fetched eagerly. The targetClass element is not required, because it uses
generics to define the field.

@Entity

public class Person {

...

@ElementCollection(fetch=EAGER)

protected Set<String> nickname = new HashSet();

...

}

Collections of entity elements and relationships may be represented by java.util.Map
collections. A Map consists of a key and a value.

When using Map elements or relationships, the following rules apply.

■ The Map key or value may be a basic Java programming language type, an embeddable class,
or an entity.

■ When the Map value is an embeddable class or basic type, use the @ElementCollection
annotation.

■ When the Map value is an entity, use the @OneToMany or @ManyToMany annotation.
■ Use the Map type on only one side of a bidirectional relationship.

If the key type of a Map is a Java programming language basic type, use the annotation
javax.persistence.MapKeyColumn to set the column mapping for the key. By default, the name

Entities

The Java EE 6 Tutorial • October 2010358

attribute of @MapKeyColumn is of the form RELATIONSHIP-FIELD/PROPERTY-NAME_KEY.
For example, if the referencing relationship field name is image, the default name attribute is
IMAGE_KEY.

If the key type of a Map is an entity, use the javax.persistence.MapKeyJoinColumn annotation.
If the multiple columns are needed to set the mapping, use the annotation
javax.persistence.MapKeyJoinColumns to include multiple @MapKeyJoinColumn
annotations. If no @MapKeyJoinColumn is present, the mapping column name is by default set to
RELATIONSHIP-FIELD/PROPERTY-NAME_KEY. For example, if the relationship field name is
employee, the default name attribute is EMPLOYEE_KEY.

If Java programming language generic types are not used in the relationship field or property,
the key class must be explicitly set using the javax.persistence.MapKeyClass annotation.

If the Map key is the primary key or a persistent field or property of the entity that is the Map
value, use the javax.persistence.MapKey annotation. The @MapKeyClass and @MapKey

annotations cannot be used on the same field or property.

If the Map value is a Java programming language basic type or an embeddable class, it will be
mapped as a collection table in the underlying database. If generic types are not used, the
@ElementCollection annotation’s targetClass attribute must be set to the type of the Map
value.

If the Map value is an entity and part of a many-to-many or one-to-many unidirectional
relationship, it will be mapped as a join table in the underlying database. A unidirectional
one-to-many relationship that uses a Map may also be mapped using the @JoinColumn
annotation.

If the entity is part of a one-to-many/many-to-one bidirectional relationship, it will be mapped
in the table of the entity that represents the value of the Map. If generic types are not used, the
targetEntity attribute of the @OneToMany and @ManyToMany annotations must be set to the
type of the Map value.

Validating Persistent Fields and Properties
The Java API for JavaBeans Validation (Bean Validation) provides a mechanism for validating
application data. Bean Validation is integrated into the Java EE containers, allowing the same
validation logic to be used in any of the tiers of an enterprise application.

Bean Validation constraints may be applied to persistent entity classes, embeddable classes, and
mapped superclasses. By default, the Persistence provider will automatically perform validation
on entities with persistent fields or properties annotated with Bean Validation constraints
immediately after the PrePersist, PreUpdate, and PreRemove lifecycle events.

Bean Validation constraints are annotations applied to the fields or properties of Java
programming language classes. Bean Validation provides a set of constraints as well as an API
for defining custom constraints. Custom constraints can be specific combinations of the default

Entities

Chapter 20 • Introduction to the Java Persistence API 359

constraints, or new constraints that don’t use the default constraints. Each constraint is
associated with at least one validator class that validates the value of the constrained field or
property. Custom constraint developers must also provide a validator class for the constraint.

Bean Validation constraints are applied to the persistent fields or properties of persistent
classes. When adding Bean Validation constraints, use the same access strategy as the persistent
class. That is, if the persistent class uses field access, apply the Bean Validation constraint
annotations on the class’s fields. If the class uses property access, apply the constraints on the
getter methods.

Table 9–2 lists Bean Validation’s built-in constraints, defined in the
javax.validation.constraints package.

All the built-in constraints listed in Table 9–2 have a corresponding annotation,
ConstraintName.List, for grouping multiple constraints of the same type on the same field or
property. For example, the following persistent field has two @Pattern constraints:

@Pattern.List({

@Pattern(regexp="..."),
@Pattern(regexp="...")

})

The following entity class, Contact, has Bean Validation constraints applied to its persistent
fields.

@Entity

public class Contact implements Serializable {

private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

@NotNull

protected String firstName;

@NotNull

protected String lastName;

@Pattern(regexp="[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\\."
+"[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*@"
+"(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?",

message="{invalid.email}")
protected String email;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String mobilePhone;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String homePhone;

@Temporal(javax.persistence.TemporalType.DATE)

@Past

protected Date birthday;

...

}

The @NotNull annotation on the firstName and lastName fields specifies that those fields are
now required. If a new Contact instance is created where firstName or lastName have not been

Entities

The Java EE 6 Tutorial • October 2010360

initialized, Bean Validation will throw a validation error. Similarly, if a previously created
instance of Contact has been modified so that firstName or lastName are null, a validation
error will be thrown.

The email field has a @Pattern constraint applied to it, with a complicated regular expression
that matches most valid email addresses. If the value of email doesn’t match this regular
expression, a validation error will be thrown.

The homePhone and mobilePhone fields have the same @Pattern constraints. The regular
expression matches 10 digit telephone numbers in the United States and Canada of the form
(xxx) xxx–xxxx.

The birthday field is annotated with the @Past constraint, which ensures that the value of
birthday must be in the past.

Primary Keys in Entities
Each entity has a unique object identifier. A customer entity, for example, might be identified by
a customer number. The unique identifier, or primary key, enables clients to locate a particular
entity instance. Every entity must have a primary key. An entity may have either a simple or a
composite primary key.

Simple primary keys use the javax.persistence.Id annotation to denote the primary key
property or field.

Composite primary keys are used when a primary key consists of more than one attribute,
which corresponds to a set of single persistent properties or fields. Composite primary keys
must be defined in a primary key class. Composite primary keys are denoted using the
javax.persistence.EmbeddedId and javax.persistence.IdClass annotations.

The primary key, or the property or field of a composite primary key, must be one of the
following Java language types:

■ Java primitive types
■ Java primitive wrapper types
■ java.lang.String

■ java.util.Date (the temporal type should be DATE)
■ java.sql.Date

■ java.math.BigDecimal

■ java.math.BigInteger

Floating-point types should never be used in primary keys. If you use a generated primary key,
only integral types will be portable.

Entities

Chapter 20 • Introduction to the Java Persistence API 361

A primary key class must meet these requirements.

■ The access control modifier of the class must be public.
■ The properties of the primary key class must be public or protected if property-based

access is used.
■ The class must have a public default constructor.
■ The class must implement the hashCode() and equals(Object other) methods.
■ The class must be serializable.
■ A composite primary key must be represented and mapped to multiple fields or properties

of the entity class or must be represented and mapped as an embeddable class.
■ If the class is mapped to multiple fields or properties of the entity class, the names and types

of the primary key fields or properties in the primary key class must match those of the
entity class.

The following primary key class is a composite key, and the orderId and itemId fields together
uniquely identify an entity:

public final class LineItemKey implements Serializable {

public Integer orderId;

public int itemId;

public LineItemKey() {}

public LineItemKey(Integer orderId, int itemId) {

this.orderId = orderId;

this.itemId = itemId;

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return (

(orderId==null?other.orderId==null:orderId.equals

(other.orderId)

)

&&

(itemId == other.itemId)

);

}

public int hashCode() {

return (

(orderId==null?0:orderId.hashCode())

^

((int) itemId)

);

Entities

The Java EE 6 Tutorial • October 2010362

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

Multiplicity in Entity Relationships
Multiplicities are of the following types: one-to-one, one-to-many, many-to-one, and
many-to-many:
■ One-to-one: Each entity instance is related to a single instance of another entity. For

example, to model a physical warehouse in which each storage bin contains a single widget,
StorageBin and Widget would have a one-to-one relationship. One-to-one relationships
use the javax.persistence.OneToOne annotation on the corresponding persistent
property or field.

■ One-to-many: An entity instance can be related to multiple instances of the other entities. A
sales order, for example, can have multiple line items. In the order application, Order would
have a one-to-many relationship with LineItem. One-to-many relationships use the
javax.persistence.OneToMany annotation on the corresponding persistent property or
field.

■ Many-to-one: Multiple instances of an entity can be related to a single instance of the other
entity. This multiplicity is the opposite of a one-to-many relationship. In the example just
mentioned, the relationship to Order from the perspective of LineItem is many-to-one.
Many-to-one relationships use the javax.persistence.ManyToOne annotation on the
corresponding persistent property or field.

■ Many-to-many: The entity instances can be related to multiple instances of each other. For
example, each college course has many students, and every student may take several courses.
Therefore, in an enrollment application, Course and Student would have a many-to-many
relationship. Many-to-many relationships use the javax.persistence.ManyToMany
annotation on the corresponding persistent property or field.

Direction in Entity Relationships
The direction of a relationship can be either bidirectional or unidirectional. A bidirectional
relationship has both an owning side and an inverse side. A unidirectional relationship has only
an owning side. The owning side of a relationship determines how the Persistence runtime
makes updates to the relationship in the database.

Bidirectional Relationships
In a bidirectional relationship, each entity has a relationship field or property that refers to the
other entity. Through the relationship field or property, an entity class’s code can access its

Entities

Chapter 20 • Introduction to the Java Persistence API 363

related object. If an entity has a related field, the entity is said to “know” about its related object.
For example, if Order knows what LineItem instances it has and if LineItem knows what Order
it belongs to, they have a bidirectional relationship.

Bidirectional relationships must follow these rules.

■ The inverse side of a bidirectional relationship must refer to its owning side by using the
mappedBy element of the @OneToOne, @OneToMany, or @ManyToMany annotation. The
mappedBy element designates the property or field in the entity that is the owner of the
relationship.

■ The many side of many-to-one bidirectional relationships must not define the mappedBy
element. The many side is always the owning side of the relationship.

■ For one-to-one bidirectional relationships, the owning side corresponds to the side that
contains the corresponding foreign key.

■ For many-to-many bidirectional relationships, either side may be the owning side.

Unidirectional Relationships
In a unidirectional relationship, only one entity has a relationship field or property that refers to
the other. For example, LineItem would have a relationship field that identifies Product, but
Product would not have a relationship field or property for LineItem. In other words, LineItem
knows about Product, but Product doesn’t know which LineItem instances refer to it.

Queries and Relationship Direction
Java Persistence query language and Criteria API queries often navigate across relationships.
The direction of a relationship determines whether a query can navigate from one entity to
another. For example, a query can navigate from LineItem to Product but cannot navigate in
the opposite direction. For Order and LineItem, a query could navigate in both directions
because these two entities have a bidirectional relationship.

Cascade Operations and Relationships
Entities that use relationships often have dependencies on the existence of the other entity in
the relationship. For example, a line item is part of an order; if the order is deleted, the line item
also should be deleted. This is called a cascade delete relationship.

The javax.persistence.CascadeType enumerated type defines the cascade operations that
are applied in the cascade element of the relationship annotations. Table 20–1 lists the cascade
operations for entities.

Entities

The Java EE 6 Tutorial • October 2010364

TABLE 20–1 Cascade Operations for Entities

Cascade Operation Description

ALL All cascade operations will be applied to the parent entity’s related entity. All is
equivalent to specifying cascade={DETACH, MERGE, PERSIST, REFRESH,

REMOVE}

DETACH If the parent entity is detached from the persistence context, the related entity
will also be detached.

MERGE If the parent entity is merged into the persistence context, the related entity will
also be merged.

PERSIST If the parent entity is persisted into the persistence context, the related entity will
also be persisted.

REFRESH If the parent entity is refreshed in the current persistence context, the related
entity will also be refreshed.

REMOVE If the parent entity is removed from the current persistence context, the related
entity will also be removed.

Cascade delete relationships are specified using the cascade=REMOVE element specification for
@OneToOne and @OneToMany relationships. For example:

@OneToMany(cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() { return orders; }

Orphan Removal in Relationships
When a target entity in one-to-one or one-to-many relationship is removed from the
relationship, it is often desirable to cascade the remove operation to the target entity. Such
target entities are considered “orphans,” and the orphanRemoval attribute can be used to specify
that orphaned entities should be removed. For example, if an order has many line items and one
of them is removed from the order, the removed line item is considered an orphan. If
orphanRemoval is set to true, the line item entity will be deleted when the line item is removed
from the order.

The orphanRemoval attribute in @OneToMany and @oneToOne takes a Boolean value and is by
default false.

The following example will cascade the remove operation to the orphaned customer entity
when it is removed from the relationship:

@OneToMany(mappedBy="customer", orphanRemoval="true")
public List<Order> getOrders() { ... }

Entities

Chapter 20 • Introduction to the Java Persistence API 365

Embeddable Classes in Entities
Embeddable classes are used to represent the state of an entity but don’t have a persistent
identity of their own, unlike entity classes. Instances of an embeddable class share the identity of
the entity that owns it. Embeddable classes exist only as the state of another entity. An entity
may have single-valued or collection-valued embeddable class attributes.

Embeddable classes have the same rules as entity classes but are annotated with the
javax.persistence.Embeddable annotation instead of @Entity.

The following embeddable class, ZipCode, has the fields zip and plusFour:

@Embeddable

public class ZipCode {

String zip;

String plusFour;

...

}

This embeddable class is used by the Address entity:

@Entity

public class Address {

@Id

protected long id

String street1;

String street2;

String city;

String province;

@Embedded

ZipCode zipCode;

String country;

...

}

Entities that own embeddable classes as part of their persistent state may annotate the field or
property with the javax.persistence.Embedded annotation but are not required to do so.

Embeddable classes may themselves use other embeddable classes to represent their state. They
may also contain collections of basic Java programming language types or other embeddable
classes. Embeddable classes may also contain relationships to other entities or collections of
entities. If the embeddable class has such a relationship, the relationship is from the target entity
or collection of entities to the entity that owns the embeddable class.

Entities

The Java EE 6 Tutorial • October 2010366

Entity Inheritance
Entities support class inheritance, polymorphic associations, and polymorphic queries. Entity
classes can extend non-entity classes, and non-entity classes can extend entity classes. Entity
classes can be both abstract and concrete.

The roster example application demonstrates entity inheritance, as described in “Entity
Inheritance in the roster Application” on page 392.

Abstract Entities
An abstract class may be declared an entity by decorating the class with @Entity. Abstract
entities are like concrete entities but cannot be instantiated.

Abstract entities can be queried just like concrete entities. If an abstract entity is the target of a
query, the query operates on all the concrete subclasses of the abstract entity:

@Entity

public abstract class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

}

Mapped Superclasses
Entities may inherit from superclasses that contain persistent state and mapping information
but are not entities. That is, the superclass is not decorated with the @Entity annotation and is
not mapped as an entity by the Java Persistence provider. These superclasses are most often
used when you have state and mapping information common to multiple entity classes.

Mapped superclasses are specified by decorating the class with the annotation
javax.persistence.MappedSuperclass:

@MappedSuperclass

public class Employee {

@Id

protected Integer employeeId;

Entity Inheritance

Chapter 20 • Introduction to the Java Persistence API 367

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

...

}

Mapped superclasses cannot be queried and can’t be used in EntityManager or Query
operations. You must use entity subclasses of the mapped superclass in EntityManager or
Query operations. Mapped superclasses can’t be targets of entity relationships. Mapped
superclasses can be abstract or concrete.

Mapped superclasses do not have any corresponding tables in the underlying datastore. Entities
that inherit from the mapped superclass define the table mappings. For instance, in the
preceding code sample, the underlying tables would be FULLTIMEEMPLOYEE and
PARTTIMEEMPLOYEE, but there is no EMPLOYEE table.

Non-Entity Superclasses
Entities may have non-entity superclasses, and these superclasses can be either abstract or
concrete. The state of non-entity superclasses is nonpersistent, and any state inherited from the
non-entity superclass by an entity class is nonpersistent. Non-entity superclasses may not be
used in EntityManager or Query operations. Any mapping or relationship annotations in
non-entity superclasses are ignored.

Entity Inheritance Mapping Strategies
You can configure how the Java Persistence provider maps inherited entities to the underlying
datastore by decorating the root class of the hierarchy with the annotation
javax.persistence.Inheritance. The following mapping strategies are used to map the
entity data to the underlying database:

■ A single table per class hierarchy
■ A table per concrete entity class
■ A “join” strategy, whereby fields or properties that are specific to a subclass are mapped to a

different table than the fields or properties that are common to the parent class

The strategy is configured by setting the strategy element of @Inheritance to one of the
options defined in the javax.persistence.InheritanceType enumerated type:

Entity Inheritance

The Java EE 6 Tutorial • October 2010368

public enum InheritanceType {

SINGLE_TABLE,

JOINED,

TABLE_PER_CLASS

};

The default strategy, InheritanceType.SINGLE_TABLE, is used if the @Inheritance annotation
is not specified on the root class of the entity hierarchy.

The Single Table per Class Hierarchy Strategy
With this strategy, which corresponds to the default InheritanceType.SINGLE_TABLE, all
classes in the hierarchy are mapped to a single table in the database. This table has a
discriminator column containing a value that identifies the subclass to which the instance
represented by the row belongs.

The discriminator column, whose elements are shown in Table 20–2, can be specified by using
the javax.persistence.DiscriminatorColumn annotation on the root of the entity class
hierarchy.

TABLE 20–2 @DiscriminatorColumnElements

Type Name Description

String name The name of the column to be used as the discriminator
column. The default is DTYPE. This element is optional.

DiscriminatorType discriminatorType The type of the column to be used as a discriminator
column. The default is DiscriminatorType.STRING. This
element is optional.

String columnDefinition The SQL fragment to use when creating the discriminator
column. The default is generated by the Persistence
provider and is implementation-specific. This element is
optional.

String length The column length for String-based discriminator types.
This element is ignored for non-String discriminator
types. The default is 31. This element is optional.

The javax.persistence.DiscriminatorType enumerated type is used to set the type of the
discriminator column in the database by setting the discriminatorType element of
@DiscriminatorColumn to one of the defined types. DiscriminatorType is defined as:

public enum DiscriminatorType {

STRING,

CHAR,

INTEGER

};

Entity Inheritance

Chapter 20 • Introduction to the Java Persistence API 369

If @DiscriminatorColumn is not specified on the root of the entity hierarchy and a
discriminator column is required, the Persistence provider assumes a default column name of
DTYPE and column type of DiscriminatorType.STRING.

The javax.persistence.DiscriminatorValue annotation may be used to set the value
entered into the discriminator column for each entity in a class hierarchy. You may decorate
only concrete entity classes with @DiscriminatorValue.

If @DiscriminatorValue is not specified on an entity in a class hierarchy that uses a
discriminator column, the Persistence provider will provide a default, implementation-specific
value. If the discriminatorType element of @DiscriminatorColumn is
DiscriminatorType.STRING, the default value is the name of the entity.

This strategy provides good support for polymorphic relationships between entities and queries
that cover the entire entity class hierarchy. However, this strategy requires the columns that
contain the state of subclasses to be nullable.

The Table per Concrete Class Strategy
In this strategy, which corresponds to InheritanceType.TABLE_PER_CLASS, each concrete class
is mapped to a separate table in the database. All fields or properties in the class, including
inherited fields or properties, are mapped to columns in the class’s table in the database.

This strategy provides poor support for polymorphic relationships and usually requires either
SQL UNION queries or separate SQL queries for each subclass for queries that cover the entire
entity class hierarchy.

Support for this strategy is optional and may not be supported by all Java Persistence API
providers. The default Java Persistence API provider in the GlassFish Server does not support
this strategy.

The Joined Subclass Strategy
In this strategy, which corresponds to InheritanceType.JOINED, the root of the class hierarchy
is represented by a single table, and each subclass has a separate table that contains only those
fields specific to that subclass. That is, the subclass table does not contain columns for inherited
fields or properties. The subclass table also has a column or columns that represent its primary
key, which is a foreign key to the primary key of the superclass table.

This strategy provides good support for polymorphic relationships but requires one or more
join operations to be performed when instantiating entity subclasses. This may result in poor
performance for extensive class hierarchies. Similarly, queries that cover the entire class
hierarchy require join operations between the subclass tables, resulting in decreased
performance.

Some Java Persistence API providers, including the default provider in the GlassFish Server,
require a discriminator column that corresponds to the root entity when using the joined
subclass strategy. If you are not using automatic table creation in your application, make sure

Entity Inheritance

The Java EE 6 Tutorial • October 2010370

that the database table is set up correctly for the discriminator column defaults, or use the
@DiscriminatorColumn annotation to match your database schema. For information on
discriminator columns, see “The Single Table per Class Hierarchy Strategy” on page 369.

Managing Entities
Entities are managed by the entity manager, which is represented by
javax.persistence.EntityManager instances. Each EntityManager instance is associated
with a persistence context: a set of managed entity instances that exist in a particular data store.
A persistence context defines the scope under which particular entity instances are created,
persisted, and removed. The EntityManager interface defines the methods that are used to
interact with the persistence context.

The EntityManager Interface
The EntityManager API creates and removes persistent entity instances, finds entities by the
entity’s primary key, and allows queries to be run on entities.

Container-Managed Entity Managers
With a container-managed entity manager, an EntityManager instance’s persistence context is
automatically propagated by the container to all application components that use the
EntityManager instance within a single Java Transaction API (JTA) transaction.

JTA transactions usually involve calls across application components. To complete a JTA
transaction, these components usually need access to a single persistence context. This occurs
when an EntityManager is injected into the application components by means of the
javax.persistence.PersistenceContext annotation. The persistence context is
automatically propagated with the current JTA transaction, and EntityManager references that
are mapped to the same persistence unit provide access to the persistence context within that
transaction. By automatically propagating the persistence context, application components
don’t need to pass references to EntityManager instances to each other in order to make
changes within a single transaction. The Java EE container manages the lifecycle of
container-managed entity managers.

To obtain an EntityManager instance, inject the entity manager into the application
component:

@PersistenceContext

EntityManager em;

Managing Entities

Chapter 20 • Introduction to the Java Persistence API 371

Application-Managed Entity Managers
With an application-managed entity manager, on the other hand, the persistence context is not
propagated to application components, and the lifecycle of EntityManager instances is
managed by the application.

Application-managed entity managers are used when applications need to access a persistence
context that is not propagated with the JTA transaction across EntityManager instances in a
particular persistence unit. In this case, each EntityManager creates a new, isolated persistence
context. The EntityManager and its associated persistence context are created and destroyed
explicitly by the application. They are also used when directly injecting EntityManager
instances can’t be done because EntityManager instances are not thread-safe.
EntityManagerFactory instances are thread-safe.

Applications create EntityManager instances in this case by using the createEntityManager
method of javax.persistence.EntityManagerFactory.

To obtain an EntityManager instance, you first must obtain an EntityManagerFactory

instance by injecting it into the application component by means of the
javax.persistence.PersistenceUnit annotation:

@PersistenceUnit

EntityManagerFactory emf;

Then obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

Application-managed entity managers don’t automatically propagate the JTA transaction
context. Such applications need to manually gain access to the JTA transaction manager and
add transaction demarcation information when performing entity operations. The
javax.transaction.UserTransaction interface defines methods to begin, commit, and roll
back transactions. Inject an instance of UserTransaction by creating an instance variable
annotated with @Resource:

@Resource

UserTransaction utx;

To begin a transaction, call the UserTransaction.begin method. When all the entity
operations are complete, call the UserTransaction.commit method to commit the transaction.
The UserTransaction.rollback method is used to roll back the current transaction.

The following example shows how to manage transactions in an application that uses an
application-managed entity manager:

@PersistenceContext

EntityManagerFactory emf;

EntityManager em;

Managing Entities

The Java EE 6 Tutorial • October 2010372

@Resource

UserTransaction utx;

...

em = emf.createEntityManager();

try {

utx.begin();

em.persist(SomeEntity);

em.merge(AnotherEntity);

em.remove(ThirdEntity);

utx.commit();

} catch (Exception e) {

utx.rollback();

}

Finding Entities Using the EntityManager
The EntityManager.find method is used to look up entities in the data store by the entity’s
primary key:

@PersistenceContext

EntityManager em;

public void enterOrder(int custID, Order newOrder) {

Customer cust = em.find(Customer.class, custID);

cust.getOrders().add(newOrder);

newOrder.setCustomer(cust);

}

Managing an Entity Instance’s Lifecycle
You manage entity instances by invoking operations on the entity by means of an
EntityManager instance. Entity instances are in one of four states: new, managed, detached, or
removed.

■ New entity instances have no persistent identity and are not yet associated with a persistence
context.

■ Managed entity instances have a persistent identity and are associated with a persistence
context.

■ Detached entity instances have a persistent identity and are not currently associated with a
persistence context.

■ Removed entity instances have a persistent identity, are associated with a persistent context,
and are scheduled for removal from the data store.

Persisting Entity Instances
New entity instances become managed and persistent either by invoking the persist method
or by a cascading persist operation invoked from related entities that have the
cascade=PERSIST or cascade=ALL elements set in the relationship annotation. This means that
the entity’s data is stored to the database when the transaction associated with the persist
operation is completed. If the entity is already managed, the persist operation is ignored,

Managing Entities

Chapter 20 • Introduction to the Java Persistence API 373

although the persist operation will cascade to related entities that have the cascade element
set to PERSIST or ALL in the relationship annotation. If persist is called on a removed entity
instance, the entity becomes managed. If the entity is detached, either persist will throw an
IllegalArgumentException, or the transaction commit will fail.

@PersistenceContext

EntityManager em;

...

public LineItem createLineItem(Order order, Product product,

int quantity) {

LineItem li = new LineItem(order, product, quantity);

order.getLineItems().add(li);

em.persist(li);

return li;

}

The persist operation is propagated to all entities related to the calling entity that have the
cascade element set to ALL or PERSIST in the relationship annotation:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Removing Entity Instances
Managed entity instances are removed by invoking the remove method or by a cascading
remove operation invoked from related entities that have the cascade=REMOVE or cascade=ALL
elements set in the relationship annotation. If the remove method is invoked on a new entity,
the remove operation is ignored, although remove will cascade to related entities that have the
cascade element set to REMOVE or ALL in the relationship annotation. If remove is invoked on a
detached entity, either remove will throw an IllegalArgumentException, or the transaction
commit will fail. If invoked on an already removed entity, remove will be ignored. The entity’s
data will be removed from the data store when the transaction is completed or as a result of the
flush operation.

public void removeOrder(Integer orderId) {

try {

Order order = em.find(Order.class, orderId);

em.remove(order);

}...

In this example, all LineItem entities associated with the order are also removed, as
Order.getLineItems has cascade=ALL set in the relationship annotation.

Synchronizing Entity Data to the Database
The state of persistent entities is synchronized to the database when the transaction with which
the entity is associated commits. If a managed entity is in a bidirectional relationship with
another managed entity, the data will be persisted, based on the owning side of the relationship.

Managing Entities

The Java EE 6 Tutorial • October 2010374

To force synchronization of the managed entity to the data store, invoke the flush method of
the EntityManager instance. If the entity is related to another entity and the relationship
annotation has the cascade element set to PERSIST or ALL, the related entity’s data will be
synchronized with the data store when flush is called.

If the entity is removed, calling flush will remove the entity data from the data store.

Persistence Units
A persistence unit defines a set of all entity classes that are managed by EntityManager
instances in an application. This set of entity classes represents the data contained within a
single data store.

Persistence units are defined by the persistence.xml configuration file. The following is an
example persistence.xml file:

<persistence>

<persistence-unit name="OrderManagement">
<description>This unit manages orders and customers.

It does not rely on any vendor-specific features and can

therefore be deployed to any persistence provider.

</description>

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

<jar-file>MyOrderApp.jar</jar-file>

<class>com.widgets.Order</class>

<class>com.widgets.Customer</class>

</persistence-unit>

</persistence>

This file defines a persistence unit named OrderManagement, which uses a JTA-aware data
source: jdbc/MyOrderDB. The jar-file and class elements specify managed persistence
classes: entity classes, embeddable classes, and mapped superclasses. The jar-file element
specifies JAR files that are visible to the packaged persistence unit that contain managed
persistence classes, whereas the class element explicitly names managed persistence classes.

The jta-data-source (for JTA-aware data sources) and non-jta-data-source (for
non-JTA-aware data sources) elements specify the global JNDI name of the data source to be
used by the container.

The JAR file or directory whose META-INF directory contains persistence.xml is called the
root of the persistence unit. The scope of the persistence unit is determined by the persistence
unit’s root. Each persistence unit must be identified with a name that is unique to the
persistence unit’s scope.

Managing Entities

Chapter 20 • Introduction to the Java Persistence API 375

Persistent units can be packaged as part of a WAR or EJB JAR file or can be packaged as a JAR
file that can then be included in an WAR or EAR file.

■ If you package the persistent unit as a set of classes in an EJB JAR file, persistence.xml
should be put in the EJB JAR’s META-INF directory.

■ If you package the persistence unit as a set of classes in a WAR file, persistence.xml should
be located in the WAR file’s WEB-INF/classes/META-INF directory.

■ If you package the persistence unit in a JAR file that will be included in a WAR or EAR file,
the JAR file should be located in either
■ The WEB-INF/lib directory of a WAR
■ The EAR file’s library directory

Note – In the Java Persistence API 1.0, JAR files could be located at the root of an EAR file
as the root of the persistence unit. This is no longer supported. Portable applications
should use the EAR file’s library directory as the root of the persistence unit.

Querying Entities
The Java Persistence API provides the following methods for querying entities.

■ The Java Persistence query language (JPQL) is a simple, string-based language similar to
SQL used to query entities and their relationships. See Chapter 22, “The Java Persistence
Query Language,” for more information.

■ The Criteria API is used to create typesafe queries using Java programming language APIs to
query for entities and their relationships. See Chapter 23, “Using the Criteria API to Create
Queries,” for more information.

Both JPQL and the Criteria API have advantages and disadvantages.

Just a few lines long, JPQL queries are typically more concise and more readable than Criteria
queries. Developers familiar with SQL will find it easy to learn the syntax of JPQL. JPQL named
queries can be defined in the entity class using a Java programming language annotation or in
the application’s deployment descriptor. JPQL queries are not typesafe, however, and require a
cast when retrieving the query result from the entity manager. This means that type-casting
errors may not be caught at compile time. JPQL queries don’t support open-ended parameters.

Criteria queries allow you to define the query in the business tier of the application. Although
this is also possible using JPQL dynamic queries, Criteria queries provide better performance
because JPQL dynamic queries must be parsed each time they are called. Criteria queries are
typesafe and therefore don’t require casting, as JPQL queries do. The Criteria API is just another
Java programming language API and doesn’t require developers to learn the syntax of another

Querying Entities

The Java EE 6 Tutorial • October 2010376

query language. Criteria queries are typically more verbose than JPQL queries and require the
developer to create several objects and perform operations on those objects before submitting
the query to the entity manager.

Further Information about Persistence
For more information about the Java Persistence API, see

■ Java Persistence 2.0 API specification:
http://jcp.org/en/jsr/detail?id=317

■ EclipseLink, the Java Persistence API implementation in the GlassFish Server:
http://www.eclipse.org/eclipselink/jpa.php

■ EclipseLink team blog:
http://eclipselink.blogspot.com/

■ EclipseLink wiki documentation:
http://wiki.eclipse.org/EclipseLink

Further Information about Persistence

Chapter 20 • Introduction to the Java Persistence API 377

http://jcp.org/en/jsr/detail?id=317
http://www.eclipse.org/eclipselink/jpa.php
http://eclipselink.blogspot.com/
http://wiki.eclipse.org/EclipseLink

378

Running the Persistence Examples

This chapter explains how to use the Java Persistence API. The material here focuses on the
source code and settings of three examples. The first example, order, is an application that uses
a stateful session bean to manage entities related to an ordering system. The second example,
roster, is an application that manages a community sports system. The third example,
address-book, is a web application that stores contact data. This chapter assumes that you are
familiar with the concepts detailed in Chapter 20, “Introduction to the Java Persistence API.”

The following topics are addressed here:

■ “The order Application” on page 379
■ “The roster Application” on page 390
■ “The address-book Application” on page 398

The orderApplication
The order application is a simple inventory and ordering application for maintaining a catalog
of parts and placing an itemized order of those parts. The application has entities that represent
parts, vendors, orders, and line items. These entities are accessed using a stateful session bean
that holds the business logic of the application. A simple singleton session bean creates the
initial entities on application deployment. A Facelets web application manipulates the data and
displays data from the catalog.

The information contained in an order can be divided into elements. What is the order
number? What parts are included in the order? What parts make up that part? Who makes the
part? What are the specifications for the part? Are there any schematics for the part? The order
application is a simplified version of an ordering system that has all these elements.

The order application consists of a single WAR module that includes the enterprise bean
classes, the entities, the support classes, and the Facelets XHTML and class files.

21C H A P T E R 2 1

379

Entity Relationships in the orderApplication
The order application demonstrates several types of entity relationships: self-referential,
one-to-one, one-to-many, many-to-one, and unidirectional relationships.

Self-Referential Relationships
A self-referential relationship occurs between relationship fields in the same entity. Part has a
field, bomPart, which has a one-to-many relationship with the field parts, which is also in Part.
That is, a part can be made up of many parts, and each of those parts has exactly one
bill-of-material part.

The primary key for Part is a compound primary key, a combination of the partNumber and
revision fields. This key is mapped to the PARTNUMBER and REVISION columns in the
EJB_ORDER_PART table:

...

@ManyToOne

@JoinColumns({

@JoinColumn(name="BOMPARTNUMBER",
referencedColumnName="PARTNUMBER"),

@JoinColumn(name="BOMREVISION",
referencedColumnName="REVISION")

})

public Part getBomPart() {

return bomPart;

}

...

@OneToMany(mappedBy="bomPart")
public Collection<Part> getParts() {

return parts;

}

...

One-to-One Relationships
Part has a field, vendorPart, that has a one-to-one relationship with VendorPart’s part field.
That is, each part has exactly one vendor part, and vice versa.

Here is the relationship mapping in Part:

@OneToOne(mappedBy="part")
public VendorPart getVendorPart() {

return vendorPart;

}

Here is the relationship mapping in VendorPart:

@OneToOne

@JoinColumns({

@JoinColumn(name="PARTNUMBER",

The orderApplication

The Java EE 6 Tutorial • October 2010380

referencedColumnName="PARTNUMBER"),
@JoinColumn(name="PARTREVISION",

referencedColumnName="REVISION")
})

public Part getPart() {

return part;

}

Note that, because Part uses a compound primary key, the @JoinColumns annotation is used to
map the columns in the PERSISTENCE_ORDER_VENDOR_PART table to the columns in
PERSISTENCE_ORDER_PART. The PERSISTENCE_ORDER_VENDOR_PART table’s PARTREVISION
column refers to PERSISTENCE_ORDER_PART’s REVISION column.

One-to-Many Relationship Mapped to Overlapping Primary and
Foreign Keys
Order has a field, lineItems, that has a one-to-many relationship with LineItem’s field order.
That is, each order has one or more line item.

LineItem uses a compound primary key that is made up of the orderId and itemId fields. This
compound primary key maps to the ORDERID and ITEMID columns in the
PERSISTENCE_ORDER_LINEITEM table. ORDERID is a foreign key to the ORDERID column in the
PERSISTENCE_ORDER_ORDER table. This means that the ORDERID column is mapped twice: once
as a primary key field, orderId; and again as a relationship field, order.

Here’s the relationship mapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

Unidirectional Relationships
LineItem has a field, vendorPart, that has a unidirectional many-to-one relationship with
VendorPart. That is, there is no field in the target entity in this relationship:

@ManyToOne

public VendorPart getVendorPart() {

return vendorPart;

}

The orderApplication

Chapter 21 • Running the Persistence Examples 381

Primary Keys in the orderApplication
The order application uses several types of primary keys: single-valued primary keys,
compound primary keys, and generated primary keys.

Generated Primary Keys
VendorPart uses a generated primary key value. That is, the application does not assign primary
key values for the entities but instead relies on the persistence provider to generate the primary
key values. The @GeneratedValue annotation is used to specify that an entity will use a
generated primary key.

In VendorPart, the following code specifies the settings for generating primary key values:

@TableGenerator(

name="vendorPartGen",
table="PERSISTENCE_ORDER_SEQUENCE_GENERATOR",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="VENDOR_PART_ID",
allocationSize=10)

@Id

@GeneratedValue(strategy=GenerationType.TABLE,

generator="vendorPartGen")
public Long getVendorPartNumber() {

return vendorPartNumber;

}

The @TableGenerator annotation is used in conjunction with @GeneratedValue’s
strategy=TABLE element. That is, the strategy used to generate the primary keys is to use a table
in the database. The @TableGenerator annotation is used to configure the settings for the
generator table. The name element sets the name of the generator, which is vendorPartGen in
VendorPart.

The EJB_ORDER_SEQUENCE_GENERATOR table, whose two columns are GEN_KEY and GEN_VALUE,
will store the generated primary key values. This table could be used to generate other entity’s
primary keys, so the pkColumnValue element is set to VENDOR_PART_ID to distinguish this
entity’s generated primary keys from other entity’s generated primary keys. The
allocationSize element specifies the amount to increment when allocating primary key
values. In this case, each VendorPart’s primary key will increment by 10.

The primary key field vendorPartNumber is of type Long, as the generated primary key’s field
must be an integral type.

Compound Primary Keys
A compound primary key is made up of multiple fields and follows the requirements described
in “Primary Keys in Entities” on page 361. To use a compound primary key, you must create a
wrapper class.

The orderApplication

The Java EE 6 Tutorial • October 2010382

In order, two entities use compound primary keys: Part and LineItem.

■ Part uses the PartKey wrapper class. Part’s primary key is a combination of the part
number and the revision number. PartKey encapsulates this primary key.

■ LineItem uses the LineItemKey class. LineItem’s primary key is a combination of the order
number and the item number. LineItemKey encapsulates this primary key.

This is the LineItemKey compound primary key wrapper class:

package order.entity;

public final class LineItemKey implements

java.io.Serializable {

private Integer orderId;

private int itemId;

public int hashCode() {

return ((this.getOrderId()==null

?0:this.getOrderId().hashCode())

^ ((int) this.getItemId()));

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return ((this.getOrderId()==null

?other.orderId==null:this.getOrderId().equals

(other.orderId)) && (this.getItemId ==

other.itemId));

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

The @IdClass annotation is used to specify the primary key class in the entity class. In
LineItem, @IdClass is used as follows:

@IdClass(order.entity.LineItemKey.class)

@Entity

...

public class LineItem {

...

}

The two fields in LineItem are tagged with the @Id annotation to mark those fields as part of the
compound primary key:

The orderApplication

Chapter 21 • Running the Persistence Examples 383

@Id

public int getItemId() {

return itemId;

}

...

@Id

@Column(name="ORDERID", nullable=false,

insertable=false, updatable=false)

public Integer getOrderId() {

return orderId;

}

For orderId, you also use the @Column annotation to specify the column name in the table and
that this column should not be inserted or updated, as it is an overlapping foreign key pointing
at the PERSISTENCE_ORDER_ORDER table’s ORDERID column (see “One-to-Many Relationship
Mapped to Overlapping Primary and Foreign Keys” on page 381). That is, orderId will be set by
the Order entity.

In LineItem’s constructor, the line item number (LineItem.itemId) is set using the
Order.getNextId method:

public LineItem(Order order, int quantity, VendorPart

vendorPart) {

this.order = order;

this.itemId = order.getNextId();

this.orderId = order.getOrderId();

this.quantity = quantity;

this.vendorPart = vendorPart;

}

Order.getNextId counts the number of current line items, adds 1, and returns that number:

public int getNextId() {

return this.lineItems.size() + 1;

}

Part doesn’t require the @Column annotation on the two fields that comprise Part’s compound
primary key, because Part’s compound primary key is not an overlapping primary key/foreign
key:

@IdClass(order.entity.PartKey.class)

@Entity

...

public class Part {

...

@Id

public String getPartNumber() {

return partNumber;

}

...

@Id

public int getRevision() {

return revision;

}

The orderApplication

The Java EE 6 Tutorial • October 2010384

...

}

Entity Mapped to More Than One Database Table
Part’s fields map to more than one database table: PERSISTENCE_ORDER_PART and
PERSISTENCE_ORDER_PART_DETAIL. The PERSISTENCE_ORDER_PART_DETAIL table holds the
specification and schematics for the part. The @SecondaryTable annotation is used to specify
the secondary table.

...

@Entity

@Table(name="PERSISTENCE_ORDER_PART")
@SecondaryTable(name="PERSISTENCE_ORDER_PART_DETAIL", pkJoinColumns={

@PrimaryKeyJoinColumn(name="PARTNUMBER",
referencedColumnName="PARTNUMBER"),

@PrimaryKeyJoinColumn(name="REVISION",
referencedColumnName="REVISION")

})

public class Part {

...

}

PERSISTENCE_ORDER_PART_DETAIL and PERSISTENCE_ORDER_PART share the same primary key
values. The pkJoinColumns element of @SecondaryTable is used to specify that
PERSISTENCE_ORDER_PART_DETAIL’s primary key columns are foreign keys to
PERSISTENCE_ORDER_PART. The @PrimaryKeyJoinColumn annotation sets the primary key
column names and specifies which column in the primary table the column refers to. In this
case, the primary key column names for both PERSISTENCE_ORDER_PART_DETAIL and
PERSISTENCE_ORDER_PART are the same: PARTNUMBER and REVISION, respectively.

Cascade Operations in the orderApplication
Entities that have relationships to other entities often have dependencies on the existence of the
other entity in the relationship. For example, a line item is part of an order; if the order is
deleted, then the line item also should be deleted. This is called a cascade delete relationship.

In order, there are two cascade delete dependencies in the entity relationships. If the Order to
which a LineItem is related is deleted, the LineItem also should be deleted. If the Vendor to
which a VendorPart is related is deleted, the VendorPart also should be deleted.

You specify the cascade operations for entity relationships by setting the cascade element in the
inverse (nonowning) side of the relationship. The cascade element is set to ALL in the case of
Order.lineItems. This means that all persistence operations (deletes, updates, and so on) are
cascaded from orders to line items.

Here is the relationship mapping in Order:

The orderApplication

Chapter 21 • Running the Persistence Examples 385

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

BLOB and CLOB Database Types in the order
Application
The PARTDETAIL table in the database has a column, DRAWING, of type BLOB. BLOB stands for
binary large objects, which are used for storing binary data, such as an image. The DRAWING
column is mapped to the field Part. drawing of type java.io.Serializable. The @Lob
annotation is used to denote that the field is large object.

@Column(table="PERSISTENCE_ORDER_PART_DETAIL")
@Lob

public Serializable getDrawing() {

return drawing;

}

PERSISTENCE_ORDER_PART_DETAIL also has a column, SPECIFICATION, of type CLOB. CLOB
stands for character large objects, which are used to store string data too large to be stored in a
VARCHAR column. SPECIFICATION is mapped to the field Part.specification of type
java.lang.String. The @Lob annotation is also used here to denote that the field is a large
object.

@Column(table="PERSISTENCE_ORDER_PART_DETAIL")
@Lob

public String getSpecification() {

return specification;

}

Both of these fields use the @Column annotation and set the table element to the secondary
table.

The orderApplication

The Java EE 6 Tutorial • October 2010386

Temporal Types in the orderApplication
The Order.lastUpdate persistent property, which is of type java.util.Date, is mapped to the
PERSISTENCE_ORDER_ORDER.LASTUPDATE database field, which is of the SQL type TIMESTAMP.
To ensure the proper mapping between these types, you must use the @Temporal annotation
with the proper temporal type specified in @Temporal’s element. @Temporal’s elements are of
type javax.persistence.TemporalType. The possible values are
■ DATE, which maps to java.sql.Date

■ TIME, which maps to java.sql.Time

■ TIMESTAMP, which maps to java.sql.Timestamp

Here is the relevant section of Order:

@Temporal(TIMESTAMP)

public Date getLastUpdate() {

return lastUpdate;

}

Managing the orderApplication’s Entities
The RequestBean stateful session bean contains the business logic and manages the entities of
order. RequestBean uses the @PersistenceContext annotation to retrieve an entity manager
instance, which is used to manage order’s entities in RequestBean’s business methods:

@PersistenceContext

private EntityManager em;

This EntityManager instance is a container-managed entity manager, so the container takes
care of all the transactions involved in the managing order’s entities.

Creating Entities
The RequestBean.createPart business method creates a new Part entity. The
EntityManager.persist method is used to persist the newly created entity to the database.

Part part = new Part(partNumber,

revision,

description,

revisionDate,

specification,

drawing);

em.persist(part);

The ConfigBean singleton session bean is used to initialize the data in order. ConfigBean is
annotated with @Startup, which indicates that the EJB container should create ConfigBean
when order is deployed. The createData method is annotated with @PostConstruct and
creates the initial entities used by order by calling RequestsBean's business methods.

The orderApplication

Chapter 21 • Running the Persistence Examples 387

Finding Entities
The RequestBean.getOrderPrice business method returns the price of a given order, based on
the orderId. The EntityManager.find method is used to retrieve the entity from the database.

Order order = em.find(Order.class, orderId);

The first argument of EntityManager.find is the entity class, and the second is the primary
key.

Setting Entity Relationships
The RequestBean.createVendorPart business method creates a VendorPart associated with a
particular Vendor. The EntityManager.persist method is used to persist the newly created
VendorPart entity to the database, and the VendorPart.setVendor and
Vendor.setVendorPart methods are used to associate the VendorPart with the Vendor.

PartKey pkey = new PartKey();

pkey.partNumber = partNumber;

pkey.revision = revision;

Part part = em.find(Part.class, pkey);

VendorPart vendorPart = new VendorPart(description, price,

part);

em.persist(vendorPart);

Vendor vendor = em.find(Vendor.class, vendorId);

vendor.addVendorPart(vendorPart);

vendorPart.setVendor(vendor);

Using Queries
The RequestBean.adjustOrderDiscount business method updates the discount applied to all
orders. This method uses the findAllOrders named query, defined in Order:

@NamedQuery(

name="findAllOrders",
query="SELECT o FROM Order o"

)

The EntityManager.createNamedQuery method is used to run the query. Because the query
returns a List of all the orders, the Query.getResultList method is used.

List orders = em.createNamedQuery(

"findAllOrders")
.getResultList();

The RequestBean.getTotalPricePerVendor business method returns the total price of all the
parts for a particular vendor. This method uses a named parameter, id, defined in the named
query findTotalVendorPartPricePerVendor defined in VendorPart.

The orderApplication

The Java EE 6 Tutorial • October 2010388

@NamedQuery(

name="findTotalVendorPartPricePerVendor",
query="SELECT SUM(vp.price) " +

"FROM VendorPart vp " +

"WHERE vp.vendor.vendorId = :id"
)

When running the query, the Query.setParameter method is used to set the named parameter
id to the value of vendorId, the parameter to RequestBean.getTotalPricePerVendor:

return (Double) em.createNamedQuery(

"findTotalVendorPartPricePerVendor")
.setParameter("id", vendorId)

.getSingleResult();

The Query.getSingleResult method is used for this query because the query returns a single
value.

Removing Entities
The RequestBean.removeOrder business method deletes a given order from the database. This
method uses the EntityManager.remove method to delete the entity from the database.

Order order = em.find(Order.class, orderId);

em.remove(order);

Building, Packaging, Deploying, and Running the
orderApplication
This section explains how to build, package, deploy, and run the order application. To do this,
you will create the database tables in the Java DB server, then build, deploy, and run the
example.

▼ To Build, Package, Deploy, and Run orderUsingNetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/persistence/

Select the order folder.

Select the Open as Main Project check box.

Click Open Project.

1

2

3

4

5

The orderApplication

Chapter 21 • Running the Persistence Examples 389

In the Projects tab, right-click the orderproject and select Run.

NetBeans IDE opens a web browser to http://localhost:8080/order/.

▼ To Build, Package, Deploy, and Run orderUsing Ant

In a terminal window, go to:
tut-install/examples/persistence/order/

Type the following command:
ant

This runs the default task, which compiles the source files and packages the application into a
WAR file located at tut-install/examples/persistence/order/dist/order.war.

To deploy the WAR, make sure that the GlassFish Server is started, then type the following
command:
ant deploy

Open a web browser to http://localhost:8080/order/ to create and update the order data.

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To do this,
type the following command:

ant all

The rosterApplication
The roster application maintains the team rosters for players in recreational sports leagues.
The application has four components: Java Persistence API entities (Player, Team, and League),
a stateful session bean (RequestBean), an application client (RosterClient), and three helper
classes (PlayerDetails, TeamDetails, and LeagueDetails).

Functionally, roster is similar to the order application, with three new features that order
does not have: many-to-many relationships, entity inheritance, and automatic table creation at
deployment time.

6

1

2

3

4

The rosterApplication

The Java EE 6 Tutorial • October 2010390

Relationships in the rosterApplication
A recreational sports system has the following relationships:
■ A player can be on many teams.
■ A team can have many players.
■ A team is in exactly one league.
■ A league has many teams.

In roster this system is reflected by the following relationships between the Player, Team, and
League entities.
■ There is a many-to-many relationship between Player and Team.
■ There is a many-to-one relationship between Team and League.

The Many-To-Many Relationship in roster

The many-to-many relationship between Player and Team is specified by using the
@ManyToMany annotation. In Team.java, the @ManyToMany annotation decorates the
getPlayers method:

@ManyToMany

@JoinTable(

name="EJB_ROSTER_TEAM_PLAYER",
joinColumns=

@JoinColumn(name="TEAM_ID", referencedColumnName="ID"),
inverseJoinColumns=

@JoinColumn(name="PLAYER_ID", referencedColumnName="ID")
)

public Collection<Player> getPlayers() {

return players;

}

The @JoinTable annotation is used to specify a database table that will associate player IDs with
team IDs. The entity that specifies the @JoinTable is the owner of the relationship, so the Team
entity is the owner of the relationship with the Player entity. Because roster uses automatic
table creation at deployment time, the container will create a join table named
EJB_ROSTER_TEAM_PLAYER.

Player is the inverse, or nonowning, side of the relationship with Team. As one-to-one and
many-to-one relationships, the nonowning side is marked by the mappedBy element in the
relationship annotation. Because the relationship between Player and Team is bidirectional, the
choice of which entity is the owner of the relationship is arbitrary.

In Player.java, the @ManyToMany annotation decorates the getTeams method:

@ManyToMany(mappedBy="players")
public Collection<Team> getTeams() {

return teams;

}

The rosterApplication

Chapter 21 • Running the Persistence Examples 391

Entity Inheritance in the rosterApplication
The roster application shows how to use entity inheritance, as described in “Entity
Inheritance” on page 367.

The League entity in roster is an abstract entity with two concrete subclasses: SummerLeague
and WinterLeague. Because League is an abstract class, it cannot be instantiated:

...

@Entity

@Table(name = "EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

Instead, when creating a league, clients use SummerLeague or WinterLeague. SummerLeague and
WinterLeague inherit the persistent properties defined in League and add only a constructor
that verifies that the sport parameter matches the type of sport allowed in that seasonal league.
For example, here is the SummerLeague entity:

...

@Entity

public class SummerLeague extends League

implements java.io.Serializable {

/** Creates a new instance of SummerLeague */

public SummerLeague() {

}

public SummerLeague(String id, String name,

String sport) throws IncorrectSportException {

this.id = id;

this.name = name;

if (sport.equalsIgnoreCase("swimming") ||

sport.equalsIgnoreCase("soccer") ||

sport.equalsIgnoreCase("basketball") ||

sport.equalsIgnoreCase("baseball")) {

this.sport = sport;

} else {

throw new IncorrectSportException(

"Sport is not a summer sport.");
}

}

}

The roster application uses the default mapping strategy of InheritanceType.SINGLE_TABLE,
so the @Inheritance annotation is not required. If you want to use a different mapping strategy,
decorate League with @Inheritance and specify the mapping strategy in the strategy element:

@Entity

@Inheritance(strategy=JOINED)

@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

The rosterApplication

The Java EE 6 Tutorial • October 2010392

...

}

The roster application uses the default discriminator column name, so the
@DiscriminatorColumn annotation is not required. Because you are using automatic table
generation in roster, the Persistence provider will create a discriminator column called DTYPE

in the EJB_ROSTER_LEAGUE table, which will store the name of the inherited entity used to create
the league. If you want to use a different name for the discriminator column, decorate League
with @DiscriminatorColumn and set the name element:

@Entity

@DiscriminatorColumn(name="DISCRIMINATOR")
@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

Criteria Queries in the rosterApplication
The roster application uses Criteria API queries, as opposed to the JPQL queries used in
order. Criteria queries are Java programming language, typesafe queries defined in the business
tier of roster, in the RequestBean stateless session bean.

Metamodel Classes in the rosterApplication
Metamodel classes model an entity’s attributes and are used by Criteria queries to navigate to an
entity’s attributes. Each entity class in roster has a corresponding metamodel class, generated
at compile time, with the same package name as the entity and appended with an underscore
character (_). For example, the roster.entity.Person entity has a corresponding metamodel
class, roster.entity.Person_.

Each persistent field or property in the entity class has a corresponding attribute in the entity’s
metamodel class. For the Person entity, the corresponding metamodel class is:

@StaticMetamodel(Person.class)

public class Person_ {

public static volatile SingularAttribute<Player, String> id;

public static volatile SingularAttribute<Player, String> name;

public static volatile SingularAttribute<Player, String> position;

public static volatile SingularAttribute<Player, Double> salary;

public static volatile CollectionAttribute<Player, Team> teams;

}

Obtaining a CriteriaBuilder Instance in RequestBean

The CrtiteriaBuilder interface defines methods to create criteria query objects and create
expressions for modifying those query objects. RequestBean creates an instance of
CriteriaBuilder by using a @PostConstruct method, init:

The rosterApplication

Chapter 21 • Running the Persistence Examples 393

@PersistenceContext

private EntityManager em;

private CriteriaBuilder cb;

@PostConstruct

private void init() {

cb = em.getCriteriaBuilder();

}

The EntityManager instance is injected at runtime, and then that EntityManager object is used
to create the CriteriaBuilder instance by calling getCriteriaBuilder. The
CriteriaBuilder instance is created in a @PostConstruct method to ensure that the
EntityManager instance has been injected by the enterprise bean container.

Creating Criteria Queries in RequestBean's Business Methods
Many of the business methods in RequestBean define Criteria queries. One business method,
getPlayersByPosition, returns a list of players who play a particular position on a team:

public List<PlayerDetails> getPlayersByPosition(String position) {

logger.info("getPlayersByPosition");
List<Player> players = null;

try {

CriteriaQuery<Player> cq = cb.createQuery(Player.class);

if (cq != null) {

Root<Player> player = cq.from(Player.class);

// set the where clause

cq.where(cb.equal(player.get(Player_.position), position));

cq.select(player);

TypedQuery<Player> q = em.createQuery(cq);

players = q.getResultList();

}

return copyPlayersToDetails(players);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

A query object is created by calling the CriteriaBuilder object’s createQuery method, with
the type set to Player because the query will return a list of players.

The query root, the base entity from which the query will navigate to find the entity’s attributes
and related entities, is created by calling the from method of the query object. This sets the
FROM clause of the query.

The WHERE clause, set by calling the where method on the query object, restricts the results of
the query according to the conditions of an expression. The CriteriaBuilder.equal method
compares the two expressions. In getPlayersByPosition, the position attribute of the
Player_ metamodel class, accessed by calling the get method of the query root, is compared to
the position parameter passed to getPlayersByPosition.

The rosterApplication

The Java EE 6 Tutorial • October 2010394

The SELECT clause of the query is set by calling the select method of the query object. The
query will return Player entities, so the query root object is passed as a parameter to select.

The query object is prepared for execution by calling EntityManager.createQuery, which
returns a TypedQuery<T> object with the type of the query, in this case Player. This typed query
object is used to execute the query, which occurs when the getResultList method is called,
and a List<Player> collection is returned.

Automatic Table Generation in the rosterApplication
At deployment time, the GlassFish Server will automatically drop and create the database tables
used by roster. This is done by setting the eclipselink.ddl-generation property to
drop-and-create-tables in persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="em" transaction-type="JTA">
<jta-data-source>jdbc/__default</jta-data-source>

<properties>

<property name="eclipselink.ddl-generation"
value="drop-and-create-tables"/>

</properties>

</persistence-unit>

</persistence>

This feature is specific to the Java Persistence API provider used by the GlassFish Server and is
nonportable across Java EE servers. Automatic table creation is useful for development
purposes, however, and the eclipselink.ddl-generation property may be removed from
persistence.xml when preparing the application for production use or when deploying to
other Java EE servers.

Building, Packaging, Deploying, and Running the
rosterApplication
This section explains how to build, package, deploy, and run the roster application. You can
do this using either NetBeans IDE or Ant.

The rosterApplication

Chapter 21 • Running the Persistence Examples 395

▼ To Build, Package, Deploy, and Run rosterUsing NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/persistence/

Select the roster folder.

Select the Open as Main Project and Open Required Projects check boxes.

Click Open Project.

In the Projects tab, right-click the rosterproject and select Run.

You will see the following partial output from the application client in the Output tab:
List all players in team T2:

P6 Ian Carlyle goalkeeper 555.0

P7 Rebecca Struthers midfielder 777.0

P8 Anne Anderson forward 65.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

List all teams in league L1:

T1 Honey Bees Visalia

T2 Gophers Manteca

T5 Crows Orland

List all defenders:

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0

P25 Frank Fletcher defender 399.0

...

▼ To Build, Package, Deploy, and Run rosterUsing Ant

In a terminal window, go to:
tut-install/examples/persistence/roster/

Type the following command:
ant

This runs the default task, which compiles the source files and packages the application into an
EAR file located at tut-install/examples/persistence/roster/dist/roster.ear.

1

2

3

4

5

6

1

2

The rosterApplication

The Java EE 6 Tutorial • October 2010396

To deploy the EAR, make sure that the GlassFish Server is started; then type the following
command:
ant deploy

The build system will check whether the Java DB database server is running and start it if it is
not running, then deploy roster.ear. The GlassFish Server will then drop and create the
database tables during deployment, as specified in persistence.xml.

After roster.ear is deployed, a client JAR, rosterClient.jar, is retrieved. This contains the
application client.

To run the application client, type the following command:
ant run

You will see the output, which begins:

[echo] running application client container.

[exec] List all players in team T2:

[exec] P6 Ian Carlyle goalkeeper 555.0

[exec] P7 Rebecca Struthers midfielder 777.0

[exec] P8 Anne Anderson forward 65.0

[exec] P9 Jan Wesley defender 100.0

[exec] P10 Terry Smithson midfielder 100.0

[exec] List all teams in league L1:

[exec] T1 Honey Bees Visalia

[exec] T2 Gophers Manteca

[exec] T5 Crows Orland

[exec] List all defenders:

[exec] P2 Alice Smith defender 505.0

[exec] P5 Barney Bold defender 100.0

[exec] P9 Jan Wesley defender 100.0

[exec] P22 Janice Walker defender 857.0

[exec] P25 Frank Fletcher defender 399.0

...

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To do this,
type the following command:

ant all

3

4

The rosterApplication

Chapter 21 • Running the Persistence Examples 397

The address-bookApplication
The address-book example application is a simple web application that stores contact data. It
uses a single entity class, Contact, that uses the Java API for JavaBeans Validation (Bean
Validation) to validate the data stored in the persistent attributes of the entity, as described in
“Validating Persistent Fields and Properties” on page 359.

Bean Validation Constraints in address-book

The Contact entity uses the @NotNull, @Pattern, and @Past constraints on the persistent
attributes.

The @NotNull constraint marks the attribute as a required field. The attribute must be set to a
non-null value before the entity can be persisted or modified. Bean Validation will throw a
validation error if the attribute is null when the entity is persisted or modified.

The @Pattern constraint defines a regular expression that the value of the attribute must match
before the entity can be persisted or modified. This constraint has two different uses in
address-book.

■ The regular expression declared in the @Pattern annotation on the email field matches
email addresses of the form name@domain name.top level domain, allowing only valid
characters for email addresses. For example, username@example.com will pass validation, as
will firstname.lastname@mail.example.com. However,
firstname,lastname@example.com, which contains an illegal comma character in the local
name, will fail validation.

■ The mobilePhone and homePhone fields are annotated with a @Pattern constraint that
defines a regular expression to match phone numbers of the form (xxx) xxx–xxxx.

The @Past constraint is applied to the birthday field, which must be a java.util.Date in the
past.

Here are the relevant parts of the Contact entity class:

@Entity

public class Contact implements Serializable {

private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

@NotNull

protected String firstName;

@NotNull

protected String lastName;

@Pattern(regexp="[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\\."
+"[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*"
+"@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?",

The address-bookApplication

The Java EE 6 Tutorial • October 2010398

message="{invalid.email}")
protected String email;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String mobilePhone;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String homePhone;

@Temporal(javax.persistence.TemporalType.DATE)

@Past

protected Date birthday;

...

}

Specifying Error Messages for Constraints in
address-book

Some of the constraints in the Contact entity specify an optional message:

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String homePhone;

The optional message element in the @Pattern constraint overrides the default validation
message. The message can be specified directly:

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="Invalid phone number!")

protected String homePhone;

The constraints in Contact, however, are strings in the resource bundle
tut-install/examples/persistence/address-book/src/java/
ValidationMessages.properties. This allows the validation messages to be located in one
single properties file and the messages to be easily localized. Overridden Bean Validation
messages must be placed in a resource bundle properties file named
ValidationMessages.properties in the default package, with localized resource bundles
taking the form ValidationMessages_locale-prefix.properties. For example,
ValidationMessages_es.properties is the resource bundle used in Spanish speaking locales.

Validating Contact Input from a JavaServer Faces
Application
The address-book application uses a JavaServer Faces web front end to allow users to enter
contacts. While JavaServer Faces has a form input validation mechanism using tags in Facelets
XHTML files, address-book doesn’t use these validation tags. Bean Validation constraints in
JavaServer Faces backing beans, in this case in the Contact entity, automatically trigger
validation when the forms are submitted.

The address-bookApplication

Chapter 21 • Running the Persistence Examples 399

The following code snippet from the Create.xhtml Facelets file shows some of the input form
for creating new Contact instances:

<h:form>

<h:panelGrid columns="3">
<h:outputLabel value="#{bundle.CreateContactLabel_firstName}"

for="firstName" />

<h:inputText id="firstName"
value="#{contactController.selected.firstName}"
title="#{bundle.CreateContactTitle_firstName}" />

<h:message for="firstName"
errorStyle="color: red"
infoStyle="color: green" />

<h:outputLabel value="#{bundle.CreateContactLabel_lastName}"
for="lastName" />

<h:inputText id="lastName"
value="#{contactController.selected.lastName}"
title="#{bundle.CreateContactTitle_lastName}" />

<h:message for="lastName"
errorStyle="color: red"
infoStyle="color: green" />

...

</h:panelGrid>

</h:form>

The <h:inputText> tags firstName and lastName are bound to the attributes in the Contact
entity instance selected in the ContactController stateless session bean. Each
<h:inputText> tag has an associated <h:message> tag that will display validation error
messages. The form doesn’t require any JavaServer Faces validation tags, however.

Building, Packaging, Deploying, and Running the
address-bookApplication
This section describes how to build, package, deploy, and run the address-book application.
You can do this using either NetBeans IDE or Ant.

▼ Building, Packaging, Deploying, and Running the address-book
Application in NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/persistence/

Select the address-book folder.

Select the Open as Main Project and Open Required Projects check boxes.

1

2

3

4

The address-bookApplication

The Java EE 6 Tutorial • October 2010400

Click Open Project.

In the Projects tab, right-click the address-bookproject and select Run.
After the application has been deployed, a web browser window appears at the following URL:
http://localhost:8080/address-book/

Click Show All Contact Items, then Create New Contact. Type values in the form fields; then click
Save.
If any of the values entered violate the constraints in Contact, an error message will appear in
red beside the form field with the incorrect values.

▼ Building, Packaging, Deploying, and Running the address-book
Application Using Ant

In a terminal window, go to:
tut-install/examples/persistence/address-book

Type the following command:
ant

This will compile and assemble the address-book application.

Type the following command:
ant deploy

This will deploy the application to GlassFish Server.

Open a web browser window and type the following URL:
http://localhost:8080/address-book/

Tip – As a convenience, the all task will build, package, deploy, and run the application. To do
this, type the following command:

ant all

Click Show All Contact Items, then Create New Contact. Type values in the form fields; then click
Save.
If any of the values entered violate the constraints in Contact, an error message will appear in
red beside the form field with the incorrect values.

5

6

7

1

2

3

4

5

The address-bookApplication

Chapter 21 • Running the Persistence Examples 401

402

The Java Persistence Query Language

The Java Persistence query language defines queries for entities and their persistent state. The
query language allows you to write portable queries that work regardless of the underlying data
store.

The query language uses the abstract persistence schemas of entities, including their
relationships, for its data model and defines operators and expressions based on this data
model. The scope of a query spans the abstract schemas of related entities that are packaged in
the same persistence unit. The query language uses an SQL-like syntax to select objects or values
based on entity abstract schema types and relationships among them.

This chapter relies on the material presented in earlier chapters. For conceptual information,
see Chapter 20, “Introduction to the Java Persistence API.” For code examples, see Chapter 21,
“Running the Persistence Examples.”

The following topics are addressed here:

■ “Query Language Terminology” on page 404
■ “Creating Queries Using the Java Persistence Query Language” on page 404
■ “Simplified Query Language Syntax” on page 406
■ “Example Queries” on page 407
■ “Full Query Language Syntax” on page 411

22C H A P T E R 2 2

403

Query Language Terminology
The following list defines some of the terms referred to in this chapter:
■ Abstract schema: The persistent schema abstraction (persistent entities, their state, and

their relationships) over which queries operate. The query language translates queries over
this persistent schema abstraction into queries that are executed over the database schema
to which entities are mapped.

■ Abstract schema type: The type to which the persistent property of an entity evaluates in
the abstract schema. That is, each persistent field or property in an entity has a
corresponding state field of the same type in the abstract schema. The abstract schema type
of an entity is derived from the entity class and the metadata information provided by Java
language annotations.

■ Backus-Naur Form (BNF): A notation that describes the syntax of high-level languages.
The syntax diagrams in this chapter are in BNF notation.

■ Navigation: The traversal of relationships in a query language expression. The navigation
operator is a period.

■ Path expression: An expression that navigates to a entity’s state or relationship field.
■ State field: A persistent field of an entity.
■ Relationship field: A persistent relationship field of an entity whose type is the abstract

schema type of the related entity.

Creating Queries Using the Java Persistence Query Language
The EntityManager.createQuery and EntityManager.createNamedQuery methods are used
to query the datastore by using Java Persistence query language queries.

The createQuery method is used to create dynamic queries, which are queries defined directly
within an application’s business logic:

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.setMaxResults(10)

.getResultList();

}

The createNamedQuery method is used to create static queries, or queries that are defined in
metadata by using the javax.persistence.NamedQuery annotation. The name element of
@NamedQuery specifies the name of the query that will be used with the createNamedQuery
method. The query element of @NamedQuery is the query:

@NamedQuery(

name="findAllCustomersWithName",

Query Language Terminology

The Java EE 6 Tutorial • October 2010404

query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)

Here’s an example of createNamedQuery, which uses the @NamedQuery:

@PersistenceContext

public EntityManager em;

...

customers = em.createNamedQuery("findAllCustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

Named Parameters in Queries
Named parameters are query parameters that are prefixed with a colon (:). Named parameters
in a query are bound to an argument by the following method:

javax.persistence.Query.setParameter(String name, Object value)

In the following example, the name argument to the findWithName business method is bound to
the :custName named parameter in the query by calling Query.setParameter:

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.getResultList();

}

Named parameters are case-sensitive and may be used by both dynamic and static queries.

Positional Parameters in Queries
You may use positional parameters instead of named parameters in queries. Positional
parameters are prefixed with a question mark (?) followed the numeric position of the
parameter in the query. The Query.setParameter(integer position, Object value)

method is used to set the parameter values.

In the following example, the findWithName business method is rewritten to use input
parameters:

public List findWithName(String name) {

return em.createQuery(

“SELECT c FROM Customer c WHERE c.name LIKE ?1”)

.setParameter(1, name)

.getResultList();

}

Input parameters are numbered starting from 1. Input parameters are case-sensitive, and may
be used by both dynamic and static queries.

Creating Queries Using the Java Persistence Query Language

Chapter 22 • The Java Persistence Query Language 405

Simplified Query Language Syntax
This section briefly describes the syntax of the query language so that you can quickly move on
to “Example Queries” on page 407. When you are ready to learn about the syntax in more detail,
see “Full Query Language Syntax” on page 411.

Select Statements
A select query has six clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. The
SELECT and FROM clauses are required, but the WHERE, GROUP BY, HAVING, and ORDER BY clauses
are optional. Here is the high-level BNF syntax of a query language select query:

QL_statement ::= select_clause from_clause

[where_clause][groupby_clause][having_clause][orderby_clause]

■ The SELECT clause defines the types of the objects or values returned by the query.
■ The FROM clause defines the scope of the query by declaring one or more identification

variables, which can be referenced in the SELECT and WHERE clauses. An identification
variable represents one of the following elements:
■ The abstract schema name of an entity
■ An element of a collection relationship
■ An element of a single-valued relationship
■ A member of a collection that is the multiple side of a one-to-many relationship

■ The WHERE clause is a conditional expression that restricts the objects or values retrieved by
the query. Although the clause is optional, most queries have a WHERE clause.

■ The GROUP BY clause groups query results according to a set of properties.
■ The HAVING clause is used with the GROUP BY clause to further restrict the query results

according to a conditional expression.
■ The ORDER BY clause sorts the objects or values returned by the query into a specified order.

Update and Delete Statements
Update and delete statements provide bulk operations over sets of entities. These statements
have the following syntax:

update_statement :: = update_clause [where_clause]

delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The
WHERE clause may be used to restrict the scope of the update or delete operation.

Simplified Query Language Syntax

The Java EE 6 Tutorial • October 2010406

Example Queries
The following queries are from the Player entity of the roster application, which is
documented in “The roster Application” on page 390.

Simple Queries
If you are unfamiliar with the query language, these simple queries are a good place to start.

A Basic Select Query
SELECT p

FROM Player p

■ Data retrieved: All players.
■ Description: The FROM clause declares an identification variable named p, omitting the

optional keyword AS. If the AS keyword were included, the clause would be written as
follows:

FROM Player AS

p

The Player element is the abstract schema name of the Player entity.
■ See also: “Identification Variables” on page 417.

Eliminating Duplicate Values
SELECT DISTINCT

p

FROM Player p

WHERE p.position = ?1

■ Data retrieved: The players with the position specified by the query’s parameter.
■ Description: The DISTINCT keyword eliminates duplicate values.

The WHERE clause restricts the players retrieved by checking their position, a persistent field
of the Player entity. The ?1 element denotes the input parameter of the query.

■ See also: “Input Parameters” on page 422 and “The DISTINCT Keyword” on page 432.

Using Named Parameters
SELECT DISTINCT p

FROM Player p

WHERE p.position = :position AND p.name = :name

■ Data retrieved: The players having the specified positions and names.

Example Queries

Chapter 22 • The Java Persistence Query Language 407

■ Description: The position and name elements are persistent fields of the Player entity. The
WHERE clause compares the values of these fields with the named parameters of the query, set
using the Query.setNamedParameter method. The query language denotes a named input
parameter using a colon (:) followed by an identifier. The first input parameter is
:position, the second is :name.

Queries That Navigate to Related Entities
In the query language, an expression can traverse, or navigate, to related entities. These
expressions are the primary difference between the Java Persistence query language and SQL.
Queries navigates to related entities, whereas SQL joins tables.

A Simple Query with Relationships
SELECT DISTINCT p

FROM Player p, IN(p.teams) t

■ Data retrieved: All players who belong to a team.
■ Description: The FROM clause declares two identification variables: p and t. The p variable

represents the Player entity, and the t variable represents the related Team entity. The
declaration for t references the previously declared p variable. The IN keyword signifies that
teams is a collection of related entities. The p.teams expression navigates from a Player to
its related Team. The period in the p.teams expression is the navigation operator.
You may also use the JOIN statement to write the same query:

SELECT DISTINCT p

FROM Player p JOIN p.teams t

This query could also be rewritten as:

SELECT DISTINCT p

FROM Player p

WHERE p.team IS NOT EMPTY

Navigating to Single-Valued Relationship Fields
Use the JOIN clause statement to navigate to a single-valued relationship field:

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = ’soccer’ OR l.sport =’football’

In this example, the query will return all teams that are in either soccer or football leagues.

Traversing Relationships with an Input Parameter
SELECT DISTINCT p

FROM Player p, IN (p.teams) AS t

WHERE t.city = :city

Example Queries

The Java EE 6 Tutorial • October 2010408

■ Data retrieved: The players whose teams belong to the specified city.
■ Description: This query is similar to the previous example but adds an input parameter.

The AS keyword in the FROM clause is optional. In the WHERE clause, the period preceding the
persistent variable city is a delimiter, not a navigation operator. Strictly speaking,
expressions can navigate to relationship fields (related entities) but not to persistent fields.
To access a persistent field, an expression uses the period as a delimiter.
Expressions cannot navigate beyond (or further qualify) relationship fields that are
collections. In the syntax of an expression, a collection-valued field is a terminal symbol.
Because the teams field is a collection, the WHERE clause cannot specify p.teams.city (an
illegal expression).

■ See also: “Path Expressions” on page 419.

Traversing Multiple Relationships
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league = :league

■ Data retrieved: The players who belong to the specified league.
■ Description: The expressions in this query navigate over two relationships. The p.teams

expression navigates the Player-Team relationship, and the t.league expression navigates
the Team-League relationship.

In the other examples, the input parameters are String objects; in this example, the parameter
is an object whose type is a League. This type matches the league relationship field in the
comparison expression of the WHERE clause.

Navigating According to Related Fields
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

■ Data retrieved: The players who participate in the specified sport.
■ Description: The sport persistent field belongs to the League entity. To reach the sport

field, the query must first navigate from the Player entity to Team (p.teams) and then from
Team to the League entity (t.league). Because it is not a collection, the league relationship
field can be followed by the sport persistent field.

Queries with Other Conditional Expressions
Every WHERE clause must specify a conditional expression, of which there are several kinds. In
the previous examples, the conditional expressions are comparison expressions that test for
equality. The following examples demonstrate some of the other kinds of conditional
expressions. For descriptions of all conditional expressions, see “WHERE Clause” on page 421.

Example Queries

Chapter 22 • The Java Persistence Query Language 409

The LIKE Expression
SELECT p

FROM Player p

WHERE p.name LIKE ’Mich%’

■ Data retrieved: All players whose names begin with “Mich.”
■ Description: The LIKE expression uses wildcard characters to search for strings that match

the wildcard pattern. In this case, the query uses the LIKE expression and the % wildcard to
find all players whose names begin with the string “Mich.” For example, “Michael” and
“Michelle” both match the wildcard pattern.

■ See also: “LIKE Expressions” on page 424.

The IS NULL Expression
SELECT t

FROM Team t

WHERE t.league IS NULL

■ Data retrieved: All teams not associated with a league.
■ Description: The IS NULL expression can be used to check whether a relationship has been

set between two entities. In this case, the query checks whether the teams are associated with
any leagues and returns the teams that do not have a league.

■ See also: “NULL Comparison Expressions” on page 424 and “NULL Values” on page 429.

The IS EMPTY Expression
SELECT p

FROM Player p

WHERE p.teams IS EMPTY

■ Data retrieved: All players who do not belong to a team.
■ Description: The teams relationship field of the Player entity is a collection. If a player does

not belong to a team, the teams collection is empty, and the conditional expression is TRUE.
■ See also: “Empty Collection Comparison Expressions” on page 425.

The BETWEEN Expression
SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

■ Data retrieved: The players whose salaries fall within the range of the specified salaries.
■ Description: This BETWEEN expression has three arithmetic expressions: a persistent field

(p.salary) and the two input parameters (:lowerSalary and :higherSalary). The
following expression is equivalent to the BETWEEN expression:

p.salary >= :lowerSalary AND p.salary <= :higherSalary

■ See also: “BETWEEN Expressions” on page 423.

Example Queries

The Java EE 6 Tutorial • October 2010410

Comparison Operators
SELECT DISTINCT p1

FROM Player p1, Player p2

WHERE p1.salary > p2.salary AND p2.name = :name

■ Data retrieved: All players whose salaries are higher than the salary of the player with the
specified name.

■ Description: The FROM clause declares two identification variables (p1 and p2) of the same
type (Player). Two identification variables are needed because the WHERE clause compares
the salary of one player (p2) with that of the other players (p1).

■ See also: “Identification Variables” on page 417.

Bulk Updates and Deletes
The following examples show how to use the UPDATE and DELETE expressions in queries. UPDATE
and DELETE operate on multiple entities according to the condition or conditions set in the
WHERE clause. The WHERE clause in UPDATE and DELETE queries follows the same rules as SELECT
queries.

Update Queries
UPDATE Player p

SET p.status = ’inactive’

WHERE p.lastPlayed < :inactiveThresholdDate

■ Description: This query sets the status of a set of players to inactive if the player’s last game
was longer than the date specified in inactiveThresholdDate.

Delete Queries
DELETE

FROM Player p

WHERE p.status = ’inactive’

AND p.teams IS EMPTY

■ Description: This query deletes all inactive players who are not on a team.

Full Query Language Syntax
This section discusses the query language syntax, as defined in the Java Persistence API 2.0
specification available at http://jcp.org/en/jsr/detail?id=317. Much of the following
material paraphrases or directly quotes the specification.

BNF Symbols
Table 22–1 describes the BNF symbols used in this chapter.

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 411

http://jcp.org/en/jsr/detail?id=317

TABLE 22–1 BNF Symbol Summary

Symbol Description

::= The element to the left of the symbol is defined by the constructs on the right.

* The preceding construct may occur zero or more times.

{...} The constructs within the braces are grouped together.

[...] The constructs within the brackets are optional.

| An exclusive OR.

BOLDFACE A keyword; although capitalized in the BNF diagram, keywords are not case-sensitive.

White space A whitespace character can be a space, a horizontal tab, or a line feed.

BNF Grammar of the Java Persistence
Query Language
Here is the entire BNF diagram for the query language:

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause]

[having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::=

FROM identification_variable_declaration

{, {identification_variable_declaration |

collection_member_declaration}}*

identification_variable_declaration ::=

range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= abstract_schema_name [AS]

identification_variable

join ::= join_spec join_association_path_expression [AS]

identification_variable

fetch_join ::= join_specFETCH join_association_path_expression

association_path_expression ::=

collection_valued_path_expression |

single_valued_association_path_expression

join_spec::= [LEFT [OUTER] |INNER] JOIN

join_association_path_expression ::=

join_collection_valued_path_expression |

join_single_valued_association_path_expression

join_collection_valued_path_expression::=

identification_variable.collection_valued_association_field

join_single_valued_association_path_expression::=

identification_variable.single_valued_association_field

collection_member_declaration ::=

IN (collection_valued_path_expression) [AS]

identification_variable

single_valued_path_expression ::=

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010412

state_field_path_expression |

single_valued_association_path_expression

state_field_path_expression ::=

{identification_variable |

single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=

identification_variable.{single_valued_association_field.}*

single_valued_association_field

collection_valued_path_expression ::=

identification_variable.{single_valued_association_field.}*

collection_valued_association_field

state_field ::=

{embedded_class_state_field.}*simple_state_field

update_clause ::=UPDATE abstract_schema_name [[AS]

identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field |

single_valued_association_field} = new_value

new_value ::=

simple_arithmetic_expression |

string_primary |

datetime_primary |

boolean_primary |

enum_primary simple_entity_expression |

NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS]

identification_variable]

select_clause ::= SELECT [DISTINCT] select_expression {,

select_expression}*

select_expression ::=

single_valued_path_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

constructor_expression

constructor_expression ::=

NEW constructor_name(constructor_item {,

constructor_item}*)

constructor_item ::= single_valued_path_expression |

aggregate_expression

aggregate_expression ::=

{AVG |MAX |MIN |SUM} ([DISTINCT]

state_field_path_expression) |

COUNT ([DISTINCT] identification_variable |

state_field_path_expression |

single_valued_association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression [ASC |DESC]

subquery ::= simple_select_clause subquery_from_clause

[where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::=

FROM subselect_identification_variable_declaration

{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=

identification_variable_declaration |

association_path_expression [AS] identification_variable |

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 413

collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT]

simple_select_expression

simple_select_expression::=

single_valued_path_expression |

aggregate_expression |

identification_variable

conditional_expression ::= conditional_term |

conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND

conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |(

conditional_expression)

simple_cond_expression ::=

comparison_expression |

between_expression |

like_expression |

in_expression |

null_comparison_expression |

empty_collection_comparison_expression |

collection_member_expression |

exists_expression

between_expression ::=

arithmetic_expression [NOT] BETWEEN

arithmetic_expressionAND arithmetic_expression |

string_expression [NOT] BETWEEN string_expression AND

string_expression |

datetime_expression [NOT] BETWEEN

datetime_expression AND datetime_expression

in_expression ::=

state_field_path_expression [NOT] IN (in_item {, in_item}*

| subquery)

in_item ::= literal | input_parameter

like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE

escape_character]

null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT]

NULL

empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_expression

[NOT] MEMBER [OF] collection_valued_path_expression

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= {ALL |ANY |SOME} (subquery)

comparison_expression ::=

string_expression comparison_operator {string_expression |

all_or_any_expression} |

boolean_expression {= |<> } {boolean_expression |

all_or_any_expression} |

enum_expression {= |<> } {enum_expression |

all_or_any_expression} |

datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |

entity_expression {= |<> } {entity_expression |

all_or_any_expression} |

arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression}

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010414

comparison_operator ::= = |> |>= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |

(subquery)

simple_arithmetic_expression ::=

arithmetic_term | simple_arithmetic_expression {+ |- }

arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ }

arithmetic_factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic_primary ::=

state_field_path_expression |

numeric_literal |

(simple_arithmetic_expression) |

input_parameter |

functions_returning_numerics |

aggregate_expression

string_expression ::= string_primary | (subquery)

string_primary ::=

state_field_path_expression |

string_literal |

input_parameter |

functions_returning_strings |

aggregate_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::=

state_field_path_expression |

input_parameter |

functions_returning_datetime |

aggregate_expression

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::=

state_field_path_expression |

boolean_literal |

input_parameter

enum_expression ::= enum_primary | (subquery)

enum_primary ::=

state_field_path_expression |

enum_literal |

input_parameter

entity_expression ::=

single_valued_association_path_expression |

simple_entity_expression

simple_entity_expression ::=

identification_variable |

input_parameter

functions_returning_numerics::=

LENGTH(string_primary) |

LOCATE(string_primary, string_primary[,

simple_arithmetic_expression]) |

ABS(simple_arithmetic_expression) |

SQRT(simple_arithmetic_expression) |

MOD(simple_arithmetic_expression,

simple_arithmetic_expression) |

SIZE(collection_valued_path_expression)

functions_returning_datetime ::=

CURRENT_DATE |

CURRENT_TIME |

CURRENT_TIMESTAMP

functions_returning_strings ::=

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 415

CONCAT(string_primary, string_primary) |

SUBSTRING(string_primary,

simple_arithmetic_expression,

simple_arithmetic_expression)|

TRIM([[trim_specification] [trim_character] FROM]

string_primary) |

LOWER(string_primary) |

UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

FROMClause
The FROM clause defines the domain of the query by declaring identification variables.

Identifiers
An identifier is a sequence of one or more characters. The first character must be a valid first
character (letter, $, _) in an identifier of the Java programming language, hereafter in this
chapter called simply “Java”. Each subsequent character in the sequence must be a valid nonfirst
character (letter, digit, $, _) in a Java identifier. (For details, see the Java SE API documentation
of the isJavaIdentifierStart and isJavaIdentifierPart methods of the Character class.)
The question mark (?) is a reserved character in the query language and cannot be used in an
identifier.

A query language identifier is case-sensitive, with two exceptions:

■ Keywords
■ Identification variables

An identifier cannot be the same as a query language keyword. Here is a list of query language
keywords:

ABS ALL AND ANY AS

ASC AVG BETWEEN BIT_LENGTH BOTH

BY CASE CHAR_LENGTH CHARACTER_LENGTH CLASS

COALESCE CONCAT COUNT CURRENT_DATE CURRENT_TIMESTAMP

DELETE DESC DISTINCT ELSE EMPTY

END ENTRY ESCAPE EXISTS FALSE

FETCH FROM GROUP HAVING IN

INDEX INNER IS JOIN KEY

LEADING LEFT LENGTH LIKE LOCATE

LOWER MAX MEMBER MIN MOD

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010416

NEW NOT NULL NULLIF OBJECT

OF OR ORDER OUTER POSITION

SELECT SET SIZE SOME SQRT

SUBSTRING SUM THEN TRAILING TRIM

TRUE TYPE UNKNOWN UPDATE UPPER

VALUE WHEN WHERE

It is not recommended that you use an SQL keyword as an identifier, because the list of
keywords may expand to include other reserved SQL words in the future.

Identification Variables
An identification variable is an identifier declared in the FROM clause. Although they can
reference identification variables, the SELECT and WHERE clauses cannot declare them. All
identification variables must be declared in the FROM clause.

Because it is an identifier, an identification variable has the same naming conventions and
restrictions as an identifier, with the exception that an identification variables is
case-insensitive. For example, an identification variable cannot be the same as a query language
keyword. (See the preceding section for more naming rules.) Also, within a given persistence
unit, an identification variable name must not match the name of any entity or abstract schema.

The FROM clause can contain multiple declarations, separated by commas. A declaration can
reference another identification variable that has been previously declared (to the left). In the
following FROM clause, the variable t references the previously declared variable p:

FROM Player p, IN (p.teams) AS t

Even if it is not used in the WHERE clause, an identification variable's declaration can affect the
results of the query. For example, compare the next two queries. The following query returns all
players, whether or not they belong to a team:

SELECT p

FROM Player p

In contrast, because it declares the t identification variable, the next query fetches all players
who belong to a team:

SELECT p

FROM Player p, IN (p.teams) AS t

The following query returns the same results as the preceding query, but the WHERE clause makes
it easier to read:

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 417

SELECT p

FROM Player p

WHERE p.teams IS NOT EMPTY

An identification variable always designates a reference to a single value whose type is that of
the expression used in the declaration. There are two kinds of declarations: range variable and
collection member.

Range Variable Declarations
To declare an identification variable as an abstract schema type, you specify a range variable
declaration. In other words, an identification variable can range over the abstract schema type
of an entity. In the following example, an identification variable named p represents the abstract
schema named Player:

FROM Player p

A range variable declaration can include the optional AS operator:

FROM Player AS p

To obtain objects, a query usually uses path expressions to navigate through the relationships.
But for those objects that cannot be obtained by navigation, you can use a range variable
declaration to designate a starting point, or root.

If the query compares multiple values of the same abstract schema type, the FROM clause must
declare multiple identification variables for the abstract schema:

FROM Player p1, Player p2

For an example of such a query, see “Comparison Operators” on page 411.

Collection Member Declarations
In a one-to-many relationship, the multiple side consists of a collection of entities. An
identification variable can represent a member of this collection. To access a collection
member, the path expression in the variable’s declaration navigates through the relationships in
the abstract schema. (For more information on path expressions, see “Path Expressions” on
page 419.) Because a path expression can be based on another path expression, the navigation
can traverse several relationships. See “Traversing Multiple Relationships” on page 409.

A collection member declaration must include the IN operator but can omit the optional AS
operator.

In the following example, the entity represented by the abstract schema named Player has a
relationship field called teams. The identification variable called t represents a single member
of the teams collection.

FROM Player p, IN (p.tea

ms) t

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010418

Joins
The JOIN operator is used to traverse over relationships between entities and is functionally
similar to the IN operator.

In the following example, the query joins over the relationship between customers and orders:

SELECT c

FROM Customer c JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

The INNER keyword is optional:

SELECT c

FROM Customer c INNER JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

These examples are equivalent to the following query, which uses the IN operator:

SELECT c

FROM Customer c, IN(c.orders) o

WHERE c.status = 1 AND o.totalPrice > 10000

You can also join a single-valued relationship:

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = :sport

A LEFT JOIN or LEFT OUTER JOIN retrieves a set of entities where matching values in the join
condition may be absent. The OUTER keyword is optional.

SELECT c.name, o.totalPrice

FROM Order o LEFT JOIN o.customer c

A FETCH JOIN is a join operation that returns associated entities as a side effect of running the
query. In the following example, the query returns a set of departments and, as a side effect, the
associated employees of the departments, even though the employees were not explicitly
retrieved by the SELECT clause.

SELECT d

FROM Department d LEFT JOIN FETCH d.employees

WHERE d.deptno = 1

Path Expressions
Path expressions are important constructs in the syntax of the query language, for several
reasons. First, path expressions define navigation paths through the relationships in the abstract
schema. These path definitions affect both the scope and the results of a query. Second, path
expressions can appear in any of the main clauses of a query (SELECT, DELETE, HAVING, UPDATE,

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 419

WHERE, FROM, GROUP BY, ORDER BY). Finally, although much of the query language is a subset of
SQL, path expressions are extensions not found in SQL.

Examples of Path Expressions
Here, the WHERE clause contains a single_valued_path_expression; the p is an identification
variable, and salary is a persistent field of Player:

SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Here, the WHERE clause also contains a single_valued_path_expression; t is an identification
variable, league is a single-valued relationship field, and sport is a persistent field of league:

SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

Here, the WHERE clause contains a collection_valued_path_expression; p is an identification
variable, and teams designates a collection-valued relationship field:

SELECT DISTINCT p

FROM Player p

WHERE p.teams IS EMPTY

Expression Types
The type of a path expression is the type of the object represented by the ending element, which
can be one of the following:

■ Persistent field
■ Single-valued relationship field
■ Collection-valued relationship field

For example, the type of the expression p.salary is double because the terminating persistent
field (salary) is a double.

In the expression p.teams, the terminating element is a collection-valued relationship field
(teams). This expression’s type is a collection of the abstract schema type named Team. Because
Team is the abstract schema name for the Team entity, this type maps to the entity. For more
information on the type mapping of abstract schemas, see “Return Types” on page 431.

Navigation
A path expression enables the query to navigate to related entities. The terminating elements of
an expression determine whether navigation is allowed. If an expression contains a
single-valued relationship field, the navigation can continue to an object that is related to the
field. However, an expression cannot navigate beyond a persistent field or a collection-valued

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010420

relationship field. For example, the expression p.teams.league.sport is illegal because teams
is a collection-valued relationship field. To reach the sport field, the FROM clause could define an
identification variable named t for the teams field:

FROM Player AS p, IN (p.teams) t

WHERE t.league.sport = ’soccer’

WHEREClause
The WHERE clause specifies a conditional expression that limits the values returned by the query.
The query returns all corresponding values in the data store for which the conditional
expression is TRUE. Although usually specified, the WHERE clause is optional. If the WHERE clause
is omitted, the query returns all values. The high-level syntax for the WHERE clause follows:

where_clause ::= WHERE conditional_expression

Literals
There are four kinds of literals: string, numeric, Boolean, and enum.

■ String literals: A string literal is enclosed in single quotes:

’Duke’

If a string literal contains a single quote, you indicate the quote by using two single quotes:

’Duke’’s’

Like a Java String, a string literal in the query language uses the Unicode character
encoding.

■ Numeric literals: There are two types of numeric literals: exact and approximate.
An exact numeric literal is a numeric value without a decimal point, such as 65, –233, and
+12. Using the Java integer syntax, exact numeric literals support numbers in the range of a
Java long.
An approximate numeric literal is a numeric value in scientific notation, such as 57., –85.7,
and +2.1. Using the syntax of the Java floating-point literal, approximate numeric literals
support numbers in the range of a Java double.

■ Boolean literals: A Boolean literal is either TRUE or FALSE. These keywords are not
case-sensitive.

■ Enum literals: The Java Persistence query language supports the use of enum literals using
the Java enum literal syntax. The enum class name must be specified as a fully qualified class
name:

SELECT e

FROM Employee e

WHERE e.status = com.xyz.EmployeeStatus.FULL_TIME

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 421

Input Parameters
An input parameter can be either a named parameter or a positional parameter.

■ A named input parameter is designated by a colon (:) followed by a string; for example,
:name.

■ A positional input parameter is designated by a question mark (?) followed by an integer.
For example, the first input parameter is ?1, the second is ?2, and so forth.

The following rules apply to input parameters.

■ They can be used only in a WHERE or HAVING clause.
■ Positional parameters must be numbered, starting with the integer 1.
■ Named parameters and positional parameters may not be mixed in a single query.
■ Named parameters are case-sensitive.

Conditional Expressions
A WHERE clause consists of a conditional expression, which is evaluated from left to right within
a precedence level. You can change the order of evaluation by using parentheses.

Operators and Their Precedence
Table 22–2 lists the query language operators in order of decreasing precedence.

TABLE 22–2 Query Language Order Precedence

Type Precedence Order

Navigation . (a period)

Arithmetic + – (unary)

* / (multiplication and division)

+ – (addition and subtraction)

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010422

TABLE 22–2 Query Language Order Precedence (Continued)
Type Precedence Order

Comparison =

>

>=

<

<=

<> (not equal)

[NOT] BETWEEN

[NOT] LIKE

[NOT] IN

IS [NOT] NULL

IS [NOT] EMPTY

[NOT] MEMBER OF

Logical NOT

AND

OR

BETWEEN Expressions
A BETWEEN expression determines whether an arithmetic expression falls within a range of
values.

These two expressions are equivalent:

p.age BETWEEN 15 AND 19

p.age >= 15 AND p.age <= 19

The following two expressions also are equivalent:

p.age NOT BETWEEN 15 AND 19

p.age < 15 OR p.age > 19

If an arithmetic expression has a NULL value, the value of the BETWEEN expression is unknown.

IN Expressions
An IN expression determines whether a string belongs to a set of string literals or whether a
number belongs to a set of number values.

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 423

The path expression must have a string or numeric value. If the path expression has a NULL
value, the value of the IN expression is unknown.

In the following example, the expression is TRUE if the country is UK , but FALSE if the country is
Peru.

o.country IN (’UK’, ’US’, ’France’)

You may also use input parameters:

o.country IN (’UK’, ’US’, ’France’, :country)

LIKE Expressions
A LIKE expression determines whether a wildcard pattern matches a string.

The path expression must have a string or numeric value. If this value is NULL, the value of the
LIKE expression is unknown. The pattern value is a string literal that can contain wildcard
characters. The underscore (_) wildcard character represents any single character. The percent
(%) wildcard character represents zero or more characters. The ESCAPE clause specifies an escape
character for the wildcard characters in the pattern value. Table 22–3 shows some sample LIKE
expressions.

TABLE 22–3 LIKEExpression Examples

Expression TRUE FALSE

address.phone LIKE ’12%3’ ’123’

’12993’

’1234’

asentence.word LIKE ’l_se’ ’lose’ ’loose’

aword.underscored LIKE ’_%’ ESCAPE ’\’ ’_foo’ ’bar’

address.phone NOT LIKE ’12%3’ ’1234’ ’123’

’12993’

NULLComparison Expressions
A NULL comparison expression tests whether a single-valued path expression or an input
parameter has a NULL value. Usually, the NULL comparison expression is used to test whether a
single-valued relationship has been set:

SELECT t

FROM Team t

WHERE t.league IS NULL

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010424

This query selects all teams where the league relationship is not set. Note that the following
query is not equivalent:

SELECT t

FROM Team t

WHERE t.league = NULL

The comparison with NULL using the equals operator (=) always returns an unknown value,
even if the relationship is not set. The second query will always return an empty result.

Empty Collection Comparison Expressions
The IS [NOT] EMPTY comparison expression tests whether a collection-valued path expression
has no elements. In other words, it tests whether a collection-valued relationship has been set.

If the collection-valued path expression is NULL, the empty collection comparison expression
has a NULL value.

Here is an example that finds all orders that do not have any line items:

SELECT o

FROM Order o

WHERE o.lineItems IS EMPTY

Collection Member Expressions
The [NOT] MEMBER [OF] collection member expression determines whether a value is a member
of a collection. The value and the collection members must have the same type.

If either the collection-valued or single-valued path expression is unknown, the collection
member expression is unknown. If the collection-valued path expression designates an empty
collection, the collection member expression is FALSE.

The OF keyword is optional.

The following example tests whether a line item is part of an order:

SELECT o

FROM Order o

WHERE :lineItem MEMBER OF o.lineItems

Subqueries
Subqueries may be used in the WHERE or HAVING clause of a query. Subqueries must be
surrounded by parentheses.

The following example finds all customers who have placed more than ten orders:

SELECT c

FROM Customer c

WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 425

Subqueries may contain EXISTS, ALL, and ANY expressions.

■ EXISTS expressions: The [NOT] EXISTS expression is used with a subquery and is true only
if the result of the subquery consists of one or more values and is false otherwise.
The following example finds all employees whose spouses are also employees:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (

SELECT spouseEmp

FROM Employee spouseEmp

WHERE spouseEmp = emp.spouse)

■ ALL and ANY expressions: The ALL expression is used with a subquery and is true if all the
values returned by the subquery are true or if the subquery is empty.
The ANY expression is used with a subquery and is true if some of the values returned by the
subquery are true. An ANY expression is false if the subquery result is empty or if all the
values returned are false. The SOME keyword is synonymous with ANY.
The ALL and ANY expressions are used with the =, <, <=, >, >=, and <> comparison operators.
The following example finds all employees whose salaries are higher than the salaries of the
managers in the employee’s department:

SELECT emp

FROM Employee emp

WHERE emp.salary > ALL (

SELECT m.salary

FROM Manager m

WHERE m.department = emp.department)

Functional Expressions
The query language includes several string, arithmetic, and date/time functions that may be
used in the SELECT, WHERE, or HAVING clause of a query. The functions are listed in Table 22–4,
Table 22–5, and Table 22–6.

In Table 22–4, the start and length arguments are of type int and designate positions in the
String argument. The first position in a string is designated by 1.

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010426

TABLE 22–4 String Expressions

Function Syntax Return Type

CONCAT(String, String) String

LENGTH(String) int

LOCATE(String, String [, start]) int

SUBSTRING(String, start, length) String

TRIM([[LEADING|TRAILING|BOTH] char) FROM] (String) String

LOWER(String) String

UPPER(String) String

The CONCAT function concatenates two strings into one string.

The LENGTH function returns the length of a string in characters as an integer.

The LOCATE function returns the position of a given string within a string. This function returns
the first position at which the string was found as an integer. The first argument is the string to
be located. The second argument is the string to be searched. The optional third argument is an
integer that represents the starting string position. By default, LOCATE starts at the beginning of
the string. The starting position of a string is 1. If the string cannot be located, LOCATE returns 0.

The SUBSTRING function returns a string that is a substring of the first argument based on the
starting position and length.

The TRIM function trims the specified character from the beginning and/or end of a string. If no
character is specified, TRIM removes spaces or blanks from the string. If the optional LEADING
specification is used, TRIM removes only the leading characters from the string. If the optional
TRAILING specification is used, TRIM removes only the trailing characters from the string. The
default is BOTH, which removes the leading and trailing characters from the string.

The LOWER and UPPER functions convert a string to lowercase or uppercase, respectively.

In Table 22–5, the number argument can be an int, a float, or a double.

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 427

TABLE 22–5 Arithmetic Expressions

Function Syntax Return Type

ABS(number) int, float, or double

MOD(int, int) int

SQRT(double) double

SIZE(Collection) int

The ABS function takes a numeric expression and returns a number of the same type as the
argument.

The MOD function returns the remainder of the first argument divided by the second.

The SQRT function returns the square root of a number.

The SIZE function returns an integer of the number of elements in the given collection.

In Table 22–6, the date/time functions return the date, time, or timestamp on the database
server.

TABLE 22–6 Date/Time Expressions

Function Syntax Return Type

CURRENT_DATE java.sql.Date

CURRENT_TIME java.sql.Time

CURRENT_TIMESTAMP java.sql.Timestamp

Case Expressions
Case expressions change based on a condition, similar to the case keyword of the Java
programming language. The CASE keyword indicates the start of a case expression, and the
expression is terminated by the END keyword. The WHEN and THEN keywords define individual
conditions, and the ELSE keyword defines the default condition should none of the other
conditions be satisfied.

The following query selects the name of a person and a conditional string, depending on the
subtype of the Person entity. If the subtype is Student, the string kid is returned . If the subtype
is Guardian or Staff, the string adult is returned. If the entity is some other subtype of Person,
the string unknown is returned.

SELECT p.name

CASE TYPE(p)

WHEN Student THEN ’kid’

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010428

WHEN Guardian THEN ’adult’

WHEN Staff THEN ’adult’

ELSE ’unknown’

END

FROM Person p

The following query sets a discount for various types of customers. Gold-level customers get a
20% discount, silver-level customers get a 15% discount, bronze-level customers get a 10%
discount, and everyone else gets a 5% discount.

UPDATE Customer c

SET c.discount =

CASE c.level

WHEN ’Gold’ THEN 20

WHEN ’SILVER’ THEN 15

WHEN ’Bronze’ THEN 10

ELSE 5

END

NULL Values
If the target of a reference is not in the persistent store, the target is NULL. For conditional
expressions containing NULL, the query language uses the semantics defined by SQL92. Briefly,
these semantics are as follows.

■ If a comparison or arithmetic operation has an unknown value, it yields a NULL value.
■ Two NULL values are not equal. Comparing two NULL values yields an unknown value.
■ The IS NULL test converts a NULL persistent field or a single-valued relationship field to TRUE.

The IS NOT NULL test converts them to FALSE.
■ Boolean operators and conditional tests use the three-valued logic defined by Table 22–7

and Table 22–8. (In these tables, T stands for TRUE, F for FALSE, and U for unknown.)

TABLE 22–7 ANDOperator Logic

AND T F U

T T F U

F F F F

U U F U

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 429

TABLE 22–8 OROperator Logic

OR T F U

T T T T

F T F U

U T U U

Equality Semantics
In the query language, only values of the same type can be compared. However, this rule has one
exception: Exact and approximate numeric values can be compared. In such a comparison, the
required type conversion adheres to the rules of Java numeric promotion.

The query language treats compared values as if they were Java types and not as if they
represented types in the underlying data store. For example, a persistent field that could be
either an integer or a NULL must be designated as an Integer object and not as an int primitive.
This designation is required because a Java object can be NULL, but a primitive cannot.

Two strings are equal only if they contain the same sequence of characters. Trailing blanks are
significant; for example, the strings ’abc’ and ’abc ’ are not equal.

Two entities of the same abstract schema type are equal only if their primary keys have the same
value. Table 22–9 shows the operator logic of a negation, and Table 22–10 shows the truth
values of conditional tests.

TABLE 22–9 NOTOperator Logic

NOT Value Value

T F

F T

U U

TABLE 22–10 Conditional Test

Conditional Test T F U

Expression IS TRUE T F F

Expression IS FALSE F T F

Expression is unknown F F T

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010430

SELECTClause
The SELECT clause defines the types of the objects or values returned by the query.

Return Types
The return type of the SELECT clause is defined by the result types of the select expressions
contained within it. If multiple expressions are used, the result of the query is an Object[], and
the elements in the array correspond to the order of the expressions in the SELECT clause and in
type to the result types of each expression.

A SELECT clause cannot specify a collection-valued expression. For example, the SELECT clause
p.teams is invalid because teams is a collection. However, the clause in the following query is
valid because the t is a single element of the teams collection:

SELECT t

FROM Player p, IN (p.teams) t

The following query is an example of a query with multiple expressions in the SELECT clause:

SELECT c.name, c.country.name

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

This query returns a list of Object[] elements; the first array element is a string denoting the
customer name, and the second array element is a string denoting the name of the customer’s
country.

The result of a query may be the result of an aggregate function, listed in Table 22–11.

TABLE 22–11 Aggregate Functions in Select Statements

Name Return Type Description

AVG Double Returns the mean average of the fields

COUNT Long Returns the total number of results

MAX The type of the field Returns the highest value in the result
set

MIN The type of the field Returns the lowest value in the result
set

SUM Long (for integral fields)

Double (for floating-point fields)

BigInteger (for BigInteger fields)

BigDecimal (for BigDecimal fields)

Returns the sum of all the values in the
result set

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 431

For select method queries with an aggregate function (AVG, COUNT, MAX, MIN, or SUM) in the
SELECT clause, the following rules apply:

■ The AVG, MAX, MIN, and SUM functions return null if there are no values to which the function
can be applied.

■ The COUNT function returns 0 if there are no values to which the function can be applied.

The following example returns the average order quantity:

SELECT AVG(o.quantity)

FROM Order o

The following example returns the total cost of the items ordered by Roxane Coss:

SELECT SUM(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

The following example returns the total number of orders:

SELECT COUNT(o)

FROM Order o

The following example returns the total number of items that have prices in Hal Incandenza’s
order:

SELECT COUNT(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Incandenza’ AND c.firstname = ’Hal’

The DISTINCTKeyword
The DISTINCT keyword eliminates duplicate return values. If a query returns a
java.util.Collection, which allows duplicates, you must specify the DISTINCT keyword to
eliminate duplicates.

Constructor Expressions
Constructor expressions allow you to return Java instances that store a query result element
instead of an Object[].

The following query creates a CustomerDetail instance per Customer matching the WHERE
clause. A CustomerDetail stores the customer name and customer’s country name. So the
query returns a List of CustomerDetail instances:

SELECT NEW com.xyz.CustomerDetail(c.name, c.country.name)

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

Full Query Language Syntax

The Java EE 6 Tutorial • October 2010432

ORDER BY Clause
As its name suggests, the ORDER BY clause orders the values or objects returned by the query.

If the ORDER BY clause contains multiple elements, the left-to-right sequence of the elements
determines the high-to-low precedence.

The ASC keyword specifies ascending order, the default, and the DESC keyword indicates
descending order.

When using the ORDER BY clause, the SELECT clause must return an orderable set of objects or
values. You cannot order the values or objects for values or objects not returned by the SELECT
clause. For example, the following query is valid because the ORDER BY clause uses the objects
returned by the SELECT clause:

SELECT o

FROM Customer c JOIN c.orders o JOIN c.address a

WHERE a.state = ’CA’

ORDER BY o.quantity, o.totalcost

The following example is not valid, because the ORDER BY clause uses a value not returned by the
SELECT clause:

SELECT p.product_name

FROM Order o, IN(o.lineItems) l JOIN o.customer c

WHERE c.lastname = ’Faehmel’ AND c.firstname = ’Robert’

ORDER BY o.quantity

GROUP BY and HAVING Clauses
The GROUP BY clause allows you to group values according to a set of properties.

The following query groups the customers by their country and returns the number of
customers per country:

SELECT c.country, COUNT(c)

FROM Customer c GROUP BY c.country

The HAVING clause is used with the GROUP BY clause to further restrict the returned result of a
query.

The following query groups orders by the status of their customer and returns the customer
status plus the average totalPrice for all orders where the corresponding customers has the
same status. In addition, it considers only customers with status 1, 2, or 3, so orders of other
customers are not taken into account:

SELECT c.status, AVG(o.totalPrice)

FROM Order o JOIN o.customer c

GROUP BY c.status HAVING c.status IN (1, 2, 3)

Full Query Language Syntax

Chapter 22 • The Java Persistence Query Language 433

434

Using the Criteria API to Create Queries

The Criteria API is used to define queries for entities and their persistent state by creating
query-defining objects. Criteria queries are written using Java programming language APIs, are
typesafe, and are portable. Such queries work regardless of the underlying data store.

The following topics are addressed here:

■ “Overview of the Criteria and Metamodel APIs” on page 435
■ “Using the Metamodel API to Model Entity Classes” on page 437
■ “Using the Criteria API and Metamodel API to Create Basic Typesafe Queries” on page 438

Overview of the Criteria and Metamodel APIs
Similar to JPQL, the Criteria API is based on the abstract schema of persistent entities, their
relationships, and embedded objects. The Criteria API operates on this abstract schema to allow
developers to find, modify, and delete persistent entities by invoking Java Persistence API entity
operations. The Metamodel API works in concert with the Criteria API to model persistent
entity classes for Criteria queries.

The Criteria API and JPQL are closely related and are designed to allow similar operations in
their queries. Developers familiar with JPQL syntax will find equivalent object-level operations
in the Criteria API.

The following simple Criteria query returns all instances of the Pet entity in the data source:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet);

TypedQuery<Pet> q = em.createQuery(cq);

List<Pet> allPets = q.getResultList();

The equivalent JPQL query is:

23C H A P T E R 2 3

435

SELECT p

FROM Pet p

This query demonstrates the basic steps to create a Criteria query:

1. Use an EntityManager instance to create a CriteriaBuilder object.
2. Create a query object by creating an instance of the CriteriaQuery interface. This query

object's attributes will be modified with the details of the query.
3. Set the query root by calling the from method on the CriteriaQuery object.
4. Specify what the type of the query result will be by calling the select method of the

CriteriaQuery object.
5. Prepare the query for execution by creating a TypedQuery<T> instance, specifying the type of

the query result.
6. Execute the query by calling the getResultList method on the TypedQuery<T> object.

Because this query returns a collection of entities, the result is stored in a List.

The tasks associated with each step are discussed in detail in this chapter.

To create a CriteriaBuilder instance, call the getCriteriaBuilder method on the
EntityManager instance:

CriteriaBuilder cb = em.getCriteriaBuilder();

The query object is created by using the CriteriaBuilder instance:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The query will return instances of the Pet entity, so the type of the query is specified when the
CriteriaQuery object is created to create a typesafe query.

The FROM clause of the query is set, and the root of the query specified, by calling the from
method of the query object:

Root<Pet> pet = cq.from(Pet.class);

The SELECT clause of the query is set by calling the select method of the query object and
passing in the query root:

cq.select(pet);

The query object is now used to create a TypedQuery<T> object that can be executed against the
data source. The modifications to the query object are captured to create a ready-to-execute
query:

TypedQuery<Pet> q = em.createQuery(cq);

Overview of the Criteria and Metamodel APIs

The Java EE 6 Tutorial • October 2010436

This typed query object is executed by calling its getResultList method, because this query
will return multiple entity instances. The results are stored in a List<Pet> collection-valued
object.

List<Pet> allPets = q.getResultList();

Using the Metamodel API to Model Entity Classes
The Metamodel API is used to create a metamodel of the managed entities in a particular
persistence unit. For each entity class in a particular package, a metamodel class is created with
a trailing underscore and with attributes that correspond to the persistent fields or properties of
the entity class.

The following entity class, com.example.Pet, has four persistent fields: id, name, color, and
owners:

package com.example;

...

@Entity

public class Pet {

@Id

protected Long id;

protected String name;

protected String color;

@ManyToOne

protected Set<Person> owners;

...

}

The corresponding Metamodel class is:

package com.example;

...

@Static Metamodel(Pet.class)

public class Pet_ {

public static volatile SingularAttribute<Pet, Long> id;

public static volatile SingularAttribute<Pet, String> name;

public static volatile SingularAttribute<Pet, String> color;

public static volatile SetAttribute<Pet, Person> owners;

}

The metamodel class and its attributes are used in Criteria queries to refer to the managed entity
classes and their persistent state and relationships.

Using the Metamodel API to Model Entity Classes

Chapter 23 • Using the Criteria API to Create Queries 437

Using Metamodel Classes
Metamodel classes that correspond to entity classes are of the following type:

javax.persistence.metamodel.EntityType<T>

Metamodel classes are typically generated by annotation processors either at development time
or at runtime. Developers of applications that use Criteria queries may generate static
metamodel classes by using the persistence provider’s annotation processor or may obtain the
metamodel class by either calling the getModel method on the query root object or first
obtaining an instance of the Metamodel interface and then passing the entity type to the
instance’s entity method.

The following code snippet shows how to obtain the Pet entity’s metamodel class by calling
Root<T>.getModel:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

EntityType<Pet> Pet_ = pet.getModel();

The following code snippet shows how to obtain the Pet entity’s metamodel class by first
obtaining a metamodel instance by using EntityManager.getMetamodel and then calling
entity on the metamodel instance:

EntityManager em = ...;

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Using the Criteria API and Metamodel API to Create Basic
Typesafe Queries

The basic semantics of a Criteria query consists of a SELECT clause, a FROM clause, and an
optional WHERE clause, similar to a JPQL query. Criteria queries set these clauses by using Java
programming language objects, so the query can be created in a typesafe manner.

Creating a Criteria Query
The javax.persistence.criteria.CriteriaBuilder interface is used to construct

■ Criteria queries
■ Selections
■ Expressions
■ Predicates

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

The Java EE 6 Tutorial • October 2010438

■ Ordering

To obtain an instance of the CriteriaBuilder interface, call the getCriteriaBuilder method
on either an EntityManager or an EntityManagerFactory instance.

The following code shows how to obtain a CriteriaBuilder instance by using the
EntityManager.getCriteriaBuilder method.

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

Criteria queries are constructed by obtaining an instance of the following interface:

javax.persistence.criteria.CriteriaQuery

CriteriaQuery objects define a particular query that will navigate over one or more entities.
Obtain CriteriaQuery instances by calling one of the CriteriaBuilder.createQuery
methods. For creating typesafe queries, call the CriteriaBuilder.createQuery method as
follows:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The CriteriaQuery object’s type should be set to the expected result type of the query. In the
preceding code, the object’s type is set to CriteriaQuery<Pet> for a query that will find
instances of the Pet entity.

In the following code snippet, a CriteriaQuery object is created for a query that returns a
String:

CriteriaQuery<String> cq = cb.createQuery(String.class);

Query Roots
For a particular CriteriaQueryobject, the root entity of the query, from which all navigation
originates, is called the query root. It is similar to the FROM clause in a JPQL query.

Create the query root by calling the from method on the CriteriaQuery instance. The
argument to the from method is either the entity class or an EntityType<T> instance for the
entity.

The following code sets the query root to the Pet entity:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

Chapter 23 • Using the Criteria API to Create Queries 439

The following code sets the query root to the Pet class by using an EntityType<T> instance:

EntityManager em = ...;

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet_);

Criteria queries may have more than one query root. This usually occurs when the query
navigates from several entities.

The following code has two Root instances:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet1 = cq.from(Pet.class);

Root<Pet> pet2 = cq.from(Pet.class);

Querying Relationships Using Joins
For queries that navigate to related entity classes, the query must define a join to the related
entity by calling one of the From.join methods on the query root object or another join object.
The join methods are similar to the JOIN keyword in JPQL.

The target of the join uses the Metamodel class of type EntityType<T> to specify the persistent
field or property of the joined entity.

The join methods return an object of type Join<X, Y>, where X is the source entity and Y is the
target of the join. In the following code snippet, Pet is the source entity, and Owner is the target:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = pet.join(Pet_.owners);

Joins can be chained together to navigate to related entities of the target entity without having to
create a Join<X, Y> instance for each join:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

EntityType<Owner> Owner_ = m.entity(Owner.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_.addresses);

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

The Java EE 6 Tutorial • October 2010440

Path Navigation in Criteria Queries
Path objects are used in the SELECT and WHERE clauses of a Criteria query and can be query root
entities, join entities, or other Path objects. The Path.get method is used to navigate to
attributes of the entities of a query.

The argument to the get method is the corresponding attribute of the entity’s Metamodel class.
The attribute can either be a single-valued attribute, specified by @SingularAttribute in the
Metamodel class, or a collection-valued attribute, specified by one of @CollectionAttribute,
@SetAttribute, @ListAttribute, or @MapAttribute.

The following query returns the names of all the pets in the data store. The get method is called
on the query root, pet, with the name attribute of the Pet entity’s Metamodel class, Pet_ as the
argument:

CriteriaQuery<String> cq = cb.createQuery(String.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet.get(Pet_.name));

Restricting Criteria Query Results
The results of a query can be restricted on the CriteriaQuery object according to conditions set
by calling the CriteriaQuery.where method. Calling the where method is analogous to setting
the WHERE clause in a JPQL query.

The where method evaluates instances of the Expression interface to restrict the results
according to the conditions of the expressions. Expression instances are created by using
methods defined in the Expression and CriteriaBuilder interfaces.

The Expression Interface Methods
An Expression object is used in a query's SELECT, WHERE, or HAVING clause. Table 23–1 shows
conditional methods you can use with Expression objects.

TABLE 23–1 Conditional Methods in the Expression Interface

Method Description

isNull Tests whether an expression is null

isNotNull Tests whether an expression is not null

in Tests whether an expression is within a list of values

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

Chapter 23 • Using the Criteria API to Create Queries 441

The following query uses the Expression.isNull method to find all pets where the color
attribute is null:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(pet.get(Pet_.color).isNull());

The following query uses the Expression.in method to find all brown and black pets:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(pet.get(Pet_.color).in("brown", "black");

The in method also can check whether an attribute is a member of a collection.

Expression Methods in the CriteriaBuilder Interface
The CriteriaBuilder interface defines additional methods for creating expressions. These
methods correspond to the arithmetic, string, date, time, and case operators and functions of
JPQL. Table 23–2 shows conditional methods you can use with CriteriaBuilder objects.

TABLE 23–2 Conditional Methods in the CriteriaBuilder Interface

Conditional Method Description

equal Tests whether two expressions are equal

notEqual Tests whether two expressions are not equal

gt Tests whether the first numeric expression is greater than the second numeric
expression

ge Tests whether the first numeric expression is greater than or equal to the second
numeric expression

lt Tests whether the first numeric expression is less than the second numeric expression

le Tests whether the first numeric expression is less than or equal to the second numeric
expression

between Tests whether the first expression is between the second and third expression in value

like Tests whether the expression matches a given pattern

The following code uses the CriteriaBuilder.equal method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

The Java EE 6 Tutorial • October 2010442

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.equal(pet.get(Pet_.name)), "Fido");
...

The following code uses the CriteriaBuilder.gt method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date someDate = new Date(...);

cq.where(cb.gt(pet.get(Pet_.birthday)), date);

The following code uses the CriteriaBuilder.between method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date firstDate = new Date(...);

Date secondDate = new Date(...);

cq.where(cb.between(pet.get(Pet_.birthday)), firstDate, secondDate);

The following code uses the CriteriaBuilder.like method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.like(pet.get(Pet_.name)), "*do");

Multiple conditional predicates can be specified by using the compound predicate methods of
the CriteriaBuilder interface, as shown in Table 23–3.

TABLE 23–3 Compound Predicate Methods in the CriteriaBuilder Interface

Method Description

and A logical conjunction of two Boolean expressions

or A logical disjunction of two Boolean expressions

not A logical negation of the given Boolean expression

The following code shows the use of compound predicates in queries:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.equal(pet.get(Pet_.name), "Fido")
.and(cb.equal(pet.get(Pet_.color), "brown");

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

Chapter 23 • Using the Criteria API to Create Queries 443

Managing Criteria Query Results
For queries that return more than one result, it’s often helpful to organize those results. The
CriteriaQuery interface defines the orderBy method to order query results according to
attributes of an entity. The CriteriaQuery interface also defines the groupBy method to group
the results of a query together according to attributes of an entity, and the having method to
restrict those groups according to a condition.

Ordering Results
The order of the results of a query can be set by calling the CriteriaQuery.orderBy method
and passing in an Order object. Order objects are created by calling either the
CriteriaBuilder.asc or the CriteriaBuilder.desc method. The asc method is used to
order the results by ascending value of the passed expression parameter. The desc method is
used to order the results by descending value of the passed expression parameter. The following
query shows the use of the desc method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet);

cq.orderBy(cb.desc(pet.get(Pet_.birthday));

In this query, the results will be ordered by the pet’s birthday from highest to lowest. That is,
pets born in December will appear before pets born in May.

The following query shows the use of the asc method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_.address);

cq.select(pet);

cq.orderBy(cb.asc(address.get(Address_.postalCode));

In this query, the results will be ordered by the pet owner’s postal code from lowest to highest.
That is, pets whose owner lives in the 10001 zip code will appear before pets whose owner lives
in the 91000 zip code.

If more than one Order object is passed to orderBy, the precedence is determined by the order
in which they appear in the argument list of orderBy. The first Order object has precedence.

The following code orders results by multiple criteria:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = cq.join(Pet_.owners);

cq.select(pet);

cq.orderBy(cb.asc(owner.get(Owner_.lastName), owner.get(Owner_.firstName));

The results of this query will be ordered alphabetically by the pet owner’s last name, then first
name.

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

The Java EE 6 Tutorial • October 2010444

Grouping Results
The CriteriaQuery.groupBy method partitions the query results into groups. These groups
are set by passing an expression to groupBy:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet_.color));

This query returns all Pet entities and groups the results by the pet’s color.

The CriteriaQuery.having method is used in conjunction with groupBy to filter over the
groups. The having method takes a conditional expression as a parameter. By calling the
having method, the query result is restricted according to the conditional expression:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet_.color));

cq.having(cb.in(pet.get(Pet_.color)).value("brown").value("blonde");

In this example, the query groups the returned Pet entities by color, as in the preceding
example. However, the only returned groups will be Pet entities where the color attribute is set
to brown or blonde. That is, no gray-colored pets will be returned in this query.

Executing Queries
To prepare a query for execution, create a TypedQuery<T> object with the type of the query
result by passing the CriteriaQuery object to EntityManager.createQuery.

Queries are executed by calling either getSingleResult or getResultList on the
TypedQuery<T> object.

Single-Valued Query Results
The TypedQuery<T>.getSingleResult method is used for executing queries that return a
single result:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

...

TypedQuery<Pet> q = em.createQuery(cq);

Pet result = q.getSingleResult();

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

Chapter 23 • Using the Criteria API to Create Queries 445

Collection-Valued Query Results
The TypedQuery<T>.getResultList method is used for executing queries that return a
collection of objects:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

...

TypedQuery<Pet> q = em.createQuery(cq);

List<Pet> results = q.getResultList();

Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

The Java EE 6 Tutorial • October 2010446

Security
Part VII explores security concepts and examples. This part contains the following
chapters:

■ Chapter 24, “Introduction to Security in the Java EE Platform”
■ Chapter 25, “Getting Started Securing Web Applications”
■ Chapter 26, “Getting Started Securing Enterprise Applications”

P A R T V I I

447

448

Introduction to Security in the Java EE Platform

The chapters in Part VII discuss security requirements in web tier and enterprise tier
applications. Every enterprise that has either sensitive resources that can be accessed by many
users or resources that traverse unprotected, open, networks, such as the Internet, needs to be
protected.

This chapter introduces basic security concepts and security mechanisms. More information on
these concepts and mechanisms can be found in the chapter on security in the Java EE 6
specification. This document is available for download online at http://www.jcp.org/en/
jsr/detail?id=316.

In this tutorial, security requirements are also addressed in the following chapters.

■ Chapter 25, “Getting Started Securing Web Applications,” explains how to add security to
web components, such as servlets.

■ Chapter 26, “Getting Started Securing Enterprise Applications,” explains how to add
security to Java EE components, such as enterprise beans and application clients.

Some of the material in this chapter assumes that you understand basic security concepts. To
learn more about these concepts before you begin this chapter, you should explore the Java SE
security web site at http://download.oracle.com/javase/6/docs/technotes/guides/
security/.

The following topics are addressed here:

■ “Overview of Java EE Security” on page 450
■ “Security Mechanisms” on page 455
■ “Securing Containers” on page 458
■ “Securing the GlassFish Server” on page 460
■ “Working with Realms, Users, Groups, and Roles” on page 460
■ “Establishing a Secure Connection Using SSL” on page 468
■ “Further Information about Security” on page 473

24C H A P T E R 2 4

449

http://www.jcp.org/en/jsr/detail?id=316
http://www.jcp.org/en/jsr/detail?id=316
http://download.oracle.com/javase/6/docs/technotes/guides/security/
http://download.oracle.com/javase/6/docs/technotes/guides/security/

Overview of Java EE Security
Enterprise tier and web tier applications are made up of components that are deployed into
various containers. These components are combined to build a multitier enterprise application.
Security for components is provided by their containers. A container provides two kinds of
security: declarative and programmatic.

■ Declarative security expresses an application component’s security requirements by using
either deployment descriptors or annotations.
A deployment descriptor is an XML file that is external to the application and that expresses
an application’s security structure, including security roles, access control, and
authentication requirements. For more information about deployment descriptors, read
“Using Deployment Descriptors for Declarative Security” on page 459.
Annotations, also called metadata, are used to specify information about security within a
class file. When the application is deployed, this information can be either used by or
overridden by the application deployment descriptor. Annotations save you from having to
write declarative information inside XML descriptors. Instead, you simply put annotations
on the code, and the required information gets generated. For this tutorial, annotations are
used for securing applications wherever possible. For more information about annotations,
see “Using Annotations to Specify Security Information” on page 458.

■ Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express
the security model of an application. For more information about programmatic security,
read “Using Programmatic Security” on page 459.

A Simple Security Example
The security behavior of a Java EE environment may be better understood by examining what
happens in a simple application with a web client, a user interface, and enterprise bean business
logic.

In the following example, which is taken from the Java EE 6 Specification, the web client relies
on the web server to act as its authentication proxy by collecting user authentication data from
the client and using it to establish an authenticated session.

Step 1: Initial Request
In the first step of this example, the web client requests the main application URL. This action is
shown in Figure 24–1.

Overview of Java EE Security

The Java EE 6 Tutorial • October 2010450

Since the client has not yet authenticated itself to the application environment, the server
responsible for delivering the web portion of the application, hereafter referred to as the web
server, detects this and invokes the appropriate authentication mechanism for this resource. For
more information on these mechanisms, see “Security Mechanisms” on page 455.

Step 2: Initial Authentication
The web server returns a form that the web client uses to collect authentication data, such as
user name and password, from the user. The web client forwards the authentication data to the
web server, where it is validated by the web server, as shown in Figure 24–2. The validation
mechanism may be local to a server or may leverage the underlying security services. On the
basis of the validation, the web server sets a credential for the user.

Step 3: URL Authorization
The credential is used for future determinations of whether the user is authorized to access
restricted resources it may request. The web server consults the security policy associated with
the web resource to determine the security roles that are permitted access to the resource. The
security policy is derived from annotations or from the deployment descriptor. The web
container then tests the user’s credential against each role to determine whether it can map the
user to the role. Figure 24–3 shows this process.

FIGURE 24–1 Initial Request

Request access to
protected resource

Web Client Web Server

FIGURE 24–2 Initial Authentication

Web Server

Web Client
Form

Authentication
data

Credential

Overview of Java EE Security

Chapter 24 • Introduction to Security in the Java EE Platform 451

The web server’s evaluation stops with an “is authorized” outcome when the web server is able
to map the user to a role. A “not authorized” outcome is reached if the web server is unable to
map the user to any of the permitted roles.

Step 4: Fulfilling the Original Request
If the user is authorized, the web server returns the result of the original URL request, as shown
in Figure 24–4.

In our example, the response URL of a web page is returned, enabling the user to post form data
that needs to be handled by the business-logic component of the application. See Chapter 25,
“Getting Started Securing Web Applications,” for more information on protecting web
applications.

Step 5: Invoking Enterprise Bean Business Methods
The web page performs the remote method call to the enterprise bean, using the user’s
credential to establish a secure association between the web page and the enterprise bean, as
shown in Figure 24–5. The association is implemented as two related security contexts: one in
the web server and one in the EJB container.

FIGURE 24–3 URL Authorization

Web Server

Requested
access to
protected
resource

Session
Context

Credential Web
Component

A
uthorization

Web Client

FIGURE 24–4 Fulfilling the Original Request

Web Server

Session
Context

Web
Component

Web Client
Result of request

Post to
business logic

Credential

Overview of Java EE Security

The Java EE 6 Tutorial • October 2010452

The EJB container is responsible for enforcing access control on the enterprise bean method.
The container consults the security policy associated with the enterprise bean to determine the
security roles that are permitted access to the method. The security policy is derived from
annotations or from the deployment descriptor. For each role, the EJB container determines
whether it can map the caller to the role by using the security context associated with the call.

The container’s evaluation stops with an “is authorized” outcome when the container is able to
map the caller’s credential to a role. A “not authorized” outcome is reached if the container is
unable to map the caller to any of the permitted roles. A “not authorized” result causes an
exception to be thrown by the container and propagated back to the calling web page.

If the call is authorized, the container dispatches control to the enterprise bean method. The
result of the bean’s execution of the call is returned to the web page and ultimately to the user by
the web server and the web client.

Features of a Security Mechanism
A properly implemented security mechanism will provide the following functionality:
■ Prevent unauthorized access to application functions and business or personal data

(authentication)
■ Hold system users accountable for operations they perform (non-repudiation)
■ Protect a system from service interruptions and other breaches that affect quality of service

Ideally, properly implemented security mechanisms will also be

■ Easy to administer
■ Transparent to system users
■ Interoperable across application and enterprise boundaries

FIGURE 24–5 Invoking an Enterprise Bean Business Method

Web Client

Web Server EJB
Container

Credential
used to

establish
security

association

Remote
callSession

Context
Security
Context

Security
Context

Credential

Web
Component

A
uthorization

EJB

Overview of Java EE Security

Chapter 24 • Introduction to Security in the Java EE Platform 453

Characteristics of Application Security
Java EE applications consist of components that can contain both protected and unprotected
resources. Often, you need to protect resources to ensure that only authorized users have access.
Authorization provides controlled access to protected resources. Authorization is based on
identification and authentication. Identification is a process that enables recognition of an entity
by a system, and authentication is a process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a system.

Authorization and authentication are not required for an entity to access unprotected
resources. Accessing a resource without authentication is referred to as unauthenticated, or
anonymous, access.

The characteristics of application security that, when properly addressed, help to minimize the
security threats faced by an enterprise include the following:

■ Authentication: The means by which communicating entities, such as client and server,
prove to each other that they are acting on behalf of specific identities that are authorized for
access. This ensures that users are who they say they are.

■ Authorization, or access control: The means by which interactions with resources are
limited to collections of users or programs for the purpose of enforcing integrity,
confidentiality, or availability constraints. This ensures that users have permission to
perform operations or access data.

■ Data integrity: The means used to prove that information has not been modified by a third
party, an entity other than the source of the information. For example, a recipient of data
sent over an open network must be able to detect and discard messages that were modified
after they were sent. This ensures that only authorized users can modify data.

■ Confidentiality, or data privacy: The means used to ensure that information is made
available only to users who are authorized to access it. This ensures that only authorized
users can view sensitive data.

■ Non-repudiation: The means used to prove that a user who performed some action cannot
reasonably deny having done so. This ensures that transactions can be proved to have
happened.

Overview of Java EE Security

The Java EE 6 Tutorial • October 2010454

■ Quality of Service: The means used to provide better service to selected network traffic over
various technologies.

■ Auditing: The means used to capture a tamper-resistant record of security-related events
for the purpose of being able to evaluate the effectiveness of security policies and
mechanisms. To enable this, the system maintains a record of transactions and security
information.

Security Mechanisms
The characteristics of an application should be considered when deciding the layer and type of
security to be provided for applications. The following sections discuss the characteristics of the
common mechanisms that can be used to secure Java EE applications. Each of these
mechanisms can be used individually or with others to provide protection layers based on the
specific needs of your implementation.

Java SE Security Mechanisms
Java SE provides support for a variety of security features and mechanisms:
■ Java Authentication and Authorization Service (JAAS): JAAS is a set of APIs that enable

services to authenticate and enforce access controls upon users. JAAS provides a pluggable
and extensible framework for programmatic user authentication and authorization. JAAS is
a core Java SE API and is an underlying technology for Java EE security mechanisms.

■ Java Generic Security Services (Java GSS-API): Java GSS-API is a token-based API used to
securely exchange messages between communicating applications. The GSS-API offers
application programmers uniform access to security services atop a variety of underlying
security mechanisms, including Kerberos.

■ Java Cryptography Extension (JCE): JCE provides a framework and implementations for
encryption, key generation and key agreement, and Message Authentication Code (MAC)
algorithms. Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. Block ciphers operate on groups of bytes; stream ciphers operate on one byte at a
time. The software also supports secure streams and sealed objects.

■ Java Secure Sockets Extension (JSSE): JSSE provides a framework and an implementation
for a Java version of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols and includes functionality for data encryption, server authentication, message
integrity, and optional client authentication to enable secure Internet communications.

■ Simple Authentication and Security Layer (SASL): SASL is an Internet standard (RFC
2222) that specifies a protocol for authentication and optional establishment of a security
layer between client and server applications. SASL defines how authentication data is to be
exchanged but does not itself specify the contents of that data. SASL is a framework into
which specific authentication mechanisms that specify the contents and semantics of the
authentication data can fit.

Security Mechanisms

Chapter 24 • Introduction to Security in the Java EE Platform 455

Java SE also provides a set of tools for managing keystores, certificates, and policy files;
generating and verifying JAR signatures; and obtaining, listing, and managing Kerberos tickets.

For more information on Java SE security, visit http://download.oracle.com/javase/6/
docs/technotes/guides/security/.

Java EE Security Mechanisms
Java EE security services are provided by the component container and can be implemented by
using declarative or programmatic techniques (see “Securing Containers” on page 458). Java EE
security services provide a robust and easily configured security mechanism for authenticating
users and authorizing access to application functions and associated data at many different
layers. Java EE security services are separate from the security mechanisms of the operating
system.

Application-Layer Security
In Java EE, component containers are responsible for providing application-layer security,
security services for a specific application type tailored to the needs of the application. At the
application layer, application firewalls can be used to enhance application protection by
protecting the communication stream and all associated application resources from attacks.

Java EE security is easy to implement and configure and can offer fine-grained access control to
application functions and data. However, as is inherent to security applied at the application
layer, security properties are not transferable to applications running in other environments
and protect data only while it is residing in the application environment. In the context of a
traditional enterprise application, this is not necessarily a problem, but when applied to a web
services application, in which data often travels across several intermediaries, you would need
to use the Java EE security mechanisms along with transport-layer security and message-layer
security for a complete security solution.

The advantages of using application-layer security include the following.
■ Security is uniquely suited to the needs of the application.
■ Security is fine grained, with application-specific settings.

The disadvantages of using application-layer security include the following.

■ The application is dependent on security attributes that are not transferable between
application types.

■ Support for multiple protocols makes this type of security vulnerable.
■ Data is close to or contained within the point of vulnerability.

For more information on providing security at the application layer, see “Securing Containers”
on page 458.

Security Mechanisms

The Java EE 6 Tutorial • October 2010456

http://download.oracle.com/javase/6/docs/technotes/guides/security/
http://download.oracle.com/javase/6/docs/technotes/guides/security/

Transport-Layer Security
Transport-layer security is provided by the transport mechanisms used to transmit information
over the wire between clients and providers; thus, transport-layer security relies on secure
HTTP transport (HTTPS) using Secure Sockets Layer (SSL). Transport security is a
point-to-point security mechanism that can be used for authentication, message integrity, and
confidentiality. When running over an SSL-protected session, the server and client can
authenticate each other and negotiate an encryption algorithm and cryptographic keys before
the application protocol transmits or receives its first byte of data. Security is active from the
time the data leaves the client until it arrives at its destination, or vice versa, even across
intermediaries. The problem is that the data is not protected once it gets to the destination. One
solution is to encrypt the message before sending.

Transport-layer security is performed in a series of phases, as follows.

■ The client and server agree on an appropriate algorithm.
■ A key is exchanged using public-key encryption and certificate-based authentication.
■ A symmetric cipher is used during the information exchange.

Digital certificates are necessary when running HTTPS using SSL. The HTTPS service of most
web servers will not run unless a digital certificate has been installed. Digital certificates have
already been created for the GlassFish Server.

The advantages of using transport-layer security include the following.

■ It is relatively simple, well-understood, standard technology.
■ It applies to both a message body and its attachments.

The disadvantages of using transport-layer security include the following.

■ It is tightly coupled with the transport-layer protocol.
■ It represents an all-or-nothing approach to security. This implies that the security

mechanism is unaware of message contents, so that you cannot selectively apply security to
portions of the message as you can with message-layer security.

■ Protection is transient. The message is protected only while in transit. Protection is removed
automatically by the endpoint when it receives the message.

■ It is not an end-to-end solution, simply point-to-point.

For more information on transport-layer security, see “Establishing a Secure Connection Using
SSL” on page 468.

Message-Layer Security
In message-layer security, security information is contained within the SOAP message and/or
SOAP message attachment, which allows security information to travel along with the message
or attachment. For example, a portion of the message may be signed by a sender and encrypted

Security Mechanisms

Chapter 24 • Introduction to Security in the Java EE Platform 457

for a particular receiver. When sent from the initial sender, the message may pass through
intermediate nodes before reaching its intended receiver. In this scenario, the encrypted
portions continue to be opaque to any intermediate nodes and can be decrypted only by the
intended receiver. For this reason, message-layer security is also sometimes referred to as
end-to-end security.

The advantages of message-layer security include the following.

■ Security stays with the message over all hops and after the message arrives at its destination.
■ Security can be selectively applied to different portions of a message and, if using XML Web

Services Security, to attachments.
■ Message security can be used with intermediaries over multiple hops.
■ Message security is independent of the application environment or transport protocol.

The disadvantage of using message-layer security is that it is relatively complex and adds some
overhead to processing.

The GlassFish Server supports message security using Metro, a web services stack that uses Web
Services Security (WSS) to secure messages. Because this message security is specific to Metro
and is not a part of the Java EE platform, this tutorial does not discuss using WSS to secure
messages. See the Metro User’s Guide at https://metro.dev.java.net/guide/.

Securing Containers
In Java EE, the component containers are responsible for providing application security. A
container provides two types of security: declarative and programmatic.

Using Annotations to Specify Security Information
Annotations enable a declarative style of programming and so encompass both the declarative
and programmatic security concepts. Users can specify information about security within a
class file by using annotations. The GlassFish Server uses this information when the application
is deployed. Not all security information can be specified by using annotations, however. Some
information must be specified in the application deployment descriptors.

Specific annotations that can be used to specify security information within an enterprise bean
class file are described in “Securing an Enterprise Bean Using Declarative Security” on page 506.
Chapter 25, “Getting Started Securing Web Applications,” describes how to use annotations to
secure web applications where possible. Deployment descriptors are described only where
necessary.

For more information on annotations, see “Further Information about Security” on page 473.

Securing Containers

The Java EE 6 Tutorial • October 2010458

https://metro.dev.java.net/guide/

Using Deployment Descriptors for Declarative
Security
Declarative security can express an application component’s security requirements by using
deployment descriptors. Because deployment descriptor information is declarative, it can be
changed without the need to modify the source code. At runtime, the Java EE server reads the
deployment descriptor and acts upon the corresponding application, module, or component
accordingly. Deployment descriptors must provide certain structural information for each
component if this information has not been provided in annotations or is not to be defaulted.

This part of the tutorial does not document how to create deployment descriptors; it describes
only the elements of the deployment descriptor relevant to security. NetBeans IDE provides
tools for creating and modifying deployment descriptors.

Different types of components use different formats, or schemas, for their deployment
descriptors. The security elements of deployment descriptors discussed in this tutorial include
the following.

■ Web components may use a web application deployment descriptor named web.xml.

The schema for web component deployment descriptors is provided in Chapter 14 of the
Java Servlet 3.0 specification (JSR 315), which can be downloaded from
http://jcp.org/en/jsr/detail?id=315.

■ Enterprise JavaBeans components may use an EJB deployment descriptor named
META-INF/ejb-jar.xml, contained in the EJB JAR file.

The schema for enterprise bean deployment descriptors is provided in Chapter 19 of the EJB
3.1 specification (JSR 318), which can be downloaded from http://jcp.org/en/jsr/

detail?id=318.

Using Programmatic Security
Programmatic security is embedded in an application and is used to make security decisions.
Programmatic security is useful when declarative security alone is not sufficient to express the
security model of an application. The API for programmatic security consists of methods of the
EJBContext interface and the HttpServletRequest interface. These methods allow
components to make business-logic decisions based on the security role of the caller or remote
user.

Programmatic security is discussed in more detail in the following sections:

■ “Using Programmatic Security with Web Applications” on page 488
■ “Securing an Enterprise Bean Programmatically” on page 510

Securing Containers

Chapter 24 • Introduction to Security in the Java EE Platform 459

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

Securing the GlassFish Server
This tutorial describes deployment to the GlassFish Server, which provides highly secure,
interoperable, and distributed component computing based on the Java EE security model.
GlassFish Server supports the Java EE 6 security model. You can configure GlassFish Server for
the following purposes:

■ Adding, deleting, or modifying authorized users. For more information on this topic, see
“Working with Realms, Users, Groups, and Roles” on page 460.

■ Configuring secure HTTP and Internet Inter-Orb Protocol (IIOP) listeners.
■ Configuring secure Java Management Extensions (JMX) connectors.
■ Adding, deleting, or modifying existing or custom realms.
■ Defining an interface for pluggable authorization providers using Java Authorization

Contract for Containers (JACC). JACC defines security contracts between the GlassFish
Server and authorization policy modules. These contracts specify how the authorization
providers are installed, configured, and used in access decisions.

■ Using pluggable audit modules.
■ Customizing authentication mechanisms. All implementations of Java EE 6 compatible

Servlet containers are required to support the Servlet Profile of JSR 196, which offers an
avenue for customizing the authentication mechanism applied by the web container on
behalf of one or more applications.

■ Setting and changing policy permissions for an application.

Working with Realms, Users, Groups, and Roles
You often need to protect resources to ensure that only authorized users have access. See
“Characteristics of Application Security” on page 454 for an introduction to the concepts of
authentication, identification, and authorization.

This section discusses setting up users so that they can be correctly identified and either given
access to protected resources or denied access if they are not authorized to access the protected
resources. To authenticate a user, you need to follow these basic steps.

1. The application developer writes code to prompt for a user name and password. The various
methods of authentication are discussed in “Specifying an Authentication Mechanism in the
Deployment Descriptor” on page 486.

2. The application developer communicates how to set up security for the deployed
application by use of a metadata annotation or deployment descriptor. This step is discussed
in “Setting Up Security Roles” on page 466.

3. The server administrator sets up authorized users and groups on the GlassFish Server. This
is discussed in “Managing Users and Groups on the GlassFish Server” on page 464.

Securing the GlassFish Server

The Java EE 6 Tutorial • October 2010460

4. The application deployer maps the application’s security roles to users, groups, and
principals defined on the GlassFish Server. This topic is discussed in “Mapping Roles to
Users and Groups” on page 467.

What Are Realms, Users, Groups, and Roles?
A realm is a security policy domain defined for a web or application server. A realm contains a
collection of users, who may or may not be assigned to a group. Managing users on the
GlassFish Server is discussed in “Managing Users and Groups on the GlassFish Server” on
page 464.

An application will often prompt for a user name and password before allowing access to a
protected resource. After the user name and password have been entered, that information is
passed to the server, which either authenticates the user and sends the protected resource or
does not authenticate the user, in which case access to the protected resource is denied. This
type of user authentication is discussed in “Specifying an Authentication Mechanism in the
Deployment Descriptor” on page 486.

In some applications, authorized users are assigned to roles. In this situation, the role assigned
to the user in the application must be mapped to a principal or group defined on the application
server. Figure 24–6 shows this. More information on mapping roles to users and groups can be
found in “Setting Up Security Roles” on page 466.

The following sections provide more information on realms, users, groups, and roles.

Working with Realms, Users, Groups, and Roles

Chapter 24 • Introduction to Security in the Java EE Platform 461

What Is a Realm?
A realm is a security policy domain defined for a web or application server. The protected
resources on a server can be partitioned into a set of protection spaces, each with its own
authentication scheme and/or authorization database containing a collection of users and
groups. For a web application, a realm is a complete database of users and groups identified as
valid users of a web application or a set of web applications and controlled by the same
authentication policy.

The Java EE server authentication service can govern users in multiple realms. The file,
admin-realm, and certificate realms come preconfigured for the GlassFish Server.

In the file realm, the server stores user credentials locally in a file named keyfile. You can use
the Administration Console to manage users in the file realm. When using the file realm, the
server authentication service verifies user identity by checking the file realm. This realm is
used for the authentication of all clients except for web browser clients that use HTTPS and
certificates.

In the certificate realm, the server stores user credentials in a certificate database. When
using the certificate realm, the server uses certificates with HTTPS to authenticate web
clients. To verify the identity of a user in the certificate realm, the authentication service

FIGURE 24–6 Mapping Roles to Users and Groups

Role 1

Role 2

Role 1

Role 2

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

Application

Group 1

User 1

User 2

User 3

Group 1

User 1

User 2

User 3

User 1

User 2

User 3

User 1

User 2

User 3

Application

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial • October 2010462

verifies an X.509 certificate. For step-by-step instructions for creating this type of certificate, see
“Working with Digital Certificates” on page 470. The common name field of the X.509
certificate is used as the principal name.

The admin-realm is also a file realm and stores administrator user credentials locally in a file
named admin-keyfile. You can use the Administration Console to manage users in this realm
in the same way you manage users in the file realm. For more information, see “Managing
Users and Groups on the GlassFish Server” on page 464.

What Is a User?
A user is an individual or application program identity that has been defined in the GlassFish
Server. In a web application, a user can have associated with that identify a set of roles that
entitle the user to access all resources protected by those roles. Users can be associated with a
group.

A Java EE user is similar to an operating system user. Typically, both types of users represent
people. However, these two types of users are not the same. The Java EE server authentication
service has no knowledge of the user name and password you provide when you log in to the
operating system. The Java EE server authentication service is not connected to the security
mechanism of the operating system. The two security services manage users that belong to
different realms.

What Is a Group?
A group is a set of authenticated users, classified by common traits, defined in the GlassFish
Server. A Java EE user of the file realm can belong to a group on the GlassFish Server. (A user
in the certificate realm cannot.) A group on the GlassFish Server is a category of users
classified by common traits, such as job title or customer profile. For example, most customers
of an e-commerce application might belong to the CUSTOMER group, but the big spenders would
belong to the PREFERRED group. Categorizing users into groups makes it easier to control the
access of large numbers of users.

A group on the GlassFish Server has a different scope from a role. A group is designated for the
entire GlassFish Server, whereas a role is associated only with a specific application in the
GlassFish Server.

What Is a Role?
A role is an abstract name for the permission to access a particular set of resources in an
application. A role can be compared to a key that can open a lock. Many people might have a
copy of the key. The lock doesn’t care who you are, only that you have the right key.

Working with Realms, Users, Groups, and Roles

Chapter 24 • Introduction to Security in the Java EE Platform 463

Some Other Terminology
The following terminology is also used to describe the security requirements of the Java EE
platform:

■ Principal: An entity that can be authenticated by an authentication protocol in a security
service that is deployed in an enterprise. A principal is identified by using a principal name
and authenticated by using authentication data.

■ Security policy domain, also known as security domain or realm: A scope over which a
common security policy is defined and enforced by the security administrator of the security
service.

■ Security attributes: A set of attributes associated with every principal. The security
attributes have many uses: for example, access to protected resources and auditing of users.
Security attributes can be associated with a principal by an authentication protocol.

■ Credential: An object that contains or references security attributes used to authenticate a
principal for Java EE services. A principal acquires a credential upon authentication or from
another principal that allows its credential to be used.

Managing Users and Groups on the GlassFish Server
Follow these steps for managing users before you run the tutorial examples.

▼ To Add Users to the GlassFish Server

Start the GlassFish Server, if you haven’t already done so.

Information on starting the GlassFish Server is available in “Starting and Stopping the GlassFish
Server” on page 69.

Start the Administration Console, if you haven’t already done so.

To start the Administration Console, open a web browser and specify the URL
http://localhost:4848/. If you changed the default Admin port during installation, type the
correct port number in place of 4848.

In the navigation tree, expand the Configuration node.

Expand the Security node.

Expand the Realms node.

1

2

3

4

5

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial • October 2010464

Select the realm to which you are adding users.

■ Select the file realm to add users you want to access applications running in this realm.

For the example security applications, select the file realm.

The Edit Realm page opens.

■ Select the admin-realm to add users you want to enable as system administrators of the
GlassFish Server.

The Edit Realm page opens.

You cannot add users to the certificate realm by using the Administration Console. In the
certificate realm, you can add only certificates. For information on adding (importing)
certificates to the certificate realm, see “Adding Users to the Certificate Realm” on page 465.

On the Edit Realm page, click the Manage Users button.

The File Users or Admin Users page opens.

On the File Users or Admin Users page, click New to add a new user to the realm.

The New File Realm User page opens.

Type values in the User ID, Group List, New Password, and Confirm New Password fields.

For the Admin Realm, the Group List field is read-only, and the group name is asadmin. Restart
the GlassFish Server and Administration Console after you add a user to the Admin Realm.

For more information on these properties, see “Working with Realms, Users, Groups, and
Roles” on page 460.

For the example security applications, specify a user with any name and password you like, but
make sure that the user is assigned to the group TutorialUser. The user name and password
are case-sensitive. Keep a record of the user name and password for working with the examples
later in this tutorial.

Click OK to add this user to the realm, or click Cancel to quit without saving.

Adding Users to the Certificate Realm
In the certificate realm, user identity is set up in the GlassFish Server security context and
populated with user data obtained from cryptographically verified client certificates. For
step-by-step instructions for creating this type of certificate, see “Working with Digital
Certificates” on page 470.

6

7

8

9

10

Working with Realms, Users, Groups, and Roles

Chapter 24 • Introduction to Security in the Java EE Platform 465

Setting Up Security Roles
When you design an enterprise bean or web component, you should always think about the
kinds of users who will access the component. For example, a web application for a human
resources department might have a different request URL for someone who has been assigned
the role of DEPT_ADMIN than for someone who has been assigned the role of DIRECTOR. The
DEPT_ADMIN role may let you view employee data, but the DIRECTOR role enables you to modify
employee data, including salary data. Each of these security roles is an abstract logical grouping
of users that is defined by the person who assembles the application. When an application is
deployed, the deployer will map the roles to security identities in the operational environment,
as shown in Figure 24–6.

For Java EE components, you define security roles using the @DeclareRoles and
@RolesAllowed metadata annotations.

The following is an example of an application in which the role of DEPT-ADMIN is authorized for
methods that review employee payroll data, and the role of DIRECTOR is authorized for methods
that change employee payroll data.

The enterprise bean would be annotated as shown in the following code:

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

...

@DeclareRoles({"DEPT-ADMIN", "DIRECTOR"})
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

@RolesAllowed("DEPT-ADMIN")
public void reviewEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// ...

}

@RolesAllowed("DIRECTOR")
public void updateEmployeeInfo(EmplInfo info) {

newInfo = ... update database;

// ...

}

...

}

For a servlet, you can use the @HttpConstraint annotation within the @ServletSecurity
annotation to specify the roles that are allowed to access the servlet. For example, a servlet might
be annotated as follows:

Working with Realms, Users, Groups, and Roles

The Java EE 6 Tutorial • October 2010466

@WebServlet(name = "PayrollServlet", urlPatterns = {"/payroll"})
@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,

rolesAllowed = {"DEPT-ADMIN", "DIRECTOR"}))
public class GreetingServlet extends HttpServlet {

These annotations are discussed in more detail in “Specifying Security for Basic Authentication
Using Annotations” on page 495 and “Securing an Enterprise Bean Using Declarative Security”
on page 506.

After users have provided their login information and the application has declared what roles
are authorized to access protected parts of an application, the next step is to map the security
role to the name of a user, or principal.

Mapping Roles to Users and Groups
When you are developing a Java EE application, you don’t need to know what categories of
users have been defined for the realm in which the application will be run. In the Java EE
platform, the security architecture provides a mechanism for mapping the roles defined in the
application to the users or groups defined in the runtime realm.

The role names used in the application are often the same as the group names defined on the
GlassFish Server. Under these circumstances, you can enable a default principal-to-role
mapping on the GlassFish Server by using the Administration Console. The task “To Set Up
Your System for Running the Security Examples” on page 493 explains how to do this. All the
tutorial security examples use default principal-to-role mapping.

If the role names used in an application are not the same as the group names defined on the
server, use the runtime deployment descriptor to specify the mapping. The following example
demonstrates how to do this mapping in the sun-web.xml file, which is the file used for web
applications:

<sun-web-app>

...

<security-role-mapping>

<role-name>Mascot</role-name>

<principal-name>Duke</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>Admin</role-name>

<group-name>Director</group-name>

</security-role-mapping>

...

</sun-web-app>

A role can be mapped to specific principals, specific groups, or both. The principal or group
names must be valid principals or groups in the current default realm or in the realm specified
in the login-config element. In this example, the role of Mascot used in the application is

Working with Realms, Users, Groups, and Roles

Chapter 24 • Introduction to Security in the Java EE Platform 467

mapped to a principal, named Duke, that exists on the application server. Mapping a role to a
specific principal is useful when the person occupying that role may change. For this
application, you would need to modify only the runtime deployment descriptor rather than
search and replace throughout the application for references to this principal.

Also in this example, the role of Admin is mapped to a group of users assigned the group name of
Director. This is useful because the group of people authorized to access director-level
administrative data has to be maintained only on the GlassFish Server. The application
developer does not need to know who these people are, but only needs to define the group of
people who will be given access to the information.

The role-name must match the role-name in the security-role element of the corresponding
deployment descriptor or the role name defined in a @DeclareRoles annotation.

Establishing a Secure Connection Using SSL
Secure Socket Layer (SSL) technology is security that is implemented at the transport layer (see
“Transport-Layer Security” on page 457 for more information about transport-layer security).
SSL allows web browsers and web servers to communicate over a secure connection. In this
secure connection, the data is encrypted before being sent and then is decrypted upon receipt
and before processing. Both the browser and the server encrypt all traffic before sending any
data.

SSL addresses the following important security considerations:

■ Authentication: During your initial attempt to communicate with a web server over a
secure connection, that server will present your web browser with a set of credentials in the
form of a server certificate. The purpose of the certificate is to verify that the site is who and
what it claims to be. In some cases, the server may request a certificate proving that the client
is who and what it claims to be; this mechanism is known as client authentication.

■ Confidentiality: When data is being passed between the client and the server on a network,
third parties can view and intercept this data. SSL responses are encrypted so that the data
cannot be deciphered by the third party and the data remains confidential.

■ Integrity: When data is being passed between the client and the server on a network, third
parties can view and intercept this data. SSL helps guarantee that the data will not be
modified in transit by that third party.

The SSL protocol is designed to be as efficient as securely possible. However, encryption and
decryption are computationally expensive processes from a performance standpoint. It is not
strictly necessary to run an entire web application over SSL, and it is customary for a developer
to decide which pages require a secure connection and which do not. Pages that might require a
secure connection include those for login, personal information, shopping cart checkouts, or
credit card information transmittal. Any page within an application can be requested over a
secure socket by simply prefixing the address with https: instead of http:. Any pages that

Establishing a Secure Connection Using SSL

The Java EE 6 Tutorial • October 2010468

absolutely require a secure connection should check the protocol type associated with the page
request and take the appropriate action if https: is not specified.

Using name-based virtual hosts on a secured connection can be problematic. This is a design
limitation of the SSL protocol itself. The SSL handshake, whereby the client browser accepts the
server certificate, must occur before the HTTP request is accessed. As a result, the request
information containing the virtual host name cannot be determined before authentication, and
it is therefore not possible to assign multiple certificates to a single IP address. If all virtual hosts
on a single IP address need to authenticate against the same certificate, the addition of multiple
virtual hosts should not interfere with normal SSL operations on the server. Be aware, however,
that most client browsers will compare the server’s domain name against the domain name
listed in the certificate, if any; this is applicable primarily to official certificates signed by a
certificate authority (CA). If the domain names do not match, these browsers will display a
warning to the client. In general, only address-based virtual hosts are commonly used with SSL
in a production environment.

Verifying and Configuring SSL Support
As a general rule, you must address the following issues to enable SSL for a server:

■ There must be a Connector element for an SSL connector in the server deployment
descriptor.

■ There must be valid keystore and certificate files.
■ The location of the keystore file and its password must be specified in the server deployment

descriptor.

An SSL HTTPS connector is already enabled in the GlassFish Server.

For testing purposes and to verify that SSL support has been correctly installed, load the default
introduction page with a URL that connects to the port defined in the server deployment
descriptor:

https://localhost:8181/

The https in this URL indicates that the browser should be using the SSL protocol. The
localhost in this example assumes that you are running the example on your local machine as
part of the development process. The 8181 in this example is the secure port that was specified
where the SSL connector was created. If you are using a different server or port, modify this
value accordingly.

The first time that you load this application, the New Site Certificate or Security Alert dialog box
appears. Select Next to move through the series of dialog boxes, and select Finish when you
reach the last dialog box. The certificates will display only the first time. When you accept the
certificates, subsequent hits to this site assume that you still trust the content.

Establishing a Secure Connection Using SSL

Chapter 24 • Introduction to Security in the Java EE Platform 469

Working with Digital Certificates
Digital certificates for the GlassFish Server have already been generated and can be found in the
directory as-install/domain-dir/config/. These digital certificates are self-signed and are
intended for use in a development environment; they are not intended for production purposes.
For production purposes, generate your own certificates and have them signed by a CA.

To use SSL, an application or web server must have an associated certificate for each external
interface, or IP address, that accepts secure connections. The theory behind this design is that a
server should provide some kind of reasonable assurance that its owner is who you think it is,
particularly before receiving any sensitive information. It may be useful to think of a certificate
as a “digital driver’s license” for an Internet address. The certificate states with which company
the site is associated, along with some basic contact information about the site owner or
administrator.

The digital certificate is cryptographically signed by its owner and is difficult for anyone else to
forge. For sites involved in e-commerce or in any other business transaction in which
authentication of identity is important, a certificate can be purchased from a well-known CA
such as VeriSign or Thawte. If your server certificate is self-signed, you must install it in the
GlassFish Server keystore file (keystore.jks). If your client certificate is self-signed, you should
install it in the GlassFish Server truststore file (cacerts.jks).

Sometimes, authentication is not really a concern. For example, an administrator might simply
want to ensure that data being transmitted and received by the server is private and cannot be
snooped by anyone eavesdropping on the connection. In such cases, you can save the time and
expense involved in obtaining a CA certificate and simply use a self-signed certificate.

SSL uses public-key cryptography, which is based on key pairs. Key pairs contain one public key
and one private key. Data encrypted with one key can be decrypted only with the other key of
the pair. This property is fundamental to establishing trust and privacy in transactions. For
example, using SSL, the server computes a value and encrypts it by using its private key. The
encrypted value is called a digital signature. The client decrypts the encrypted value by using the
server’s public key and compares the value to its own computed value. If the two values match,
the client can trust that the signature is authentic, because only the private key could have been
used to produce such a signature.

Digital certificates are used with HTTPS to authenticate web clients. The HTTPS service of
most web servers will not run unless a digital certificate has been installed. Use the procedure
outlined in the next section, “Creating a Server Certificate” on page 471, to set up a digital
certificate that can be used by your application or web server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the JDK. This tool enables users to administer their own
public/private key pairs and associated certificates for use in self-authentication, whereby the
user authenticates himself or herself to other users or services, or data integrity and
authentication services, using digital signatures. The tool also allows users to cache the public

Establishing a Secure Connection Using SSL

The Java EE 6 Tutorial • October 2010470

keys, in the form of certificates, of their communicating peers. For a better understanding of
keytool and public-key cryptography, see the keytool documentation at
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

Creating a Server Certificate
A server certificate has already been created for the GlassFish Server and can be found in the
domain-dir/config/ directory. The server certificate is in keystore.jks. The cacerts.jks file
contains all the trusted certificates, including client certificates.

If necessary, you can use keytool to generate certificates. The keytool utility stores the keys
and certificates in a file termed a keystore, a repository of certificates used for identifying a client
or a server. Typically, a keystore is a file that contains one client’s or one server’s identity. The
keystore protects private keys by using a password.

If you don’t specify a directory when specifying the keystore file name, the keystores are created
in the directory from which the keytool command is run. This can be the directory where the
application resides, or it can be a directory common to many applications.

The general steps for creating a server certificate are as follows.

1. Create the keystore.
2. Export the certificate from the keystore.
3. Sign the certificate.
4. Import the certificate into a truststore: a repository of certificates used for verifying the

certificates. A truststore typically contains more than one certificate.

“To Use keytool to Create a Server Certificate” on page 471 provides specific information on
using the keytool utility to perform these steps.

▼ To Use keytool to Create a Server Certificate
Run keytool to generate a new key pair in the default development keystore file, keystore.jks.
This example uses the alias server-alias to generate a new public/private key pair and wrap
the public key into a self-signed certificate inside keystore.jks. The key pair is generated by
using an algorithm of type RSA, with a default password of changeit. For more information
and other examples of creating and managing keystore files, read the keytool online help at
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

Note – RSA is public-key encryption technology developed by RSA Data Security, Inc.

From the directory in which you want to create the key pair, run keytool as shown in the
following steps.

Establishing a Secure Connection Using SSL

Chapter 24 • Introduction to Security in the Java EE Platform 471

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Generate the server certificate.
Type the keytool command all on one line:
java-home/bin/keytool -genkey -alias server-alias -keyalg RSA -keypass changeit

-storepass changeit -keystore keystore.jks

When you press Enter, keytool prompts you to enter the server name, organizational unit,
organization, locality, state, and country code.

You must type the server name in response to keytool’s first prompt, in which it asks for first
and last names. For testing purposes, this can be localhost.

When you run the example applications, the host (server name) specified in the keystore must
match the host identified in the javaee.server.name property specified in the file
tut-install/examples/bp-project/build.properties.

Export the generated server certificate in keystore.jks into the file server.cer.
Type the keytool command all on one line:
java-home/bin/keytool -export -alias server-alias -storepass changeit

-file server.cer -keystore keystore.jks

If you want to have the certificate signed by a CA, read the example at http://
download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

To add the server certificate to the truststore file, cacerts.jks, run keytool from the directory
where you created the keystore and server certificate.
Use the following parameters:
java-home/bin/keytool -import -v -trustcacerts -alias server-alias

-file server.cer -keystore cacerts.jks -keypass changeit -storepass changeit

Information on the certificate, such as that shown next, will appear:

Owner: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USIssuer: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USSerial number: 3e932169Valid from: Tue Apr 08Certificate

fingerprints:MD5: 52:9F:49:68:ED:78:6F:39:87:F3:98:B3:6A:6B:0F:90 SHA1:

EE:2E:2A:A6:9E:03:9A:3A:1C:17:4A:28:5E:97:20:78:3F:

Trust this certificate? [no]:

Type yes, then press the Enter or Return key.
The following information appears:
Certificate was added to keystore[Saving cacerts.jks]

1

2

3

4

5

Establishing a Secure Connection Using SSL

The Java EE 6 Tutorial • October 2010472

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Further Information about Security
For more information about security in Java EE applications, see

■ Java EE 6 specification:
http://jcp.org/en/jsr/detail?id=316

■ The Oracle GlassFish Server 3.0.1 Application Development Guide, which includes security
information for application developers, such as information on security settings in the
deployment descriptors specific to the GlassFish Server

■ The Oracle GlassFish Server 3.0.1 Administration Guide, which includes information on
setting security settings for the GlassFish Server

■ Enterprise JavaBeans 3.1 specification:
http://jcp.org/en/jsr/detail?id=318

■ Implementing Enterprise Web Services 1.3 specification:
http://jcp.org/en/jsr/detail?id=109

■ Java SE security information:
http://download.oracle.com/javase/6/docs/technotes/guides/security/

■ Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ Java Authorization Contract for Containers 1.3 specification:
http://jcp.org/en/jsr/detail?id=115

■ Java Authentication and Authorization Service (JAAS) Reference Guide:
http://download.oracle.com/

javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s Guide:
http://download.oracle.com/

javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Further Information about Security

Chapter 24 • Introduction to Security in the Java EE Platform 473

http://jcp.org/en/jsr/detail?id=316
http://docs.sun.com/doc/821-1752
http://docs.sun.com/doc/821-1751
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=109
http://download.oracle.com/javase/6/docs/technotes/guides/security/
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=115
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

474

Getting Started Securing Web Applications

A web application is accessed using a web browser over a network, such as the Internet or a
company’s intranet. As discussed in “Distributed Multitiered Applications” on page 35, the Java
EE platform uses a distributed multitiered application model, and web applications run in the
web tier.

Web applications contain resources that can be accessed by many users. These resources often
traverse unprotected, open networks, such as the Internet. In such an environment, a
substantial number of web applications will require some type of security. The ways to
implement security for Java EE web applications are discussed in a general way in “Securing
Containers” on page 458. This chapter provides more detail and a few examples that explore
these security services as they relate to web components.

Securing applications and their clients in the business tier and the EIS tier is discussed in
Chapter 26, “Getting Started Securing Enterprise Applications.”

The following topics are addressed here:

■ “Overview of Web Application Security” on page 475
■ “Securing Web Applications” on page 477
■ “Using Programmatic Security with Web Applications” on page 488
■ “Examples: Securing Web Applications” on page 493

Overview of Web Application Security
In the Java EE platform, web components provide the dynamic extension capabilities for a web
server. Web components can be Java servlets or JavaServer Faces pages. The interaction
between a web client and a web application is illustrated in Figure 25–1.

25C H A P T E R 2 5

475

Certain aspects of web application security can be configured when the application is installed,
or deployed, to the web container. Annotations and/or deployment descriptors are used to relay
information to the deployer about security and other aspects of the application. Specifying this
information in annotations or in the deployment descriptor helps the deployer set up the
appropriate security policy for the web application. Any values explicitly specified in the
deployment descriptor override any values specified in annotations.

Security for Java EE web applications can be implemented in the following ways.

■ Declarative security: Can be implemented using either metadata annotations or an
application’s deployment descriptor. See “Overview of Java EE Security” on page 450 for
more information.

Declarative security for web applications is described in “Securing Web Applications” on
page 477.

■ Programmatic security: Is embedded in an application and can be used to make security
decisions when declarative security alone is not sufficient to express the security model of an
application. Declarative security alone may not be sufficient when conditional login in a
particular work flow, instead of for all cases, is required in the middle of an application. See
“Overview of Java EE Security” on page 450 for more information.

Servlet 3.0 provides the authenticate, login, and logout methods of the
HttpServletRequest interface. With the addition of the authenticate, login, and logout

methods to the Servlet specification, an application deployment descriptor is no longer
required for web applications but may still be used to further specify security requirements
beyond the basic default values.

FIGURE 25–1 Java Web Application Request Handling

HTTP
Request

HTTP
Response

Database

Database

Web
Client

HttpServlet
Request

HttpServlet
Response

Web
Components
Web
C
Web
Components

Web
CC
WebWeb Web
CCCC

W
C
W bWeb

ComponentsCCompoonentso tne
WW bWWeb WWeb
CC sCCompoonentsCCompoonentsoooneCC
Web

C
WebWeb Web Web WebWeb

sComponentsp ssCoC mpono entsComponentsoCCCCompoonentsompoonentsComponentsomponentsooooooooooCCoCoC
W bWWeb WWeb
CCC

Web
Components

Web
Components
Web
C
Web
Components

Web
CC
WebWeb Web
CCCC

W
C
W bWeb

ComponentsCCompoonents
WW bWWeb WWeb
C mp en sCCompoonentsCCompoonents
Web

C
WebWeb Web Web WebWeb

sComponentsssCoC mpono entsComponentsCompoonentsompoonentsComponentsComponentsC
W bWWeb WWeb
CCC

JavaBeans
Components

1
4

4

2

5 3

6

Overview of Web Application Security

The Java EE 6 Tutorial • October 2010476

Programmatic security is discussed in “Using Programmatic Security with Web
Applications” on page 488

■ Message Security: Works with web services and incorporates security features, such as
digital signatures and encryption, into the header of a SOAP message, working in the
application layer, ensuring end-to-end security. Message security is not a component of Java
EE 6 and is mentioned here for informational purposes only.

Some of the material in this chapter builds on material presented earlier in this tutorial. In
particular, this chapter assumes that you are familiar with the information in the following
chapters:
■ Chapter 3, “Getting Started with Web Applications”
■ Chapter 4, “JavaServer Faces Technology”
■ Chapter 10, “Java Servlet Technology”
■ Chapter 24, “Introduction to Security in the Java EE Platform”

Securing Web Applications
Web applications are created by application developers who give, sell, or otherwise transfer the
application to an application deployer for installation into a runtime environment. Application
developers communicate how to set up security for the deployed application by using
annotations or deployment descriptors. This information is passed on to the deployer, who uses
it to define method permissions for security roles, set up user authentication, and set up the
appropriate transport mechanism. If the application developer doesn’t define security
requirements, the deployer will have to determine the security requirements independently.

Some elements necessary for security in a web application cannot be specified as annotations
for all types of web applications. This chapter explains how to secure web applications using
annotations wherever possible. It explains how to use deployment descriptors where
annotations cannot be used.

Specifying Security Constraints
A security constraint is used to define the access privileges to a collection of resources using their
URL mapping.

If your web application uses a servlet, you can express the security constraint information by
using annotations. Specifically, you use the @HttpConstraint and, optionally, the
@HttpMethodConstraint annotations within the @ServletSecurity annotation to specify a
security constraint.

If your web application does not use a servlet, however, you must specify a
security-constraint element in the deployment descriptor file. The authentication
mechanism cannot be expressed using annotations, so if you use any authentication method
other than BASIC (the default), a deployment descriptor is required.

Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 477

The following subelements can be part of a security-constraint:

■ Web resource collection (web-resource-collection): A list of URL patterns (the part of a
URL after the host name and port you want to constrain) and HTTP operations (the
methods within the files that match the URL pattern you want to constrain) that describe a
set of resources to be protected. Web resource collections are discussed in “Specifying a Web
Resource Collection” on page 478.

■ Authorization constraint (auth-constraint): Specifies whether authentication is to be
used and names the roles authorized to perform the constrained requests. For more
information about authorization constraints, see “Specifying an Authentication Mechanism
in the Deployment Descriptor” on page 486.

■ User data constraint (user-data-constraint): Specifies how data is protected when
transported between a client and a server. User data constraints are discussed in “Specifying
a Secure Connection” on page 479.

Specifying a Web Resource Collection
A web resource collection consists of the following subelements:

■ web-resource-name is the name you use for this resource. Its use is optional.
■ url-pattern is used to list the request URI to be protected. Many applications have both

unprotected and protected resources. To provide unrestricted access to a resource, do not
configure a security constraint for that particular request URI.

The request URI is the part of a URL after the host name and port. For example, let’s say that
you have an e-commerce site with a catalog that you would want anyone to be able to access
and browse, and a shopping cart area for customers only. You could set up the paths for
your web application so that the pattern /cart/* is protected but nothing else is protected.
Assuming that the application is installed at context path /myapp, the following are true:
■ http://localhost:8080/myapp/index.xhtml is not protected.
■ http://localhost:8080/myapp/cart/index.xhtml is protected.

A user will be prompted to log in the first time he or she accesses a resource in the cart/
subdirectory.

■ http-method or http-method-omission is used to specify which methods should be
protected or which methods should be omitted from protection. An HTTP method is
protected by a web-resource-collection under any of the following circumstances:
■ If no HTTP methods are named in the collection (which means that all are protected)
■ If the collection specifically names the HTTP method in an http-method subelement
■ If the collection contains one or more http-method-omission elements, none of which

names the HTTP method

Securing Web Applications

The Java EE 6 Tutorial • October 2010478

Specifying an Authorization Constraint
An authorization constraint (auth-constraint) contains the role-name element. You can use
as many role-name elements as needed here.

An authorization constraint establishes a requirement for authentication and names the roles
authorized to access the URL patterns and HTTP methods declared by this security constraint.
If there is no authorization constraint, the container must accept the request without requiring
user authentication. If there is an authorization constraint but no roles are specified within it,
the container will not allow access to constrained requests under any circumstances. Each role
name specified here must either correspond to the role name of one of the security-role
elements defined for this web application or be the specially reserved role name *, which
indicates all roles in the web application. Role names are case sensitive. The roles defined for the
application must be mapped to users and groups defined on the server, except when default
principal-to-role mapping is used.

For more information about security roles, see “Declaring Security Roles” on page 487. For
information on mapping security roles, see “Mapping Roles to Users and Groups” on page 467.

For a servlet, the @HttpConstraint and @HttpMethodConstraint annotations accept a
rolesAllowed element that specifies the authorized roles.

Specifying a Secure Connection
A user data constraint (user-data-constraint in the deployment descriptor) contains the
transport-guarantee subelement. A user data constraint can be used to require that a
protected transport-layer connection, such as HTTPS, be used for all constrained URL patterns
and HTTP methods specified in the security constraint. The choices for transport guarantee are
CONFIDENTIAL, INTEGRAL, or NONE. If you specify CONFIDENTIAL or INTEGRAL as a security
constraint, it generally means that the use of SSL is required and applies to all requests that
match the URL patterns in the web resource collection, not just to the login dialog box.

The strength of the required protection is defined by the value of the transport guarantee.

■ Specify CONFIDENTIAL when the application requires that data be transmitted so as to
prevent other entities from observing the contents of the transmission.

■ Specify INTEGRAL when the application requires that the data be sent between client and
server in such a way that it cannot be changed in transit.

■ Specify NONE to indicate that the container must accept the constrained requests on any
connection, including an unprotected one.

Note – In practice, Java EE servers treat the CONFIDENTIAL and INTEGRAL transport guarantee
values identically.

Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 479

The user data constraint is handy to use in conjunction with basic and form-based user
authentication. When the login authentication method is set to BASIC or FORM, passwords are
not protected, meaning that passwords sent between a client and a server on an unprotected
session can be viewed and intercepted by third parties. Using a user data constraint with the
user authentication mechanism can alleviate this concern. Configuring a user authentication
mechanism is described in “Specifying an Authentication Mechanism in the Deployment
Descriptor” on page 486.

To guarantee that data is transported over a secure connection, ensure that SSL support is
configured for your server. SSL support is already configured for the GlassFish Server.

Note – After you switch to SSL for a session, you should never accept any non-SSL requests for
the rest of that session. For example, a shopping site might not use SSL until the checkout page,
and then it might switch to using SSL to accept your card number. After switching to SSL, you
should stop listening to non-SSL requests for this session. The reason for this practice is that the
session ID itself was not encrypted on the earlier communications. This is not so bad when
you’re only doing your shopping, but after the credit card information is stored in the session,
you don’t want anyone to use that information to fake the purchase transaction against your
credit card. This practice could be easily implemented by using a filter.

Specifying Separate Security Constraints for Various Resources
You can create a separate security constraint for various resources within your application. For
example, you could allow users with the role of PARTNER access to the GET and POST methods of
all resources with the URL pattern /acme/wholesale/* and allow users with the role of CLIENT
access to the GET and POST methods of all resources with the URL pattern /acme/retail/*. An
example of a deployment descriptor that would demonstrate this functionality is the following:

<!-- SECURITY CONSTRAINT #1 -->

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>PARTNER</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- SECURITY CONSTRAINT #2 -->

<security-constraint>

<web-resource-collection>

<web-resource-name>retail</web-resource-name>

<url-pattern>/acme/retail/*</url-pattern>

Securing Web Applications

The Java EE 6 Tutorial • October 2010480

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>CLIENT</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

When the same url-pattern and http-method occur in multiple security constraints, the
constraints on the pattern and method are defined by combining the individual constraints,
which could result in unintentional denial of access.

Specifying Authentication Mechanisms
A user authentication mechanism specifies
■ The way a user gains access to web content
■ With basic authentication, the realm in which the user will be authenticated
■ With form-based authentication, additional attributes

When an authentication mechanism is specified, the user must be authenticated before access is
granted to any resource that is constrained by a security constraint. There can be multiple
security constraints applying to multiple resources, but the same authentication method will
apply to all constrained resources in an application.

Before you can authenticate a user, you must have a database of user names, passwords, and
roles configured on your web or application server. For information on setting up the user
database, see “Managing Users and Groups on the GlassFish Server” on page 464.

HTTP basic authentication and form-based authentication are not very secure authentication
mechanisms. Basic authentication sends user names and passwords over the Internet as
Base64-encoded text; form-based authentication sends this data as plain text. In both cases, the
target server is not authenticated. Therefore, these forms of authentication leave user data
exposed and vulnerable. If someone can intercept the transmission, the user name and
password information can easily be decoded. However, when a secure transport mechanism,
such as SSL, or security at the network level, such as the Internet Protocol Security (IPsec)
protocol or virtual private network (VPN) strategies, is used in conjunction with basic or
form-based authentication, some of these concerns can be alleviated. To specify a secure
transport mechanism, use the elements described in “Specifying a Secure Connection” on
page 479.

HTTP Basic Authentication
Specifying HTTP basic authentication requires that the server request a user name and
password from the web client and verify that the user name and password are valid by
comparing them against a database of authorized users in the specified or default realm.

Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 481

Basic authentication is the default when you do not specify an authentication mechanism.

When basic authentication is used, the following actions occur:

1. A client requests access to a protected resource.
2. The web server returns a dialog box that requests the user name and password.
3. The client submits the user name and password to the server.
4. The server authenticates the user in the specified realm and, if successful, returns the

requested resource.

Figure 25–2 shows what happens when you specify HTTP basic authentication.

Form-Based Authentication
Form-based authentication allows the developer to control the look and feel of the login
authentication screens by customizing the login screen and error pages that an HTTP browser
presents to the end user. When form-based authentication is declared, the following actions
occur.

1. A client requests access to a protected resource.
2. If the client is unauthenticated, the server redirects the client to a login page.
3. The client submits the login form to the server.
4. The server attempts to authenticate the user.

a. If authentication succeeds, the authenticated user’s principal is checked to ensure that it
is in a role that is authorized to access the resource. If the user is authorized, the server
redirects the client to the resource by using the stored URL path.

FIGURE 25–2 HTTP Basic Authentication

Server

1

2

Requests a protected resource

Requests username:password

3

Sends username:password

4

Returns requested resource

Client

Securing Web Applications

The Java EE 6 Tutorial • October 2010482

b. If authentication fails, the client is forwarded or redirected to an error page.

Figure 25–3 shows what happens when you specify form-based authentication.

The section “Example: Form-Based Authentication with a JavaServer Faces Application” on
page 498 is an example application that uses form-based authentication.

When you create a form-based login, be sure to maintain sessions using cookies or SSL session
information.

For authentication to proceed appropriately, the action of the login form must always be
j_security_check. This restriction is made so that the login form will work no matter which
resource it is for and to avoid requiring the server to specify the action field of the outbound
form. The following code snippet shows how the form should be coded into the HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
</form>

FIGURE 25–3 Form-Based Authentication

ServerLogin
Page

Error
Page

1

2

Requests protected resource

Redirected to
login page

3

Form submitted

4

Redirected to source

Error page returned

Success

Failure

j_security_check

Client

?

Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 483

Digest Authentication
Like basic authentication, digest authentication authenticates a user based on a user name and a
password. However, unlike basic authentication, digest authentication does not send user
passwords over the network. Instead, the client sends a one-way cryptographic hash of the
password and additional data. Although passwords are not sent on the wire, digest
authentication requires that clear-text password equivalents be available to the authenticating
container so that it can validate received authenticators by calculating the expected digest.

Client Authentication
With client authentication, the web server authenticates the client by using the client’s public
key certificate. Client authentication is a more secure method of authentication than either
basic or form-based authentication. It uses HTTP over SSL (HTTPS), in which the server
authenticates the client using the client’s public key certificate. SSL technology provides data
encryption, server authentication, message integrity, and optional client authentication for a
TCP/IP connection. You can think of a public key certificate as the digital equivalent of a
passport. The certificate is issued by a trusted organization, a certificate authority (CA), and
provides identification for the bearer.

Before using client authentication, make sure the client has a valid public key certificate. For
more information on creating and using public key certificates, read “Working with Digital
Certificates” on page 470.

Mutual Authentication
With mutual authentication, the server and the client authenticate each other. Mutual
authentication is of two types:

■ Certificate-based (see Figure 25–4)
■ User name/password-based (see Figure 25–5)

When using certificate-based mutual authentication, the following actions occur.

1. A client requests access to a protected resource.
2. The web server presents its certificate to the client.
3. The client verifies the server’s certificate.
4. If successful, the client sends its certificate to the server.
5. The server verifies the client’s credentials.
6. If successful, the server grants access to the protected resource requested by the client.

Figure 25–4 shows what occurs during certificate-based mutual authentication.

Securing Web Applications

The Java EE 6 Tutorial • October 2010484

In user name/password-based mutual authentication, the following actions occur.

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its user name and password to the server, which verifies the
client’s credentials.

5. If the verification is successful, the server grants access to the protected resource requested
by the client.

Figure 25–5 shows what occurs during user name/password-based mutual authentication.

FIGURE 25–4 Certificate-Based Mutual Authentication

Server

1

2

Requests protected resource

Verifies
certificate

Verifies
certificate

Presents certificate

4

3

5

Presents certificate

6

Accesses protected resource

Client

server.keystoreclient.keystore

trustStore

client.cert

client.cert

server.cert

server.cert

Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 485

Specifying an Authentication Mechanism in the Deployment
Descriptor
To specify an authentication mechanism, use the login-config element. It can contain the
following subelements.

■ The auth-method subelement configures the authentication mechanism for the web
application. The element content must be either NONE, BASIC, DIGEST, FORM, or
CLIENT-CERT.

■ The realm-name subelement indicates the realm name to use when the basic authentication
scheme is chosen for the web application.

■ The form-login-config subelement specifies the login and error pages that should be used
when form-based login is specified.

Note – Another way to specify form-based authentication is to use the authenticate, login,
and logout methods of HttpServletRequest, as discussed in “Authenticating Users
Programmatically” on page 488.

When you try to access a web resource that is constrained by a security-constraint element,
the web container activates the authentication mechanism that has been configured for that
resource. The authentication mechanism specifies how the user will be prompted to log in. If
the login-config element is present and the auth-method element contains a value other than

FIGURE 25–5 User Name/Password-Based Mutual Authentication

Server

1

2

Requests protected resource

Verifies
certificate

Presents certificate

4

3

Sends username:password

5

Accesses protected resource

Client

server.keystore

server.cert

trustStore

server.cert

Securing Web Applications

The Java EE 6 Tutorial • October 2010486

NONE, the user must be authenticated to access the resource. If you do not specify an
authentication mechanism, authentication of the user is not required.

The following example shows how to declare form-based authentication in your deployment
descriptor:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>file</realm-name>

<form-login-config>

<form-login-page>/login.xhtml</form-login-page>

<form-error-page>/error.xhtml</form-error-page>

</form-login-config>

</login-config>

The login and error page locations are specified relative to the location of the deployment
descriptor. Examples of login and error pages are shown in “Creating the Login Form and the
Error Page” on page 498.

The following example shows how to declare digest authentication in your deployment
descriptor:

<login-config>

<auth-method>DIGEST</auth-method>

</login-config>

The following example shows how to declare client authentication in your deployment
descriptor:

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

Declaring Security Roles
You can declare security role names used in web applications by using the security-role
element of the deployment descriptor. Use this element to list all the security roles that you have
referenced in your application.

The following snippet of a deployment descriptor declares the roles that will be used in an
application using the security-role element and specifies which of these roles is authorized to
access protected resources using the auth-constraint element:

<security-constraint>

<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>

<url-pattern>/security/protected/*</url-pattern>

<http-method>PUT</http-method>

<http-method>DELETE</http-method>

Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 487

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

<!-- Security roles used by this web application -->

<security-role>

<role-name>manager</role-name>

</security-role>

<security-role>

<role-name>employee</role-name>

</security-role>

In this example, the security-role element lists all the security roles used in the application:
manager and employee. This enables the deployer to map all the roles defined in the application
to users and groups defined on the GlassFish Server.

The auth-constraint element specifies the role, manager, that can access the HTTP methods
PUT, DELETE, GET, POST located in the directory specified by the url-pattern element
(/jsp/security/protected/*).

The @ServletSecurity annotation cannot be used in this situation because its constraints
apply to all URL patterns specified by the @WebServlet annotation.

Using Programmatic Security with Web Applications
Programmatic security is used by security-aware applications when declarative security alone is
not sufficient to express the security model of the application.

Authenticating Users Programmatically
Servlet 3.0 specifies the following methods of the HttpServletRequest interface that enable
you to authenticate users for a web application programmatically:

■ authenticate, which allows an application to instigate authentication of the request caller
by the container from within an unconstrained request context. A login dialog box displays
and collects the user name and password for authentication purposes.

■ login, which allows an application to collect username and password information as an
alternative to specifying form-based authentication in an application deployment
descriptor.

■ logout, which allows an application to reset the caller identity of a request.

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial • October 2010488

The following example code shows how to use the login and logout methods:

package test;

import java.io.IOException;

import java.io.PrintWriter;

import java.math.BigDecimal;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name="TutorialServlet", urlPatterns={"/TutorialServlet"})
public class TutorialServlet extends HttpServlet {

@EJB

private ConverterBean converterBean;

/**

* Processes requests for both HTTP <code>GET</code>

* and <code>POST</code> methods.

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs

* @throws IOException if an I/O error occurs

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet TutorialServlet</title>");
out.println("</head>");
out.println("<body>");
request.login("TutorialUser", "TutorialUser");
BigDecimal result =

converterBean.dollarToYen(new BigDecimal("1.0"));
out.println("<h1>Servlet TutorialServlet result of dollarToYen= "

+ result + "</h1>");
out.println("</body>");
out.println("</html>");

} catch (Exception e) {

throw new ServletException(e);

} finally {

request.logout();

out.close();

}

}

}

The following example code shows how to use the authenticate method:

Using Programmatic Security with Web Applications

Chapter 25 • Getting Started Securing Web Applications 489

package com.sam.test;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class TestServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

request.authenticate(response);

out.println("Authenticate Successful");
} finally {

out.close();

}

}

Checking Caller Identity Programmatically
In general, security management should be enforced by the container in a manner that is
transparent to the web component. The security API described in this section should be used
only in the less frequent situations in which the web component methods need to access the
security context information.

Servlet 3.0 specifies the following methods that enable you to access security information about
the component’s caller:

■ getRemoteUser, which determines the user name with which the client authenticated. The
getRemoteUser method returns the name of the remote user (the caller) associated by the
container with the request. If no user has been authenticated, this method returns null.

■ isUserInRole, which determines whether a remote user is in a specific security role. If no
user has been authenticated, this method returns false. This method expects a String user
role-name parameter.
The security-role-ref element should be declared in the deployment descriptor with a
role-name subelement containing the role name to be passed to the method. Using security
role references is discussed in “Declaring and Linking Role References” on page 492.

■ getUserPrincipal, which determines the principal name of the current user and returns a
java.security.Principal object. If no user has been authenticated, this method returns
null. Calling the getName method on the Principal returned by getUserPrincipal
returns the name of the remote user.

Your application can make business-logic decisions based on the information obtained using
these APIs.

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial • October 2010490

Example Code for Programmatic Security
The following code demonstrates the use of programmatic security for the purposes of
programmatic login. This servlet does the following:

1. It displays information about the current user.
2. It prompts the user to log in.
3. It prints out the information again to demonstrate the effect of the login method.
4. It logs the user out.
5. It prints out the information again to demonstrate the effect of the logout method.

package enterprise.programmatic_login;

import java.io.*;

import java.net.*;

import javax.annotation.security.DeclareRoles;

import javax.servlet.*;

import javax.servlet.http.*;

@DeclareRoles("javaee6user")
public class LoginServlet extends HttpServlet {

/**

* Processes requests for both HTTP GET and POST methods.

* @param request servlet request

* @param response servlet response

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

String userName = request.getParameter("txtUserName");
String password = request.getParameter("txtPassword");

out.println("Before Login" + "

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

try {

request.login(userName, password);

} catch(ServletException ex) {

out.println("Login Failed with a ServletException.."
+ ex.getMessage());

return;

}

out.println("After Login..."+"

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");

Using Programmatic Security with Web Applications

Chapter 25 • Getting Started Securing Web Applications 491

out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

request.logout();

out.println("After Logout..."+"

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"
");

} finally {

out.close();

}

}

...

}

Declaring and Linking Role References
A security role reference defines a mapping between the name of a role that is called from a web
component using isUserInRole(String role) and the name of a security role that has been
defined for the application. If no security-role-ref element is declared in a deployment
descriptor and the isUserInRole method is called, the container defaults to checking the
provided role name against the list of all security roles defined for the web application. Using
the default method instead of using the security-role-ref element limits your flexibility to
change role names in an application without also recompiling the servlet making the call.

The security-role-ref element is used when an application uses the
HttpServletRequest.isUserInRole(String role). The value passed to the isUserInRole
method is a String representing the role name of the user. The value of the role-name element
must be the String used as the parameter to the HttpServletRequest.isUserInRole(String
role). The role-link must contain the name of one of the security roles defined in the
security-role elements. The container uses the mapping of security-role-ref to
security-role when determining the return value of the call.

For example, to map the security role reference cust to the security role with role name
bankCustomer, the syntax would be:

<servlet>

...

<security-role-ref>

<role-name>cust</role-name>

<role-link>bankCustomer</role-link>

</security-role-ref>

...

</servlet>

If the servlet method is called by a user in the bankCustomer security role,
isUserInRole("cust") returns true.

Using Programmatic Security with Web Applications

The Java EE 6 Tutorial • October 2010492

The role-link element in the security-role-ref element must match a role-name defined
in the security-role element of the same web.xml deployment descriptor, as shown here:

<security-role>

<role-name>bankCustomer</role-name>

</security-role>

A security role reference, including the name defined by the reference, is scoped to the
component whose deployment descriptor contains the security-role-ref deployment
descriptor element.

Examples: Securing Web Applications
Some basic setup is required before any of the example applications will run correctly. The
examples use annotations, programmatic security, and/or declarative security to demonstrate
adding security to existing web applications.

Here are some other locations where you will find examples of securing various types of
applications:

■ “Example: Securing an Enterprise Bean with Declarative Security” on page 514
■ “Example: Securing an Enterprise Bean with Programmatic Security” on page 518
■ GlassFish samples: https://glassfish-samples.dev.java.net/

▼ To Set Up Your System for Running the Security
Examples
To set up your system for running the security examples, you need to configure a user database
that the application can use for authenticating users. Before continuing, follow these steps.

Add an authorized user to the GlassFish Server. For the examples in this chapter and in
Chapter 26,“Getting Started Securing Enterprise Applications,”add a user to the file realm of
the GlassFish Server, and assign the user to the group TutorialUser:

a. From the Administration Console, expand the Configuration node.

b. Expand the Security node.

c. Expand the Realms node.

d. Select the File node.

e. On the Edit Realm page, click Manage Users.

1

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 493

https://glassfish-samples.dev.java.net/

f. On the File Users page, click New.

g. In the User ID field, type a User ID.

h. In the Group List field, type TutorialUser.

i. In the New Password and Confirm New Password fields, type a password.

j. Click OK.

Be sure to write down the user name and password for the user you create so that you can use it
for testing the example applications. Authentication is case sensitive for both the user name and
password, so write down the user name and password exactly. This topic is discussed more in
“Managing Users and Groups on the GlassFish Server” on page 464.

Set up Default Principal to Role Mapping on the GlassFish Server:

a. From the Administration Console, expand the Configuration node.

b. Select the Security node.

c. Select the Default Principal to Role Mapping Enabled check box.

d. Click Save.

Example: Basic Authentication with a Servlet
This example explains how to use basic authentication with a servlet. With basic authentication
of a servlet, the web browser presents a standard login dialog that is not customizable. When a
user submits his or her name and password, the server determines whether the user name and
password are those of an authorized user and sends the requested web resource if the user is
authorized to view it.

In general, the following steps are necessary for adding basic authentication to an unsecured
servlet, such as the ones described in Chapter 3, “Getting Started with Web Applications.” In the
example application included with this tutorial, many of these steps have been completed for
you and are listed here simply to show what needs to be done should you wish to create a similar
application. The completed version of this example application can be found in the directory
tut-install/examples/security/hello2_basicauth/.

1. Follow the steps in “To Set Up Your System for Running the Security Examples” on
page 493.

2. Create a web module as described in Chapter 3, “Getting Started with Web Applications,”
for the servlet example, hello2.

2

Examples: Securing Web Applications

The Java EE 6 Tutorial • October 2010494

3. Add the appropriate security annotations to the servlet. The security annotations are
described in “Specifying Security for Basic Authentication Using Annotations” on page 495.

4. Build, package, and deploy the web application by following the steps in “To Build, Package,
and Deploy the Servlet Basic Authentication Example Using NetBeans IDE” on page 496 or
“To Build, Package, and Deploy the Servlet Basic Authentication Example Using Ant” on
page 496.

5. Run the web application by following the steps described in “To Run the Basic
Authentication Servlet” on page 496.

Specifying Security for Basic Authentication Using Annotations
The default authentication mechanism used by the GlassFish Server is basic authentication.
With basic authentication, the GlassFish Server spawns a standard login dialog to collect user
name and password data for a protected resource. Once the user is authenticated, access to the
protected resource is permitted.

To specify security for a servlet, use the @ServletSecurity annotation. This annotation allows
you to specify both specific constraints on HTTP methods and more general constraints that
apply to all HTTP methods for which no specific constraint is specified. Within the
@ServletSecurity annotation, you can specify the following annotations:

■ The @HttpMethodConstraint annotation, which applies to a specific HTTP method
■ The more general @HttpConstraint annotation, which applies to all HTTP methods for

which there is no corresponding @HttpMethodConstraint annotation

Both the @HttpMethodConstraint and @HttpConstraint annotations within the
@ServletSecurity annotation can specify the following:

■ A transportGuarantee element that specifies the data protection requirements (that is,
whether or not SSL/TLS is required) that must be satisfied by the connections on which
requests arrive. Valid values for this element are NONE and CONFIDENTIAL.

■ A rolesAllowed element that specifies the names of the authorized roles.

For the hello2_basicauth application, the GreetingServlet has the following annotations:

@WebServlet(name = "GreetingServlet", urlPatterns = {"/greeting"})
@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,

rolesAllowed = {"TutorialUser"}))

These annotations specify that the request URI /greeting can be accessed only by users who
have been authorized to access this URL because they have been verified to be in the role
TutorialUser. The data will be sent over a protected transport in order to keep the user name
and password data from being read in transit.

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 495

▼ To Build, Package, and Deploy the Servlet Basic Authentication
Example Using NetBeans IDE

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/security

Select the hello2_basicauth folder.

Select the Open as Main Project check box.

Click Open Project.

Right-click hello2_basicauth in the Projects pane and select Deploy.
This option builds and deploys the example application to your GlassFish Server instance.

▼ To Build, Package, and Deploy the Servlet Basic Authentication
Example Using Ant

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In a terminal window, go to:
tut-install/examples/security/hello2_basicauth/

Type the following command:
ant

This command calls the default target, which builds and packages the application into a WAR
file, hello2_basicauth.war, that is located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

▼ To Run the Basic Authentication Servlet

In a web browser, navigate to the following URL:
https://localhost:8181/hello2_basicauth/greeting

1

2

3

4

5

6

7

1

2

3

4

5

1

Examples: Securing Web Applications

The Java EE 6 Tutorial • October 2010496

You may be prompted to accept the security certificate for the server. If so, accept the security
certificate. If the browser warns that the certificate is invalid because it is self-signed, add a
security exception for the application.

An Authentication Required dialog box appears. Its appearance varies, depending on the
browser you use. Figure 25–6 shows an example.

Type a user name and password combination that corresponds to a user who has already been
created in the file realm of the GlassFish Server and has been assigned to the group of
TutorialUser; then click OK.
Basic authentication is case sensitive for both the user name and password, so type the user
name and password exactly as defined for the GlassFish Server.
The server returns the requested resource if all the following conditions are met.
■ A user with the user name you entered is defined for the GlassFish Server.
■ The user with the user name you entered has the password you entered.
■ The user name and password combination you entered is assigned to the group

TutorialUser on the GlassFish Server.
■ The role of TutorialUser, as defined for the application, is mapped to the group

TutorialUser, as defined for the GlassFish Server.

When these conditions are met and the server has authenticated the user, the application will
appear as shown in Figure 3–2 but with a different URL.

Type a name in the text field and click the Submit button.
Because you have already been authorized, the name you enter in this step does not have any
limitations. You have unlimited access to the application now.

The application responds by saying “Hello” to you, as shown in Figure 3–3 but with a different
URL.

For repetitive testing of this example, you may need to close and reopen your browser. You
should also run the ant undeploy and ant clean targets or the NetBeans IDE Clean and Build
option to get a fresh start.

FIGURE 25–6 Sample Basic Authentication Dialog Box

2

3

Next Steps

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 497

Example: Form-Based Authentication with a
JavaServer Faces Application
This example explains how to use form-based authentication with a JavaServer Faces
application. With form-based authentication, you can customize the login screen and error
pages that are presented to the web client for authentication of the user name and password.
When a user submits his or her name and password, the server determines whether the user
name and password are those of an authorized user and, if authorized, sends the requested web
resource.

This example, hello1_formauth, adds security to the basic JavaServer Faces application shown
in “Web Modules: The hello1 Example” on page 81.

In general, the steps necessary for adding form-based authentication to an unsecured
JavaServer Faces application are similar to those described in “Example: Basic Authentication
with a Servlet” on page 494. The major difference is that you must use a deployment descriptor
to specify the use of form-based authentication, as described in “Specifying Security for the
Form-Based Authentication Example” on page 499. In addition, you must create a login form
page and a login error page, as described in “Creating the Login Form and the Error Page” on
page 498.

The completed version of this example application can be found in the directory
tut-install/examples/security/hello1_formauth/.

Creating the Login Form and the Error Page
When using form-based login mechanisms, you must specify a page that contains the form you
want to use to obtain the user name and password, as well as a page to display if login
authentication fails. This section discusses the login form and the error page used in this
example. “Specifying Security for the Form-Based Authentication Example” on page 499 shows
how you specify these pages in the deployment descriptor.

The login page can be an HTML page, a JavaServer Faces or JSP page, or a servlet, and it must
return an HTML page containing a form that conforms to specific naming conventions (see the
Java Servlet 3.0 specification for more information on these requirements). To do this, include
the elements that accept user name and password information between <form></form> tags in
your login page. The content of an HTML page, JavaServer Faces or JSP page, or servlet for a
login page should be coded as follows:

<form method=post action="j_security_check">
<input type="text" name="j_username">
<input type="password" name= "j_password">

</form>

The full code for the login page used in this example can be found at
tut-install/examples/security/hello1_formauth/web/login.xhtml. An example of the
running login form page is shown later, in Figure 25–7. Here is the code for this page:

Examples: Securing Web Applications

The Java EE 6 Tutorial • October 2010498

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Login Form</title>

</h:head>

<h:body>

<h2>Hello, please log in:</h2>

<form name="loginForm" method="POST" action="j_security_check">

<p>Please type your user name:

<input type="text" name="j_username" size="25"></p>

<p>Please type your password:

<input type="password" size="15" name="j_password"></p>

<p>

<input type="submit" value="Submit"/>
<input type="reset" value="Reset"/></p>

</form>

</h:body>

</html>

The login error page is displayed if the user enters a user name and password combination that
is not authorized to access the protected URI. For this example, the login error page can be
found at tut-install/examples/security/hello1_formauth/web/error.xhtml. For this
example, the login error page explains the reason for receiving the error page and provides a
link that will allow the user to try again. Here is the code for this page:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Login Error</title>

</h:head>

<h:body>

<h2>Invalid user name or password.</h2>

<p>Please enter a user name or password that is authorized to access this

application. For this application, this means a user that has been

created in the <code>file</code> realm and has been assigned to the

group of <code>TutorialUser</code>.</p>

<h:link outcome="login">Return to login page</h:link>

</h:body>

</html>

Specifying Security for the Form-Based Authentication Example
This example takes a very simple servlet-based web application and adds form-based security.
To specify form-based instead of basic authentication for a JavaServer Faces example, you must
use the deployment descriptor.

The following sample code shows the security elements added to the deployment descriptor for
this example, which can be found in tut-install/examples/security/
hello1_formauth/web/WEB-INF/web.xml.

<security-constraint>

<display-name>Constraint1</display-name>

<web-resource-collection>

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 499

<web-resource-name>wrcoll</web-resource-name>

<description/>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<description/>

<role-name>TutorialUser</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>FORM</auth-method>

<realm-name>file</realm-name>

<form-login-config>

<form-login-page>/login.xhtml</form-login-page>

<form-error-page>/error.xhtml</form-error-page>

</form-login-config>

</login-config>

<security-role>

<description/>

<role-name>TutorialUser</role-name>

</security-role>

▼ To Build, Package, and Deploy the Form-Based Authentication Example
Using NetBeans IDE

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

Open the project in NetBeans IDE by selecting File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/security

Select the hello1_formauth folder.

Select the Open as Main Project check box.

Click Open Project.

Right-click hello1_formauth in the Projects pane and select Deploy.

▼ To Build, Package, and Deploy the Form-Based Authentication Example
Using Ant

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In a terminal window, go to:
tut-install/examples/security/hello2_formauth/

1

2

3

4

5

6

7

1

2

Examples: Securing Web Applications

The Java EE 6 Tutorial • October 2010500

Type the following command at the terminal window or command prompt:
ant

This target will spawn any necessary compilations, copy files to the
tut-install/examples/security/hello2_formauth/build/ directory, create the WAR file, and
copy it to the tut-install/examples/security/hello2_formauth/dist/ directory.

To deploy hello2_formauth.war to the GlassFish Server, type the following command:
ant deploy

▼ To Run the Form-Based Authentication Example
To run the web client for hello1_formauth, follow these steps.

Open a web browser to the following URL:
https://localhost:8181/hello1_formauth/

The login form displays in the browser, as shown in Figure 25–7.

Type a user name and password combination that corresponds to a user who has already been
created in the file realm of the GlassFish Server and has been assigned to the group of
TutorialUser.

Form-based authentication is case sensitive for both the user name and password, so type the
user name and password exactly as defined for the GlassFish Server.

Click the Submit button.

FIGURE 25–7 Form-Based Login Page

3

4

1

2

3

Examples: Securing Web Applications

Chapter 25 • Getting Started Securing Web Applications 501

If you entered My_Name as the name and My_Pwd for the password, the server returns the
requested resource if all the following conditions are met.

■ A user with the user name My_Name is defined for the GlassFish Server.
■ The user with the user name My_Name has a password My_Pwd defined for the GlassFish

Server.
■ The user My_Name with the password My_Pwd is assigned to the group TutorialUser on the

GlassFish Server.
■ The role TutorialUser, as defined for the application, is mapped to the group

TutorialUser, as defined for the GlassFish Server.
When these conditions are met and the server has authenticated the user, the application
appears.

Type your name and click the Submit button.
Because you have already been authorized, the name you enter in this step does not have any
limitations. You have unlimited access to the application now.

The application responds by saying “Hello” to you.

For additional testing and to see the login error page generated, close and reopen your browser,
type the application URL, and type a user name and password that are not authorized.

Note – For repetitive testing of this example, you may need to close and reopen your browser.
You should also run the ant clean and ant undeploy commands to ensure a fresh build if
using the Ant tool, or select Clean and Build then Deploy if using NetBeans IDE.

4

Next Steps

Examples: Securing Web Applications

The Java EE 6 Tutorial • October 2010502

Getting Started Securing Enterprise
Applications

The following parties are responsible for administering security for enterprise applications:

■ System administrator: Responsible for setting up a database of users and assigning them to
the proper group. The system administrator is also responsible for setting GlassFish
Serverproperties that enable the applications to run properly. Some security-related
examples set up a default principal-to-role mapping, anonymous users, default users, and
propagated identities. When needed for this tutorial, the steps for performing specific tasks
are provided.

■ Application developer/bean provider: Responsible for annotating the classes and methods
of the enterprise application in order to provide information to the deployer about which
methods need to have restricted access. This tutorial describes the steps necessary to
complete this task.

■ Deployer: Responsible for taking the security view provided by the application developer
and implementing that security upon deployment. This document provides the information
needed to accomplish this task for the tutorial example applications.

The following topics are addressed here:

■ “Securing Enterprise Beans” on page 503
■ “Examples: Securing Enterprise Beans” on page 513
■ “Securing Application Clients” on page 521
■ “Securing Enterprise Information Systems Applications” on page 522

Securing Enterprise Beans
Enterprise beans are Java EE components that implement EJB technology. Enterprise beans run
in the EJB container, a runtime environment within the GlassFish Server. Although transparent
to the application developer, the EJB container provides system-level services, such as
transactions and security to its enterprise beans, which form the core of transactional Java EE
applications.

26C H A P T E R 2 6

503

Enterprise bean methods can be secured in either of the following ways:
■ Declarative security (preferred): Expresses an application component’s security

requirements using either deployment descriptors or annotations. The presence of an
annotation in the business method of an enterprise bean class that specifies method
permissions is all that is needed for method protection and authentication in some
situations. This section discusses this simple and efficient method of securing enterprise
beans.
Because of some limitations to the simplified method of securing enterprise beans, you
would want to continue to use the deployment descriptor to specify security information in
some instances. An authentication mechanism must be configured on the server for the
simple solution to work. Basic authentication is the GlassFish Server’s default authentication
method.
This tutorial explains how to invoke user name/password authentication of authorized users
by decorating the enterprise application’s business methods with annotations that specify
method permissions.
To make the deployer’s task easier, the application developer can define security roles. A
security role is a grouping of permissions that a given type of application users must have in
order to successfully use the application. For example, in a payroll application, some users
will want to view their own payroll information (employee), some will need to view others’
payroll information (manager), and some will need to be able to change others’ payroll
information (payrollDept). The application developer would determine the potential users
of the application and which methods would be accessible to which users. The application
developer would then decorate classes or methods of the enterprise bean with annotations
that specify the types of users authorized to access those methods. Using annotations to
specify authorized users is described in “Specifying Authorized Users by Declaring Security
Roles” on page 507.
When one of the annotations is used to define method permissions, the deployment system
will automatically require user name/password authentication. In this type of
authentication, a user is prompted to enter a user name and password, which will be
compared against a database of known users. If the user is found and the password matches,
the roles that the user is assigned will be compared against the roles that are authorized to
access the method. If the user is authenticated and found to have a role that is authorized to
access that method, the data will be returned to the user.
Using declarative security is discussed in “Securing an Enterprise Bean Using Declarative
Security” on page 506.

■ Programmatic security: For an enterprise bean, code embedded in a business method that
is used to access a caller’s identity programmatically and that uses this information to make
security decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of an application.
In general, security management should be enforced by the container in a manner that is
transparent to the enterprise beans’ business methods. The programmatic security APIs
described in this chapter should be used only in the less frequent situations in which the

Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010504

enterprise bean business methods need to access the security-context information, such as
when you want to grant access based on the time of day or other nontrivial condition checks
for a particular role.

Programmatic security is discussed in “Securing an Enterprise Bean Programmatically” on
page 510.

Some of the material in this chapter assumes that you have already read Chapter 14, “Enterprise
Beans,” Chapter 15, “Getting Started with Enterprise Beans,” and Chapter 24, “Introduction to
Security in the Java EE Platform.”

As mentioned earlier, enterprise beans run in the EJB container, a runtime environment within
the GlassFish Server, as shown in Figure 26–1.

FIGURE 26–1 Java EE Server and Containers

Application Client
Container

Client
Machine

Java EE
Server

Web
Container

Web PageServlet

EJB
Container

Enterprise
Bean

Web
BrowserApplication

Client

Enterprise
Bean

Database

Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 505

This section discusses securing a Java EE application where one or more modules, such as EJB
JAR files, are packaged into an EAR file, the archive file that holds the application. Security
annotations will be used in the Java programming class files to specify authorized users and
basic, or user name/password, authentication.

Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application’s WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java class
files or within a JAR file that is bundled within the WAR module. When a servlet or JavaServer
Faces page handles the web front end and the application is packaged into a WAR module as a
Java class file, security for the application can be handled in the application’s web.xml file. The
EJB in the WAR file can have its own deployment descriptor, ejb-jar.xml, if required.
Securing web applications using web.xml is discussed in Chapter 25, “Getting Started Securing
Web Applications.”

The following sections describe declarative and programmatic security mechanisms that can be
used to protect enterprise bean resources. The protected resources include enterprise bean
methods that are called from application clients, web components, or other enterprise beans.

For more information on this topic, read the Enterprise JavaBeans 3.1 specification. This
document can be downloaded from http://jcp.org/en/jsr/detail?id=318. Chapter 17 of
this specification, “Security Management,” discusses security management for enterprise beans.

Securing an Enterprise Bean Using Declarative
Security
Declarative security enables the application developer to specify which users are authorized to
access which methods of the enterprise beans and to authenticate these users with basic, or
username-password, authentication. Frequently, the person who is developing an enterprise
application is not the same person who is responsible for deploying the application. An
application developer who uses declarative security to define method permissions and
authentications mechanisms is passing along to the deployer a security view of the enterprise
beans contained in the EJB JAR. When a security view is passed on to the deployer, he or she
uses this information to define method permissions for security roles. If you don’t define a
security view, the deployer will have to determine what each business method does to
determine which users are authorized to call each method.

A security view consists of a set of security roles, a semantic grouping of permissions that a
given type of users of an application must have to successfully access the application. Security
roles are meant to be logical roles, representing a type of user. You can define method
permissions for each security role. A method permission is a permission to invoke a specified
group of methods of an enterprise bean’s business interface, home interface, component
interface, and/or web service endpoints. After method permissions are defined, user
name/password authentication will be used to verify the identity of the user.

Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010506

http://jcp.org/en/jsr/detail?id=318

It is important to keep in mind that security roles are used to define the logical security view of
an application. They should not be confused with the user groups, users, principals, and other
concepts that exist in the GlassFish Server. An additional step is required to map the roles
defined in the application to users, groups, and principals that are the components of the user
database in the file realm of the GlassFish Server. These steps are outlined in “Mapping Roles to
Users and Groups” on page 467.

The following sections show how an application developer uses declarative security to either
secure an application or to create a security view to pass along to the deployer.

Specifying Authorized Users by Declaring Security Roles
This section discusses how to use annotations to specify the method permissions for the
methods of a bean class. For more information on these annotations, refer to the Common
Annotations for the Java Platform specification at http://jcp.org/en/jsr/detail?id=250.

Method permissions can be specified on the class, the business methods of the class, or both.
Method permissions can be specified on a method of the bean class to override the method
permissions value specified on the entire bean class. The following annotations are used to
specify method permissions:

■ @DeclareRoles: Specifies all the roles that the application will use, including roles not
specifically named in a @RolesAllowed annotation. The set of security roles the application
uses is the total of the security roles defined in the @DeclareRoles and @RolesAllowed

annotations.
The @DeclareRoles annotation is specified on a bean class, where it serves to declare roles
that can be tested (for example, by calling isCallerInRole) from within the methods of the
annotated class. When declaring the name of a role used as a parameter to the
isCallerInRole(String roleName) method, the declared name must be the same as the
parameter value.
The following example code demonstrates the use of the @DeclareRoles annotation:

@DeclareRoles("BusinessAdmin")
public class Calculator {

...

}

The syntax for declaring more than one role is as shown in the following example:

@DeclareRoles({"Administrator", "Manager", "Employee"})
■ @RolesAllowed("list-of-roles"): Specifies the security roles permitted to access methods in

an application. This annotation can be specified on a class or on one or more methods.
When specified at the class level, the annotation applies to all methods in the class. When
specified on a method, the annotation applies to that method only and overrides any values
specified at the class level.

Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 507

http://jcp.org/en/jsr/detail?id=250

To specify that no roles are authorized to access methods in an application, use the
@DenyAll annotation. To specify that a user in any role is authorized to access the
application, use the @PermitAll annotation.
When used in conjunction with the @DeclareRoles annotation, the combined set of
security roles is used by the application.
The following example code demonstrates the use of the @RolesAllowed annotation:

@DeclareRoles({"Administrator", "Manager", "Employee"})
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

...

}

}

■ @PermitAll: Specifies that all security roles are permitted to execute the specified method or
methods. The user is not checked against a database to ensure that he or she is authorized to
access this application.
This annotation can be specified on a class or on one or more methods. Specifying this
annotation on the class means that it applies to all methods of the class. Specifying it at the
method level means that it applies to only that method.
The following example code demonstrates the use of the @PermitAll annotation:

import javax.annotation.security.*;

@RolesAllowed("RestrictedUsers")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//...

}

@PermitAll

public long convertCurrency(long amount) {

//...

}

}

■ @DenyAll: Specifies that no security roles are permitted to execute the specified method or
methods. This means that these methods are excluded from execution in the Java EE
container.
The following example code demonstrates the use of the @DenyAll annotation:

import javax.annotation.security.*;

@RolesAllowed("Users")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//...

}

@DenyAll

public long convertCurrency(long amount) {

//...

Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010508

}

}

The following code snippet demonstrates the use of the @DeclareRoles annotation with the
isCallerInRole method. In this example, the @DeclareRoles annotation declares a role that
the enterprise bean PayrollBean uses to make the security check by using
isCallerInRole("payroll") to verify that the caller is authorized to change salary data:

@DeclareRoles("payroll")
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
Principal callerPrincipal = ctx.getCallerPrincipal();

if (info.salary != oldInfo.salary && !ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

The following example code illustrates the use of the @RolesAllowed annotation:

@RolesAllowed("admin")
public class SomeClass {

public void aMethod () {...}

public void bMethod () {...}

...

}

@Stateless public class MyBean extends SomeClass implements A {

@RolesAllowed("HR")
public void aMethod () {...}

public void cMethod () {...}

...

}

In this example, assuming that aMethod, bMethod, and cMethod are methods of business
interface A, the method permissions values of methods aMethod and bMethod are
@RolesAllowed("HR") and @RolesAllowed("admin"), respectively. The method permissions
for method cMethod have not been specified.

To clarify, the annotations are not inherited by the subclass itself. Instead, the annotations apply
to methods of the superclass that are inherited by the subclass.

Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 509

Specifying an Authentication Mechanism and Secure Connection
When method permissions are specified, basic user name/password authentication will be
invoked by the GlassFish Server.

To use a different type of authentication or to require a secure connection using SSL, specify this
information in an application deployment descriptor.

Securing an Enterprise Bean Programmatically
Programmatic security, code that is embedded in a business method, is used to access a caller’s
identity programmatically and uses this information to make security decisions within the
method itself.

Accessing an Enterprise Bean Caller’s Security Context
In general, security management should be enforced by the container in a manner that is
transparent to the enterprise bean’s business methods. The security API described in this
section should be used only in the less frequent situations in which the enterprise bean business
methods need to access the security context information, such as when you want to restrict
access to a particular time of day.

The javax.ejb.EJBContext interface provides two methods that allow the bean provider to
access security information about the enterprise bean’s caller:
■ getCallerPrincipal, which allows the enterprise bean methods to obtain the current caller

principal’s name. The methods might, for example, use the name as a key to information in a
database.
The following code sample illustrates the use of the getCallerPrincipal method:

@Stateless public class EmployeeServiceBean implements EmployeeService {

@Resource SessionContext ctx;

@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {

...

// obtain the caller principal.

callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.

callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord

EmployeeRecord myEmployeeRecord =

em.find(EmployeeRecord.class, callerKey);

// update phone number

myEmployeeRecord.setPhoneNumber(...);

...

}

}

Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010510

In this example, the enterprise bean obtains the principal name of the current caller and uses
it as the primary key to locate an EmployeeRecord entity. This example assumes that
application has been deployed such that the current caller principal contains the primary
key used for the identification of employees (for example, employee number).

■ isCallerInRole, which the enterprise bean code can use to allow the bean
provider/application developer to code the security checks that cannot be easily defined
using method permissions. Such a check might impose a role-based limit on a request, or it
might depend on information stored in the database.

The enterprise bean code can use the isCallerInRole method to test whether the current
caller has been assigned to a given security role. Security roles are defined by the bean
provider or the application assembler and are assigned by the deployer to principals or
principal groups that exist in the operational environment.

The following code sample illustrates the use of the isCallerInRole method:

@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

You would use programmatic security in this way to dynamically control access to a method,
for example, when you want to deny access except during a particular time of day. An example
application that uses the getCallerPrincipal and isCallerInRole methods is described in
“Example: Securing an Enterprise Bean with Programmatic Security” on page 518.

Propagating a Security Identity (Run-As)
You can specify whether a caller’s security identity should be used for the execution of specified
methods of an enterprise bean or whether a specific run-as identity should be used. Figure 26–2
illustrates this concept.

Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 511

In this illustration, an application client is making a call to an enterprise bean method in one
EJB container. This enterprise bean method, in turn, makes a call to an enterprise bean method
in another container. The security identity during the first call is the identity of the caller. The
security identity during the second call can be any of the following options.
■ By default, the identity of the caller of the intermediate component is propagated to the

target enterprise bean. This technique is used when the target container trusts the
intermediate container.

■ A specific identity is propagated to the target enterprise bean. This technique is used when
the target container expects access using a specific identity.
To propagate an identity to the target enterprise bean, configure a run-as identity for the
bean, as described in “Configuring a Component’s Propagated Security Identity” on
page 512. Establishing a run-as identity for an enterprise bean does not affect the identities of
its callers, which are the identities tested for permission to access the methods of the
enterprise bean. The run-as identity establishes the identity that the enterprise bean will use
when it makes calls.
The run-as identity applies to the enterprise bean as a whole, including all the methods of
the enterprise bean’s business interface, local and remote interfaces, component interface,
and web service endpoint interfaces, the message listener methods of a message-driven
bean, the timeout method of an enterprise bean, and all internal methods of the bean that
might be called in turn.

Configuring a Component’s Propagated Security Identity
You can configure an enterprise bean’s run-as, or propagated, security identity by using the
@RunAs annotation, which defines the role of the application during execution in a Java EE
container. The annotation can be specified on a class, allowing developers to execute an
application under a particular role. The role must map to the user/group information in the
container’s security realm. The @RunAs annotation specifies the name of a security role as its
parameter.

Here is some example code that demonstrates the use of the @RunAs annotation.

@RunAs("Admin")
public class Calculator {

FIGURE 26–2 Security Identity Propagation

Initiating Client Intermediate Target

Application Client
or Web Client

Java EE
Security
Identity

Propagated
Security Identity

(Java EE)

EJB or Web
Container

EJB
Container

Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010512

//....

}

You will have to map the run-as role name to a given principal defined on the GlassFish Server if
the given roles are associated with more than one user principal.

Trust between Containers
When an enterprise bean is designed so that either the original caller identity or a designated
identity is used to call a target bean, the target bean will receive the propagated identity only.
The target bean will not receive any authentication data.

There is no way for the target container to authenticate the propagated security identity.
However, because the security identity is used in authorization checks (for example, method
permissions or with the isCallerInRole method), it is vitally important that the security
identity be authentic. Because no authentication data is available to authenticate the propagated
identity, the target must trust that the calling container has propagated an authenticated
security identity.

By default, the GlassFish Server is configured to trust identities that are propagated from
different containers. Therefore, you do not need to take any special steps to set up a trust
relationship.

Deploying Secure Enterprise Beans
The deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. If a security view has been provided to the
deployer through the use of security annotations and/or a deployment descriptor, the security
view is mapped to the mechanisms and policies used by the security domain in the target
operational environment, which in this case is the GlassFish Server. If no security view is
provided, the deployer must set up the appropriate security policy for the enterprise bean
application.

Deployment information is specific to a web or application server.

Examples: Securing Enterprise Beans
The following examples show how to secure enterprise beans using declarative and
programmatic security.

Examples: Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 513

Example: Securing an Enterprise Bean with
Declarative Security
This section discusses how to configure an enterprise bean for basic user name/password
authentication. When a bean that is constrained in this way is requested, the server requests a
user name and password from the client and verifies that the user name and password are valid
by comparing them against a database of authorized users on the GlassFish Server.

If the topic of authentication is new to you, see “Specifying an Authentication Mechanism in the
Deployment Descriptor” on page 486.

This example demonstrates security by starting with the unsecured enterprise bean application,
cart, which is found in the directory tut-install/examples/ejb/cart/ and is discussed in “The
cart Example” on page 289.

In general, the following steps are necessary to add user name/password authentication to an
existing application that contains an enterprise bean. In the example application included with
this tutorial, these steps have been completed for you and are listed here simply to show what
needs to be done should you wish to create a similar application.

1. Create an application like the one in “The cart Example” on page 289. The example in this
tutorial starts with this example and demonstrates adding basic authentication of the client
to this application. The example application discussed in this section can be found at
tut-install/examples/security/cart-secure/.

2. If you have not already done so, complete the steps in “To Set Up Your System for Running
the Security Examples” on page 493 to configure your system for running the tutorial
applications.

3. Modify the source code for the enterprise bean, CartBean.java, to specify which roles are
authorized to access which protected methods. This step is discussed in “Annotating the
Bean” on page 514.

4. Build, package, and deploy the enterprise bean; then build and run the client application by
following the steps in “To Build, Package, Deploy, and Run the Secure Cart Example Using
NetBeans IDE” on page 516 or “To Build, Package, Deploy, and Run the Secure Cart
Example Using Ant” on page 517.

Annotating the Bean
The source code for the original cart application was modified as shown in the following code
snippet (modifications in bold). The resulting file can be found in the following location:

tut-install/examples/security/cart-secure/cart-secure-ejb/src/java/cart/
ejb/CartBean.java

The code snippet is as follows:

Examples: Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010514

package cart.ejb;

import cart.util.BookException;

import cart.util.IdVerifier;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

@Stateful

@DeclareRoles("TutorialUser")

public class CartBean implements Cart {

List<String> contents;

String customerId;

String customerName;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(

String person,

String id) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

customerId = id;

} else {

throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

@RolesAllowed("TutorialUser")

public void addBook(String title) {

contents.add(title);

}

@RolesAllowed("TutorialUser")

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

Examples: Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 515

throw new BookException("\"" + title + "\" not in cart.");
}

}

@RolesAllowed("TutorialUser")

public List<String> getContents() {

return contents;

}

@Remove()

@RolesAllowed("TutorialUser")

public void remove() {

contents = null;

}

}

The @RolesAllowed annotation is specified on methods for which you want to restrict access. In
this example, only users in the role of TutorialUser will be allowed to add and remove books
from the cart and to list the contents of the cart. A @RolesAllowed annotation implicitly
declares a role that will be referenced in the application; therefore, no @DeclareRoles

annotation is required. The presence of the @RolesAllowed annotation also implicitly declares
that authentication will be required for a user to access these methods. If no authentication
method is specified in the deployment descriptor, the type of authentication will be user
name/password authentication.

▼ To Build, Package, Deploy, and Run the Secure Cart Example Using
NetBeans IDE

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/security/

Select the cart-secure folder.

Select the Open as Main Project and Open Required Projects check boxes.

Click Open Project.

In the Projects tab, right-click the cart-secureproject and select Build.

In the Projects tab, right-click the cart-secureproject and select Deploy.
This step builds and packages the application into cart-secure.ear, located in the directory
tut-install/examples/security/cart-secure/dist/, and deploys this EAR file to your
GlassFish Server instance.

1

2

3

4

5

6

7

8

Examples: Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010516

To run the application client, right-click the cart-secureproject and select Run.
A Login for user: dialog box appears.

In the dialog box, type the user name and password of a file realm user created on the GlassFish
Server and assigned to the group TutorialUser; then click OK.
If the user name and password you enter are authenticated, the output of the application client
appears in the Output pane:
...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Java Result: 1

...

If the user name and password are not authenticated, the dialog box reappears until you type
correct values.

▼ To Build, Package, Deploy, and Run the Secure Cart Example Using Ant

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In a terminal window, go to:
tut-install/examples/security/cart-secure/

To build the application and package it into an EAR file, type the following command at the
terminal window or command prompt:
ant

To deploy the application to the GlassFish Server, type the following command:
ant deploy

To run the application client, type the following command:
ant run

This task retrieves the application client JAR and runs the application client.

A Login for user: dialog box appears.

In the dialog box, type the user name and password of a file realm user created on the GlassFish
Server and assigned to the group TutorialUser; then click OK.
If the user name and password are authenticated, the client displays the following output:
[echo] running application client container.

[exec] Retrieving book title from cart: Infinite Jest

[exec] Retrieving book title from cart: Bel Canto

[exec] Retrieving book title from cart: Kafka on the Shore

9

10

1

2

3

4

5

6

Examples: Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 517

[exec] Removing "Gravity’s Rainbow" from cart.

[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.

[exec] Result: 1

If the username and password are not authenticated, the dialog box reappears until you type
correct values.

Example: Securing an Enterprise Bean with
Programmatic Security
This example demonstrates how to use the getCallerPrincipal and isCallerInRole

methods with an enterprise bean. This example starts with a very simple EJB application,
converter, and modifies the methods of the ConverterBean so that currency conversion will
occur only when the requester is in the role of TutorialUser.

The completed version of this example can be found in the directory tut-install/
examples/security/converter-secure. This example is based on the unsecured enterprise
bean application, converter, which is discussed in Chapter 15, “Getting Started with Enterprise
Beans,” and is found in the directory tut-install/examples/ejb/converter/. This section builds
on the example by adding the necessary elements to secure the application by using the
getCallerPrincipal and isCallerInRole methods, which are discussed in more detail in
“Accessing an Enterprise Bean Caller’s Security Context” on page 510.

In general, the following steps are necessary when using the getCallerPrincipal and
isCallerInRole methods with an enterprise bean. In the example application included with
this tutorial, many of these steps have been completed for you and are listed here simply to show
what needs to be done should you wish to create a similar application.

1. Create a simple enterprise bean application.
2. Set up a user on the GlassFish Server in the file realm, in the group TutorialUser, and set

up default principal to role mapping. To do this, follow the steps in “To Set Up Your System
for Running the Security Examples” on page 493.

3. Modify the bean to add the getCallerPrincipal and isCallerInRole methods.
4. If the application contains a web client that is a servlet, specify security for the servlet, as

described in “Specifying Security for Basic Authentication Using Annotations” on page 495.
5. Build, package, deploy, and run the application.

Modifying ConverterBean

The source code for the original ConverterBean class was modified to add the if..else clause
that tests whether the caller is in the role of TutorialUser. . If the user is in the correct role, the
currency conversion is computed and displayed. If the user is not in the correct role, the
computation is not performed, and the application displays the result as 0. The code example
can be found in the following file:

Examples: Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010518

tut-install/examples/ejb/converter-secure/converter-secure-ejb/src/java/
converter/ejb/ConverterBean.java

The code snippet (with modifications shown in bold) is as follows:

package converter.ejb;

import java.math.BigDecimal;

import javax.ejb.Stateless;

import java.security.Principal;

import javax.annotation.Resource;

import javax.ejb.SessionContext;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

@Stateless()

@DeclareRoles("TutorialUser")

public class ConverterBean{

@Resource SessionContext ctx;

private BigDecimal yenRate = new BigDecimal("89.5094");
private BigDecimal euroRate = new BigDecimal("0.0081");

@RolesAllowed("TutorialUser")

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("TutorialUser")) {

result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

} else {

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

@RolesAllowed("TutorialUser")

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("TutorialUser")) {

result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

} else {

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

}

Modifying ConverterServlet

The following annotations specify security for the converter web client, ConverterServlet:

@WebServlet(name = "ConverterServlet", urlPatterns = {"/"})
@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,

rolesAllowed = {"TutorialUser"}))

Examples: Securing Enterprise Beans

Chapter 26 • Getting Started Securing Enterprise Applications 519

▼ To Build, Package, and Deploy the Secure Converter Example Using
NetBeans IDE

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/security/

Select the converter-secure folder.

Select the Open as Main Project check box.

Click Open Project.

Right-click the converter-secureproject and select Build.

Right-click the converter-secureproject and select Deploy.

▼ To Build, Package, and Deploy the Secure Converter Example Using Ant

Follow the steps in “To Set Up Your System for Running the Security Examples”on page 493.

In a terminal window, go to:
tut-install/examples/security/converter-secure/

Type the following command:
ant all

This command both builds and deploys the example.

▼ To Run the Secure Converter Example

Open a web browser to the following URL:
http://localhost:8080/converter

An Authentication Required dialog box appears.

Type a user name and password combination that corresponds to a user who has already been
created in the file realm of the GlassFish Server and has been assigned to the group of
TutorialUser; then click OK.
The screen shown in Figure 15–1 appears.

1

2

3

4

5

6

7

8

1

2

3

1

2

Examples: Securing Enterprise Beans

The Java EE 6 Tutorial • October 2010520

Type 100 in the input field and click Submit.
A second page appears, showing the converted values.

Securing Application Clients
The Java EE authentication requirements for application clients are the same as for other Java
EE components, and the same authentication techniques can be used as for other Java EE
application components. No authentication is necessary when accessing unprotected web
resources.

When accessing protected web resources, the usual varieties of authentication can be used:
HTTP basic authentication, SSL client authentication, or HTTP login-form authentication.
These authentication methods are discussed in “Specifying an Authentication Mechanism in
the Deployment Descriptor” on page 486.

Authentication is required when accessing protected enterprise beans. The authentication
mechanisms for enterprise beans are discussed in “Securing Enterprise Beans” on page 503.

An application client makes use of an authentication service provided by the application client
container for authenticating its users. The container’s service can be integrated with the native
platform’s authentication system, so that a single sign-on capability is used. The container can
authenticate the user either when the application is started or when a protected resource is
accessed.

An application client can provide a class, called a login module, to gather authentication data. If
so, the javax.security.auth.callback.CallbackHandler interface must be implemented,
and the class name must be specified in its deployment descriptor. The application’s callback
handler must fully support Callback objects specified in the javax.security.auth.callback
package.

Using Login Modules
An application client can use the Java Authentication and Authorization Service (JAAS) to
create login modules for authentication. A JAAS-based application implements the
javax.security.auth.callback.CallbackHandler interface so that it can interact with users
to enter specific authentication data, such as user names or passwords, or to display error and
warning messages.

Applications implement the CallbackHandler interface and pass it to the login context, which
forwards it directly to the underlying login modules. A login module uses the callback handler
both to gather input, such as a password or smart card PIN, from users and to supply
information, such as status information, to users. Because the application specifies the callback
handler, an underlying login module can remain independent of the various ways that
applications interact with users.

3

Securing Application Clients

Chapter 26 • Getting Started Securing Enterprise Applications 521

For example, the implementation of a callback handler for a GUI application might display a
window to solicit user input. Or the implementation of a callback handler for a command-line
tool might simply prompt the user for input directly from the command line.

The login module passes an array of appropriate callbacks to the callback handler’s handle
method, such as a NameCallback for the user name and a PasswordCallback for the password;
the callback handler performs the requested user interaction and sets appropriate values in the
callbacks. For example, to process a NameCallback, the CallbackHandler might prompt for a
name, retrieve the value from the user, and call the setName method of the NameCallback to
store the name.

For more information on using JAAS for login modules for authentication, refer to the
following sources (see “Further Information about Security” on page 473 for the URLs):

■ Java Authentication and Authorization Service (JAAS) Reference Guide
■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s Guide

Using Programmatic Login
Programmatic login enables the client code to supply user credentials. If you are using an EJB
client, you can use the com.sun.appserv.security.ProgrammaticLogin class with its
convenient login and logout methods. Programmatic login is specific to a server.

Securing Enterprise Information Systems Applications
In EIS applications, components request a connection to an EIS resource. As part of this
connection, the EIS can require a sign-on for the requester to access the resource. The
application component provider has two choices for the design of the EIS sign-on:

■ Container-managed sign-on: The application component lets the container take the
responsibility of configuring and managing the EIS sign-on. The container determines the
user name and password for establishing a connection to an EIS instance. For more
information, see “Container-Managed Sign-On” on page 523.

■ Component-managed sign-on: The application component code manages EIS sign-on by
including code that performs the sign-on process to an EIS. For more information, see
“Component-Managed Sign-On” on page 523.

You can also configure security for resource adapters. See “Configuring Resource Adapter
Security” on page 523 for more information.

Securing Enterprise Information Systems Applications

The Java EE 6 Tutorial • October 2010522

Container-Managed Sign-On
In container-managed sign-on, an application component does not have to pass any sign-on
security information to the getConnection() method. The security information is supplied by
the container, as shown in the following example:

// Business method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");
// Invoke factory to obtain a connection. The security

// information is not passed in the getConnection method

javax.resource.cci.Connection cx = cxf.getConnection();

...

Component-Managed Sign-On
In component-managed sign-on, an application component is responsible for passing the
needed sign-on security information to the resource to the getConnection method. For
example, security information might be a user name and password, as shown here:

// Method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");

// Get a new ConnectionSpec

com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection

properties.setUserName("...");
properties.setPassword("...");
javax.resource.cci.Connection cx =

cxf.getConnection(properties);

...

Configuring Resource Adapter Security
A resource adapter is a system-level software component that typically implements network
connectivity to an external resource manager. A resource adapter can extend the functionality
of the Java EE platform either by implementing one of the Java EE standard service APIs, such
as a JDBC driver, or by defining and implementing a resource adapter for a connector to an
external application system. Resource adapters can also provide services that are entirely local,
perhaps interacting with native resources. Resource adapters interface with the Java EE

Securing Enterprise Information Systems Applications

Chapter 26 • Getting Started Securing Enterprise Applications 523

platform through the Java EE service provider interfaces (Java EE SPI). A resource adapter that
uses the Java EE SPIs to attach to the Java EE platform will be able to work with all Java EE
products.

To configure the security settings for a resource adapter, you need to edit the resource adapter
descriptor file, ra.xml. Here is an example of the part of an ra.xml file that configures the
following security properties for a resource adapter:

<authentication-mechanism>

<authentication-mechanism-type>

BasicPassword

</authentication-mechanism-type>

<credential-interface>

javax.resource.spi.security.PasswordCredential

</credential-interface>

</authentication-mechanism>

<reauthentication-support>false</reauthentication-support>

You can find out more about the options for configuring resource adapter security by reviewing
as-install/lib/dtds/connector_1_0.dtd. You can configure the following elements in the
resource adapter deployment descriptor file:

■ Authentication mechanisms: Use the authentication-mechanism element to specify an
authentication mechanism supported by the resource adapter. This support is for the
resource adapter, not for the underlying EIS instance.
There are two supported mechanism types:
■ BasicPassword, which supports the following interface:

javax.resource.spi.security.PasswordCredential

■ Kerbv5, which supports the following interface:

javax.resource.spi.security.GenericCredential

The GlassFish Server does not currently support this mechanism type.
■ Reauthentication support: Use the reauthentication-support element to specify

whether the resource adapter implementation supports reauthentication of existing
Managed-Connection instances. Options are true or false.

■ Security permissions: Use the security-permission element to specify a security
permission that is required by the resource adapter code. Support for security permissions is
optional and is not supported in the current release of the GlassFish Server. You can,
however, manually update the server.policy file to add the relevant permissions for the
resource adapter.
The security permissions listed in the deployment descriptor are different from those
required by the default permission set as specified in the connector specification.
For more information on the implementation of the security permission specification, visit
http://download.oracle.com/

javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax.

Securing Enterprise Information Systems Applications

The Java EE 6 Tutorial • October 2010524

http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

In addition to specifying resource adapter security in the ra.xml file, you can create a security
map for a connector connection pool to map an application principal or a user group to a
back-end EIS principal. The security map is usually used if one or more EIS back-end principals
are used to execute operations (on the EIS) initiated by various principals or user groups in the
application.

▼ To Map an Application Principal to EIS Principals
When using the GlassFish Server, you can use security maps to map the caller identity of the
application (principal or user group) to a suitable EIS principal in container-managed
transaction-based scenarios. When an application principal initiates a request to an EIS, the
GlassFish Server first checks for an exact principal by using the security map defined for the
connector connection pool to determine the mapped back-end EIS principal. If there is no exact
match, the GlassFish Server uses the wildcard character specification, if any, to determine the
mapped back-end EIS principal. Security maps are used when an application user needs to
execute EIS operations that require to be executed as a specific identity in the EIS.

To work with security maps, use the Administration Console. From the Administration
Console, follow these steps to get to the security maps page.

In the navigation tree, expand the Resources node.

Expand the Connectors node.

Select the Connector Connection Pools node.

On the Connector Connection Pools page, click the name of the connection pool for which you
want to create a security map.

Click the Security Maps tab.

Click New to create a new security map for the connection pool.

Type a name by which you will refer to the security map, as well as the other required
information.
Click the Help button for more information on the individual options.

1

2

3

4

5

6

7

Securing Enterprise Information Systems Applications

Chapter 26 • Getting Started Securing Enterprise Applications 525

526

Java EE Supporting Technologies
Part VIII explores several technologies that support the Java EE platform. This part
contains the following chapters:

■ Chapter 27, “Introduction to Java EE Supporting Technologies”
■ Chapter 28, “Transactions”
■ Chapter 29, “Resource Connections”
■ Chapter 30, “Java Message Service Concepts”
■ Chapter 31, “Java Message Service Examples”
■ Chapter 32, “Advanced Bean Validation Concepts and Examples”

P A R T V I I I

527

528

Introduction to Java EE Supporting
Technologies

The Java EE platform includes several technologies and APIs that extend its functionality. These
technologies allow applications to access a wide range of services in a uniform manner. These
technologies are explained in greater detail in Chapter 28, “Transactions,” and Chapter 29,
“Resource Connections,” as well as Chapter 30, “Java Message Service Concepts,” Chapter 31,
“Java Message Service Examples,” and Chapter 32, “Advanced Bean Validation Concepts and
Examples.”

The following topics are addressed here:

■ “Transactions” on page 529
■ “Resources” on page 530

Transactions
In a Java EE application, a transaction is a series of actions that must all complete successfully,
or else all the changes in each action are backed out. Transactions end in either a commit or a
rollback.

The Java Transaction API (JTA) allows applications to access transactions in a manner that is
independent of specific implementations. JTA specifies standard Java interfaces between a
transaction manager and the parties involved in a distributed transaction system: the
transactional application, the Java EE server, and the manager that controls access to the shared
resources affected by the transactions.

The JTA defines the UserTransaction interface that applications use to start, commit, or abort
transactions. Application components get a UserTransaction object through a JNDI lookup by
using the name java:comp/UserTransaction or by requesting injection of a UserTransaction
object. An application server uses a number of JTA-defined interfaces to communicate with a
transaction manager; a transaction manager uses JTA-defined interfaces to interact with a
resource manager.

27C H A P T E R 2 7

529

See Chapter 28, “Transactions,” for a more detailed explanation. The JTA 1.1 specification is
available at http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html.

Resources
A resource is a program object that provides connections to such systems as database servers
and messaging systems.

The Java EE Connector Architecture and Resource
Adapters
The Java EE Connector Architecture enables Java EE components to interact with enterprise
information systems (EISs) and EISs to interact with Java EE components. EIS software
includes such kinds of systems as enterprise resource planning (ERP), mainframe transaction
processing, and nonrelational databases. Connector architecture simplifies the integration of
diverse EISs. Each EIS requires only one implementation of the Connector architecture.
Because it adheres to the Connector specification, an implementation is portable across all
compliant Java EE servers.

The specification defines the contracts for an application server as well as for resource adapters,
which are system-level software drivers for specific EIS resources. These standard contracts
provide pluggability between application servers and EISs. The Java EE Connector Architecture
1.6 specification defines new system contracts such as Generic Work Context and Security
Inflow. The Java EE Connector Architecture 1.6 specification is available at
http://jcp.org/en/jsr/detail?id=322.

A resource adapter is a Java EE component that implements the Connector architecture for a
specific EIS. A resource adapter can choose to support the following levels of transactions:

■ NoTransaction: No transaction support is provided.
■ LocalTransaction: Resource manager local transactions are supported.
■ XATransaction: The resource adapter supports the XA distributed transaction processing

model and the JTA XATransaction interface.

See Chapter 29, “Resource Connections,” for a more detailed explanation of resource adapters.

Java Database Connectivity Software
To store, organize, and retrieve data, most applications use relational databases. Java EE
applications access relational databases through the JDBC API.

Resources

The Java EE 6 Tutorial • October 2010530

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://jcp.org/en/jsr/detail?id=322

A JDBC resource, or data source, provides applications with a means of connecting to a
database. Typically, a JDBC resource is created for each database accessed by the applications
deployed in a domain. Transactional access to JDBC resources is available from servlets,
JavaServer Faces pages, and enterprise beans. The connection pooling and distributed
transaction features are intended for use by JDBC drivers to coordinate with an application
server. For more information, see “DataSource Objects and Connection Pools” on page 546.

Java Message Service
Messaging is a method of communication between software components or applications. A
messaging system is a peer-to-peer facility: A messaging client can send messages to, and
receive messages from, any other client. Each client connects to a messaging agent that provides
facilities for creating, sending, receiving, and reading messages.

The Java Message Service (JMS) API allows applications to create, send, receive, and read
messages. It defines a common set of interfaces and associated semantics that allow programs
written in the Java programming language to communicate with other messaging
implementations.

The JMS API minimizes the set of concepts a programmer must learn in order to use messaging
products but provides enough features to support sophisticated messaging applications. It also
strives to maximize the portability of JMS applications across JMS providers in the same
messaging domain.

Java Message Service

Chapter 27 • Introduction to Java EE Supporting Technologies 531

532

Transactions

A typical enterprise application accesses and stores information in one or more databases.
Because this information is critical for business operations, it must be accurate, current, and
reliable. Data integrity would be lost if multiple programs were allowed to update the same
information simultaneously or if a system that failed while processing a business transaction
were to leave the affected data only partially updated. By preventing both of these scenarios,
software transactions ensure data integrity. Transactions control the concurrent access of data
by multiple programs. In the event of a system failure, transactions make sure that after
recovery, the data will be in a consistent state.

The following topics are addressed here:

■ “What Is a Transaction?” on page 533
■ “Container-Managed Transactions” on page 534
■ “Bean-Managed Transactions” on page 540
■ “Transaction Timeouts” on page 541
■ “Updating Multiple Databases” on page 542
■ “Transactions in Web Components” on page 543
■ “Further Information about Transactions” on page 543

What Is a Transaction?
To emulate a business transaction, a program may need to perform several steps. A financial
program, for example, might transfer funds from a checking account to a savings account by
using the steps listed in the following pseudocode:

begin transaction

debit checking account

credit savings account

update history log

commit transaction

28C H A P T E R 2 8

533

Either all or none of the three steps must complete. Otherwise, data integrity is lost. Because the
steps within a transaction are a unified whole, a transaction is often defined as an indivisible
unit of work.

A transaction can end in two ways: with a commit or with a rollback. When a transaction
commits, the data modifications made by its statements are saved. If a statement within a
transaction fails, the transaction rolls back, undoing the effects of all statements in the
transaction. In the pseudocode, for example, if a disk drive were to crash during the credit
step, the transaction would roll back and undo the data modifications made by the debit
statement. Although the transaction fails, data integrity would be intact because the accounts
still balance.

In the preceding pseudocode, the begin and commit statements mark the boundaries of the
transaction. When designing an enterprise bean, you determine how the boundaries are set by
specifying either container-managed or bean-managed transactions.

Container-Managed Transactions
In an enterprise bean with container-managed transaction demarcation, the EJB container sets
the boundaries of the transactions. You can use container-managed transactions with any type
of enterprise bean: session or message-driven. Container-managed transactions simplify
development because the enterprise bean code does not explicitly mark the transaction’s
boundaries. The code does not include statements that begin and end the transaction. By
default, if no transaction demarcation is specified, enterprise beans use container-managed
transaction demarcation.

Typically, the container begins a transaction immediately before an enterprise bean method
starts and commits the transaction just before the method exits. Each method can be associated
with a single transaction. Nested or multiple transactions are not allowed within a method.

Container-managed transactions do not require all methods to be associated with transactions.
When developing a bean, you can set the transaction attributes to specify which of the bean’s
methods are associated with transactions.

Enterprise beans that use container-managed transaction demarcation must not use any
transaction-management methods that interfere with the container’s transaction demarcation
boundaries. Examples of such methods are the commit, setAutoCommit, and rollback methods
of java.sql.Connection or the commit and rollback methods of javax.jms.Session. If you
require control over the transaction demarcation, you must use application-managed
transaction demarcation.

Enterprise beans that use container-managed transaction demarcation also must not use the
javax.transaction.UserTransaction interface.

Container-Managed Transactions

The Java EE 6 Tutorial • October 2010534

Transaction Attributes
A transaction attribute controls the scope of a transaction. Figure 28–1 illustrates why
controlling the scope is important. In the diagram, method-A begins a transaction and then
invokes method-B of Bean-2. When method-B executes, does it run within the scope of the
transaction started by method-A, or does it execute with a new transaction? The answer depends
on the transaction attribute of method-B.

A transaction attribute can have one of the following values:

■ Required

■ RequiresNew

■ Mandatory

■ NotSupported

■ Supports

■ Never

RequiredAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container starts a new transaction before running the method.

The Required attribute is the implicit transaction attribute for all enterprise bean methods
running with container-managed transaction demarcation. You typically do not set the
Required attribute unless you need to override another transaction attribute. Because
transaction attributes are declarative, you can easily change them later.

FIGURE 28–1 Transaction Scope

Bean-1
-
-
-
method-A(){
 -
 -
 -
 bean-2.method-B()
}

Bean-2
-
-
-
method-B(){
 -
 -
 -
}

TX1 TX?

Container-Managed Transactions

Chapter 28 • Transactions 535

RequiresNewAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container takes the following steps:

1. Suspends the client’s transaction
2. Starts a new transaction
3. Delegates the call to the method
4. Resumes the client’s transaction after the method completes

If the client is not associated with a transaction, the container starts a new transaction before
running the method.

You should use the RequiresNew attribute when you want to ensure that the method always
runs within a new transaction.

MandatoryAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container throws a TransactionRequiredException.

Use the Mandatory attribute if the enterprise bean’s method must use the transaction of the
client.

NotSupportedAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container suspends the client’s transaction before invoking the method. After the method has
completed, the container resumes the client’s transaction.

If the client is not associated with a transaction, the container does not start a new transaction
before running the method.

Use the NotSupported attribute for methods that don’t need transactions. Because transactions
involve overhead, this attribute may improve performance.

SupportsAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
method executes within the client’s transaction. If the client is not associated with a transaction,
the container does not start a new transaction before running the method.

Because the transactional behavior of the method may vary, you should use the Supports
attribute with caution.

Container-Managed Transactions

The Java EE 6 Tutorial • October 2010536

NeverAttribute
If the client is running within a transaction and invokes the enterprise bean’s method, the
container throws a RemoteException. If the client is not associated with a transaction, the
container does not start a new transaction before running the method.

Summary of Transaction Attributes
Table 28–1 summarizes the effects of the transaction attributes. Both the T1 and the T2
transactions are controlled by the container. A T1 transaction is associated with the client that
calls a method in the enterprise bean. In most cases, the client is another enterprise bean. A T2

transaction is started by the container just before the method executes.

In the last column of Table 28–1, the word “None” means that the business method does not
execute within a transaction controlled by the container. However, the database calls in such a
business method might be controlled by the transaction manager of the database management
system.

TABLE 28–1 Transaction Attributes and Scope

Transaction Attribute Client’s Transaction Business Method’s Transaction

Required None

T1

T2

T1

RequiresNew None

T1

T2

T2

Mandatory None

T1

Error

T1

NotSupported None

T1

None

None

Supports None

T1

None

T1

Never None

T1

None

Error

Setting Transaction Attributes
Transaction attributes are specified by decorating the enterprise bean class or method with a
javax.ejb.TransactionAttribute annotation and setting it to one of the
javax.ejb.TransactionAttributeType constants.

Container-Managed Transactions

Chapter 28 • Transactions 537

If you decorate the enterprise bean class with @TransactionAttribute, the specified
TransactionAttributeType is applied to all the business methods in the class. Decorating a
business method with @TransactionAttribute applies the TransactionAttributeType only
to that method. If a @TransactionAttribute annotation decorates both the class and the
method, the method TransactionAttributeType overrides the class
TransactionAttributeType.

The TransactionAttributeType constants shown in Table 28–2 encapsulate the transaction
attributes described earlier in this section.

TABLE 28–2 TransactionAttributeTypeConstants

Transaction Attribute TransactionAttributeType Constant

Required TransactionAttributeType.REQUIRED

RequiresNew TransactionAttributeType.REQUIRES_NEW

Mandatory TransactionAttributeType.MANDATORY

NotSupported TransactionAttributeType.NOT_SUPPORTED

Supports TransactionAttributeType.SUPPORTS

Never TransactionAttributeType.NEVER

The following code snippet demonstrates how to use the @TransactionAttribute annotation:

@TransactionAttribute(NOT_SUPPORTED)

@Stateful

public class TransactionBean implements Transaction {

...

@TransactionAttribute(REQUIRES_NEW)

public void firstMethod() {...}

@TransactionAttribute(REQUIRED)

public void secondMethod() {...}

public void thirdMethod() {...}

public void fourthMethod() {...}

}

In this example, the TransactionBean class’s transaction attribute has been set to
NotSupported, firstMethod has been set to RequiresNew, and secondMethod has been set to
Required. Because a @TransactionAttribute set on a method overrides the class
@TransactionAttribute, calls to firstMethod will create a new transaction, and calls to
secondMethod will either run in the current transaction or start a new transaction. Calls to
thirdMethod or fourthMethod do not take place within a transaction.

Container-Managed Transactions

The Java EE 6 Tutorial • October 2010538

Rolling Back a Container-Managed Transaction
There are two ways to roll back a container-managed transaction. First, if a system exception is
thrown, the container will automatically roll back the transaction. Second, by invoking the
setRollbackOnly method of the EJBContext interface, the bean method instructs the
container to roll back the transaction. If the bean throws an application exception, the rollback
is not automatic but can be initiated by a call to setRollbackOnly.

Synchronizing a Session Bean’s Instance Variables
The SessionSynchronization interface, which is optional, allows stateful session bean
instances to receive transaction synchronization notifications. For example, you could
synchronize the instance variables of an enterprise bean with their corresponding values in the
database. The container invokes the SessionSynchronization methods (afterBegin,
beforeCompletion, and afterCompletion) at each of the main stages of a transaction.

The afterBegin method informs the instance that a new transaction has begun. The container
invokes afterBegin immediately before it invokes the business method.

The container invokes the beforeCompletion method after the business method has finished
but just before the transaction commits. The beforeCompletion method is the last opportunity
for the session bean to roll back the transaction (by calling setRollbackOnly).

The afterCompletion method indicates that the transaction has completed. This method has a
single boolean parameter whose value is true if the transaction was committed and false if it
was rolled back.

Methods Not Allowed in Container-Managed
Transactions
You should not invoke any method that might interfere with the transaction boundaries set by
the container. The list of prohibited methods follows:

■ The commit, setAutoCommit, and rollback methods of java.sql.Connection
■ The getUserTransaction method of javax.ejb.EJBContext
■ Any method of javax.transaction.UserTransaction

You can, however, use these methods to set boundaries in application-managed transactions.

Container-Managed Transactions

Chapter 28 • Transactions 539

Bean-Managed Transactions
In bean-managed transaction demarcation, the code in the session or message-driven bean
explicitly marks the boundaries of the transaction. Although beans with container-managed
transactions require less coding, they have one limitation: When a method is executing, it can
be associated with either a single transaction or no transaction at all. If this limitation will make
coding your bean difficult, you should consider using bean-managed transactions.

The following pseudocode illustrates the kind of fine-grained control you can obtain with
application-managed transactions. By checking various conditions, the pseudocode decides
whether to start or stop certain transactions within the business method:

begin transaction

...

update table-a

...

if (condition-x)

commit transaction

else if (condition-y)

update table-b

commit transaction

else

rollback transaction

begin transaction

update table-c

commit transaction

When coding an application-managed transaction for session or message-driven beans, you
must decide whether to use Java Database Connectivity or JTA transactions. The sections that
follow discuss both types of transactions.

JTA Transactions
JTA, or the Java Transaction API, allows you to demarcate transactions in a manner that is
independent of the transaction manager implementation. GlassFish Server implements the
transaction manager with the Java Transaction Service (JTS). However, your code doesn’t call
the JTS methods directly but instead invokes the JTA methods, which then call the lower-level
JTS routines.

A JTA transaction is controlled by the Java EE transaction manager. You may want to use a JTA
transaction because it can span updates to multiple databases from different vendors. A
particular DBMS’s transaction manager may not work with heterogeneous databases. However,
the Java EE transaction manager does have one limitation: It does not support nested
transactions. In other words, it cannot start a transaction for an instance until the preceding
transaction has ended.

To demarcate a JTA transaction, you invoke the begin, commit, and rollback methods of the
javax.transaction.UserTransaction interface.

Bean-Managed Transactions

The Java EE 6 Tutorial • October 2010540

Returning without Committing
In a stateless session bean with bean-managed transactions, a business method must commit or
roll back a transaction before returning. However, a stateful session bean does not have this
restriction.

In a stateful session bean with a JTA transaction, the association between the bean instance and
the transaction is retained across multiple client calls. Even if each business method called by
the client opens and closes the database connection, the association is retained until the
instance completes the transaction.

In a stateful session bean with a JDBC transaction, the JDBC connection retains the association
between the bean instance and the transaction across multiple calls. If the connection is closed,
the association is not retained.

Methods Not Allowed in Bean-Managed Transactions
Do not invoke the getRollbackOnly and setRollbackOnly methods of the EJBContext
interface in bean-managed transactions. These methods should be used only in
container-managed transactions. For bean-managed transactions, invoke the getStatus and
rollback methods of the UserTransaction interface.

Transaction Timeouts
For container-managed transactions, you can use the Administration Console to configure the
transaction timeout interval. See “Starting the Administration Console” on page 70.

For enterprise beans with bean-managed JTA transactions, you invoke the
setTransactionTimeout method of the UserTransaction interface.

▼ To Set a Transaction Timeout
In the Administration Console, expand the Configuration node and select Transaction Service.

On the Transaction Service page, set the value of the Transaction Timeout field to the value of
your choice (for example, 5).
With this setting, if the transaction has not completed within 5 seconds, the EJB container rolls
it back.

The default value is 0, meaning that the transaction will not time out.

Click Save.

1

2

3

Transaction Timeouts

Chapter 28 • Transactions 541

Updating Multiple Databases
The Java EE transaction manager controls all enterprise bean transactions except for
bean-managed JDBC transactions. The Java EE transaction manager allows an enterprise bean
to update multiple databases within a transaction. Figure 28–2 and Figure 28–3 show two
scenarios for updating multiple databases in a single transaction.

In Figure 28–2, the client invokes a business method in Bean-A. The business method begins a
transaction, updates Database X, updates Database Y, and invokes a business method in
Bean-B. The second business method updates Database Z and returns control to the business
method in Bean-A, which commits the transaction. All three database updates occur in the same
transaction.

In Figure 28–3, the client calls a business method in Bean-A, which begins a transaction and
updates Database X. Then Bean-A invokes a method in Bean-B, which resides in a remote Java
EE server. The method in Bean-B updates Database Y. The transaction managers of the Java EE
servers ensure that both databases are updated in the same transaction.

FIGURE 28–2 Updating Multiple Databases

Databases

Y Z

Java EE
Server

X

Client
Bean-A Bean-B

Updating Multiple Databases

The Java EE 6 Tutorial • October 2010542

Transactions in Web Components
You can demarcate a transaction in a web component by using either the
java.sql.Connection or the javax.transaction.UserTransaction interface. These are the
same interfaces that a session bean with bean-managed transactions can use. Transactions
demarcated with the UserTransaction interface are discussed in “JTA Transactions” on
page 540.

Further Information about Transactions
For more information about transactions, see

■ Java Transaction API 1.1 specification:
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

FIGURE 28–3 Updating Multiple Databases across Java EE Servers

Databases

X Y

Java EE
Server

Java EE
Server

Client

Bean-A Bean-B

Further Information about Transactions

Chapter 28 • Transactions 543

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

544

Resource Connections

Java EE components can access a wide variety of resources, including databases, mail sessions,
Java Message Service objects, and URLs. The Java EE 6 platform provides mechanisms that
allow you to access all these resources in a similar manner. This chapter explains how to get
connections to several types of resources.

The following topics are addressed here:

■ “Resources and JNDI Naming” on page 545
■ “DataSource Objects and Connection Pools” on page 546
■ “Resource Injection” on page 547
■ “Resource Adapters and Contracts” on page 550
■ “Metadata Annotations” on page 554
■ “Common Client Interface” on page 556
■ “Further Information about Resources” on page 557

Resources and JNDI Naming
In a distributed application, components need to access other components and resources, such
as databases. For example, a servlet might invoke remote methods on an enterprise bean that
retrieves information from a database. In the Java EE platform, the Java Naming and Directory
Interface (JNDI) naming service enables components to locate other components and
resources.

A resource is a program object that provides connections to systems, such as database servers
and messaging systems. (A Java Database Connectivity resource is sometimes referred to as a
data source.) Each resource object is identified by a unique, people-friendly name, called the
JNDI name. For example, the JNDI name of the JDBC resource for the Java DB database that is
shipped with the GlassFish Server is jdbc/__default.

An administrator creates resources in a JNDI namespace. In the GlassFish Server, you can use
either the Administration Console or the asadmin command to create resources. Applications

29C H A P T E R 2 9

545

then use annotations to inject the resources. If an application uses resource injection, the
GlassFish Server invokes the JNDI API, and the application is not required to do so. However, it
is also possible for an application to locate resources by making direct calls to the JNDI API.

A resource object and its JNDI name are bound together by the naming and directory service.
To create a new resource, a new name/object binding is entered into the JNDI namespace. You
inject resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping that you specify in an
annotation. Using a deployment descriptor allows you to change an application by repackaging
it rather than by both recompiling the source files and repackaging. However, for most
applications, a deployment descriptor is not necessary.

DataSourceObjects and Connection Pools
To store, organize, and retrieve data, most applications use a relational database. Java EE 6
components may access relational databases through the JDBC API. For information on this
API, see http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136101.html.

In the JDBC API, databases are accessed by using DataSource objects. A DataSource has a set of
properties that identify and describe the real-world data source that it represents. These
properties include such information as the location of the database server, the name of the
database, the network protocol to use to communicate with the server, and so on. In the
GlassFish Server, a data source is called a JDBC resource.

Applications access a data source by using a connection, and a DataSource object can be
thought of as a factory for connections to the particular data source that the DataSource
instance represents. In a basic DataSource implementation, a call to the getConnection
method returns a connection object that is a physical connection to the data source.

A DataSource object may be registered with a JNDI naming service. If so, an application can use
the JNDI API to access that DataSource object, which can then be used to connect to the data
source it represents.

DataSource objects that implement connection pooling also produce a connection to the
particular data source that the DataSource class represents. The connection object that the
getConnection method returns is a handle to a PooledConnection object rather than being a
physical connection. An application uses the connection object in the same way that it uses a
connection. Connection pooling has no effect on application code except that a pooled
connection, like all connections, should always be explicitly closed. When an application closes
a connection that is pooled, the connection is returned to a pool of reusable connections. The
next time getConnection is called, a handle to one of these pooled connections will be returned
if one is available. Because connection pooling avoids creating a new physical connection every
time one is requested, applications can run significantly faster.

DataSourceObjects and Connection Pools

The Java EE 6 Tutorial • October 2010546

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, the server maintains a pool of
available connections to increase performance. When it requests a connection, an application
obtains one from the pool. When an application closes a connection, the connection is returned
to the pool.

Applications that use the Persistence API specify the DataSource object they are using in the
jta-data-source element of the persistence.xml file:

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The application code
does not refer to any JDBC objects.

Resource Injection
The javax.annotation.Resource annotation is used to declare a reference to a resource;
@Resource can decorate a class, a field, or a method. The container will inject the resource
referred to by @Resource into the component either at runtime or when the component is
initialized, depending on whether field/method injection or class injection is used. With
field-based and method-based injection, the container will inject the resource when the
application is initialized. For class-based injection, the resource is looked up by the application
at runtime.

The @Resource annotation has the following elements:

■ name: The JNDI name of the resource
■ type: The Java language type of the resource
■ authenticationType: The authentication type to use for the resource
■ shareable: Indicates whether the resource can be shared
■ mappedName: A nonportable, implementation-specific name to which the resource should be

mapped
■ description: The description of the resource

The name element is the JNDI name of the resource and is optional for field-based and
method-based injection. For field-based injection, the default name is the field name qualified by
the class name. For method-based injection, the default name is the JavaBeans property name,
based on the method qualified by the class name. The name element must be specified for
class-based injection.

Resource Injection

Chapter 29 • Resource Connections 547

The type of resource is determined by one of the following:

■ The type of the field the @Resource annotation is decorating for field-based injection
■ The type of the JavaBeans property the @Resource annotation is decorating for

method-based injection
■ The type element of @Resource

For class-based injection, the type element is required.

The authenticationType element is used only for connection factory resources, such as the
resources of a connector, also called the resource adapter, or data source. This element can be
set to one of the javax.annotation.Resource.AuthenticationType enumerated type values:
CONTAINER, the default, and APPLICATION.

The shareable element is used only for Object Resource Broker (ORB) instance resources or
connection factory resource. This element indicates whether the resource can be shared
between this component and other components and may be set to true, the default, or false.

The mappedName element is a nonportable, implementation-specific name to which the resource
should be mapped. Because the name element, when specified or defaulted, is local only to the
application, many Java EE servers provide a way of referring to resources across the application
server. This is done by setting the mappedName element. Use of the mappedName element is
nonportable across Java EE server implementations.

The description element is the description of the resource, typically in the default language of
the system on which the application is deployed. This element is used to help identify resources
and to help application developers choose the correct resource.

Field-Based Injection
To use field-based resource injection, declare a field and decorate it with the @Resource
annotation. The container will infer the name and type of the resource if the name and type

elements are not specified. If you do specify the type element, it must match the field’s type
declaration.

In the following code, the container infers the name of the resource, based on the class name and
the field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

@Resource

private javax.sql.DataSource myDB;

...

}

Resource Injection

The Java EE 6 Tutorial • October 2010548

In the following code, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

@Resource(name="customerDB")
private javax.sql.DataSource myDB;

...

}

Method-Based Injection
To use method-based injection, declare a setter method and decorate it with the @Resource
annotation. The container will infer the name and type of the resource if the name and type

elements are not specified. The setter method must follow the JavaBeans conventions for
property names: The method name must begin with set, have a void return type, and only one
parameter. If you do specify the type element, it must match the field’s type declaration.

In the following code, the container infers the name of the resource based on the class name and
the field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource

private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

...

}

In the following code, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource(name="customerDB")
private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

...

}

Resource Injection

Chapter 29 • Resource Connections 549

Class-Based Injection
To use class-based injection, decorate the class with a @Resource annotation, and set the
required name and type elements:

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory")

public class SomeMessageBean {

...

}

The @Resources annotation is used to group together multiple @Resource declarations for
class-based injection. The following code shows the @Resources annotation containing two
@Resource declarations. One is a Java Message Service message queue, and the other is a
JavaMail session:

@Resources({

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory"),

@Resource(name="myMailSession",
type="javax.mail.Session")

})

public class SomeMessageBean {

...

}

Resource Adapters and Contracts
A resource adapter is a Java EE component that implements the Java EE Connector
Architecture for a specific EIS. Examples of EISs include enterprise resource planning,
mainframe transaction processing, and database systems. As illustrated in Figure 29–1, the
resource adapter facilitates communication between a Java EE application and an EIS.

Resource Adapters and Contracts

The Java EE 6 Tutorial • October 2010550

Stored in a Resource Adapter Archive (RAR) file, a resource adapter can be deployed on any
Java EE server, much like a Java EE application. A RAR file may be contained in an Enterprise
Archive (EAR) file, or it may exist as a separate file.

A resource adapter is analogous to a JDBC driver. Both provide a standard API through which
an application can access a resource that is outside the Java EE server. For a resource adapter,
the target system is an EIS; for a JDBC driver, it is a DBMS. Resource adapters and JDBC drivers
are rarely created by application developers. In most cases, both types of software are built by
vendors that sell tools, servers, or integration software.

The resource adapter mediates communication between the Java EE server and the EIS by
means of contracts. The application contract defines the API through which a Java EE
component, such as an enterprise bean, accesses the EIS. This API is the only view that the
component has of the EIS. The system contracts link the resource adapter to important services
that are managed by the Java EE server. The resource adapter itself and its system contracts are
transparent to the Java EE component.

Management Contracts
The Java EE Connector Architecture defines system contracts that enable resource adapter
lifecycle and thread management.

FIGURE 29–1 Resource Adapters

EIS

Java EE Server

Enterprise Bean

Web Component

Transaction
Connection
Security

Resource
Adapter

Managers

Application
Contract

Application
Contract

System

Contracts

Resource Adapters and Contracts

Chapter 29 • Resource Connections 551

Lifecycle Management
The Connector Architecture specifies a lifecycle management contract that allows an
application server to manage the lifecycle of a resource adapter. This contract provides a
mechanism for the application server to bootstrap a resource adapter instance during the
deployment or application server startup. This contract also provides a means for the
application server to notify the resource adapter instance when it is undeployed or when an
orderly shutdown of the application server takes place.

Work Management Contract
The Connector Architecture work management contract ensures that resource adapters use
threads in the proper, recommended manner. This contract also enables an application server
to manage threads for resource adapters.

Resource adapters that improperly use threads can jeopardize the entire application server
environment. For example, a resource adapter might create too many threads or might not
properly release threads it has created. Poor thread handling inhibits application server
shutdown and impacts the application server’s performance because creating and destroying
threads are expensive operations.

The work management contract establishes a means for the application server to pool and reuse
threads, similar to pooling and reusing connections. By adhering to this contract, the resource
adapter does not have to manage threads itself. Instead, the resource adapter has the application
server create and provide needed threads. When it is finished with a given thread, the resource
adapter returns the thread to the application server. The application server manages the thread,
either returning it to a pool for later reuse or destroying it. Handling threads in this manner
results in increased application server performance and more efficient use of resources.

In addition to moving thread management to the application server, the Connector
Architecture provides a flexible model for a resource adapter that uses threads.

■ The requesting thread can choose to block (stop its own execution) until the work thread
completes.

■ The requesting thread can block while it waits to get the work thread. When the application
server provides a work thread, the requesting thread and the work thread execute in parallel.

■ The resource adapter can opt to submit the work for the thread to a queue. The thread
executes the work from the queue at some later point. The resource adapter continues its
own execution from the point it submitted the work to the queue, no matter when the
thread executes it.

With the latter two approaches, the submitting thread and the work thread may execute
simultaneously or independently. For these approaches, the contract specifies a listener
mechanism to notify the resource adapter that the thread has completed its operation. The
resource adapter can also specify the execution context for the thread, and the work
management contract controls the context in which the thread executes.

Resource Adapters and Contracts

The Java EE 6 Tutorial • October 2010552

Generic Work Context Contract
The work management contract between the application server and a resource adapter enables
a resource adapter to do a task, such as communicating with the EIS or delivering messages, by
delivering Work instances for execution.

A generic work context contract enables a resource adapter to control the contexts in which the
Work instances that it submits are executed by the application server’s WorkManager. A generic
work context mechanism also enables an application server to support new message inflow and
delivery schemes. It also provides a richer contextual Work execution environment to the
resource adapter while still maintaining control over concurrent behavior in a managed
environment.

The generic work context contract standardizes the transaction context and the security
context.

Outbound and Inbound Contracts
The Connector Architecture defines the following outbound contracts, system-level contracts
between an application server and an EIS that enable outbound connectivity to an EIS.

■ The connection management contract supports connection pooling, a technique that
enhances application performance and scalability. Connection pooling is transparent to the
application, which simply obtains a connection to the EIS.

■ The transaction management contract extends the connection management contract and
provides support for management of both local and XA transactions.
A local transaction is limited in scope to a single EIS system, and the EIS resource manager
itself manages such transaction. An XA transaction or global transaction can span multiple
resource managers. This form of transaction requires transaction coordination by an
external transaction manager, typically bundled with an application server. A transaction
manager uses a two-phase commit protocol to manage a transaction that spans multiple
resource managers or EISs, and uses one-phase commit optimization if only one resource
manager is participating in an XA transaction.

■ The security management contract provides mechanisms for authentication, authorization,
and secure communication between a Java EE server and an EIS to protect the information
in the EIS.
A work security map matches EIS identities to the application server domain’s identities.

Inbound contracts are system contracts between a Java EE server and an EIS that enable
inbound connectivity from the EIS: pluggability contracts for message providers and contracts
for importing transactions.

Resource Adapters and Contracts

Chapter 29 • Resource Connections 553

Metadata Annotations
Java EE Connector Architecture 1.6 introduces a set of annotations to minimize the need for
deployment descriptors.
■ The @Connector annotation can be used by the resource adapter developer to specify that

the JavaBeans component is a resource adapter JavaBeans component. This annotation is
used for providing metadata about the capabilities of the resource adapter. Optionally, you
can provide a JavaBeans component implementing the ResourceAdapter interface, as in the
following example:

@Connector(

description = "Sample adapter using the JavaMail API",
displayName = "InboundResourceAdapter",
vendorName = "My Company, Inc.",
eisType = "MAIL",
version = "1.0"

)

public class ResourceAdapterImpl

implements ResourceAdapter, java.io.Serializable {

...

...

}

■ The @ConnectionDefinition annotation defines a set of connection interfaces and classes
pertaining to a particular connection type, as in the following example:

@ConnectionDefinition(

connectionFactory =

samples.mailra..api.JavaMailConnectionFactory.class,

connectionFactoryImpl =

samples.mailra.ra.outbound.JavaMailConnectionFactoryImpl.class,

connection =

samples.connectors.mailconnector.api.JavaMailConnection.class,

connectionImpl =

samples.mailra..ra.outbound.JavaMailConnectionImpl.class

)

public class ManagedConnectionFactoryImpl implements

ManagedConnectionFactory, Serializable {

...

...

@ConfigProperty(defaultValue = "UnknownHostName")
public void setServerName(String serverName) {

...

}

}

■ The @AdministeredObject annotation designates a JavaBeans component as an
administered object.

■ The @Activation annotation contains configuration information pertaining to inbound
connectivity from an EIS instance, as in the following example:

@Activation(

messageListeners = {

samples.mailra.api.JavaMailMessageListener.class

}

Metadata Annotations

The Java EE 6 Tutorial • October 2010554

)

public class ActivationSpecImpl

implements javax.resource.spi.ActivationSpec,

java.io.Serializable {

...

@ConfigProperty()

// serverName property value

private String serverName = new String("");

@ConfigProperty()

// userName property value

private String userName = new String("");

@ConfigProperty()

// password property value

private String password = new String("");

@ConfigProperty()

// folderName property value

private String folderName = new String("Inbox");

// protocol property value

// Normally imap or pop3

@ConfigProperty(

description = "Normally imap or pop3"
)

private String protocol = new String("imap");
...

...

}

■ The @ConfigProperty annotation can be used on JavaBeans components to provide
additional configuration information that may be used by the deployer and resource adapter
provider. The preceding example code shows several @ConfigProperty annotations.

The specification allows a resource adapter to be developed in mixed-mode form, that is the
ability for a resource adapter developer to use both metadata annotations and deployment
descriptors in applications. An application assembler or deployer may use the deployment
descriptor to override the metadata annotations specified by the resource adapter developer.

The deployment descriptor for a resource adapter is named ra.xml. The metadata-complete
attribute defines whether the deployment descriptor for the resource adapter module is
complete or whether the class files available to the module and packaged with the resource
adapter need to be examined for annotations that specify deployment information.

For the complete list of annotations and JavaBeans components introduced in the Java EE 6
platform, see the Java EE Connector Architecture 1.6 specification.

Metadata Annotations

Chapter 29 • Resource Connections 555

Common Client Interface
This section explains how components use the Connector Architecture Common Client
Interface (CCI) API and a resource adapter to access data from an EIS. The CCI API defines a
set of interfaces and classes whose methods allow a client to perform typical data access
operations. The CCI interfaces and classes are as follows:

■ ConnectionFactory: Provides an application component with a Connection instance to an
EIS.

■ Connection: Represents the connection to the underlying EIS.
■ ConnectionSpec: Provides a means for an application component to pass

connection-request-specific properties to the ConnectionFactory when making a
connection request.

■ Interaction: Provides a means for an application component to execute EIS functions,
such as database stored procedures.

■ InteractionSpec: Holds properties pertaining to an application component’s interaction
with an EIS.

■ Record: The superinterface for the various kinds of record instances. Record instances can
be MappedRecord, IndexedRecord, or ResultSet instances, all of which inherit from the
Record interface.

■ RecordFactory: Provides an application component with a Record instance.
■ IndexedRecord: Represents an ordered collection of Record instances based on the

java.util.List interface.

A client or application component that uses the CCI to interact with an underlying EIS does so
in a prescribed manner. The component must establish a connection to the EIS’s resource
manager, and it does so using the ConnectionFactory. The Connection object represents the
connection to the EIS and is used for subsequent interactions with the EIS.

The component performs its interactions with the EIS, such as accessing data from a specific
table, using an Interaction object. The application component defines the Interaction object
by using an InteractionSpec object. When it reads data from the EIS, such as from database
tables, or writes to those tables, the application component does so by using a particular type of
Record instance: a MappedRecord, an IndexedRecord, or a ResultSet instance.

Note, too, that a client application that relies on a CCI resource adapter is very much like any
other Java EE client that uses enterprise bean methods.

Common Client Interface

The Java EE 6 Tutorial • October 2010556

Further Information about Resources
For more information about resources and annotations, see

■ Java EE 6 Platform Specification (JSR 316):
http://jcp.org/en/jsr/detail?id=316

■ Java EE Connector Architecture 1.6 specification:
http://jcp.org/en/jsr/detail?id=322

■ EJB 3.1 specification:
http://jcp.org/en/jsr/detail?id=318

■ Common Annotations for the Java Platform:
http://www.jcp.org/en/jsr/detail?id=250

Further Information about Resources

Chapter 29 • Resource Connections 557

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=318
http://www.jcp.org/en/jsr/detail?id=250

558

Java Message Service Concepts

This chapter provides an introduction to the Java Message Service (JMS) API, a Java API that
allows applications to create, send, receive, and read messages using reliable, asynchronous,
loosely coupled communication. It covers the following topics:
■ “Overview of the JMS API” on page 559
■ “Basic JMS API Concepts” on page 562
■ “The JMS API Programming Model” on page 566
■ “Creating Robust JMS Applications” on page 576
■ “Using the JMS API in Java EE Applications” on page 585
■ “Further Information about JMS” on page 592

Overview of the JMS API
This overview of the JMS API answers the following questions.
■ “What Is Messaging?” on page 559
■ “What Is the JMS API?” on page 560
■ “When Can You Use the JMS API?” on page 560
■ “How Does the JMS API Work with the Java EE Platform?” on page 561

What Is Messaging?
Messaging is a method of communication between software components or applications. A
messaging system is a peer-to-peer facility: A messaging client can send messages to, and
receive messages from, any other client. Each client connects to a messaging agent that provides
facilities for creating, sending, receiving, and reading messages.

Messaging enables distributed communication that is loosely coupled. A component sends a
message to a destination, and the recipient can retrieve the message from the destination.
However, the sender and the receiver do not have to be available at the same time in order to

30C H A P T E R 3 0

559

communicate. In fact, the sender does not need to know anything about the receiver; nor does
the receiver need to know anything about the sender. The sender and the receiver need to know
only which message format and which destination to use. In this respect, messaging differs from
tightly coupled technologies, such as Remote Method Invocation (RMI), which require an
application to know a remote application’s methods.

Messaging also differs from electronic mail (email), which is a method of communication
between people or between software applications and people. Messaging is used for
communication between software applications or software components.

What Is the JMS API?
The Java Message Service is a Java API that allows applications to create, send, receive, and read
messages. Designed by Sun and several partner companies, the JMS API defines a common set
of interfaces and associated semantics that allow programs written in the Java programming
language to communicate with other messaging implementations.

The JMS API minimizes the set of concepts a programmer must learn in order to use messaging
products but provides enough features to support sophisticated messaging applications. It also
strives to maximize the portability of JMS applications across JMS providers in the same
messaging domain.

The JMS API enables communication that is not only loosely coupled but also
■ Asynchronous: A JMS provider can deliver messages to a client as they arrive; a client does

not have to request messages in order to receive them.
■ Reliable: The JMS API can ensure that a message is delivered once and only once. Lower

levels of reliability are available for applications that can afford to miss messages or to
receive duplicate messages.

The JMS specification was first published in August 1998. The latest version is Version 1.1,
which was released in April 2002. You can download a copy of the specification from the JMS
web site: http://www.oracle.com/technetwork/java/index-jsp-142945.html.

When Can You Use the JMS API?
An enterprise application provider is likely to choose a messaging API over a tightly coupled
API, such as remote procedure call (RPC), under the following circumstances.
■ The provider wants the components not to depend on information about other

components’ interfaces, so that components can be easily replaced.
■ The provider wants the application to run whether or not all components are up and

running simultaneously.
■ The application business model allows a component to send information to another and to

continue to operate without receiving an immediate response.

Overview of the JMS API

The Java EE 6 Tutorial • October 2010560

http://www.oracle.com/technetwork/java/index-jsp-142945.html

For example, components of an enterprise application for an automobile manufacturer can use
the JMS API in situations like these:
■ The inventory component can send a message to the factory component when the inventory

level for a product goes below a certain level so that the factory can make more cars.
■ The factory component can send a message to the parts components so that the factory can

assemble the parts it needs.
■ The parts components in turn can send messages to their own inventory and order

components to update their inventories and to order new parts from suppliers.
■ Both the factory and the parts components can send messages to the accounting component

to update their budget numbers.
■ The business can publish updated catalog items to its sales force.

Using messaging for these tasks allows the various components to interact with one another
efficiently, without tying up network or other resources. Figure 30–1 illustrates how this simple
example might work.

Manufacturing is only one example of how an enterprise can use the JMS API. Retail
applications, financial services applications, health services applications, and many others can
make use of messaging.

How Does the JMS API Work with the Java EE Platform?
When the JMS API was introduced in 1998, its most important purpose was to allow Java
applications to access existing messaging-oriented middleware (MOM) systems, such as
MQSeries from IBM. Since that time, many vendors have adopted and implemented the JMS
API, so a JMS product can now provide a complete messaging capability for an enterprise.

Beginning with the 1.3 release of the Java EE platform, the JMS API has been an integral part of
the platform, and application developers can use messaging with Java EE components.

FIGURE 30–1 Messaging in an Enterprise Application

Inventory

Sales

Factory Parts

Parts
Inventory

Parts Order

Accounting

Overview of the JMS API

Chapter 30 • Java Message Service Concepts 561

The JMS API in the Java EE platform has the following features.

■ Application clients, Enterprise JavaBeans (EJB) components, and web components can send
or synchronously receive a JMS message. Application clients can in addition receive JMS
messages asynchronously. (Applets, however, are not required to support the JMS API.)

■ Message-driven beans, which are a kind of enterprise bean, enable the asynchronous
consumption of messages. A JMS provider can optionally implement concurrent processing
of messages by message-driven beans.

■ Message send and receive operations can participate in distributed transactions, which
allow JMS operations and database accesses to take place within a single transaction.

The JMS API enhances the Java EE platform by simplifying enterprise development, allowing
loosely coupled, reliable, asynchronous interactions among Java EE components and legacy
systems capable of messaging. A developer can easily add new behavior to a Java EE application
that has existing business events by adding a new message-driven bean to operate on specific
business events. The Java EE platform, moreover, enhances the JMS API by providing support
for distributed transactions and allowing for the concurrent consumption of messages. For
more information, see the Enterprise JavaBeans specification, v3.1.

The JMS provider can be integrated with the application server using the Java EE Connector
architecture. You access the JMS provider through a resource adapter. This capability allows
vendors to create JMS providers that can be plugged in to multiple application servers, and it
allows application servers to support multiple JMS providers. For more information, see the
Java EE Connector architecture specification, v1.6.

Basic JMS API Concepts
This section introduces the most basic JMS API concepts, the ones you must know to get started
writing simple application clients that use the JMS API.

The next section introduces the JMS API programming model. Later sections cover more
advanced concepts, including the ones you need to write applications that use message-driven
beans.

Basic JMS API Concepts

The Java EE 6 Tutorial • October 2010562

JMS API Architecture
A JMS application is composed of the following parts.
■ A JMS provider is a messaging system that implements the JMS interfaces and provides

administrative and control features. An implementation of the Java EE platform includes a
JMS provider.

■ JMS clients are the programs or components, written in the Java programming language,
that produce and consume messages. Any Java EE application component can act as a JMS
client.

■ Messages are the objects that communicate information between JMS clients.
■ Administered objects are preconfigured JMS objects created by an administrator for the use

of clients. The two kinds of JMS administered objects are destinations and connection
factories, which are described in “JMS Administered Objects” on page 567.

Figure 30–2 illustrates the way these parts interact. Administrative tools allow you to bind
destinations and connection factories into a JNDI namespace. A JMS client can then use
resource injection to access the administered objects in the namespace and then establish a
logical connection to the same objects through the JMS provider.

Messaging Domains
Before the JMS API existed, most messaging products supported either the point-to-point or the
publish/subscribe approach to messaging. The JMS specification provides a separate domain for
each approach and defines compliance for each domain. A stand-alone JMS provider can
implement one or both domains. A Java EE provider must implement both domains.

In fact, most implementations of the JMS API support both the point-to-point and the
publish/subscribe domains, and some JMS clients combine the use of both domains in a single
application. In this way, the JMS API has extended the power and flexibility of messaging
products.

FIGURE 30–2 JMS API Architecture

Logical
Connection

Bind JNDI NamespaceAdministrative
Tool

JMS Client JMS Provider

Inject Resource

CF

D

Basic JMS API Concepts

Chapter 30 • Java Message Service Concepts 563

The JMS specification goes one step further: It provides common interfaces that enable you to
use the JMS API in a way that is not specific to either domain. The following subsections
describe the two messaging domains and then describe the use of the common interfaces.

Point-to-Point Messaging Domain
A point-to-point (PTP) product or application is built on the concept of message queues,
senders, and receivers. Each message is addressed to a specific queue, and receiving clients
extract messages from the queues established to hold their messages. Queues retain all messages
sent to them until the messages are consumed or until the messages expire.

PTP messaging has the following characteristics and is illustrated in Figure 30–3.

■ Each message has only one consumer.
■ A sender and a receiver of a message have no timing dependencies. The receiver can fetch

the message whether or not it was running when the client sent the message.
■ The receiver acknowledges the successful processing of a message.

Use PTP messaging when every message you send must be processed successfully by one
consumer.

Publish/Subscribe Messaging Domain
In a publish/subscribe (pub/sub) product or application, clients address messages to a topic,
which functions somewhat like a bulletin board. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierarchy. The system
takes care of distributing the messages arriving from a topic’s multiple publishers to its multiple
subscribers. Topics retain messages only as long as it takes to distribute them to current
subscribers.

FIGURE 30–3 Point-to-Point Messaging

Sends

Consumes

Acknowledges
Client 1 Client 2Msg

Msg

Queue

Basic JMS API Concepts

The Java EE 6 Tutorial • October 2010564

Pub/sub messaging has the following characteristics.

■ Each message can have multiple consumers.
■ Publishers and subscribers have a timing dependency. A client that subscribes to a topic can

consume only messages published after the client has created a subscription, and the
subscriber must continue to be active in order for it to consume messages.

The JMS API relaxes this timing dependency to some extent by allowing subscribers to create
durable subscriptions, which receive messages sent while the subscribers are not active. Durable
subscriptions provide the flexibility and reliability of queues but still allow clients to send
messages to many recipients. For more information about durable subscriptions, see “Creating
Durable Subscriptions” on page 581.

Use pub/sub messaging when each message can be processed by zero, one, or many consumers.
Figure 30–4 illustrates pub/sub messaging.

Programming with the Common Interfaces
Version 1.1 of the JMS API allows you to use the same code to send and receive messages under
either the PTP or the pub/sub domain. The destinations that you use remain domain-specific,
and the behavior of the application will depend in part on whether you are using a queue or a
topic. However, the code itself can be common to both domains, making your applications
flexible and reusable. This tutorial describes and illustrates these common interfaces.

FIGURE 30–4 Publish/Subscribe Messaging

Topic

Publishes

Client 1

Delivers

Subscribes

Delivers
Subscribes

Client 3

Msg Msg

Client 2

Basic JMS API Concepts

Chapter 30 • Java Message Service Concepts 565

Message Consumption
Messaging products are inherently asynchronous: There is no fundamental timing dependency
between the production and the consumption of a message. However, the JMS specification
uses this term in a more precise sense. Messages can be consumed in either of two ways:

■ Synchronously: A subscriber or a receiver explicitly fetches the message from the
destination by calling the receive method. The receive method can block until a message
arrives or can time out if a message does not arrive within a specified time limit.

■ Asynchronously: A client can register a message listener with a consumer. A message
listener is similar to an event listener. Whenever a message arrives at the destination, the
JMS provider delivers the message by calling the listener’s onMessage method, which acts on
the contents of the message.

The JMS API Programming Model
The basic building blocks of a JMS application consist of

■ Administered objects: connection factories and destinations
■ Connections
■ Sessions
■ Message producers
■ Message consumers
■ Messages

Figure 30–5 shows how all these objects fit together in a JMS client application.

The JMS API Programming Model

The Java EE 6 Tutorial • October 2010566

This section describes all these objects briefly and provides sample commands and code
snippets that show how to create and use the objects. The last subsection briefly describes JMS
API exception handling.

Examples that show how to combine all these objects in applications appear in later sections.
For more details, see the JMS API documentation, which is part of the Java EE API
documentation.

JMS Administered Objects
Two parts of a JMS application, destinations and connection factories, are best maintained
administratively rather than programmatically. The technology underlying these objects is
likely to be very different from one implementation of the JMS API to another. Therefore, the
management of these objects belongs with other administrative tasks that vary from provider to
provider.

JMS clients access these objects through interfaces that are portable, so a client application can
run with little or no change on more than one implementation of the JMS API. Ordinarily, an
administrator configures administered objects in a JNDI namespace, and JMS clients then
access them by using resource injection.

FIGURE 30–5 The JMS API Programming Model

Destination

Receives
From

Destination

Message
Producer

Message
Consumer

Sends To

Creates

Creates

Creates

Creates

Connection
Factory

Creates
Session

Connection

Msg

The JMS API Programming Model

Chapter 30 • Java Message Service Concepts 567

With Oracle GlassFish Server, you use the asadmin command or the Administration Console to
create JMS administered objects in the form of resources.

JMS Connection Factories
A connection factory is the object a client uses to create a connection to a provider. A connection
factory encapsulates a set of connection configuration parameters that has been defined by an
administrator. Each connection factory is an instance of the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interface. To learn how to create
connection factories, see “To Create JMS Administered Objects for the Synchronous Receive
Example” on page 597.

At the beginning of a JMS client program, you usually inject a connection factory resource into
a ConnectionFactory object. For example, the following code fragment specifies a resource
whose JNDI name is jms/ConnectionFactory and assigns it to a ConnectionFactory object:

@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

In a Java EE application, JMS administered objects are normally placed in the jms naming
subcontext.

JMS Destinations
A destination is the object a client uses to specify the target of messages it produces and the
source of messages it consumes. In the PTP messaging domain, destinations are called queues.
In the pub/sub messaging domain, destinations are called topics. A JMS application can use
multiple queues or topics (or both). To learn how to create destination resources, see “To
Create JMS Administered Objects for the Synchronous Receive Example” on page 597.

To create a destination using the GlassFish Server, you create a JMS destination resource that
specifies a JNDI name for the destination.

In the GlassFish Server implementation of JMS, each destination resource refers to a physical
destination. You can create a physical destination explicitly, but if you do not, the Application
Server creates it when it is needed and deletes it when you delete the destination resource.

In addition to injecting a connection factory resource into a client program, you usually inject a
destination resource. Unlike connection factories, destinations are specific to one domain or
the other. To create an application that allows you to use the same code for both topics and
queues, you assign the destination to a Destination object.

The following code specifies two resources, a queue and a topic. The resource names are
mapped to destination resources created in the JNDI namespace.

@Resource(lookup = "jms/Queue")
private static Queue queue;

The JMS API Programming Model

The Java EE 6 Tutorial • October 2010568

@Resource(lookup = "jms/Topic")
private static Topic topic;

With the common interfaces, you can mix or match connection factories and destinations. That
is, in addition to using the ConnectionFactory interface, you can inject a
QueueConnectionFactory resource and use it with a Topic, and you can inject a
TopicConnectionFactory resource and use it with a Queue. The behavior of the application will
depend on the kind of destination you use and not on the kind of connection factory you use.

JMS Connections
A connection encapsulates a virtual connection with a JMS provider. A connection could
represent an open TCP/IP socket between a client and a provider service daemon. You use a
connection to create one or more sessions.

Connections implement the Connection interface. When you have a ConnectionFactory
object, you can use it to create a Connection:

Connection connection = connectionFactory.createConnection();

Before an application completes, you must close any connections that you have created. Failure
to close a connection can cause resources not to be released by the JMS provider. Closing a
connection also closes its sessions and their message producers and message consumers.

connection.close();

Before your application can consume messages, you must call the connection’s start method;
for details, see “JMS Message Consumers” on page 571. If you want to stop message delivery
temporarily without closing the connection, you call the stop method.

JMS Sessions
A session is a single-threaded context for producing and consuming messages. You use sessions
to create the following:

■ Message producers
■ Message consumers
■ Messages
■ Queue browsers
■ Temporary queues and topics (see “Creating Temporary Destinations” on page 580)

Sessions serialize the execution of message listeners; for details, see “JMS Message Listeners” on
page 571.

A session provides a transactional context with which to group a set of sends and receives into
an atomic unit of work. For details, see “Using JMS API Local Transactions” on page 583.

The JMS API Programming Model

Chapter 30 • Java Message Service Concepts 569

Sessions implement the Session interface. After you create a Connection object, you use it to
create a Session:

Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

The first argument means that the session is not transacted; the second means that the session
automatically acknowledges messages when they have been received successfully. (For more
information, see “Controlling Message Acknowledgment” on page 577.)

To create a transacted session, use the following code:

Session session = connection.createSession(true, 0);

Here, the first argument means that the session is transacted; the second indicates that message
acknowledgment is not specified for transacted sessions. For more information on transactions,
see “Using JMS API Local Transactions” on page 583. For information about the way JMS
transactions work in Java EE applications, see “Using the JMS API in Java EE Applications” on
page 585.

JMS Message Producers
A message producer is an object that is created by a session and used for sending messages to a
destination. It implements the MessageProducer interface.

You use a Session to create a MessageProducer for a destination. The following examples show
that you can create a producer for a Destination object, a Queue object, or a Topic object:

MessageProducer producer = session.createProducer(dest);

MessageProducer producer = session.createProducer(queue);

MessageProducer producer = session.createProducer(topic);

You can create an unidentified producer by specifying null as the argument to
createProducer. With an unidentified producer, you do not specify a destination until you
send a message.

After you have created a message producer, you can use it to send messages by using the send
method:

producer.send(message);

You must first create the messages; see “JMS Messages” on page 573.

If you created an unidentified producer, use an overloaded send method that specifies the
destination as the first parameter. For example:

MessageProducer anon_prod = session.createProducer(null);

anon_prod.send(dest, message);

The JMS API Programming Model

The Java EE 6 Tutorial • October 2010570

JMS Message Consumers
A message consumer is an object that is created by a session and used for receiving messages sent
to a destination. It implements the MessageConsumer interface.

A message consumer allows a JMS client to register interest in a destination with a JMS
provider. The JMS provider manages the delivery of messages from a destination to the
registered consumers of the destination.

For example, you could use a Session to create a MessageConsumer for a Destination object, a
Queue object, or a Topic object:

MessageConsumer consumer = session.createConsumer(dest);

MessageConsumer consumer = session.createConsumer(queue);

MessageConsumer consumer = session.createConsumer(topic);

You use the Session.createDurableSubscriber method to create a durable topic subscriber.
This method is valid only if you are using a topic. For details, see “Creating Durable
Subscriptions” on page 581.

After you have created a message consumer, it becomes active, and you can use it to receive
messages. You can use the close method for a MessageConsumer to make the message
consumer inactive. Message delivery does not begin until you start the connection you created
by calling its start method. (Remember always to call the start method; forgetting to start the
connection is one of the most common JMS programming errors.)

You use the receive method to consume a message synchronously. You can use this method at
any time after you call the start method:

connection.start();

Message m = consumer.receive();

connection.start();

Message m = consumer.receive(1000); // time out after a second

To consume a message asynchronously, you use a message listener, described in the next
section.

JMS Message Listeners
A message listener is an object that acts as an asynchronous event handler for messages. This
object implements the MessageListener interface, which contains one method, onMessage. In
the onMessage method, you define the actions to be taken when a message arrives.

You register the message listener with a specific MessageConsumer by using the
setMessageListener method. For example, if you define a class named Listener that
implements the MessageListener interface, you can register the message listener as follows:

Listener myListener = new Listener();

consumer.setMessageListener(myListener);

The JMS API Programming Model

Chapter 30 • Java Message Service Concepts 571

After you register the message listener, you call the start method on the Connection to begin
message delivery. (If you call start before you register the message listener, you are likely to
miss messages.)

When message delivery begins, the JMS provider automatically calls the message listener’s
onMessage method whenever a message is delivered. The onMessage method takes one
argument of type Message, which your implementation of the method can cast to any of the
other message types (see “Message Bodies” on page 574).

A message listener is not specific to a particular destination type. The same listener can obtain
messages from either a queue or a topic, depending on the type of destination for which the
message consumer was created. A message listener does, however, usually expect a specific
message type and format.

Your onMessage method should handle all exceptions. It must not throw checked exceptions,
and throwing a RuntimeException is considered a programming error.

The session used to create the message consumer serializes the execution of all message listeners
registered with the session. At any time, only one of the session’s message listeners is running.

In the Java EE platform, a message-driven bean is a special kind of message listener. For details,
see “Using Message-Driven Beans to Receive Messages Asynchronously” on page 587.

JMS Message Selectors
If your messaging application needs to filter the messages it receives, you can use a JMS API
message selector, which allows a message consumer to specify the messages it is interested in.
Message selectors assign the work of filtering messages to the JMS provider rather than to the
application. For an example of an application that uses a message selector, see “An Application
That Uses the JMS API with a Session Bean” on page 631.

A message selector is a String that contains an expression. The syntax of the expression is
based on a subset of the SQL92 conditional expression syntax. The message selector in the
example selects any message that has a NewsType property that is set to the value ’Sports’ or
’Opinion’:

NewsType = ’Sports’ OR NewsType = ’Opinion’

The createConsumer and createDurableSubscriber methods allow you to specify a message
selector as an argument when you create a message consumer.

The message consumer then receives only messages whose headers and properties match the
selector. (See “Message Headers” on page 573, and “Message Properties” on page 574.) A
message selector cannot select messages on the basis of the content of the message body.

The JMS API Programming Model

The Java EE 6 Tutorial • October 2010572

JMS Messages
The ultimate purpose of a JMS application is to produce and to consume messages that can then
be used by other software applications. JMS messages have a basic format that is simple but
highly flexible, allowing you to create messages that match formats used by non-JMS
applications on heterogeneous platforms.

A JMS message has three parts: a header, properties, and a body. Only the header is required.
The following sections describe these parts.

For complete documentation of message headers, properties, and bodies, see the
documentation of the Message interface in the API documentation.

Message Headers
A JMS message header contains a number of predefined fields that contain values that both
clients and providers use to identify and to route messages. Table 30–1 lists the JMS message
header fields and indicates how their values are set. For example, every message has a unique
identifier, which is represented in the header field JMSMessageID. The value of another header
field, JMSDestination, represents the queue or the topic to which the message is sent. Other
fields include a timestamp and a priority level.

Each header field has associated setter and getter methods, which are documented in the
description of the Message interface. Some header fields are intended to be set by a client, but
many are set automatically by the send or the publish method, which overrides any client-set
values.

TABLE 30–1 How JMS Message Header Field Values Are Set

Header Field Set By

JMSDestination send or publish method

JMSDeliveryMode send or publish method

JMSExpiration send or publish method

JMSPriority send or publish method

JMSMessageID send or publish method

JMSTimestamp send or publish method

JMSCorrelationID Client

JMSReplyTo Client

JMSType Client

JMSRedelivered JMS provider

The JMS API Programming Model

Chapter 30 • Java Message Service Concepts 573

Message Properties
You can create and set properties for messages if you need values in addition to those provided
by the header fields. You can use properties to provide compatibility with other messaging
systems, or you can use them to create message selectors (see “JMS Message Selectors” on
page 572). For an example of setting a property to be used as a message selector, see “An
Application That Uses the JMS API with a Session Bean” on page 631.

The JMS API provides some predefined property names that a provider can support. The use
either of these predefined properties or of user-defined properties is optional.

Message Bodies
The JMS API defines five message body formats, also called message types, which allow you to
send and to receive data in many different forms and provide compatibility with existing
messaging formats. Table 30–2 describes these message types.

TABLE 30–2 JMS Message Types

Message Type Body Contains

TextMessage A java.lang.String object (for example, the contents of an XML file).

MapMessage A set of name-value pairs, with names as String objects and values as primitive
types in the Java programming language. The entries can be accessed sequentially
by enumerator or randomly by name. The order of the entries is undefined.

BytesMessage A stream of uninterpreted bytes. This message type is for literally encoding a body
to match an existing message format.

StreamMessage A stream of primitive values in the Java programming language, filled and read
sequentially.

ObjectMessage A Serializable object in the Java programming language.

Message Nothing. Composed of header fields and properties only. This message type is
useful when a message body is not required.

The JMS API provides methods for creating messages of each type and for filling in their
contents. For example, to create and send a TextMessage, you might use the following
statements:

TextMessage message = session.createTextMessage();

message.setText(msg_text); // msg_text is a String

producer.send(message);

At the consuming end, a message arrives as a generic Message object and must be cast to the
appropriate message type. You can use one or more getter methods to extract the message
contents. The following code fragment uses the getText method:

The JMS API Programming Model

The Java EE 6 Tutorial • October 2010574

Message m = consumer.receive();

if (m instanceof TextMessage) {

TextMessage message = (TextMessage) m;

System.out.println("Reading message: " + message.getText());

} else {

// Handle error

}

JMS Queue Browsers
You can create a QueueBrowser object to inspect the messages in a queue. Messages sent to a
queue remain in the queue until the message consumer for that queue consumes them.
Therefore, the JMS API provides an object that allows you to browse the messages in the queue
and display the header values for each message. To create a QueueBrowser object, use the
Session.createBrowser method. For example:

QueueBrowser browser = session.createBrowser(queue);

See “A Simple Example of Browsing Messages in a Queue” on page 608 for an example of the use
of a QueueBrowser object.

The createBrowser method allows you to specify a message selector as a second argument
when you create a QueueBrowser. For information on message selectors, see “JMS Message
Selectors” on page 572.

The JMS API provides no mechanism for browsing a topic. Messages usually disappear from a
topic as soon as they appear: if there are no message consumers to consume them, the JMS
provider removes them. Although durable subscriptions allow messages to remain on a topic
while the message consumer is not active, no facility exists for examining them.

JMS Exception Handling
The root class for exceptions thrown by JMS API methods is JMSException. Catching
JMSException provides a generic way of handling all exceptions related to the JMS API.

The JMSException class includes the following subclasses, which are described in the API
documentation:
■ IllegalStateException

■ InvalidClientIDException

■ InvalidDestinationException

■ InvalidSelectorException

■ JMSSecurityException

■ MessageEOFException

■ MessageFormatException

■ MessageNotReadableException

The JMS API Programming Model

Chapter 30 • Java Message Service Concepts 575

■ MessageNotWriteableException

■ ResourceAllocationException

■ TransactionInProgressException

■ TransactionRolledBackException

All the examples in the tutorial catch and handle JMSException when it is appropriate to do so.

Creating Robust JMS Applications
This section explains how to use features of the JMS API to achieve the level of reliability and
performance your application requires. Many people choose to implement JMS applications
because they cannot tolerate dropped or duplicate messages and require that every message be
received once and only once. The JMS API provides this functionality.

The most reliable way to produce a message is to send a PERSISTENT message within a
transaction. JMS messages are PERSISTENT by default. A transaction is a unit of work into which
you can group a series of operations, such as message sends and receives, so that the operations
either all succeed or all fail. For details, see “Specifying Message Persistence” on page 578 and
“Using JMS API Local Transactions” on page 583.

The most reliable way to consume a message is to do so within a transaction, either from a
queue or from a durable subscription to a topic. For details, see “Creating Temporary
Destinations” on page 580, “Creating Durable Subscriptions” on page 581, and “Using JMS API
Local Transactions” on page 583.

For other applications, a lower level of reliability can reduce overhead and improve
performance. You can send messages with varying priority levels (see “Setting Message Priority
Levels” on page 579) and you can set them to expire after a certain length of time (see “Allowing
Messages to Expire” on page 579).

The JMS API provides several ways to achieve various kinds and degrees of reliability. This
section divides them into two categories, basic and advanced.

The following sections describe these features as they apply to JMS clients. Some of the features
work differently in Java EE applications; in these cases, the differences are noted here and are
explained in detail in “Using the JMS API in Java EE Applications” on page 585.

Creating Robust JMS Applications

The Java EE 6 Tutorial • October 2010576

Using Basic Reliability Mechanisms
The basic mechanisms for achieving or affecting reliable message delivery are as follows:

■ Controlling message acknowledgment: You can specify various levels of control over
message acknowledgment.

■ Specifying message persistence: You can specify that messages are persistent, meaning that
they must not be lost in the event of a provider failure.

■ Setting message priority levels: You can set various priority levels for messages, which can
affect the order in which the messages are delivered.

■ Allowing messages to expire: You can specify an expiration time for messages so that they
will not be delivered if they are obsolete.

■ Creating temporary destinations: You can create temporary destinations that last only for
the duration of the connection in which they are created.

Controlling Message Acknowledgment
Until a JMS message has been acknowledged, it is not considered to be successfully consumed.
The successful consumption of a message ordinarily takes place in three stages.

1. The client receives the message.
2. The client processes the message.
3. The message is acknowledged. Acknowledgment is initiated either by the JMS provider or

by the client, depending on the session acknowledgment mode.

In transacted sessions (see “Using JMS API Local Transactions” on page 583), acknowledgment
happens automatically when a transaction is committed. If a transaction is rolled back, all
consumed messages are redelivered.

In nontransacted sessions, when and how a message is acknowledged depend on the value
specified as the second argument of the createSession method. The three possible argument
values are as follows:

■ Session.AUTO_ACKNOWLEDGE: The session automatically acknowledges a client’s receipt of a
message either when the client has successfully returned from a call to receive or when the
MessageListener it has called to process the message returns successfully. A synchronous
receive in an AUTO_ACKNOWLEDGE session is the one exception to the rule that message
consumption is a three-stage process as described earlier.
In this case, the receipt and acknowledgment take place in one step, followed by the
processing of the message.

■ Session.CLIENT_ACKNOWLEDGE: A client acknowledges a message by calling the message’s
acknowledge method. In this mode, acknowledgment takes place on the session level:
Acknowledging a consumed message automatically acknowledges the receipt of all

Creating Robust JMS Applications

Chapter 30 • Java Message Service Concepts 577

messages that have been consumed by its session. For example, if a message consumer
consumes ten messages and then acknowledges the fifth message delivered, all ten messages
are acknowledged.

■ Session.DUPS_OK_ACKNOWLEDGE: This option instructs the session to lazily acknowledge the
delivery of messages. This is likely to result in the delivery of some duplicate messages if the
JMS provider fails, so it should be used only by consumers that can tolerate duplicate
messages. (If the JMS provider redelivers a message, it must set the value of the
JMSRedelivered message header to true.) This option can reduce session overhead by
minimizing the work the session does to prevent duplicates.

If messages have been received from a queue but not acknowledged when a session terminates,
the JMS provider retains them and redelivers them when a consumer next accesses the queue.
The provider also retains unacknowledged messages for a terminated session that has a durable
TopicSubscriber. (See “Creating Durable Subscriptions” on page 581.) Unacknowledged
messages for a nondurable TopicSubscriber are dropped when the session is closed.

If you use a queue or a durable subscription, you can use the Session.recover method to stop a
nontransacted session and restart it with its first unacknowledged message. In effect, the
session’s series of delivered messages is reset to the point after its last acknowledged message.
The messages it now delivers may be different from those that were originally delivered, if
messages have expired or if higher-priority messages have arrived. For a nondurable
TopicSubscriber, the provider may drop unacknowledged messages when its session is
recovered.

The sample program in XREF the next section demonstrates two ways to ensure that a message
will not be acknowledged until processing of the message is complete.

Specifying Message Persistence
The JMS API supports two delivery modes for messages to specify whether messages are lost if
the JMS provider fails. These delivery modes are fields of the DeliveryMode interface.

■ The PERSISTENT delivery mode, which is the default, instructs the JMS provider to take extra
care to ensure that a message is not lost in transit in case of a JMS provider failure. A
message sent with this delivery mode is logged to stable storage when it is sent.

■ The NON_PERSISTENT delivery mode does not require the JMS provider to store the message
or otherwise guarantee that it is not lost if the provider fails.

You can specify the delivery mode in either of two ways.

■ You can use the setDeliveryMode method of the MessageProducer interface to set the
delivery mode for all messages sent by that producer. For example, the following call sets the
delivery mode to NON_PERSISTENT for a producer:

producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

Creating Robust JMS Applications

The Java EE 6 Tutorial • October 2010578

■ You can use the long form of the send or the publish method to set the delivery mode for a
specific message. The second argument sets the delivery mode. For example, the following
send call sets the delivery mode for message to NON_PERSISTENT:

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

The third and fourth arguments set the priority level and expiration time, which are
described in the next two subsections.

If you do not specify a delivery mode, the default is PERSISTENT. Using the NON_PERSISTENT
delivery mode may improve performance and reduce storage overhead, but you should use it
only if your application can afford to miss messages.

Setting Message Priority Levels
You can use message priority levels to instruct the JMS provider to deliver urgent messages first.
You can set the priority level in either of two ways.
■ You can use the setPriority method of the MessageProducer interface to set the priority

level for all messages sent by that producer. For example, the following call sets a priority
level of 7 for a producer:

producer.setPriority(7);

■ You can use the long form of the send or the publish method to set the priority level for a
specific message. The third argument sets the priority level. For example, the following send
call sets the priority level for message to 3:

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

The ten levels of priority range from 0 (lowest) to 9 (highest). If you do not specify a priority
level, the default level is 4. A JMS provider tries to deliver higher-priority messages before
lower-priority ones but does not have to deliver messages in exact order of priority.

Allowing Messages to Expire
By default, a message never expires. If a message will become obsolete after a certain period,
however, you may want to set an expiration time. You can do this in either of two ways.
■ You can use the setTimeToLive method of the MessageProducer interface to set a default

expiration time for all messages sent by that producer. For example, the following call sets a
time to live of one minute for a producer:

producer.setTimeToLive(60000);

■ You can use the long form of the send or the publish method to set an expiration time for a
specific message. The fourth argument sets the expiration time in milliseconds. For
example, the following send call sets a time to live of 10 seconds:

producer.send(message, DeliveryMode.NON_PERSISTENT, 3, 10000);

If the specified timeToLive value is 0, the message never expires.

Creating Robust JMS Applications

Chapter 30 • Java Message Service Concepts 579

When the message is sent, the specified timeToLive is added to the current time to give the
expiration time. Any message not delivered before the specified expiration time is destroyed.
The destruction of obsolete messages conserves storage and computing resources.

Creating Temporary Destinations
Normally, you create JMS destinations (queues and topics) administratively rather than
programmatically. Your JMS provider includes a tool that you use to create and remove
destinations, and it is common for destinations to be long-lasting.

The JMS API also enables you to create destinations (TemporaryQueue and TemporaryTopic

objects) that last only for the duration of the connection in which they are created. You create
these destinations dynamically using the Session.createTemporaryQueue and the
Session.createTemporaryTopic methods.

The only message consumers that can consume from a temporary destination are those created
by the same connection that created the destination. Any message producer can send to the
temporary destination. If you close the connection that a temporary destination belongs to, the
destination is closed and its contents are lost.

You can use temporary destinations to implement a simple request/reply mechanism. If you
create a temporary destination and specify it as the value of the JMSReplyTo message header
field when you send a message, then the consumer of the message can use the value of the
JMSReplyTo field as the destination to which it sends a reply. The consumer can also reference
the original request by setting the JMSCorrelationID header field of the reply message to the
value of the JMSMessageID header field of the request. For example, an onMessage method can
create a session so that it can send a reply to the message it receives. It can use code such as the
following:

producer = session.createProducer(msg.getJMSReplyTo());

replyMsg = session.createTextMessage("Consumer " +

"processed message: " + msg.getText());

replyMsg.setJMSCorrelationID(msg.getJMSMessageID());

producer.send(replyMsg);

For more examples, see Chapter 31, “Java Message Service Examples.”

Creating Robust JMS Applications

The Java EE 6 Tutorial • October 2010580

Using Advanced Reliability Mechanisms
The more advanced mechanisms for achieving reliable message delivery are the following:
■ Creating durable subscriptions: You can create durable topic subscriptions, which receive

messages published while the subscriber is not active. Durable subscriptions offer the
reliability of queues to the publish/subscribe message domain.

■ Using local transactions: You can use local transactions, which allow you to group a series
of sends and receives into an atomic unit of work. Transactions are rolled back if they fail at
any time.

Creating Durable Subscriptions
To ensure that a pub/sub application receives all published messages, use PERSISTENT delivery
mode for the publishers. In addition, use durable subscriptions for the subscribers.

The Session.createConsumer method creates a nondurable subscriber if a topic is specified as
the destination. A nondurable subscriber can receive only messages that are published while it
is active.

At the cost of higher overhead, you can use the Session.createDurableSubscriber method to
create a durable subscriber. A durable subscription can have only one active subscriber at a
time.

A durable subscriber registers a durable subscription by specifying a unique identity that is
retained by the JMS provider. Subsequent subscriber objects that have the same identity resume
the subscription in the state in which it was left by the preceding subscriber. If a durable
subscription has no active subscriber, the JMS provider retains the subscription’s messages until
they are received by the subscription or until they expire.

You establish the unique identity of a durable subscriber by setting the following:
■ A client ID for the connection
■ A topic and a subscription name for the subscriber

You set the client ID administratively for a client-specific connection factory using either the
command line or the Administration Console.

After using this connection factory to create the connection and the session, you call the
createDurableSubscriber method with two arguments: the topic and a string that specifies
the name of the subscription:

String subName = "MySub";
MessageConsumer topicSubscriber =

session.createDurableSubscriber(myTopic, subName);

The subscriber becomes active after you start the Connection or TopicConnection. Later, you
might close the subscriber:

Creating Robust JMS Applications

Chapter 30 • Java Message Service Concepts 581

topicSubscriber.close();

The JMS provider stores the messages sent or published to the topic, as it would store messages
sent to a queue. If the program or another application calls createDurableSubscriber using
the same connection factory and its client ID, the same topic, and the same subscription name,
the subscription is reactivated, and the JMS provider delivers the messages that were published
while the subscriber was inactive.

To delete a durable subscription, first close the subscriber, and then use the unsubscribe
method, with the subscription name as the argument:

topicSubscriber.close();

session.unsubscribe("MySub");

The unsubscribe method deletes the state that the provider maintains for the subscriber.

Figure 30–6 and Figure 30–7 show the difference between a nondurable and a durable
subscriber. With an ordinary, nondurable subscriber, the subscriber and the subscription begin
and end at the same point and are, in effect, identical. When a subscriber is closed, the
subscription also ends. Here, create stands for a call to Session.createConsumer with a Topic
argument, and close stands for a call to MessageConsumer.close. Any messages published to
the topic between the time of the first close and the time of the second create are not
consumed by the subscriber. In Figure 30–6, the subscriber consumes messages M1, M2, M5,
and M6, but messages M3 and M4 are lost.

With a durable subscriber, the subscriber can be closed and re-created, but the subscription
continues to exist and to hold messages until the application calls the unsubscribe method. In
Figure 30–7, create stands for a call to Session.createDurableSubscriber, close stands for
a call to MessageConsumer.close, and unsubscribe stands for a call to Session.unsubscribe.
Messages published while the subscriber is closed are received when the subscriber is created
again. So even though messages M2, M4, and M5 arrive while the subscriber is closed, they are
not lost.

FIGURE 30–6 Nondurable Subscribers and Subscriptions

Subscription

Subscriber
create close

Subscription

Subscriber
create close

M1 M2 M3 M4 M5 M6

Creating Robust JMS Applications

The Java EE 6 Tutorial • October 2010582

See “A Message Acknowledgment Example” on page 620, “A Durable Subscription Example” on
page 623, and “An Application That Uses the JMS API with a Session Bean” on page 631 for
examples of Java EE applications that use durable subscriptions.

Using JMS API Local Transactions
You can group a series of operations into an atomic unit of work called a transaction. If any one
of the operations fails, the transaction can be rolled back, and the operations can be attempted
again from the beginning. If all the operations succeed, the transaction can be committed.

In a JMS client, you can use local transactions to group message sends and receives. The JMS
API Session interface provides commit and rollback methods that you can use in a JMS client.
A transaction commit means that all produced messages are sent and all consumed messages
are acknowledged. A transaction rollback means that all produced messages are destroyed and
all consumed messages are recovered and redelivered unless they have expired (see “Allowing
Messages to Expire” on page 579).

A transacted session is always involved in a transaction. As soon as the commit or the rollback
method is called, one transaction ends and another transaction begins. Closing a transacted
session rolls back its transaction in progress, including any pending sends and receives.

In an Enterprise JavaBeans component, you cannot use the Session.commit and
Session.rollback methods. Instead, you use distributed transactions, which are described in
“Using the JMS API in Java EE Applications” on page 585.

You can combine several sends and receives in a single JMS API local transaction. If you do so,
you need to be careful about the order of the operations. You will have no problems if the
transaction consists of all sends or all receives or if the receives come before the sends. But if you
try to use a request/reply mechanism, whereby you send a message and then try to receive a

FIGURE 30–7 A Durable Subscriber and Subscription

Subscriber Subscriber

create

create close create close create close

Subscriber

M1

unsubscribe

M2 M3 M4 M5 M6

Creating Robust JMS Applications

Chapter 30 • Java Message Service Concepts 583

reply to the sent message in the same transaction, the program will hang, because the send
cannot take place until the transaction is committed. The following code fragment illustrates
the problem:

// Don’t do this!

outMsg.setJMSReplyTo(replyQueue);

producer.send(outQueue, outMsg);

consumer = session.createConsumer(replyQueue);

inMsg = consumer.receive();

session.commit();

Because a message sent during a transaction is not actually sent until the transaction is
committed, the transaction cannot contain any receives that depend on that message’s having
been sent.

In addition, the production and the consumption of a message cannot both be part of the same
transaction. The reason is that the transactions take place between the clients and the JMS
provider, which intervenes between the production and the consumption of the message.
Figure 30–8 illustrates this interaction.

The sending of one or more messages to one or more destinations by client 1 can form a single
transaction, because it forms a single set of interactions with the JMS provider using a single
session. Similarly, the receiving of one or more messages from one or more destinations by
client 2 also forms a single transaction using a single session. But because the two clients have
no direct interaction and are using two different sessions, no transactions can take place
between them.

Another way of putting this is that the act of producing and/or consuming messages in a session
can be transactional, but the act of producing and consuming a specific message across different
sessions cannot be transactional.

This is the fundamental difference between messaging and synchronized processing. Instead of
tightly coupling the sending and receiving of data, message producers and consumers use an
alternative approach to reliability, one that is built on a JMS provider’s ability to supply a
once-and-only-once message delivery guarantee.

FIGURE 30–8 Using JMS API Local Transactions

Transaction 1 Transaction 2

Sends Consumes
Client 1 Client 2

Queue

Creating Robust JMS Applications

The Java EE 6 Tutorial • October 2010584

When you create a session, you specify whether it is transacted. The first argument to the
createSession method is a boolean value. A value of true means that the session is transacted;
a value of false means that it is not transacted. The second argument to this method is the
acknowledgment mode, which is relevant only to nontransacted sessions (see “Controlling
Message Acknowledgment” on page 577). If the session is transacted, the second argument is
ignored, so it is a good idea to specify 0 to make the meaning of your code clear. For example:

session = connection.createSession(true, 0);

The commit and the rollback methods for local transactions are associated with the session.
You can combine queue and topic operations in a single transaction if you use the same session
to perform the operations. For example, you can use the same session to receive a message from
a queue and send a message to a topic in the same transaction.

You can pass a client program’s session to a message listener’s constructor function and use it to
create a message producer. In this way, you can use the same session for receives and sends in
asynchronous message consumers.

“A Local Transaction Example” on page 625 provides an example of the use of JMS API local
transactions.

Using the JMS API in Java EE Applications
This section describes the ways in which using the JMS API in enterprise bean applications or
web applications differs from using it in application clients.

A general rule in the Java EE platform specification applies to all Java EE components that use
the JMS API within EJB or web containers:

Application components in the web and EJB containers must not attempt to create more than
one active (not closed) Session object per connection.

This rule does not apply to application clients. The application client container supports the
creation of multiple sessions for each connection.

Using @ResourceAnnotations in Enterprise Bean or
Web Components
When you use the @Resource annotation in an application client component, you normally
declare the JMS resource static:

@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource(lookup = "jms/Queue")
private static Queue queue;

Using the JMS API in Java EE Applications

Chapter 30 • Java Message Service Concepts 585

However, when you use this annotation in a session bean, a message-driven bean, or a web
component, do not declare the resource static:

@Resource(lookup = "jms/ConnectionFactory")
private ConnectionFactory connectionFactory;

@Resource(lookup = "jms/Topic")
private Topic topic;

If you declare the resource static, runtime errors will result.

Using Session Beans to Produce and to Synchronously
Receive Messages
An application that produces messages or synchronously receives them can use a session bean
to perform these operations. The example in “An Application That Uses the JMS API with a
Session Bean” on page 631 uses a stateless session bean to publish messages to a topic.

Because a blocking synchronous receive ties up server resources, it is not a good programming
practice to use such a receive call in an enterprise bean. Instead, use a timed synchronous
receive, or use a message-driven bean to receive messages asynchronously. For details about
blocking and timed synchronous receives, see “Writing the Clients for the Synchronous Receive
Example” on page 594.

Using the JMS API in an enterprise bean or web application is in many ways similar to using it
in an application client. The main differences are the areas of resource management and
transactions.

Resource Management
The JMS API resources are a JMS API connection and a JMS API session. In general, it is
important to release JMS resources when they are no longer being used. Here are some useful
practices to follow.

■ If you wish to maintain a JMS API resource only for the life span of a business method, it is a
good idea to close the resource in a finally block within the method.

■ If you would like to maintain a JMS API resource for the life span of an enterprise bean
instance, it is a good idea to use a @PostConstruct callback method to create the resource
and to use a @PreDestroy callback method to close the resource. If you use a stateful session
bean and you wish to maintain the JMS API resource in a cached state, you must close the
resource in a @PrePassivate callback method and set its value to null, and you must create
it again in a @PostActivate callback method.

Using the JMS API in Java EE Applications

The Java EE 6 Tutorial • October 2010586

Transactions
Instead of using local transactions, you use container-managed transactions for bean methods
that perform sends or receives, allowing the EJB container to handle transaction demarcation.
Because container-managed transactions are the default, you do not have to use an annotation
to specify them.

You can use bean-managed transactions and the javax.transaction.UserTransaction
interface’s transaction demarcation methods, but you should do so only if your application has
special requirements and you are an expert in using transactions. Usually, container-managed
transactions produce the most efficient and correct behavior. This tutorial does not provide any
examples of bean-managed transactions.

Using Message-Driven Beans to Receive Messages
Asynchronously
The sections “What Is a Message-Driven Bean?” on page 267 and “How Does the JMS API
Work with the Java EE Platform?” on page 561 describe how the Java EE platform supports a
special kind of enterprise bean, the message-driven bean, which allows Java EE applications to
process JMS messages asynchronously. Session beans allow you to send messages and to receive
them synchronously but not asynchronously.

A message-driven bean is a message listener that can reliably consume messages from a queue
or a durable subscription. The messages can be sent by any Java EE component (from an
application client, another enterprise bean, or a web component) or from an application or a
system that does not use Java EE technology.

Like a message listener in an application client, a message-driven bean contains an onMessage

method that is called automatically when a message arrives. Like a message listener, a
message-driven bean class can implement helper methods invoked by the onMessage method to
aid in message processing.

A message-driven bean, however, differs from an application client’s message listener in the
following ways:

■ Certain setup tasks are performed by the EJB container.
■ The bean class uses the @MessageDriven annotation to specify properties for the bean or the

connection factory, such as a destination type, a durable subscription, a message selector, or
an acknowledgment mode. The examples in Chapter 31, “Java Message Service Examples,”
show how the JMS resource adapter works in the GlassFish Server.

Using the JMS API in Java EE Applications

Chapter 30 • Java Message Service Concepts 587

The EJB container automatically performs several setup tasks that a stand-alone client has to
do:

■ Creating a message consumer to receive the messages. Instead of creating a message
consumer in your source code, you associate the message-driven bean with a destination
and a connection factory at deployment time. If you want to specify a durable subscription
or use a message selector, you do this at deployment time also.

■ Registering the message listener. You must not call setMessageListener.
■ Specifying a message acknowledgment mode. The default mode, AUTO_ACKNOWLEDGE, is used

unless it is overriden by a property setting.

If JMS is integrated with the application server using a resource adapter, the JMS resource
adapter handles these tasks for the EJB container.

Your message-driven bean class must implement the javax.jms.MessageListener interface
and the onMessage method.

It may implement a @PostConstruct callback method to create a connection, and a
@PreDestroy callback method to close the connection. Typically, it implements these methods
if it produces messages or does synchronous receives from another destination.

The bean class commonly injects a MessageDrivenContext resource, which provides some
additional methods that you can use for transaction management.

The main difference between a message-driven bean and a session bean is that a message-driven
bean has no local or remote interface. Instead, it has only a bean class.

A message-driven bean is similar in some ways to a stateless session bean: Its instances are
relatively short-lived and retain no state for a specific client. The instance variables of the
message-driven bean instance can contain some state across the handling of client messages: for
example, a JMS API connection, an open database connection, or an object reference to an
enterprise bean object.

Like a stateless session bean, a message-driven bean can have many interchangeable instances
running at the same time. The container can pool these instances to allow streams of messages
to be processed concurrently. The container attempts to deliver messages in chronological
order when it does not impair the concurrency of message processing, but no guarantees are
made as to the exact order in which messages are delivered to the instances of the
message-driven bean class. Because concurrency can affect the order in which messages are
delivered, you should write your applications to handle messages that arrive out of sequence.

For example, your application could manage conversations by using application-level sequence
numbers. An application-level conversation control mechanism with a persistent conversation
state could cache later messages until earlier messages have been processed.

Using the JMS API in Java EE Applications

The Java EE 6 Tutorial • October 2010588

Another way to ensure order is to have each message or message group in a conversation
require a confirmation message that the sender blocks on receipt of. This forces the
responsibility for order back on the sender and more tightly couples senders to the progress of
message-driven beans.

To create a new instance of a message-driven bean, the container does the following:

■ Instantiates the bean
■ Performs any required resource injection
■ Calls the @PostConstruct callback method, if it exists

To remove an instance of a message-driven bean, the container calls the @PreDestroy callback
method.

Figure 30–9 shows the lifecycle of a message-driven bean.

Managing Distributed Transactions
JMS client applications use JMS API local transactions (described in “Using JMS API Local
Transactions” on page 583), which allow the grouping of sends and receives within a specific
JMS session. Java EE applications commonly use distributed transactions to ensure the integrity
of accesses to external resources. For example, distributed transactions allow multiple
applications to perform atomic updates on the same database, and they allow a single
application to perform atomic updates on multiple databases.

In a Java EE application that uses the JMS API, you can use transactions to combine message
sends or receives with database updates and other resource manager operations. You can access
resources from multiple application components within a single transaction. For example, a
servlet can start a transaction, access multiple databases, invoke an enterprise bean that sends a
JMS message, invoke another enterprise bean that modifies an EIS system using the Connector
architecture, and finally commit the transaction. Your application cannot, however, both send a

FIGURE 30–9 Lifecycle of a Message-Driven Bean

Does Not Exist Ready

PreDestroy callback, if any

onMessage

Dependency injection, if any
PostConstruct callback, if any

1

2

Using the JMS API in Java EE Applications

Chapter 30 • Java Message Service Concepts 589

JMS message and receive a reply to it within the same transaction; the restriction described in
“Using JMS API Local Transactions” on page 583 still applies.

Distributed transactions within the EJB container can be either of two kinds:

■ Container-managed transactions: The EJB container controls the integrity of your
transactions without your having to call commit or rollback. Container-managed
transactions are recommended for Java EE applications that use the JMS API. You can
specify appropriate transaction attributes for your enterprise bean methods.
Use the Required transaction attribute (the default) to ensure that a method is always part
of a transaction. If a transaction is in progress when the method is called, the method will be
part of that transaction; if not, a new transaction will be started before the method is called
and will be committed when the method returns.

■ Bean-managed transactions: You can use these in conjunction with the
javax.transaction.UserTransaction interface, which provides its own commit and
rollback methods that you can use to delimit transaction boundaries. Bean-managed
transactions are recommended only for those who are experienced in programming
transactions.

You can use either container-managed transactions or bean-managed transactions with
message-driven beans. To ensure that all messages are received and handled within the context
of a transaction, use container-managed transactions and use the Required transaction
attribute (the default) for the onMessage method. This means that if there is no transaction in
progress, a new transaction will be started before the method is called and will be committed
when the method returns.

When you use container-managed transactions, you can call the following
MessageDrivenContext methods:

■ setRollbackOnly: Use this method for error handling. If an exception occurs,
setRollbackOnly marks the current transaction so that the only possible outcome of the
transaction is a rollback.

■ getRollbackOnly: Use this method to test whether the current transaction has been marked
for rollback.

If you use bean-managed transactions, the delivery of a message to the onMessage method takes
place outside the distributed transaction context. The transaction begins when you call the
UserTransaction.begin method within the onMessage method, and it ends when you call
UserTransaction.commit or UserTransaction.rollback. Any call to the
Connection.createSession method must take place within the transaction. If you call
UserTransaction.rollback, the message is not redelivered, whereas calling setRollbackOnly
for container-managed transactions does cause a message to be redelivered.

Neither the JMS API specification nor the Enterprise JavaBeans specification (available from
http://jcp.org/en/jsr/detail?id=318) specifies how to handle calls to JMS API methods
outside transaction boundaries. The Enterprise JavaBeans specification does state that the EJB

Using the JMS API in Java EE Applications

The Java EE 6 Tutorial • October 2010590

http://jcp.org/en/jsr/detail?id=318

container is responsible for acknowledging a message that is successfully processed by the
onMessage method of a message-driven bean that uses bean-managed transactions. Using
bean-managed transactions allows you to process the message by using more than one
transaction or to have some parts of the message processing take place outside a transaction
context. In most cases, however, container-managed transactions provide greater reliability and
are therefore preferable.

When you create a session in an enterprise bean, the container ignores the arguments you
specify, because it manages all transactional properties for enterprise beans. It is still a good idea
to specify arguments of true and 0 to the createSession method to make this situation clear:

session = connection.createSession(true, 0);

When you use container-managed transactions, you normally use the Required transaction
attribute (the default) for your enterprise bean’s business methods.

You do not specify a message acknowledgment mode when you create a message-driven bean
that uses container-managed transactions. The container acknowledges the message
automatically when it commits the transaction.

If a message-driven bean uses bean-managed transactions, the message receipt cannot be part
of the bean-managed transaction, so the container acknowledges the message outside the
transaction.

If the onMessage method throws a RuntimeException, the container does not acknowledge
processing the message. In that case, the JMS provider will redeliver the unacknowledged
message in the future.

Using the JMS API with Application Clients and Web
Components
An application client in a Java EE application can use the JMS API in much the same way that a
stand-alone client program does. It can produce messages, and it can consume messages by
using either synchronous receives or message listeners. See Chapter 17, “A Message-Driven
Bean Example,” for an example of an application client that produces messages.

The Java EE platform specification does not impose strict constraints on how web components
should use the JMS API. In the GlassFish Server, a web component can send messages and
consume them synchronously but cannot consume them asynchronously.

Because a blocking synchronous receive ties up server resources, it is not a good programming
practice to use such a receive call in a web component. Instead, use a timed synchronous
receive. For details about blocking and timed synchronous receives, see “Writing the Clients for
the Synchronous Receive Example” on page 594.

Using the JMS API in Java EE Applications

Chapter 30 • Java Message Service Concepts 591

Further Information about JMS
For more information about JMS, see:

■ Java Message Service web site:
http://www.oracle.com/technetwork/java/index-jsp-142945.html

■ Java Message Service specification, version 1.1, available from
http://www.oracle.com/technetwork/java/docs-136352.html

Further Information about JMS

The Java EE 6 Tutorial • October 2010592

http://www.oracle.com/technetwork/java/index-jsp-142945.html
http://www.oracle.com/technetwork/java/docs-136352.html

Java Message Service Examples

This chapter provides examples that show how to use the JMS API in various kinds of Java EE
applications. It covers the following topics:

■ “Writing Simple JMS Applications” on page 594
■ “Writing Robust JMS Applications” on page 619
■ “An Application That Uses the JMS API with a Session Bean” on page 631
■ “An Application That Uses the JMS API with an Entity” on page 635
■ “An Application Example That Consumes Messages from a Remote Server” on page 643
■ “An Application Example That Deploys a Message-Driven Bean on Two Servers” on page 649

The examples are in the following directory:

tut-install/examples/jms/

To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Ant tool to compile and package the example.
2. Use the Ant tool to create resources.
3. Use NetBeans IDE or the Ant tool to deploy the example.
4. Use NetBeans IDE, the appclient command, or the Ant tool to run the client.

Each example has a build.xml file that refers to files in the following directory:

tut-install/examples/bp-project/

See Chapter 17, “A Message-Driven Bean Example,” for a simpler example of a Java EE
application that uses the JMS API.

31C H A P T E R 3 1

593

Writing Simple JMS Applications
This section shows how to create, package, and run simple JMS clients that are packaged as
application clients and deployed to a Java EE server. The clients demonstrate the basic tasks that
a JMS application must perform:
■ Creating a connection and a session
■ Creating message producers and consumers
■ Sending and receiving messages

In a Java EE application, some of these tasks are performed, in whole or in part, by the
container. If you learn about these tasks, you will have a good basis for understanding how a
JMS application works on the Java EE platform.

Each example uses two clients: one that sends messages and one that receives them. You can
run the clients in NetBeans IDE or in two terminal windows.

When you write a JMS client to run in a enterprise bean application, you use many of the same
methods in much the same sequence as you do for an application client. However, there are
some significant differences. “Using the JMS API in Java EE Applications” on page 585
describes these differences, and this chapter provides examples that illustrate them.

The examples for this section are in the following directory:

tut-install/examples/jms/simple/

The examples are in the following four subdirectories:

producer

synchconsumer

asynchconsumer

messagebrowser

A Simple Example of Synchronous Message Receives
This section describes the sending and receiving clients in an example that uses the receive
method to consume messages synchronously. This section then explains how to compile,
package, and run the clients using the GlassFish Server.

The following sections describe the steps in creating and running the example.

Writing the Clients for the Synchronous Receive Example
The sending client, producer/src/java/Producer.java, performs the following steps:

1. Injects resources for a connection factory, queue, and topic:

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010594

@Resource(lookup = "jms/ConnectionFactory")
private static ConnectionFactory connectionFactory;

@Resource(lookup = "jms/Queue")private static Queue queue;

@Resource(lookup = "jms/Topic")private static Topic topic;

2. Retrieves and verifies command-line arguments that specify the destination type and the
number of arguments:

final int NUM_MSGS;

String destType = args[0];

System.out.println("Destination type is " + destType);

if (! (destType.equals("queue") || destType.equals("topic"))) {

System.err.println("Argument must be \”queue\” or " + "\”topic\”");
System.exit(1);

}

if (args.length == 2){

NUM_MSGS = (new Integer(args[1])).intValue();

}

else {

NUM_MSGS = 1;

}

3. Assigns either the queue or topic to a destination object, based on the specified destination
type:

Destination dest = null;

try {

if (destType.equals("queue")) {

dest = (Destination) queue;

} else {

dest = (Destination) topic;

}

}

catch (Exception e) {

System.err.println("Error setting destination: " + e.toString());

e.printStackTrace();

System.exit(1);

}

4. Creates a Connection and a Session:

Connection connection = connectionFactory.createConnection();

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

5. Creates a MessageProducer and a TextMessage:

MessageProducer producer = session.createProducer(dest);

TextMessage message = session.createTextMessage();

6. Sends one or more messages to the destination:

for (int i = 0; i < NUM_MSGS; i++) {

message.setText("This is message " + (i + 1) + " from producer");
System.out.println("Sending message: " + message.getText());

producer.send(message);

}

7. Sends an empty control message to indicate the end of the message stream:

producer.send(session.createMessage());

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 595

Sending an empty message of no specified type is a convenient way to indicate to the
consumer that the final message has arrived.

8. Closes the connection in a finally block, automatically closing the session and
MessageProducer:

} finally {

if (connection != null) {

try { connection.close(); }

catch (JMSException e) { }

}

}

The receiving client, synchconsumer/src/java/SynchConsumer.java, performs the following
steps:

1. Injects resources for a connection factory, queue, and topic.
2. Assigns either the queue or topic to a destination object, based on the specified destination

type.
3. Creates a Connection and a Session.
4. Creates a MessageConsumer:

consumer = session.createConsumer(dest);

5. Starts the connection, causing message delivery to begin:

connection.start();

6. Receives the messages sent to the destination until the end-of-message-stream control
message is received:

while (true) {

Message m = consumer.receive(1);

if (m != null) {

if (m instanceof TextMessage) {

message = (TextMessage) m;

System.out.println("Reading message: " + message.getText());

} else {

break;

}

}

}

Because the control message is not a TextMessage, the receiving client terminates the while
loop and stops receiving messages after the control message arrives.

7. Closes the connection in a finally block, automatically closing the session and
MessageConsumer.

The receive method can be used in several ways to perform a synchronous receive. If you
specify no arguments or an argument of 0, the method blocks indefinitely until a message
arrives:

Message m = consumer.receive();

Message m = consumer.receive(0);

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010596

For a simple client, this may not matter. But if you do not want your application to consume
system resources unnecessarily, use a timed synchronous receive. Do one of the following:

■ Call the receive method with a timeout argument greater than 0:

Message m = consumer.receive(1); // 1 millisecond

■ Call the receiveNoWait method, which receives a message only if one is available:

Message m = consumer.receiveNoWait();

The SynchConsumer client uses an indefinite while loop to receive messages, calling receive
with a timeout argument. Calling receiveNoWait would have the same effect.

Starting the JMS Provider
When you use the GlassFish Server, your JMS provider is the GlassFish Server. Start the server
as described in “Starting and Stopping the GlassFish Server” on page 69.

▼ To Create JMS Administered Objects for the Synchronous Receive
Example
Creating the JMS administered objects for this section involves the following:

■ Creating a connection factory
■ Creating two destination resources

If you built and ran the simplemessage example in Chapter 17, “A Message-Driven Bean
Example,” and did not delete the resources afterward, you need to create only the topic resource.

You can create these objects using the Ant tool. To create all the resources, follow these steps.

In a terminal window, go to the producerdirectory:
cd producer

To create all the resources, type the following command:
ant create-resources

To create only the topic resource, type the following command:

ant create-topic

These Ant targets use the asadmin create-jms-resource command to create the connection
factory and the destination resources.

To verify that the resources have been created, use the following command:
asadmin list-jms-resources

1

2

3

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 597

The output looks like this:

jms/Queue

jms/Topic

jms/ConnectionFactory

Command list-jms-resources executed successfully.

Building, Packaging, Deploying, and Running the Clients for the
Synchronous Receive Example
To run these examples using the GlassFish Server, package each one in an application client JAR
file. The application client JAR file requires a manifest file, located in the src/conf directory for
each example, along with the .class file.

The build.xml file for each example contains Ant targets that compile and package the
example. The targets place the .class file for the example in the build/jar directory. Then the
targets use the jar command to package the class file and the manifest file in an application
client JAR file.

Because the examples use the common interfaces, you can run them using either a queue or a
topic.

▼ To Build and Package the Clients for the Synchronous Receive Example
Using NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jms/simple/

Select the producer folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the project and select Build.

Select the synchconsumer folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the project and select Build.

1

2

3

4

5

6

7

8

9

10

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010598

▼ To Deploy and Run the Clients for the Synchronous Receive Example
Using NetBeans IDE

Deploy and run the Producer example:

a. Right-click the producerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue 3

d. Click OK.

e. Right-click the project and select Run.
The output of the program looks like this (along with some application client container
output):
Destination type is queue

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

The messages are now in the queue, waiting to be received.

Note – When you run an application client, there is usually a noticeable delay between the
first two application client container messages and the remainder of the output.

Now deploy and run the SynchConsumer example:

a. Right-click the synchconsumerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue

d. Click OK.

e. Right-click the project and select Run.
The output of the program looks like this (along with some application client container
output):
Destination type is queue

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

1

2

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 599

Reading message: This is message 3 from producer

Now try running the programs in the opposite order. Right-click the synchconsumerproject and
select Run.

The Output pane displays the destination type and then appears to hang, waiting for messages.

Right-click the producerproject and select Run.

The Output pane shows the output of both programs, in two different tabs.

Now run the Producer example using a topic instead of a queue.

a. Right-click the producerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
topic 3

d. Click OK.

e. Right-click the project and select Run.

The output looks like this (along with some application client container output):
Destination type is topic

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

Now run the SynchConsumer example using the topic.

a. Right-click the synchconsumerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
topic

d. Click OK.

e. Right-click the project and select Run.

The result, however, is different. Because you are using a topic, messages that were sent
before you started the consumer cannot be received. (See “Publish/Subscribe Messaging
Domain” on page 564, for details.) Instead of receiving the messages, the program appears
to hang.

3

4

5

6

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010600

Run the Producer example again. Right-click the producerproject and select Run.
Now the SynchConsumer example receives the messages:
Destination type is topic

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

▼ To Build and Package the Clients for the Synchronous Receive Example
Using Ant

In a terminal window, go to the producerdirectory:
cd producer

Type the following command:
ant

In a terminal window, go to the synchconsumerdirectory:
cd ../synchconsumer

Type the following command:
ant

The targets place the application client JAR file in the dist directory for each example.

▼ To Deploy and Run the Clients for the Synchronous Receive Example
Using Ant and the appclientCommand
You can run the clients using the appclient command. The build.xml file for each project
includes a target that deploys the client and then retrieves the client stubs that the appclient
command uses. Each of the clients takes one or more command-line arguments: a destination
type and, for Producer, a number of messages.

To build, deploy, and run the Producer and SynchConsumer examples using Ant and the
appclient command, follow these steps.

To run the clients, you need two terminal windows.

In a terminal window, go to the producerdirectory:
cd ../producer

Deploy the client JAR file to the GlassFish Server, then retrieve the client stubs:
ant getclient

Ignore the message that states that the application is deployed at a URL.

7

1

2

3

4

1

2

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 601

Run the Producerprogram, sending three messages to the queue:
appclient -client client-jar/producerClient.jar queue 3

The output of the program looks like this (along with some application client container output):

Destination type is queue

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

The messages are now in the queue, waiting to be received.

Note – When you run an application client, there is usually a noticeable delay between the first
two application client container messages and the remainder of the output.

In the same window, go to the synchconsumerdirectory:
cd ../synchconsumer

Deploy the client JAR file to the GlassFish Server, then retrieve the client stubs:
ant getclient

Ignore the message that states that the application is deployed at a URL.

Run the SynchConsumer client, specifying the queue:
appclient -client client-jar/synchconsumerClient.jar queue

The output of the client looks like this (along with some application client container output):

Destination type is queue

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

Now try running the clients in the opposite order. Run the SynchConsumer client:
appclient -client client-jar/synchconsumerClient.jar queue

The client displays the destination type and then appears to hang, waiting for messages.

In a different terminal window, run the Producer client.
cd tut-install/examples/jms/simple/producer
appclient -client client-jar/producerClient.jar queue 3

When the messages have been sent, the SynchConsumer client receives them and exits.

Now run the Producer client using a topic instead of a queue:
appclient -client client-jar/producerClient.jar topic 3

3

4

5

6

7

8

9

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010602

The output of the client looks like this (along with some application client container output):

Destination type is topic

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

Now run the SynchConsumer client using the topic:
appclient -client client-jar/synchconsumerClient.jar topic

The result, however, is different. Because you are using a topic, messages that were sent before
you started the consumer cannot be received. (See “Publish/Subscribe Messaging Domain” on
page 564, for details.) Instead of receiving the messages, the client appears to hang.

Run the Producer client again.
Now the SynchConsumer client receives the messages (along with some application client
container output):
Destination type is topic

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

A Simple Example of Asynchronous Message
Consumption
This section describes the receiving clients in an example that uses a message listener to
consume messages asynchronously. This section then explains how to compile and run the
clients using the GlassFish Server.

Writing the Clients for the Asynchronous Receive Example
The sending client is producer/src/java/Producer.java, the same client used in the example
in “A Simple Example of Synchronous Message Receives” on page 594.

An asynchronous consumer normally runs indefinitely. This one runs until the user types the
letter q or Q to stop the client.

The receiving client, asynchconsumer/src/java/AsynchConsumer.java, performs the
following steps:

1. Injects resources for a connection factory, queue, and topic.
2. Assigns either the queue or topic to a destination object, based on the specified destination

type.
3. Creates a Connection and a Session.
4. Creates a MessageConsumer.

10

11

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 603

5. Creates an instance of the TextListener class and registers it as the message listener for the
MessageConsumer:

listener = new TextListener();consumer.setMessageListener(listener);

6. Starts the connection, causing message delivery to begin.
7. Listens for the messages published to the destination, stopping when the user types the

character q or Q:

System.out.println("To end program, type Q or q, " + "then <return>");
inputStreamReader = new InputStreamReader(System.in);

while (!((answer == ’q’) || (answer == ’Q’))) {

try {

answer = (char) inputStreamReader.read();

} catch (IOException e) {

System.out.println("I/O exception: " + e.toString());

}

}

8. Closes the connection, which automatically closes the session and MessageConsumer.

The message listener, asynchconsumer/src/java/TextListener.java, follows these steps:

1. When a message arrives, the onMessage method is called automatically.
2. The onMessage method converts the incoming message to a TextMessage and displays its

content. If the message is not a text message, it reports this fact:

public void onMessage(Message message) {

TextMessage msg = null;

try {

if (message instanceof TextMessage) {

msg = (TextMessage) message;

System.out.println("Reading message: " + msg.getText());

} else {

System.out.println("Message is not a " + "TextMessage");
}

} catch (JMSException e) {

System.out.println("JMSException in onMessage(): " + e.toString());

} catch (Throwable t) {

System.out.println("Exception in onMessage():" + t.getMessage());

}

}

You will use the connection factory and destinations you created in “To Create JMS
Administered Objects for the Synchronous Receive Example” on page 597.

▼ To Build and Package the AsynchConsumerClient Using NetBeans IDE

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jms/simple/

Select the asynchconsumer folder.

1

2

3

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010604

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the project and select Build.

▼ To Deploy and Run the Clients for the Asynchronous Receive Example
Using NetBeans IDE

Run the AsynchConsumer example:

a. Right-click the asynchconsumerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
topic

d. Click OK.

e. Right-click the project and select Run.

The client displays the following lines and appears to hang:
Destination type is topic

To end program, type Q or q, then <return>

Now run the Producer example:

a. Right-click the producerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
topic 3

d. Click OK.

e. Right-click the project and select Run.

The output of the client looks like this:
Destination type is topic

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

4

5

6

1

2

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 605

In the other window, the AsynchConsumer client displays the following:

Destination type is topic

To end program, type Q or q, then <return>

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

Message is not a TextMessage

The last line appears because the client has received the non-text control message sent by the
Producer client.

Type Qor q in the Output window and press Return to stop the client.

Now run the Producer client using a queue.

In this case, as with the synchronous example, you can run the Producer client first, because
there is no timing dependency between the sender and receiver.

a. Right-click the producerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue 3

d. Click OK.

e. Right-click the project and select Run.

The output of the client looks like this:
Destination type is queue

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

Run the AsynchConsumer client.

a. Right-click the asynchconsumerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue

d. Click OK.

3

4

5

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010606

e. Right-click the project and select Run.
The output of the client looks like this:
Destination type is queue

To end program, type Q or q, then <return>

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

Message is not a TextMessage

Type Qor q in the Output window and press Return to stop the client.

▼ To Build and Package the AsynchConsumerClient Using Ant

In a terminal window, go to the asynchconsumerdirectory:
cd ../asynchconsumer

Type the following command:
ant

The targets package both the main class and the message listener class in the JAR file and place
the file in the dist directory for the example.

▼ To Deploy and Run the Clients for the Asynchronous Receive Example
Using Ant and the appclientCommand

Deploy the client JAR file to the GlassFish Server, then retrieve the client stubs:
ant getclient

Ignore the message that states that the application is deployed at a URL.

Run the AsynchConsumer client, specifying the topicdestination type.
appclient -client client-jar/asynchconsumerClient.jar topic

The client displays the following lines (along with some application client container output)
and appears to hang:

Destination type is topic

To end program, type Q or q, then <return>

In the terminal window where you ran the Producer client previously, run the client again,
sending three messages.
appclient -client client-jar/producerClient.jar topic 3

The output of the client looks like this (along with some application client container output):

Destination type is topic

Sending message: This is message 1 from producer

6

1

2

1

2

3

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 607

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

In the other window, the AsynchConsumer client displays the following (along with some
application client container output):

Destination type is topic

To end program, type Q or q, then <return>

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

Message is not a TextMessage

The last line appears because the client has received the non-text control message sent by the
Producer client.

Type Qor q and press Return to stop the client.

Now run the clients using a queue.
In this case, as with the synchronous example, you can run the Producer client first, because
there is no timing dependency between the sender and receiver:
appclient -client client-jar/producerClient.jar queue 3

The output of the client looks like this:

Destination type is queue

Sending message: This is message 1 from producer

Sending message: This is message 2 from producer

Sending message: This is message 3 from producer

Run the AsynchConsumer client:
appclient -client client-jar/asynchconsumerClient.jar queue

The output of the client looks like this (along with some application client container output):

Destination type is queue

To end program, type Q or q, then <return>

Reading message: This is message 1 from producer

Reading message: This is message 2 from producer

Reading message: This is message 3 from producer

Message is not a TextMessage

Type Qor q to stop the client.

A Simple Example of Browsing Messages in a Queue
This section describes an example that creates a QueueBrowser object to examine messages on a
queue, as described in “JMS Queue Browsers” on page 575. This section then explains how to
compile, package, and run the example using the GlassFish Server.

4

5

6

7

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010608

Writing the Client for the Queue Browser Example
To create a QueueBrowser for a queue, you call the Session.createBrowser method with the
queue as the argument. You obtain the messages in the queue as an Enumeration object. You
can then iterate through the Enumeration object and display the contents of each message.

The messagebrowser/src/java/MessageBrowser.java client performs the following steps:

1. Injects resources for a connection factory and a queue.

2. Creates a Connection and a Session.

3. Creates a QueueBrowser:

QueueBrowser browser = session.createBrowser(queue);

4. Retrieves the Enumeration that contains the messages:

Enumeration msgs = browser.getEnumeration();

5. Verifies that the Enumeration contains messages, then displays the contents of the messages:

if (!msgs.hasMoreElements()) {

System.out.println("No messages in queue");
} else {

while (msgs.hasMoreElements()) {

Message tempMsg = (Message)msgs.nextElement();

System.out.println("Message: " + tempMsg);

}

}

6. Closes the connection, which automatically closes the session and QueueBrowser.

The format in which the message contents appear is implementation-specific. In the GlassFish
Server, the message format looks like this:

Message contents:

Text: This is message 3 from producer

Class: com.sun.messaging.jmq.jmsclient.TextMessageImpl

getJMSMessageID(): ID:14-129.148.71.199(f9:86:a2:d5:46:9b)-40814-1255980521747

getJMSTimestamp(): 1129061034355

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

You will use the connection factory and queue you created in “To Create JMS Administered
Objects for the Synchronous Receive Example” on page 597.

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 609

▼ To Build, Package, Deploy, and Run the MessageBrowserClient Using
NetBeans IDE
To build, package, deploy, and run the MessageBrowser example using NetBeans IDE, follow
these steps.

You also need the Producer example to send the message to the queue, and one of the consumer
clients to consume the messages after you inspect them. If you did not do so already, package
these examples.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jms/simple/

Select the messagebrowser folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the project and select Build.

Run the Producer client, sending one message to the queue:

a. Right-click the producerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue

d. Click OK.

e. Right-click the project and select Run.
The output of the client looks like this:
Destination type is queue

Sending message: This is message 1 from producer

Run the MessageBrowser client. Right-click the messagebrowserproject and select Run.
The output of the client looks like this:
Message:

Text: This is message 1 from producer

Class: com.sun.messaging.jmq.jmsclient.TextMessageImpl

getJMSMessageID(): ID:12-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1255980521747

1

2

3

4

5

6

7

8

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010610

getJMSTimestamp(): 1129062957611

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

Message:

Class: com.sun.messaging.jmq.jmsclient.MessageImpl

getJMSMessageID(): ID:13-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1255980521747

getJMSTimestamp(): 1129062957616

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

The first message is the TextMessage, and the second is the non-text control message.

Run the SynchConsumer client to consume the messages.

a. Right-click the synchconsumerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue

d. Click OK.

e. Right-click the project and select Run.
The output of the client looks like this:
Destination type is queue

Reading message: This is message 1 from producer

▼ To Build, Package, Deploy, and Run the MessageBrowserClient Using
Ant and the appclientCommand
To build, package, deploy, and run the MessageBrowser example using Ant, follow these steps.

You also need the Producer example to send the message to the queue, and one of the consumer
clients to consume the messages after you inspect them. If you did not do so already, package
these examples.

To run the clients, you need two terminal windows.

9

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 611

In a terminal window, go to the messagebrowserdirectory.
cd ../messagebrowser

Type the following command:
ant

The targets place the application client JAR file in the dist directory for the example.

Go to the producerdirectory.

Run the Producer client, sending one message to the queue:
appclient -client client-jar/producerClient.jar queue

The output of the client looks like this (along with some application client container output):

Destination type is queue

Sending message: This is message 1 from producer

Go to the messagebrowserdirectory.

Deploy the client JAR file to the GlassFish Server, then retrieve the client stubs:
ant getclient

Ignore the message that states that the application is deployed at a URL.

Because this example takes no command-line arguments, you can run the MessageBrowser
client using the following command:
ant run

Alternatively, you can type the following command:

appclient -client client-jar/messagebrowserClient.jar

The output of the client looks like this (along with some application client container output):

Message:

Text: This is message 1 from producer

Class: com.sun.messaging.jmq.jmsclient.TextMessageImpl

getJMSMessageID(): ID:12-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1255980521747

getJMSTimestamp(): 1255980521747

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

Message:

Class: com.sun.messaging.jmq.jmsclient.MessageImpl

1

2

3

4

5

6

7

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010612

getJMSMessageID(): ID:13-129.148.71.199(8c:34:4a:1a:1b:b8)-40883-1255980521767

getJMSTimestamp(): 1255980521767

getJMSCorrelationID(): null

JMSReplyTo: null

JMSDestination: PhysicalQueue

getJMSDeliveryMode(): PERSISTENT

getJMSRedelivered(): false

getJMSType(): null

getJMSExpiration(): 0

getJMSPriority(): 4

Properties: null

The first message is the TextMessage, and the second is the non-text control message.

Go to the synchconsumerdirectory.

Run the SynchConsumer client to consume the messages:
appclient -client client-jar/synchconsumerClient.jar queue

The output of the client looks like this (along with some application client container output):

Destination type is queue

Reading message: This is message 1 from producer

Running JMS Clients on Multiple Systems
JMS clients that use the GlassFish Server can exchange messages with each other when they are
running on different systems in a network. The systems must be visible to each other by name
(the UNIX host name or the Microsoft Windows computer name) and must both be running
the GlassFish Server.

Note – Any mechanism for exchanging messages between systems is specific to the Java EE
server implementation. This tutorial describes how to use the GlassFish Server for this purpose.

Suppose that you want to run the Producer client on one system, earth, and the
SynchConsumer client on another system, jupiter. Before you can do so, you need to perform
these tasks:

1. Create two new connection factories

2. Change the name of the default JMS host on one system

3. Edit the source code for the two examples

4. Recompile and repackage the examples

8

9

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 613

Note – A limitation in the JMS provider in the GlassFish Server may cause a runtime failure
to create a connection to systems that use the Dynamic Host Configuration Protocol
(DHCP) to obtain an IP address. You can, however, create a connection from a system that
uses DHCP to a system that does not use DHCP. In the examples in this tutorial, earth can
be a system that uses DHCP, and jupiter can be a system that does not use DHCP.

When you run the clients, they will work as shown in Figure 31–1. The client run on earth

needs the queue on earth only in order that the resource injection will succeed. The
connection, session, and message producer are all created on jupiter using the connection
factory that points to jupiter. The messages sent from earth will be received on jupiter.

For examples showing how to deploy more complex applications on two different systems, see
“An Application Example That Consumes Messages from a Remote Server” on page 643 and
“An Application Example That Deploys a Message-Driven Bean on Two Servers” on page 649.

FIGURE 31–1 Sending Messages from One System to Another

Earth

Java EE Server on Earth

Producer

Sends

CF that
points to
Jupiter

Jupiter

Java EE Server on Jupiter

SynchConsumer

CF
Delivers

Msg

CF

Msg

Queue Queue

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010614

▼ To Create Administered Objects for Multiple Systems
To run these clients, you must do the following:

■ Create a new connection factory on both earth and jupiter

■ Create a destination resource on both earth and jupiter

You do not have to install the tutorial examples on both systems, but you must be able to access
the filesystem where it is installed. You may find it more convenient to install the tutorial
examples on both systems if the two systems use different operating systems (for example,
Windows and Solaris). Otherwise you will have to edit the file
tut-install/examples/bp-project/build.properties and change the location of the
javaee.home property each time you build or run a client on a different system.

Start the GlassFish Server on earth.

Start the GlassFish Server on jupiter.

To create a new connection factory on jupiter, follow these steps:

a. From a command shell on jupiter, go to the directory
tut-install/examples/jms/simple/producer/.

b. Type the following command:
ant create-local-factory

The create-local-factory target, defined in the build.xml file for the Producer example,
creates a connection factory named jms/JupiterConnectionFactory.

To create a new connection factory on earth that points to the connection factory on jupiter,
follow these steps:

a. From a command shell on earth, go to the directory
tut-install/examples/jms/simple/producer/.

b. Type the following command:
ant create-remote-factory -Dsys=remote-system-name

Replace remote-system-name with the actual name of the remote system.

The create-remote-factory target, defined in the build.xml file for the Producer
example, also creates a connection factory named jms/JupiterConnectionFactory. In
addition, it sets the AddressList property for this factory to the name of the remote system.

1

2

3

4

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 615

If you have already been working on either earth or jupiter, you have the queue and topic on
one system. On the system that does not have the queue and topic, type the following
command:
ant create-resources

Changing the Default Host Name
By default, the default host name for the JMS service on the GlassFish Server is localhost. To
access the JMS service from another system, however, you must change the host name. You can
change it to either the actual host name or to 0.0.0.0.

You can change the default host name using either the Administration Console or the asadmin
command.

▼ To Change the Default Host Name Using the Administration Console

On jupiter, start the Administration Console by opening a browser at
http://localhost:4848/.

In the navigation tree, expand the Configuration node.

Under the Configuration node, expand the Java Message Service node.

Under the Java Message Service node, expand the JMS Hosts node.

Under the JMS Hosts node, select default_JMS_host.
The Edit JMS Host page opens.

In the Host field, type the name of the system, or type 0.0.0.0.

Click Save.

Restart the GlassFish Server.

▼ To Change the Default Host Name Using the asadminCommand

Specify a command like one of the following:
asadmin set server-config.jms-service.jms-host.default_JMS_host.host="0.0.0.0"

asadmin set server-config.jms-service.jms-host.default_JMS_host.host="hostname"

Restart the GlassFish Server.

5

1

2

3

4

5

6

7

8

1

2

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010616

▼ To Edit, Build, Package, Deploy, and Run the Clients Using NetBeans IDE
These steps assume that you have the tutorial installed on both of the two systems you are using
and that you are able to access the file system of jupiter from earth or vice versa. You will edit
the source files to specify the new connection factory. Then you will rebuild and run the clients.
Follow these steps.

To edit the source files, follow these steps:

a. On earth,, open the following file in NetBeans IDE:
tut-install/examples/jms/simple/producer/src/java/Producer.java

b. Find the following line:
@Resource(lookup = "jms/ConnectionFactory")

c. Change the line to the following:
@Resource(lookup = "jms/JupiterConnectionFactory")

d. On jupiter, open the following file inNetBeans IDE:
tut-install/examples/jms/simple/synchconsumer/src/java/SynchConsumer.java

e. Repeat Step b and Step c.

To recompile and repackage the Producer example on earth, right-click the producerproject
and select Clean and Build.

To recompile and repackage the SynchConsumer example on jupiter, right-click the
synchconsumerproject and select Clean and Build.

On earth, deploy and run Producer. Follow these steps:

a. Right-click the producerproject and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue 3

d. Click OK.

e. Right-click the project and select Run.

On jupiter, run SynchConsumer. Follow these steps:

a. Right-click the synchconsumerproject and select Properties.

1

2

3

4

5

Writing Simple JMS Applications

Chapter 31 • Java Message Service Examples 617

b. Select Run from the Categories tree.

c. In the Arguments field, type the following:
queue

d. Click OK.

e. Right-click the project and select Run.

▼ To Edit, Build, Package, Deploy, and Run the Clients Using Ant and the
appclientCommand
These steps assume that you have the tutorial installed on both of the two systems you are using
and that you are able to access the file system of jupiter from earth or vice versa. You will edit
the source files to specify the new connection factory. Then you will rebuild and run the clients.

To edit the source files, follow these steps:

a. On earth,, open the following file in a text editor:
tut-install/examples/jms/simple/producer/src/java/Producer.java

b. Find the following line:
@Resource(lookup = "jms/ConnectionFactory")

c. Change the line to the following:
@Resource(lookup = "jms/JupiterConnectionFactory")

d. On jupiter, open the following file in a text editor:
tut-install/examples/jms/simple/synchconsumer/src/java/SynchConsumer.java

e. Repeat Step b and Step c.

To recompile and repackage the Producer example on earth, type the following:
ant

To recompile and repackage the SynchConsumer example on jupiter, go to the synchconsumer
directory and type the following:
ant

On earth, deploy and run Producer. Follow these steps:

a. On earth, from the producerdirectory, deploy the client JAR file to the GlassFish Server,
then retrieve the client stubs:
ant getclient

1

2

3

4

Writing Simple JMS Applications

The Java EE 6 Tutorial • October 2010618

Ignore the message that states that the application is deployed at a URL.

b. To run the client, type the following:
appclient -client client-jar/producerClient.jar queue 3

On jupiter, run SynchConsumer. Follow these steps:

a. From the synchconsumerdirectory, deploy the client JAR file to the GlassFish Server, then
retrieve the client stubs:
ant getclient

Ignore the message that states that the application is deployed at a URL.

b. To run the client, type the following:
appclient -client client-jar/synchconsumerClient.jar queue

Undeploying and Cleaning the Simple JMS Examples
After you finish running the examples, you can undeploy them and remove the build artifacts.

You can also use Ant targets in the producer/build.xml file to delete the destinations and
connection factories you created in “To Create JMS Administered Objects for the Synchronous
Receive Example” on page 597. However, it is recommended that you keep them, because they
will be used in most of the examples later in this chapter. After you have created them, they will
be available whenever you restart the GlassFish Server.

If you wish to delete the connection factories and destinations, go to the producer directory and
type the following:

ant delete-resources

ant delete-remote-factory

Remember to delete the remote connection factory on both systems.

Writing Robust JMS Applications
The following examples show how to use some of the more advanced features of the JMS API.

5

Writing Robust JMS Applications

Chapter 31 • Java Message Service Examples 619

A Message Acknowledgment Example
The AckEquivExample.java client shows how both of the following two scenarios ensure that a
message will not be acknowledged until processing of it is complete:

■ Using an asynchronous message consumer (a message listener) in an AUTO_ACKNOWLEDGE

session
■ Using a synchronous receiver in a CLIENT_ACKNOWLEDGE session

With a message listener, the automatic acknowledgment happens when the onMessage method
returns (that is, after message processing has finished). With a synchronous receiver, the client
acknowledges the message after processing is complete. If you use AUTO_ACKNOWLEDGE with a
synchronous receive, the acknowledgment happens immediately after the receive call; if any
subsequent processing steps fail, the message cannot be redelivered.

The example is in the following directory:

tut-install/examples/jms/advanced/ackequivexample/src/java/

The example contains an AsynchSubscriber class with a TextListener class, a
MultiplePublisher class, a SynchReceiver class, a SynchSender class, a main method, and a
method that runs the other classes’ threads.

The example uses the following objects:

■ jms/ConnectionFactory, jms/Queue, and jms/Topic: resources that you created in “To
Create JMS Administered Objects for the Synchronous Receive Example” on page 597

■ jms/ControlQueue: an additional queue
■ jms/DurableConnectionFactory: a connection factory with a client ID (see “Creating

Durable Subscriptions” on page 581, for more information)

To create the new queue and connection factory, you can use Ant targets defined in the file
tut-install/examples/jms/advanced/ackequivexample/build.xml.

▼ To Build, Package, Deploy, and Run the ackequivexampleUsing
NetBeans IDE

In a terminal window, go to the following directory:
tut-install/examples/jms/advanced/ackequivexample/

To create the objects needed in this example, type the following commands:
ant create-control-queue

ant create-durable-cf

1

2

Writing Robust JMS Applications

The Java EE 6 Tutorial • October 2010620

To build and package the client, follow these steps.

a. In NetBeans IDE, select File→Open Project.

b. In the Open Project dialog, navigate to:
tut-install/examples/jms/advanced/

c. Select the ackequivexample folder.

d. Select the Open as Main Project check box.

e. Click Open Project.

f. In the Projects tab, right-click the project and select Build.

To run the client, right-click the ackequivexampleproject and select Run.

The client output looks something like this (along with some application client container
output):
Queue name is jms/ControlQueue

Queue name is jms/Queue

Topic name is jms/Topic

Connection factory name is jms/DurableConnectionFactory

SENDER: Created client-acknowledge session

SENDER: Sending message: Here is a client-acknowledge message

RECEIVER: Created client-acknowledge session

RECEIVER: Processing message: Here is a client-acknowledge message

RECEIVER: Now I’ll acknowledge the message

SUBSCRIBER: Created auto-acknowledge session

SUBSCRIBER: Sending synchronize message to control queue

PUBLISHER: Created auto-acknowledge session

PUBLISHER: Receiving synchronize messages from control queue; count = 1

PUBLISHER: Received synchronize message; expect 0 more

PUBLISHER: Publishing message: Here is an auto-acknowledge message 1

PUBLISHER: Publishing message: Here is an auto-acknowledge message 2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 1

PUBLISHER: Publishing message: Here is an auto-acknowledge message 3

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 3

After you run the client, you can delete the destination resource jms/ControlQueue. Go to the
directory tut-install/examples/jms/advanced/ackequivexample/ and type the following
command:
ant delete-control-queue

You will need the other resources for other examples.

3

4

5

Writing Robust JMS Applications

Chapter 31 • Java Message Service Examples 621

▼ To Build, Package, Deploy, and Run ackequivexampleUsing Ant

In a terminal window, go to the following directory:
tut-install/examples/jms/advanced/ackequivexample/

To create the objects needed in this example, type the following commands:
ant create-control-queue

ant create-durable-cf

To compile and package the client, type the following command:
ant

To deploy the client JAR file to the GlassFish Server, then retrieve the client stubs, type the
following command:
ant getclient

Ignore the message that states that the application is deployed at a URL.

Because this example takes no command-line arguments, you can run the client using the
following command:
ant run

Alternatively, you can type the following command:

appclient -client client-jar/ackequivexampleClient.jar

The client output looks something like this (along with some application client container
output):

Queue name is jms/ControlQueue

Queue name is jms/Queue

Topic name is jms/Topic

Connection factory name is jms/DurableConnectionFactory

SENDER: Created client-acknowledge session

SENDER: Sending message: Here is a client-acknowledge message

RECEIVER: Created client-acknowledge session

RECEIVER: Processing message: Here is a client-acknowledge message

RECEIVER: Now I’ll acknowledge the message

SUBSCRIBER: Created auto-acknowledge session

SUBSCRIBER: Sending synchronize message to control queue

PUBLISHER: Created auto-acknowledge session

PUBLISHER: Receiving synchronize messages from control queue; count = 1

PUBLISHER: Received synchronize message; expect 0 more

PUBLISHER: Publishing message: Here is an auto-acknowledge message 1

PUBLISHER: Publishing message: Here is an auto-acknowledge message 2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 1

PUBLISHER: Publishing message: Here is an auto-acknowledge message 3

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message 3

1

2

3

4

5

Writing Robust JMS Applications

The Java EE 6 Tutorial • October 2010622

After you run the client, you can delete the destination resource jms/ControlQueue. Go to the
directory tut-install/examples/jms/advanced/ackequivexample/ and type the following
command:
ant delete-control-queue

You will need the other resources for other examples.

A Durable Subscription Example
The DurableSubscriberExample.java example shows how durable subscriptions work. It
demonstrates that a durable subscription is active even when the subscriber is not active. The
example contains a DurableSubscriber class, a MultiplePublisher class, a main method, and
a method that instantiates the classes and calls their methods in sequence.

The example is in the following directory:

tut-install/examples/jms/advanced/durablesubscriberexample/src/java/

The example begins in the same way as any publish/subscribe client: The subscriber starts, the
publisher publishes some messages, and the subscriber receives them. At this point, the
subscriber closes itself. The publisher then publishes some messages while the subscriber is not
active. The subscriber then restarts and receives the messages.

▼ To Build, Package, Deploy, and Run durablesubscriberexampleUsing
NetBeans IDE

In a terminal window, go to the following directory:
tut-install/examples/jms/advanced/durablesubscriberexample/

If you did not do so for “A Message Acknowledgment Example”on page 620, create a connection
factory named jms/DurableConnectionFactory:
ant create-durable-cf

To compile and package the client, follow these steps:

a. In NetBeans IDE, select File→Open Project.

b. In the Open Project dialog, navigate to:
tut-install/examples/jms/advanced/

c. Select the durablesubscriberexample folder.

d. Select the Open as Main Project check box.

6

1

2

3

Writing Robust JMS Applications

Chapter 31 • Java Message Service Examples 623

e. Click Open Project.

f. In the Projects tab, right-click the project and select Build.

To run the client, right-click the durablesubscriberexample project and select Run.

The output looks something like this (along with some application client container output):
Connection factory without client ID is jms/ConnectionFactory

Connection factory with client ID is jms/DurableConnectionFactory

Topic name is jms/Topic

Starting subscriber

PUBLISHER: Publishing message: Here is a message 1

SUBSCRIBER: Reading message: Here is a message 1

PUBLISHER: Publishing message: Here is a message 2

SUBSCRIBER: Reading message: Here is a message 2

PUBLISHER: Publishing message: Here is a message 3

SUBSCRIBER: Reading message: Here is a message 3

Closing subscriber

PUBLISHER: Publishing message: Here is a message 4

PUBLISHER: Publishing message: Here is a message 5

PUBLISHER: Publishing message: Here is a message 6

Starting subscriber

SUBSCRIBER: Reading message: Here is a message 4

SUBSCRIBER: Reading message: Here is a message 5

SUBSCRIBER: Reading message: Here is a message 6

Closing subscriber

Unsubscribing from durable subscription

After you run the client, you can delete the connection factory
jms/DurableConnectionFactory. Go to the directory
tut-install/examples/jms/advanced/durablesubscriberexample/ and type the following
command:
ant delete-durable-cf

▼ To Build, Package, Deploy, and Run durablesubscriberexampleUsing
Ant

In a terminal window, go to the following directory:
tut-install/examples/jms/advanced/durablesubscriberexample/

If you did not do so for “A Message Acknowledgment Example”on page 620, create a connection
factory named jms/DurableConnectionFactory:
ant create-durable-cf

To compile and package the client, type the following command:
ant

4

5

1

2

3

Writing Robust JMS Applications

The Java EE 6 Tutorial • October 2010624

To deploy the client JAR file to the GlassFish Server, then retrieve the client stubs, type the
following command:
ant getclient

Ignore the message that states that the application is deployed at a URL.

Because this example takes no command-line arguments, you can run the client using the
following command:
ant run

Alternatively, you can type the following command:

appclient -client client-jar/durablesubscriberexampleClient.jar

After you run the client, you can delete the connection factory
jms/DurableConnectionFactory. Go to the directory
tut-install/examples/jms/advanced/durablesubscriberexample/ and type the following
command:
ant delete-durable-cf

A Local Transaction Example
The TransactedExample.java example demonstrates the use of transactions in a JMS client
application. The example is in the following directory:

tut-install/examples/jms/advanced/transactedexample/src/java/

This example shows how to use a queue and a topic in a single transaction as well as how to pass
a session to a message listener’s constructor function. The example represents a highly
simplified e-commerce application in which the following things happen.

1. A retailer sends a MapMessage to the vendor order queue, ordering a quantity of computers,
and waits for the vendor’s reply:

producer = session.createProducer(vendorOrderQueue);

outMessage = session.createMapMessage();

outMessage.setString("Item", "Computer(s)");
outMessage.setInt("Quantity", quantity);

outMessage.setJMSReplyTo(retailerConfirmQueue);

producer.send(outMessage);

System.out.println("Retailer: ordered " + quantity + " computer(s)");
orderConfirmReceiver = session.createConsumer(retailerConfirmQueue);

connection.start();

2. The vendor receives the retailer’s order message and sends an order message to the supplier
order topic in one transaction. This JMS transaction uses a single session, so you can
combine a receive from a queue with a send to a topic. Here is the code that uses the same
session to create a consumer for a queue and a producer for a topic:

4

5

6

Writing Robust JMS Applications

Chapter 31 • Java Message Service Examples 625

vendorOrderReceiver = session.createConsumer(vendorOrderQueue);

supplierOrderProducer = session.createProducer(supplierOrderTopic);

The following code receives the incoming message, sends an outgoing message, and
commits the session. The message processing has been removed to keep the sequence
simple:

inMessage = vendorOrderReceiver.receive();

// Process the incoming message and format the outgoing

// message

...

supplierOrderProducer.send(orderMessage);

...

session.commit();

3. Each supplier receives the order from the order topic, checks its inventory, and then sends
the items ordered to the queue named in the order message’s JMSReplyTo field. If it does not
have enough in stock, the supplier sends what it has. The synchronous receive from the
topic and the send to the queue take place in one JMS transaction.

receiver = session.createConsumer(orderTopic);

...

inMessage = receiver.receive();

if (inMessage instanceof MapMessage) {

orderMessage = (MapMessage) inMessage;

}

// Process message

MessageProducer producer =

session.createProducer((Queue) orderMessage.getJMSReplyTo());

outMessage = session.createMapMessage();

// Add content to message

producer.send(outMessage);

// Display message contentssession.commit();

4. The vendor receives the replies from the suppliers from its confirmation queue and updates
the state of the order. Messages are processed by an asynchronous message listener; this step
shows the use of JMS transactions with a message listener.

MapMessage component = (MapMessage) message;

...

orderNumber = component.getInt("VendorOrderNumber");
Order order = Order.getOrder(orderNumber).processSubOrder(component);

session.commit();

5. When all outstanding replies are processed for a given order, the vendor message listener
sends a message notifying the retailer whether it can fulfill the order.

Queue replyQueue = (Queue) order.order.getJMSReplyTo();

MessageProducer producer = session.createProducer(replyQueue);

MapMessage retailerConfirmMessage = session.createMapMessage();

// Format the message

producer.send(retailerConfirmMessage);

session.commit();

6. The retailer receives the message from the vendor:

inMessage = (MapMessage) orderConfirmReceiver.receive();

Figure 31–2 illustrates these steps.

Writing Robust JMS Applications

The Java EE 6 Tutorial • October 2010626

The example contains five classes: GenericSupplier, Order, Retailer, Vendor, and
VendorMessageListener. The example also contains a main method and a method that runs
the threads of the Retailer, Vendor, and two supplier classes.

All the messages use the MapMessage message type. Synchronous receives are used for all
message reception except for the case of the vendor processing the replies of the suppliers.
These replies are processed asynchronously and demonstrate how to use transactions within a
message listener.

At random intervals, the Vendor class throws an exception to simulate a database problem and
cause a rollback.

All classes except Retailer use transacted sessions.

The example uses three queues named jms/AQueue, jms/BQueue, and jms/CQueue, and one
topic named jms/OTopic.

FIGURE 31–2 Transactions: JMS Client Example

Vendor
OrderQ

Retailer
ConfirmQ

Supplier
Order
Topic

Vendor
ConfirmQ

Retailer Vendor

Supplier 1

Supplier N

1

3

3

3

3

456

2a 2b

Message Send
Message Receive
Message Listen

Writing Robust JMS Applications

Chapter 31 • Java Message Service Examples 627

▼ To Build, Package, Deploy, and Run transactedexampleUsing
NetBeans IDE

In a terminal window, go to the following directory:
tut-install/examples/jms/advanced/transactedexample/

Create the necessary resources using the following command:
ant create-resources

This command creates three destination resources with the names jms/AQueue, jms/BQueue,
and jms/CQueue, all of type javax.jms.Queue, and one destination resource with the name
jms/OTopic, of type javax.jms.Topic.

To compile and package the client, follow these steps:

a. In NetBeans IDE, select File→Open Project.

b. In the Open Project dialog, navigate to:
tut-install/examples/jms/advanced/

c. Select the transactedexample folder.

d. Select the Open as Main Project check box.

e. Click Open Project.

f. In the Projects tab, right-click the project and select Build.

To deploy and run the client, follow these steps:

a. Right-click the transactedexample project and select Properties.

b. Select Run from the Categories tree.

c. In the Arguments field, type a number that specifies the number of computers to order:
3

d. Click OK.

e. Right-click the project and select Run.

The output looks something like this (along with some application client container output):
Quantity to be ordered is 3

Retailer: ordered 3 computer(s)

Vendor: Retailer ordered 3 Computer(s)

1

2

3

4

Writing Robust JMS Applications

The Java EE 6 Tutorial • October 2010628

Vendor: ordered 3 monitor(s) and hard drive(s)

Monitor Supplier: Vendor ordered 3 Monitor(s)

Monitor Supplier: sent 3 Monitor(s)

Monitor Supplier: committed transaction

Vendor: committed transaction 1

Hard Drive Supplier: Vendor ordered 3 Hard Drive(s)

Hard Drive Supplier: sent 1 Hard Drive(s)

Vendor: Completed processing for order 1

Hard Drive Supplier: committed transaction

Vendor: unable to send 3 computer(s)

Vendor: committed transaction 2

Retailer: Order not filled

Retailer: placing another order

Retailer: ordered 6 computer(s)

Vendor: JMSException occurred: javax.jms.JMSException:

Simulated database concurrent access exception

javax.jms.JMSException: Simulated database concurrent access exception

at TransactedExample$Vendor.run(Unknown Source)

Vendor: rolled back transaction 1

Vendor: Retailer ordered 6 Computer(s)

Vendor: ordered 6 monitor(s) and hard drive(s)

Monitor Supplier: Vendor ordered 6 Monitor(s)

Hard Drive Supplier: Vendor ordered 6 Hard Drive(s)

Monitor Supplier: sent 6 Monitor(s)

Monitor Supplier: committed transaction

Hard Drive Supplier: sent 6 Hard Drive(s)

Hard Drive Supplier: committed transaction

Vendor: committed transaction 1

Vendor: Completed processing for order 2

Vendor: sent 6 computer(s)

Retailer: Order filled

Vendor: committed transaction 2

After you run the client, you can delete the physical destinations and the destination resources.
Go to the directory tut-install/examples/jms/advanced/transactedexample/ and type the
following command:
ant delete-resources

▼ To Build, Package, Deploy, and Run transactedexampleUsing Ant and
the appclientCommand

In a terminal window, go to the following directory:
tut-install/examples/jms/advanced/transactedexample/

Create the necessary resources using the following command:
ant create-resources

This command creates three destination resources with the names jms/AQueue, jms/BQueue,
and jms/CQueue, all of type javax.jms.Queue, and one destination resource with the name
jms/OTopic, of type javax.jms.Topic.

5

1

2

Writing Robust JMS Applications

Chapter 31 • Java Message Service Examples 629

To build and package the client, type the following command:
ant

Deploy the client JAR file to the GlassFish Server, then retrieve the client stubs:
ant getclient

Ignore the message that states that the application is deployed at a URL.

Use a command like the following to run the client.
The argument specifies the number of computers to order.
appclient -client client-jar/transactedexampleClient.jar 3

The output looks something like this (along with some application client container output):

Quantity to be ordered is 3

Retailer: ordered 3 computer(s)

Vendor: Retailer ordered 3 Computer(s)

Vendor: ordered 3 monitor(s) and hard drive(s)

Monitor Supplier: Vendor ordered 3 Monitor(s)

Monitor Supplier: sent 3 Monitor(s)

Monitor Supplier: committed transaction

Vendor: committed transaction 1

Hard Drive Supplier: Vendor ordered 3 Hard Drive(s)

Hard Drive Supplier: sent 1 Hard Drive(s)

Vendor: Completed processing for order 1

Hard Drive Supplier: committed transaction

Vendor: unable to send 3 computer(s)

Vendor: committed transaction 2

Retailer: Order not filled

Retailer: placing another order

Retailer: ordered 6 computer(s)

Vendor: JMSException occurred: javax.jms.JMSException:

Simulated database concurrent access exception

javax.jms.JMSException: Simulated database concurrent access exception

at TransactedExample$Vendor.run(Unknown Source)

Vendor: rolled back transaction 1

Vendor: Retailer ordered 6 Computer(s)

Vendor: ordered 6 monitor(s) and hard drive(s)

Monitor Supplier: Vendor ordered 6 Monitor(s)

Hard Drive Supplier: Vendor ordered 6 Hard Drive(s)

Monitor Supplier: sent 6 Monitor(s)

Monitor Supplier: committed transaction

Hard Drive Supplier: sent 6 Hard Drive(s)

Hard Drive Supplier: committed transaction

Vendor: committed transaction 1

Vendor: Completed processing for order 2

Vendor: sent 6 computer(s)

Retailer: Order filled

Vendor: committed transaction 2

After you run the client, you can delete the physical destinations and the destination resources.
Go to the directory tut-install/examples/jms/advanced/transactedexample/ and type the
following command:
ant delete-resources

3

4

5

6

Writing Robust JMS Applications

The Java EE 6 Tutorial • October 2010630

An Application That Uses the JMS API with a Session Bean
This section explains how to write, compile, package, deploy, and run an application that uses
the JMS API in conjunction with a session bean. The application contains the following
components:
■ An application client that invokes a session bean
■ A session bean that publishes several messages to a topic
■ A message-driven bean that receives and processes the messages using a durable topic

subscriber and a message selector

You will find the source files for this section in the directory
tut-install/examples/jms/clientsessionmdb/. Path names in this section are relative to this
directory.

Writing the Application Components for the
clientsessionmdb Example
This application demonstrates how to send messages from an enterprise bean (in this case, a
session bean) rather than from an application client, as in the example in Chapter 17, “A
Message-Driven Bean Example.” Figure 31–3 illustrates the structure of this application.

The Publisher enterprise bean in this example is the enterprise-application equivalent of a
wire-service news feed that categorizes news events into six news categories. The

FIGURE 31–3 An Enterprise Bean Application: Client to Session Bean to Message-Driven Bean

Java EE Server

Publishes Topic

EJB Container EJB Container

MDB Instance

Msg

Delivers

Msg

Session Bean

Application
Client

Calls

An Application That Uses the JMS API with a Session Bean

Chapter 31 • Java Message Service Examples 631

message-driven bean could represent a newsroom, where the sports desk, for example, would
set up a subscription for all news events pertaining to sports.

The application client in the example injects the Publisher enterprise bean’s remote home
interface and then calls the bean’s business method. The enterprise bean creates 18 text
messages. For each message, it sets a String property randomly to one of six values
representing the news categories and then publishes the message to a topic. The message-driven
bean uses a message selector for the property to limit which of the published messages it
receives.

Coding the Application Client: MyAppClient.java
The application client, clientsessionmdb-app-client/src/java/MyAppClient.java,
performs no JMS API operations and so is simpler than the client in Chapter 17, “A
Message-Driven Bean Example.” The client uses dependency injection to obtain the Publisher
enterprise bean’s business interface:

@EJB(name="PublisherRemote")
static private PublisherRemote publisher;

The client then calls the bean’s business method twice.

Coding the Publisher Session Bean
The Publisher bean is a stateless session bean that has one business method. The Publisher bean
uses a remote interface rather than a local interface because it is accessed from the application
client.

The remote interface, clientsessionmdb-ejb/src/java/sb/PublisherRemote.java,
declares a single business method, publishNews.

The bean class, clientsessionmdb-ejb/src/java/sb/PublisherBean.java, implements the
publishNews method and its helper method chooseType. The bean class also injects
SessionContext, ConnectionFactory, and Topic resources and implements @PostConstruct
and @PreDestroy callback methods. The bean class begins as follows:

@Stateless

@Remote({PublisherRemote.class})

public class PublisherBean implements PublisherRemote {

@Resource

private SessionContext sc;

@Resource(lookup = "jms/ConnectionFactory")
private ConnectionFactory connectionFactory;

@Resource(lookup = "jms/Topic")
private Topic topic;

...

An Application That Uses the JMS API with a Session Bean

The Java EE 6 Tutorial • October 2010632

The @PostConstruct callback method of the bean class, makeConnection, creates the
Connection used by the bean. The business method publishNews creates a Session and a
MessageProducer and publishes the messages.

The @PreDestroy callback method, endConnection, deallocates the resources that were
allocated by the @PostConstruct callback method. In this case, the method closes the
Connection.

Coding the Message-Driven Bean: MessageBean.java
The message-driven bean class, clientsessionmdb-ejb/src/java/mdb/MessageBean.java, is
almost identical to the one in Chapter 17, “A Message-Driven Bean Example.” However, the
@MessageDriven annotation is different, because instead of a queue the bean is using a topic
with a durable subscription, and it is also using a message selector. Therefore, the annotation
sets the activation config properties messageSelector, subscriptionDurability, clientId,
and subscriptionName, as follows:

@MessageDriven(mappedName = "jms/Topic", activationConfig = {

@ActivationConfigProperty(propertyName = "messageSelector",
propertyValue = "NewsType = ’Sports’ OR NewsType = ’Opinion’")

, @ActivationConfigProperty(propertyName = "subscriptionDurability",
propertyValue = "Durable")

, @ActivationConfigProperty(propertyName = "clientId",
propertyValue = "MyID")

, @ActivationConfigProperty(propertyName = "subscriptionName",
propertyValue = "MySub")

})

Note – For a message-driven bean, the destination is specified with the mappedName element
instead of the lookup element.

The JMS resource adapter uses these properties to create a connection factory for the
message-driven bean that allows the bean to use a durable subscriber.

Creating Resources for the clientsessionmdb
Example
This example uses the topic named jms/Topic and the connection factory
jms/ConnectionFactory, which you created in “To Create JMS Administered Objects for the
Synchronous Receive Example” on page 597. If you deleted the connection factory or topic, you
can create them again using targets in the build.xml file for this example. Use the following
commands to create the resources:

ant create-cf

ant create-topic

An Application That Uses the JMS API with a Session Bean

Chapter 31 • Java Message Service Examples 633

▼ To Build, Package, Deploy, and Run the
clientsessionmdb Example Using NetBeans IDE

To compile and package the project, follow these steps:

a. In NetBeans IDE, select File→Open Project.

b. In the Open Project dialog, navigate to:
tut-install/examples/jms/

c. Select the clientsessionmdb folder.

d. Select the Open as Main Project check box and the Open Required Projects check box.

e. Click Open Project.

f. In the Projects tab, right-click the clientsessionmdb project and select Build.

This task creates the following:

■ An application client JAR file that contains the client class file and the session bean’s
remote interface, along with a manifest file that specifies the main class and places the
EJB JAR file in its classpath

■ An EJB JAR file that contains both the session bean and the message-driven bean
■ An application EAR file that contains the two JAR files

Right-click the project and select Run.

This command deploys the project, returns a JAR file named clientsessionmdbClient.jar,
and then executes it.

The output of the application client in the Output pane looks like this (preceded by application
client container output):
To view the bean output,

check <install_dir>/domains/domain1/logs/server.log.

The output from the enterprise beans appears in the server log
(domain-dir/logs/server.log), wrapped in logging information. The Publisher session bean
sends two sets of 18 messages numbered 0 through 17. Because of the message selector, the
message-driven bean receives only the messages whose NewsType property is Sports or
Opinion.

1

2

An Application That Uses the JMS API with a Session Bean

The Java EE 6 Tutorial • October 2010634

▼ To Build, Package, Deploy, and Run the
clientsessionmdb Example Using Ant
Go to the following directory:
tut-install/examples/jms/clientsessionmdb/

To compile the source files and package the application, use the following command:
ant

The ant command creates the following:
■ An application client JAR file that contains the client class file and the session bean’s remote

interface, along with a manifest file that specifies the main class and places the EJB JAR file in
its classpath

■ An EJB JAR file that contains both the session bean and the message-driven bean
■ An application EAR file that contains the two JAR files

The clientsessionmdb.ear file is created in the dist directory.

To deploy the application and run the client, use the following command:
ant run

Ignore the message that states that the application is deployed at a URL.

The client displays these lines (preceded by application client container output):

To view the bean output,

check <install_dir>/domains/domain1/logs/server.log.

The output from the enterprise beans appears in the server log file, wrapped in logging
information. The Publisher session bean sends two sets of 18 messages numbered 0 through 17.
Because of the message selector, the message-driven bean receives only the messages whose
NewsType property is Sports or Opinion.

An Application That Uses the JMS API with an Entity
This section explains how to write, compile, package, deploy, and run an application that uses
the JMS API with an entity. The application uses the following components:
■ An application client that both sends and receives messages
■ Two message-driven beans
■ An entity class

You will find the source files for this section in the directory
tut-install/examples/jms/clientmdbentity/. Path names in this section are relative to this
directory.

1

2

3

An Application That Uses the JMS API with an Entity

Chapter 31 • Java Message Service Examples 635

Overview of the clientmdbentity Example
Application
This application simulates, in a simplified way, the work flow of a company’s human resources
(HR) department when it processes a new hire. This application also demonstrates how to use
the Java EE platform to accomplish a task that many JMS applications need to perform.

A JMS client must often wait for several messages from various sources. It then uses the
information in all these messages to assemble a message that it then sends to another
destination. The common term for this process is joining messages. Such a task must be
transactional, with all the receives and the send as a single transaction. If not all the messages are
received successfully, the transaction can be rolled back. For an application client example that
illustrates this task, see “A Local Transaction Example” on page 625.

A message-driven bean can process only one message at a time in a transaction. To provide the
ability to join messages, an application can have the message-driven bean store the interim
information in an entity. The entity can then determine whether all the information has been
received; when it has, the entity can report this back to one of the message-driven beans, which
then creates and sends the message to the other destination. After it has completed its task, the
entity can be removed.

The basic steps of the application are as follows.

1. The HR department’s application client generates an employee ID for each new hire and
then publishes a message (M1) containing the new hire’s name, employee ID, and position.
The client then creates a temporary queue, ReplyQueue, with a message listener that waits
for a reply to the message. (See “Creating Temporary Destinations” on page 580 for more
information.)

2. Two message-driven beans process each message: One bean, OfficeMDB, assigns the new
hire’s office number, and the other bean, EquipmentMDB, assigns the new hire’s equipment.
The first bean to process the message creates and persists an entity named SetupOffice,
then calls a business method of the entity to store the information it has generated. The
second bean locates the existing entity and calls another business method to add its
information.

3. When both the office and the equipment have been assigned, the entity business method
returns a value of true to the message-driven bean that called the method. The
message-driven bean then sends to the reply queue a message (M2) describing the
assignments. Then it removes the entity. The application client’s message listener retrieves
the information.

Figure 31–4 illustrates the structure of this application. Of course, an actual HR application
would have more components; other beans could set up payroll and benefits records, schedule
orientation, and so on.

An Application That Uses the JMS API with an Entity

The Java EE 6 Tutorial • October 2010636

Figure 31–4 assumes that OfficeMDB is the first message-driven bean to consume the message
from the client. OfficeMDB then creates and persists the SetupOffice entity and stores the office
information. EquipmentMDB then finds the entity, stores the equipment information, and learns
that the entity has completed its work. EquipmentMDB then sends the message to the reply queue
and removes the entity.

Writing the Application Components for the
clientmdbentity Example
Writing the components of the application involves coding the application client, the
message-driven beans, and the entity class.

FIGURE 31–4 An Enterprise Bean Application: Client to Message-Driven Beans to Entity

Java EE Server

Finds

Creates and
Persists

HR
Client

M1

M2M2

Reply Queue

New Hire Topic

M1
OfficeMDB

EquipmentMDB SetupOffice
Entity

M1

Message Passing

Method Invocation

An Application That Uses the JMS API with an Entity

Chapter 31 • Java Message Service Examples 637

Coding the Application Client: HumanResourceClient.java
The application client,
clientmdbentity-app-client/src/java/HumanResourceClient.java, performs the
following steps:

1. Injects ConnectionFactory and Topic resources
2. Creates a TemporaryQueue to receive notification of processing that occurs, based on

new-hire events it has published
3. Creates a MessageConsumer for the TemporaryQueue, sets the MessageConsumer’s message

listener, and starts the connection
4. Creates a MessageProducer and a MapMessage
5. Creates five new employees with randomly generated names, positions, and ID numbers (in

sequence) and publishes five messages containing this information

The message listener, HRListener, waits for messages that contain the assigned office and
equipment for each employee. When a message arrives, the message listener displays the
information received and determines whether all five messages have arrived. When they have,
the message listener notifies the main method, which then exits.

Coding the Message-Driven Beans for the clientmdbentity Example
This example uses two message-driven beans:
■ clientmdbentity-ejb/src/java/eb/EquipmentMDB.java

■ clientmdbentity-ejb/src/java/eb/OfficeMDB.java

The beans take the following steps:

1. They inject MessageDrivenContext and ConnectionFactory resources.
2. The onMessage method retrieves the information in the message. The EquipmentMDB’s

onMessage method chooses equipment, based on the new hire’s position; the OfficeMDB’s
onMessage method randomly generates an office number.

3. After a slight delay to simulate real world processing hitches, the onMessage method calls a
helper method, compose.

4. The compose method takes the following steps:
a. It either creates and persists the SetupOffice entity or finds it by primary key.
b. It uses the entity to store the equipment or the office information in the database, calling

either the doEquipmentList or the doOfficeNumber business method.
c. If the business method returns true, meaning that all of the information has been stored,

it creates a connection and a session, retrieves the reply destination information from
the message, creates a MessageProducer, and sends a reply message that contains the
information stored in the entity.

d. It removes the entity.

An Application That Uses the JMS API with an Entity

The Java EE 6 Tutorial • October 2010638

Coding the Entity Class for the clientmdbentity Example
The SetupOffice class, clientmdbentity-ejb/src/java/eb/SetupOffice.java, is an entity
class. The entity and the message-driven beans are packaged together in an EJB JAR file. The
entity class is declared as follows:

@Entity

public class SetupOffice implements Serializable {

The class contains a no-argument constructor and a constructor that takes two arguments, the
employee ID and name. It also contains getter and setter methods for the employee ID, name,
office number, and equipment list. The getter method for the employee ID has the @Id
annotation to indicate that this field is the primary key:

@Id public String getEmployeeId() {

return id;

}

The class also implements the two business methods, doEquipmentList and doOfficeNumber,
and their helper method, checkIfSetupComplete.

The message-driven beans call the business methods and the getter methods.

The persistence.xml file for the entity specifies the most basic settings:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="clientmdbentity-ejbPU" transaction-type="JTA">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

<jta-data-source>jdbc/__default</jta-data-source>

<class>eb.SetupOffice</class>

<properties>

<property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>
</properties>

</persistence-unit>

</persistence>

Creating Resources for the clientmdbentity Example
This example uses the connection factory jms/ConnectionFactory and the topic jms/Topic,
both of which you used in “An Application That Uses the JMS API with a Session Bean” on
page 631. It also uses the JDBC resource named jdbc/__default, which is enabled by default
when you start the GlassFish Server.

If you deleted the connection factory or topic, you can create them again using targets in the
build.xml file for this example. Use the following commands to create the resources:

An Application That Uses the JMS API with an Entity

Chapter 31 • Java Message Service Examples 639

ant create-cf

ant create-topic

▼ To Build, Package, Deploy, and Run the
clientmdbentity Example Using NetBeans IDE
In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jms/

Select the clientmdbentity folder.

Select the Open as Main Project check box and the Open Required Projects check box.

Click Open Project.

In the Projects tab, right-click the clientmdbentityproject and select Build.
This task creates the following:
■ An application client JAR file that contains the client class and listener class files, along with

a manifest file that specifies the main class
■ An EJB JAR file that contains the message-driven beans and the entity class, along with the

persistence.xml file
■ An application EAR file that contains the two JAR files along with an application.xml file

If the Java DB database is not already running, follow these steps:

a. Click the Services tab.

b. Expand the Databases node.

c. Right-click the Java DB node and select Start Server.

In the Projects tab, right-click the project and select Run.
This command deploys the project, returns a client JAR file named
clientmdbentityClient.jar and then executes it.

The output of the application client in the Output pane looks something like this:
PUBLISHER: Setting hire ID to 50, name Bill Tudor, position Programmer

PUBLISHER: Setting hire ID to 51, name Carol Jones, position Senior Programmer

PUBLISHER: Setting hire ID to 52, name Mark Wilson, position Manager

PUBLISHER: Setting hire ID to 53, name Polly Wren, position Senior Programmer

1

2

3

4

5

6

7

8

An Application That Uses the JMS API with an Entity

The Java EE 6 Tutorial • October 2010640

PUBLISHER: Setting hire ID to 54, name Joe Lawrence, position Director

Waiting for 5 message(s)

New hire event processed:

Employee ID: 52

Name: Mark Wilson

Equipment: PDA

Office number: 294

Waiting for 4 message(s)

New hire event processed:

Employee ID: 53

Name: Polly Wren

Equipment: Laptop

Office number: 186

Waiting for 3 message(s)

New hire event processed:

Employee ID: 54

Name: Joe Lawrence

Equipment: Java Phone

Office number: 135

Waiting for 2 message(s)

New hire event processed:

Employee ID: 50

Name: Bill Tudor

Equipment: Desktop System

Office number: 200

Waiting for 1 message(s)

New hire event processed:

Employee ID: 51

Name: Carol Jones

Equipment: Laptop

Office number: 262

The output from the message-driven beans and the entity class appears in the server log,
wrapped in logging information.

For each employee, the application first creates the entity and then finds it. You may see
runtime errors in the server log, and transaction rollbacks may occur. The errors occur if both
of the message-driven beans discover at the same time that the entity does not yet exist, so they
both try to create it. The first attempt succeeds, but the second fails because the bean already
exists. After the rollback, the second message-driven bean tries again and succeeds in finding
the entity. Container-managed transactions allow the application to run correctly, in spite of
these errors, with no special programming.

You can run the application client repeatedly.

▼ To Build, Package, Deploy, and Run the
clientmdbentity Example Using Ant

Go to the following directory:
tut-install/examples/jms/clientmdbentity/

1

An Application That Uses the JMS API with an Entity

Chapter 31 • Java Message Service Examples 641

To compile the source files and package the application, use the following command:
ant

The ant command creates the following:
■ An application client JAR file that contains the client class and listener class files, along with

a manifest file that specifies the main class
■ An EJB JAR file that contains the message-driven beans and the entity class, along with the

persistence.xml file
■ An application EAR file that contains the two JAR files along with an application.xml file

To deploy the application and run the client, use the following command:
ant run

This command starts the database server if it is not already running, then deploys and runs the
application.

Ignore the message that states that the application is deployed at a URL.

The output in the terminal window looks something like this (preceded by application client
container output):

running application client container.

PUBLISHER: Setting hire ID to 50, name Bill Tudor, position Programmer

PUBLISHER: Setting hire ID to 51, name Carol Jones, position Senior Programmer

PUBLISHER: Setting hire ID to 52, name Mark Wilson, position Manager

PUBLISHER: Setting hire ID to 53, name Polly Wren, position Senior Programmer

PUBLISHER: Setting hire ID to 54, name Joe Lawrence, position Director

Waiting for 5 message(s)

New hire event processed:

Employee ID: 52

Name: Mark Wilson

Equipment: PDA

Office number: 294

Waiting for 4 message(s)

New hire event processed:

Employee ID: 53

Name: Polly Wren

Equipment: Laptop

Office number: 186

Waiting for 3 message(s)

New hire event processed:

Employee ID: 54

Name: Joe Lawrence

Equipment: Java Phone

Office number: 135

Waiting for 2 message(s)

New hire event processed:

Employee ID: 50

Name: Bill Tudor

Equipment: Desktop System

Office number: 200

Waiting for 1 message(s)

New hire event processed:

2

3

An Application That Uses the JMS API with an Entity

The Java EE 6 Tutorial • October 2010642

Employee ID: 51

Name: Carol Jones

Equipment: Laptop

Office number: 262

The output from the message-driven beans and the entity class appears in the server log,
wrapped in logging information.

For each employee, the application first creates the entity and then finds it. You may see
runtime errors in the server log, and transaction rollbacks may occur. The errors occur if both
of the message-driven beans discover at the same time that the entity does not yet exist, so they
both try to create it. The first attempt succeeds, but the second fails because the bean already
exists. After the rollback, the second message-driven bean tries again and succeeds in finding
the entity. Container-managed transactions allow the application to run correctly, in spite of
these errors, with no special programming.

You can run the application client repeatedly.

An Application Example That Consumes Messages from a
Remote Server

This section and the following section explain how to write, compile, package, deploy, and run a
pair of Java EE modules that run on two Java EE servers and that use the JMS API to interchange
messages with each other. It is a common practice to deploy different components of an
enterprise application on different systems within a company, and these examples illustrate on a
small scale how to do this for an application that uses the JMS API.

However, the two examples work in slightly different ways. In this first example, the
deployment information for a message-driven bean specifies the remote server from which it
will consume messages. In the next example, the same message-driven bean is deployed on two
different servers, so it is the client module that specifies the servers (one local, one remote) to
which it is sending messages.

This first example divides the example in Chapter 17, “A Message-Driven Bean Example,” into
two modules: one containing the application client, and the other containing the
message-driven bean.

You will find the source files for this section in tut-install/examples/jms/consumeremote/.
Path names in this section are relative to this directory.

An Application Example That Consumes Messages from a Remote Server

Chapter 31 • Java Message Service Examples 643

Overview of the consumeremote Example Modules
Except for the fact that it is packaged as two separate modules, this example is very similar to the
one in Chapter 17, “A Message-Driven Bean Example”:

■ One module contains the application client, which runs on the remote system and sends
three messages to a queue.

■ The other module contains the message-driven bean, which is deployed on the local server
and consumes the messages from the queue on the remote server.

The basic steps of the modules are as follows.

1. The administrator starts two Java EE servers, one on each system.

2. On the local server, the administrator deploys the message-driven bean module, which
specifies the remote server where the client is deployed.

3. On the remote server, the administrator places the client JAR file.

4. The client module sends three messages to a queue.

5. The message-driven bean consumes the messages.

Figure 31–5 illustrates the structure of this application. You can see that it is almost identical to
Figure 17–1 except that there are two Java EE servers. The queue used is the one on the remote
server; the queue must also exist on the local server for resource injection to succeed.

FIGURE 31–5 A Java EE Application That Consumes Messages from a Remote Server

Java EE Server on Jupiter

Java EE Server on EarthDeliversSends

EJB Container

MDB Instance

Queue
Msg Msg

Application
Client

An Application Example That Consumes Messages from a Remote Server

The Java EE 6 Tutorial • October 2010644

Writing the Module Components for the
consumeremote Example
Writing the components of the modules involves

■ Coding the application client
■ Coding the message-driven bean

The application client, jupiterclient/src/java/SimpleClient.java, is almost identical to
the one in “The simplemessage Application Client” on page 320.

Similarly, the message-driven bean, earthmdb/src/java/MessageBean.java, is almost
identical to the one in “The Message-Driven Bean Class” on page 321. The only significant
difference is that the activation config properties include one property that specifies the name of
the remote system. You need to edit the source file to specify the name of your system.

Creating Resources for the consumeremote Example
The application client can use any connection factory that exists on the remote server; it uses
jms/ConnectionFactory. Both components use the queue named jms/Queue, which you
created in “To Create JMS Administered Objects for the Synchronous Receive Example” on
page 597. The message-driven bean does not need a previously created connection factory; the
resource adapter creates one for it.

Using Two Application Servers for the consumeremote
Example
As in “Running JMS Clients on Multiple Systems” on page 613, the two servers are named
earth and jupiter.

The GlassFish Server must be running on both systems.

Before you can run the example, you must change the default name of the JMS host on jupiter,
as described in “To Change the Default Host Name Using the Administration Console” on
page 616. If you have already performed this task, you do not have to repeat it.

Which system you use to package and deploy the modules and which system you use to run the
client depend on your network configuration (which file system you can access remotely).
These instructions assume that you can access the file system of jupiter from earth but cannot
access the file system of earth from jupiter. (You can use the same systems for jupiter and
earth that you used in “Running JMS Clients on Multiple Systems” on page 613.)

You can package both modules on earth and deploy the message-driven bean there. The only
action you perform on jupiter is running the client module.

An Application Example That Consumes Messages from a Remote Server

Chapter 31 • Java Message Service Examples 645

▼ To Build, Package, Deploy, and Run the
consumeremoteModules Using NetBeans IDE
To edit the message-driven bean source file and then package, deploy, and run the modules
using NetBeans IDE, follow these steps.

In NetBeans IDE, select File→Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/jms/consumeremote/

Select the earthmdb folder.

Select the Open as Main Project check box.

Click Open Project.

Edit the MessageBean.java file as follows:

a. In the Projects tab, expand the earthmdb, Source Packages, and mdbnodes, then
double-click MessageBean.java.

b. Find the following line within the @MessageBean annotation:
@ActivationConfigProperty(propertyName = "addressList",

propertyValue = "remotesystem"),

c. Replace remotesystemwith the name of your remote system.

Right-click the earthmdbproject and select Build.
This command creates a JAR file that contains the bean class file.

Select File→Open Project.

Select the jupiterclient folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the jupiterclientproject and select Build.
This target creates a JAR file that contains the client class file and a manifest file.

Right-click the earthmdbproject and select Deploy.

1

2

3

4

5

6

7

8

9

10

11

12

13

An Application Example That Consumes Messages from a Remote Server

The Java EE 6 Tutorial • October 2010646

To copy the jupiterclientmodule to the remote system, follow these steps:

a. Change to the directory jupiterclient/dist:
cd ../jupiterclient/dist

b. Type a command like the following:
cp jupiterclient.jar F:/

That is, copy the client JAR file to a location on the remote filesystem. You can use the file
system user interface on your system instead of the command line.

To run the application client, follow these steps:

a. Go to the directory on the remote system (jupiter) where you copied the client JAR file.

b. To deploy the client module and retrieve the client stubs, use the following command:
asadmin deploy --retrieve . jupiterclient.jar

This command deploys the client JAR file and retrieves the client stubs in a file named
jupiterclientClient.jar

c. To run the client, use the following command:
appclient -client jupiterclientClient.jar

On jupiter, the output of the appclient command looks like this (preceded by application
client container output):

Sending message: This is message 1 from jupiter

Sending message: This is message 2 from jupiter

Sending message: This is message 3 from jupiter

On earth, the output in the server log looks something like this (preceded by logging
information):

MESSAGE BEAN: Message received: This is message 1 from jupiter

MESSAGE BEAN: Message received: This is message 2 from jupiter

MESSAGE BEAN: Message received: This is message 3 from jupiter

▼ To Build, Package, Deploy, and Run the consumeremote
Modules Using Ant
To edit the message-driven bean source file and then package, deploy, and run the modules
using Ant, follow these steps.

14

15

An Application Example That Consumes Messages from a Remote Server

Chapter 31 • Java Message Service Examples 647

Open the file
tut-install/examples/jms/consumeremote/earthmdb/src/java/mdb/MessageBean.java in an
editor.

Find the following line within the @MessageBean annotation:
@ActivationConfigProperty(propertyName = "addressList",

propertyValue = "remotesystem"),

Replace remotesystemwith the name of your remote system, then save and close the file.

Go to the following directory:
tut-install/examples/jms/consumeremote/earthmdb/

Type the following command:
ant

This command creates a JAR file that contains the bean class file.

Type the following command:
ant deploy

Go to the jupiterclientdirectory:
cd ../jupiterclient

Type the following command:
ant

This target creates a JAR file that contains the client class file and a manifest file.

To copy the jupiterclientmodule to the remote system, follow these steps:

a. Change to the directory jupiterclient/dist:
cd ../jupiterclient/dist

b. Type a command like the following:
cp jupiterclient.jar F:/

That is, copy the client JAR file to a location on the remote filesystem.

To run the application client, follow these steps:

a. Go to the directory on the remote system (jupiter) where you copied the client JAR file.

b. To deploy the client module and retrieve the client stubs, use the following command:
asadmin deploy --retrieve . jupiterclient.jar

1

2

3

4

5

6

7

8

9

10

An Application Example That Consumes Messages from a Remote Server

The Java EE 6 Tutorial • October 2010648

This command deploys the client JAR file and retrieves the client stubs in a file named
jupiterclientClient.jar

c. To run the client, use the following command:
appclient -client jupiterclientClient.jar

On jupiter, the output of the appclient command looks like this (preceded by application
client container output):

Sending message: This is message 1 from jupiter

Sending message: This is message 2 from jupiter

Sending message: This is message 3 from jupiter

On earth, the output in the server log looks something like this (preceded by logging
information):

MESSAGE BEAN: Message received: This is message 1 from jupiter

MESSAGE BEAN: Message received: This is message 2 from jupiter

MESSAGE BEAN: Message received: This is message 3 from jupiter

An Application Example That Deploys a Message-Driven Bean
on Two Servers

This section, like the preceding one, explains how to write, compile, package, deploy, and run a
pair of Java EE modules that use the JMS API and run on two Java EE servers. The modules are
slightly more complex than the ones in the first example.

The modules use the following components:

■ An application client that is deployed on the local server. It uses two connection factories,
one ordinary one and one that is configured to communicate with the remote server, to
create two publishers and two subscribers and to publish and to consume messages.

■ A message-driven bean that is deployed twice: once on the local server, and once on the
remote one. It processes the messages and sends replies.

In this section, the term local server means the server on which both the application client and
the message-driven bean are deployed (earth in the preceding example). The term remote
server means the server on which only the message-driven bean is deployed (jupiter in the
preceding example).

You will find the source files for this section in tut-install/examples/jms/sendremote/. Path
names in this section are relative to this directory.

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 31 • Java Message Service Examples 649

Overview of the sendremote Example Modules
This pair of modules is somewhat similar to the modules in “An Application Example That
Consumes Messages from a Remote Server” on page 643 in that the only components are a
client and a message-driven bean. However, the modules here use these components in more
complex ways. One module consists of the application client. The other module contains only
the message-driven bean and is deployed twice, once on each server.

The basic steps of the modules are as follows.

1. You start two Java EE servers, one on each system.

2. On the local server (earth), you create two connection factories: one local and one that
communicates with the remote server (jupiter). On the remote server, you create a
connection factory that has the same name as the one that communicates with the remote
server.

3. The application client looks up the two connection factories (the local one and the one that
communicates with the remote server) to create two connections, sessions, publishers, and
subscribers. The subscribers use a message listener.

4. Each publisher publishes five messages.

5. Each of the local and the remote message-driven beans receives five messages and sends
replies.

6. The client’s message listener consumes the replies.

Figure 31–6 illustrates the structure of this application. M1 represents the first message sent
using the local connection factory, and RM1 represents the first reply message sent by the local
MDB. M2 represents the first message sent using the remote connection factory, and RM2
represents the first reply message sent by the remote MDB.

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 6 Tutorial • October 2010650

Writing the Module Components for the sendremote
Example
Writing the components of the modules involves coding the application client and the
message-driven bean.

Coding the Application Client: MultiAppServerClient.java
The application client class, multiclient/src/java/MultiAppServerClient.java, does the
following.

1. It injects resources for two connection factories and a topic.
2. For each connection factory, it creates a connection, a publisher session, a publisher, a

subscriber session, a subscriber, and a temporary topic for replies.
3. Each subscriber sets its message listener, ReplyListener, and starts the connection.

FIGURE 31–6 A Java EE Application That Sends Messages to Two Servers

Remote Java EE Server

Local Java EE Server

PTopic

M1

M1
Reply
Topic

RM1

M2 RM2

RM1

RM2

CF1 Local MDB

PTopic

M2 Reply
Topic

CF2 Remote MDB

Application
Client

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 31 • Java Message Service Examples 651

4. Each publisher publishes five messages and creates a list of the messages the listener should
expect.

5. When each reply arrives, the message listener displays its contents and removes it from the
list of expected messages.

6. When all the messages have arrived, the client exits.

Coding the Message-Driven Bean: ReplyMsgBean.java
The message-driven bean class, replybean/src/ReplyMsgBean.java, does the following:

1. Uses the @MessageDriven annotation:

@MessageDriven(mappedName = "jms/Topic")

2. Injects resources for the MessageDrivenContext and for a connection factory. It does not
need a destination resource because it uses the value of the incoming message’s JMSReplyTo
header as the destination.

3. Uses a @PostConstruct callback method to create the connection, and a @PreDestroy
callback method to close the connection.

The onMessage method of the message-driven bean class does the following:

1. Casts the incoming message to a TextMessage and displays the text
2. Creates a connection, a session, and a publisher for the reply message
3. Publishes the message to the reply topic
4. Closes the connection

On both servers, the bean will consume messages from the topic jms/Topic.

Creating Resources for the sendremote Example
This example uses the connection factory named jms/ConnectionFactory and the topic
named jms/Topic. These objects must exist on both the local and the remote servers.

This example uses an additional connection factory, jms/JupiterConnectionFactory, which
communicates with the remote system; you created it in “To Create Administered Objects for
Multiple Systems” on page 615. This connection factory must exist on the local server.

The build.xml file for the multiclient module contains targets that you can use to create these
resources if you deleted them previously.

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 6 Tutorial • October 2010652

▼ To Use Two Application Servers for the sendremote
Example
If you are using NetBeans IDE, you need to add the remote server in order to deploy the
message-driven bean there. To do so, follow these steps.

In NetBeans IDE, click the Runtime tab.

Right-click the Servers node and select Add Server. In the Add Server Instance dialog, follow
these steps:

a. Select GlassFish v3 (the default) from the Server list.

b. In the Name field, specify a name slightly different from that of the local server, such as
GlassFish v3 (2).

c. Click Next.

d. For the Server Location, you can either browse to the location of the GlassFish Server on the
remote system or, if that location is not visible from the local system, use the default location
on the local system.

e. Click Next.

f. Select the Register Remote Domain radio button.

g. In the Host Name field, type the name of the remote system.

h. Click Finish.

Before you can run the example, you must change the default name of the JMS host on jupiter,
as described in “To Change the Default Host Name Using the Administration Console” on
page 616. If you have already performed this task, you do not have to repeat it.

▼ To Build, Package, Deploy, and Run the sendremote
Modules Using NetBeans IDE

To build the replybeanmodule, follow these steps:

a. In NetBeans IDE, select File→Open Project.

1

2

Next Steps

1

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 31 • Java Message Service Examples 653

b. In the Open Project dialog, navigate to:
tut-install/examples/jms/sendremote/

c. Select the replybean folder.

d. Select the Open as Main Project check box.

e. Click Open Project.

f. In the Projects tab, right-click the replybeanproject and select Build.

This command creates a JAR file that contains the bean class file.

To build the multiclientmodule, follow these steps:

a. Select File→Open Project.

b. Select the multiclient folder.

c. Select the Open as Main Project check box.

d. Click Open Project.

e. In the Projects tab, right-click the multiclientproject and select Build.

This command creates a JAR file that contains the client class file and a manifest file.

To deploy the multiclientmodule on the local server, follow these steps:

a. Right-click the multiclientproject and select Properties.

b. Select Run from the Categories tree.

c. From the Server list, select GlassFish v3 Domain (the local server).

d. Click OK.

e. Right-click the multiclientproject and select Deploy.

You can use the Services tab to verify that multiclient is deployed as an App Client Module
on the local server.

To deploy the replybeanmodule on the local and remote servers, follow these steps:

a. Right-click the replybeanproject and select Properties.

2

3

4

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 6 Tutorial • October 2010654

b. Select Run from the Categories tree.

c. From the Server list, select GlassFish v3 Domain (the local server).

d. Click OK.

e. Right-click the replybeanproject and select Deploy.

f. Right-click the replybeanproject again and select Properties.

g. Select Run from the Categories tree.

h. From the Server list, select GlassFish v3 (2) (the remote server).

i. Click OK.

j. Right-click the replybeanproject and select Deploy.
You can use the Services tab to verify that replybean is deployed as an EJB Module on both
servers.

To run the application client, right-click the multiclientproject and select Run Project.
This command returns a JAR file named multiclientClient.jar and then executes it.

On the local system, the output of the appclient command looks something like this:
running application client container.

Sent message: text: id=1 to local app server

Sent message: text: id=2 to remote app server

ReplyListener: Received message: id=1, text=ReplyMsgBean processed message: text: id=1 to local

app server

Sent message: text: id=3 to local app server

ReplyListener: Received message: id=3, text=ReplyMsgBean processed message: text: id=3 to local

app server

ReplyListener: Received message: id=2, text=ReplyMsgBean processed message: text: id=2 to remote

app server

Sent message: text: id=4 to remote app server

ReplyListener: Received message: id=4, text=ReplyMsgBean processed message: text: id=4 to remote

app server

Sent message: text: id=5 to local app server

ReplyListener: Received message: id=5, text=ReplyMsgBean processed message: text: id=5 to local

app server

Sent message: text: id=6 to remote app server

ReplyListener: Received message: id=6, text=ReplyMsgBean processed message: text: id=6 to remote

app server

Sent message: text: id=7 to local app server

ReplyListener: Received message: id=7, text=ReplyMsgBean processed message: text: id=7 to local

app server

Sent message: text: id=8 to remote app server

ReplyListener: Received message: id=8, text=ReplyMsgBean processed message: text: id=8 to remote

app server

Sent message: text: id=9 to local app server

5

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 31 • Java Message Service Examples 655

ReplyListener: Received message: id=9, text=ReplyMsgBean processed message: text: id=9 to local

app server

Sent message: text: id=10 to remote app server

ReplyListener: Received message: id=10, text=ReplyMsgBean processed message: text: id=10 to remote

app server

Waiting for 0 message(s) from local app server

Waiting for 0 message(s) from remote app server

Finished

Closing connection 1

Closing connection 2

On the local system, where the message-driven bean receives the odd-numbered messages, the
output in the server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=1 to local app server

ReplyMsgBean: Received message: text: id=3 to local app server

ReplyMsgBean: Received message: text: id=5 to local app server

ReplyMsgBean: Received message: text: id=7 to local app server

ReplyMsgBean: Received message: text: id=9 to local app server

On the remote system, where the bean receives the even-numbered messages, the output in the
server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=2 to remote app server

ReplyMsgBean: Received message: text: id=4 to remote app server

ReplyMsgBean: Received message: text: id=6 to remote app server

ReplyMsgBean: Received message: text: id=8 to remote app server

ReplyMsgBean: Received message: text: id=10 to remote app server

▼ To Build, Package, Deploy, and Run the sendremote
Modules Using Ant

To package the modules, follow these steps:

a. Go to the following directory:
tut-install/examples/jms/sendremote/multiclient/

b. Type the following command:
ant

This command creates a JAR file that contains the client class file and a manifest file.

c. Change to the directory replybean:
cd ../replybean

d. Type the following command:
ant

This command creates a JAR file that contains the bean class file.

1

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 6 Tutorial • October 2010656

To deploy the replybeanmodule on the local and remote servers, follow these steps:

a. Verify that you are still in the directory replybean.

b. Type the following command:
ant deploy

Ignore the message that states that the application is deployed at a URL.

c. Type the following command:
ant deploy-remote -Dsys=remote-system-name

Replace remote-system-name with the actual name of the remote system.

To deploy and run the client, follow these steps:

a. Change to the directory multiclient:
cd ../multiclient

b. Type the following command:
ant run

On the local system, the output looks something like this:

running application client container.

Sent message: text: id=1 to local app server

Sent message: text: id=2 to remote app server

ReplyListener: Received message: id=1, text=ReplyMsgBean processed message: text: id=1 to local

app server

Sent message: text: id=3 to local app server

ReplyListener: Received message: id=3, text=ReplyMsgBean processed message: text: id=3 to local

app server

ReplyListener: Received message: id=2, text=ReplyMsgBean processed message: text: id=2 to remote

app server

Sent message: text: id=4 to remote app server

ReplyListener: Received message: id=4, text=ReplyMsgBean processed message: text: id=4 to remote

app server

Sent message: text: id=5 to local app server

ReplyListener: Received message: id=5, text=ReplyMsgBean processed message: text: id=5 to local

app server

Sent message: text: id=6 to remote app server

ReplyListener: Received message: id=6, text=ReplyMsgBean processed message: text: id=6 to remote

app server

Sent message: text: id=7 to local app server

ReplyListener: Received message: id=7, text=ReplyMsgBean processed message: text: id=7 to local

app server

Sent message: text: id=8 to remote app server

ReplyListener: Received message: id=8, text=ReplyMsgBean processed message: text: id=8 to remote

app server

Sent message: text: id=9 to local app server

ReplyListener: Received message: id=9, text=ReplyMsgBean processed message: text: id=9 to local

app server

Sent message: text: id=10 to remote app server

2

3

An Application Example That Deploys a Message-Driven Bean on Two Servers

Chapter 31 • Java Message Service Examples 657

ReplyListener: Received message: id=10, text=ReplyMsgBean processed message: text: id=10 to remote

app server

Waiting for 0 message(s) from local app server

Waiting for 0 message(s) from remote app server

Finished

Closing connection 1

Closing connection 2

On the local system, where the message-driven bean receives the odd-numbered messages,
the output in the server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=1 to local app server

ReplyMsgBean: Received message: text: id=3 to local app server

ReplyMsgBean: Received message: text: id=5 to local app server

ReplyMsgBean: Received message: text: id=7 to local app server

ReplyMsgBean: Received message: text: id=9 to local app server

On the remote system, where the bean receives the even-numbered messages, the output in
the server log looks like this (wrapped in logging information):

ReplyMsgBean: Received message: text: id=2 to remote app server

ReplyMsgBean: Received message: text: id=4 to remote app server

ReplyMsgBean: Received message: text: id=6 to remote app server

ReplyMsgBean: Received message: text: id=8 to remote app server

ReplyMsgBean: Received message: text: id=10 to remote app server

An Application Example That Deploys a Message-Driven Bean on Two Servers

The Java EE 6 Tutorial • October 2010658

Advanced Bean Validation Concepts and
Examples

This chapter describes how to create custom constraints, custom validator messages, and
constraint groups using the Java API for JavaBeans Validation (Bean Validation).

The following topics are addressed here:

■ “Creating Custom Constraints” on page 659
■ “Customizing Validator Messages” on page 660
■ “Grouping Constraints” on page 661

Creating Custom Constraints
Bean Validation defines annotations, interfaces, and classes to allow developers to create
custom constraints.

Using the Built-In Constraints To Make a New
Constraint
Bean Validation includes several built-in constraints that can be combined to create new,
reusable constraints. This can simplify constraint definitions by allowing developers to define a
custom constraint made up of several built-in constraints that may then be applied to
component attributes with a single annotation.

EXAMPLE 32–1 The @EmailConstraint

@Pattern.List({

@Pattern(regexp = "[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\\."
+"[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*"
+"@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?")

})

@Constraint(validatedBy = {})

@Documented

32C H A P T E R 3 2

659

EXAMPLE 32–1 The @EmailConstraint (Continued)

@Target({ElementType.METHOD,

ElementType.FIELD,

ElementType.ANNOTATION_TYPE,

ElementType.CONSTRUCTOR,

ElementType.PARAMETER})

@Retention(RetentionPolicy.RUNTIME)

public @interface Email {

String message() default "{invalid.email}";

Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};

@Target({ElementType.METHOD,

ElementType.FIELD,

ElementType.ANNOTATION_TYPE,

ElementType.CONSTRUCTOR,

ElementType.PARAMETER})

@Retention(RetentionPolicy.RUNTIME)

@Documented

@interface List {

Email[] value();

}

}

This custom constraint can then be applied to an attribute.

...

@Email

protected String email;

...

Customizing Validator Messages
Bean Validation includes a resource bundle of default messages for the build-in constraints.
These messages can be customized, and localized for non-English speaking locales.

The ValidationMessagesResource Bundle
The Validationmessages resource bundle and the locale variants of this resource bundle
contain strings that override the default validation messages. The ValidationMessages
resource bundle is typically a properties file, ValidationMessages.properties, in the default
package of an application.

Customizing Validator Messages

The Java EE 6 Tutorial • October 2010660

Localizing Validation Messages
Locale variants of ValidationMessages.properties are added by appending an underscore
and the locale prefix. For example, the Spanish locale variant resource bundle would be
ValidationMessages_es.properties.

Grouping Constraints
Constraints may be added to one or more groups. Constraint groups are used to create subsets
of constraints, so only certain constraints will be validated for a particular object. By default, all
constraints are included in the Default constraint group.

Constraint groups are represented by interfaces.

public interface Employee {}

public interface Contractor {}

Constraint groups can inherit from other groups.

public interface Manager extends Employee {}

When a constraint is added to an element, the constraint declares which groups that constraint
belongs by specifying the class name of the group interface name in the groups element of the
constraint.

@NotNull(groups=Employee.class)

Phone workPhone;

Multiple groups can be declared by surrounding the groups with angle brackets ({ and }) and
separating the groups class names with commas.

@NotNull(groups={ Employee.class, Contractor.class })

Phone workPhone;

If a group inherits from another group, validating that group results in validating all constraints
declared as part of the supergroup. For example, validating the Manager group results in the
workPhone field being validated, because Employee is a super-interface of Manager.

Customizing Group Validation Order
By default, constraint groups are validated in no particular order. There are some cases where
some groups should be validated before others. For example, in a particular class basic data
should be validated before more advanced data.

To set the validation order for a group, add a javax.validation.GroupSequence annotation
on the interface definition, listing the order in which the validation should occur.

Grouping Constraints

Chapter 32 • Advanced Bean Validation Concepts and Examples 661

@GroupSequence({Default.class, ExpensiveValidationGroup.class})

public interface FullValidationGroup {}

When validating FullValidationGroup, first the Default group is validated. If all the data
passes validation, then the ExpensiveValidationGroup group is validated. If a constraint is
part of part of both the Default and ExpensiveValidationGroup groups, the constraint is
validated as part of the Default group, and will not be validated on the subsequent
ExpensiveValidationGroup pass.

Grouping Constraints

The Java EE 6 Tutorial • October 2010662

Index

Numbers and Symbols
@AccessTimeout annotation, 299
@ApplicationScoped annotation, 334-335
@ConcurrencyManagement annotation, 297
@Consumes annotation, 248-250
@ConversationScoped annotation, 334-335
@DeclareRoles annotation, 507-509
@DELETE annotation, 240-253
@DenyAll annotation, 508
@Dependent annotation, 334-335
@DependsOn annotation, 296
@DiscriminatorColumn annotation, 369-370
@DiscriminatorValue annotation, 369-370
@Embeddable annotation, 366
@EmbeddedId annotation, 361
@Entity annotation, 356
@GET annotation, 240-253
@HttpConstraint, annotation, 495
@HttpConstraint annotation, 477
@HttpMethodConstraint annotation, 477, 495
@Id annotation, 361
@IdClass annotation, 361
@Inject annotation, 334
@Local annotation, 271, 290
@Lock annotation, 297-299
@ManagedBean annotation, 104-105, 111-112
@ManyToMany annotation, 363, 364
@ManyToOne annotation, 363
@MessageDriven annotation, 633
@Named annotation, 336
@NamedQuery annotation, 404
@OneToMany annotation, 363, 364, 365

@OneToOne annotation, 363, 364, 365
@Path annotation, 240-253
@PathParam annotation, 250-253
@PermitAll annotation, 508
@PersistenceContext annotation, 371
@PersistenceUnit annotation, 372
@POST annotation, 240-253
@PostActivate annotation, 291, 292
@PostConstruct annotation, 278-281, 291, 292
@PostConstruct annotation, session beans using

JMS, 633
@PreDestroy annotation, 278-281, 291, 292
@PreDestroy annotation, session beans using JMS, 633
@PrePassivate annotation, 291, 292
@Produces annotation, 248-250, 337-338
@PUT annotation, 240-253
@Qualifier annotation, 333
@QueryParam annotation, 250-253
@Remote annotation, 271, 290
@Remove annotation, 278, 291, 293-294
@RequestScoped annotation, 334-335
@Resource annotation, 547-550

JMS resources, 320, 568
@RolesAllowed annotation, 507
@RunAs annotation, 511-513
@Schedule and @Schedules annotations, 311-312
@ServletSecurity annotation, 477, 495
@SessionScoped annotation, 334-335
@Singleton annotation, 296
@Startup annotation, 296
@Stateful annotation, 290
@Timeout annotation, 309

663

@Timeout method, 312
@Transient annotation, 357
@WebFilter annotation, 209
@WebInitParam annotation, 206, 209
@WebListener annotation, 203
@WebMethod annotation, 293
@WebService annotation, 228
@WebServiceRef annotation, 98-99
@WebServlet annotation, 90, 205-206

A
abstract schemas, 404
access control, 454
acknowledge method, 577
acknowledging messages, See message acknowledgment
action events, 150-151

actionListener attribute, 150, 178, 179
ActionListener interface, 176
actionListener tag, 166, 176
referencing methods that handle action events, 179,

194
writing a backing-bean method to handle action

events, 194
administered objects, JMS, 567-569

See also connection factories, destinations
definition, 563

Administration Console, 63
starting, 70-71

afterBegin method, 539
afterCompletion method, 539
annotations, 33

JAX-RS, 240-253
security, 458, 495, 504, 507-509

Ant tool, 69
appclient tool, 63
applet containers, 45
applets, 39, 40
application client containers, 45
application client examples, JMS, 594-619
application clients, 38-39

examples, 320
securing, 521-522

application clients, JMS
building, 598, 601, 604-605
packaging, 607
running, 599-601, 601-603, 605-607, 607-608
running on multiple systems, 613-619

applications
JavaServer Faces, 102
security, 456
undeploying, 89

asadmin tool, 63
asynchronous message consumption, 566

See also message-driven beans
JMS client example, 603-608

attributes referencing backing bean methods, 178
action attribute, 178, 179
actionListener attribute, 178, 179
validator attribute, 178, 179
valueChangeListener attribute, 178, 180

audit modules, pluggable, 460
auditing, 455
auth-constraint element, 479
authenticate method, 488-490
authenticating users, 481-487
authentication, 454-455, 468

basic, 481-482
certificate-based mutual, 484
client, 484
digest, 484
form-based, 482-483, 498-502
mutual, 484-485
user name/password-based mutual, 485

authentication mechanism, EJB, 510
authorization, 454-455
authorization constraints, 478, 479
authorization providers, pluggable, 460
AUTO_ACKNOWLEDGE mode, 577
auto commit, 57

B
backing bean methods

See attributes referencing backing bean methods
See referencing backing bean methods
See writing backing bean methods

Index

The Java EE 6 Tutorial • October 2010664

backing bean properties, 170, 182, 183
bound to component instances, 190-191
properties for UISelectItems composed of

SelectItem instances, 189
UIData properties, 186-187
UIInput and UIOutput properties, 185
UISelectBoolean properties, 187
UISelectItem properties, 189
UISelectItems properties, 189-190
UISelectMany properties, 187-188
UISelectOne properties, 188
writing, 184-192

backing beans, 102, 181-184
developing, 104-105, 111-112
method binding, 146
properties

See backing bean properties
basic authentication, 481-482

EJB, 510
example, 494-497

bean-managed transactions, 590
See transactions, bean-managed

bean validation, 58
Bean Validation

advanced, 659-662
constraints, 398-399
custom constraints, 659-660
examples, 398-401
groups, 661-662
Java Persistence API, 359-361
JavaServer Faces applications, 196-200, 399-400
localization, 661
messages, 660-661
ordering, 661-662
resource bundles, 660-661

beans, defined for CDI, 331
beans.xml file, 338
beforeCompletion method, 539
BLOBs, See persistence, BLOBs
bookmarkable URLs, component tags, 162-163
BufferedReader class, 206
build artifacts, removing, 89
business logic, 264
business methods, 273

business methods (Continued)
client calls, 292
exceptions, 293
locating, 284
requirements, 293
transactions, 537, 539, 541, 542

BytesMessage interface, 574

C
CallbackHandler interface, 521
capture-schema tool, 63
certificate authorities, 470
certificates, 456

digital, 457, 470-472
managing, 470

server
generating, 471-472

using for authentication, 465
class files, removing, 89
CLIENT_ACKNOWLEDGE mode, 577
client ID, for durable subscriptions, 581
clients

authenticating, 484
securing, 521-522

CLOBs, See persistence, CLOBs
collections

persistence, 357-359, 446
commit method, 539
commit method (JMS), 583-585
commits, See transactions, commits
Common Client Interface, Connector

Architecture, 556
component binding, 183, 184

binding attribute, 183
component classes

UIData class, 186-187
UIInput and UIOutput classes, 185
UISelectBoolean class, 187
UISelectItem class, 189
UISelectItems class, 189
UISelectMany class, 187-188
UISelectOne class, 188

component-managed sign-on, 522, 523

Index

665

component properties, See backing bean properties
component tag attributes

action attribute, 192
actionListener attribute, 150, 178, 194
binding attribute, 141, 143, 183
columns attribute, 153
converter attribute, 145, 170-171
for attribute, 148, 161
id attribute, 141
immediate attribute, 141
redisplay attribute, 147
rendered attribute, 141, 142
style attribute, 141, 142, 162
styleClass attribute, 141, 142
validator attribute, 146, 194
value attribute, 141, 143, 184
valueChangeListener attribute, 146, 180, 195

component tags, 184
attributes

See component tag attributes
body tag, 143
bookmarkable URLs, 162-163
button tag, 162-163
column tag, 139
commandButton tag, 139, 150
commandLink tag, 139, 150-151
dataTable tag, 139, 158-161, 186
form tag, 139, 143-144, 144
graphicImage tag, 139, 151
head tag, 143
inputHidden tag, 139, 145
inputSecret tag, 139, 145, 147
inputText tag, 139, 145, 147
inputTextarea tag, 139, 145
link tag, 162-163
message tag, 139, 161-162
messages tag, 139, 161-162
output tag, 164-165
outputFormat tag, 139, 149
outputLabel tag, 139, 146, 148
outputLink tag, 140, 146, 148
outputMessage tag, 146
outputText tag, 140, 146, 147, 150, 186
panelGrid tag, 140, 151-153

component tags (Continued)
panelGroup tag, 140, 151-153
resource relocation, 164-165
selectBooleanCheckbox tag, 140, 154, 187
selectItems tag, 189
selectManyCheckbox tag, 140, 155-156, 187
selectManyListbox tag, 140, 155
selectManyMenu tag, 140, 155
selectOneListbox tag, 140, 154
selectOneMenu tag, 140, 154-155, 188, 189
selectOneRadio tag, 140, 154

components
buttons, 139
check boxes, 140
combo boxes, 140
data grids, 139
hidden fields, 139
hyperlinks, 139
labels, 139, 140
list boxes, 140
password fields, 139
radio buttons, 140
table columns, 139
tables, 140
text areas, 139
text fields, 139

composite components, Facelets, 119-121
concurrent access, 533
confidentiality, 468
connection factories, JMS

creating, 323-324, 597-598
injecting resources, 320, 568
introduction, 568
specifying for remote servers, 615-616

Connection interface, 539, 543
Connection interface (JMS), 569
connection pooling, 546
ConnectionFactory interface (JMS), 568
connections, securing, 468-472
connections, JMS

introduction, 569
managing in enterprise bean applications, 586

connectors, See Java EE Connector architecture
container-managed sign-on, 522, 523

Index

The Java EE 6 Tutorial • October 2010666

container-managed transactions, See transactions,
container-managed

containers, 43-45
See also applet containers
See also application client containers
See also EJB containers
See also web containers
configurable services, 43
nonconfigurable services, 43
securing, 458-459
security, 450-455
services, 43
trust between, 513

context parameters, 85
specifying, 94

context roots, 85-86
Contexts and Dependency Injection (CDI) for the Java

EE platform, 57-58, 329-338
beans, 331
configuring applications, 338
EL, 336
examples, 339-352
Facelets pages, 337
injectable objects, 332
injecting beans, 334
managed beans, 331-332
overview, 330
producer methods, 337-338
qualifiers, 333
scopes, 334-335
setter and getter methods, 336-337

conversational state, 265
conversion model

See also converter tags
converter attribute, 145, 170-171
Converter implementations, 169-174
converterId attribute, 170
javax.faces.convert package, 169

Converter implementation classes
BigDecimalConverter class, 169
BigIntegerConverter class, 169
BooleanConverter class, 169
ByteConverter class, 169
CharacterConverter class, 169

Converter implementation classes (Continued)
DateTimeConverter class, 169, 170, 171
DoubleConverter class, 169
EnumConverter class, 169
FloatConverter class, 169
IntegerConverter class, 170
LongConverter class, 170
NumberConverter class, 170, 171, 173-174
ShortConverter class, 170

converter tags
convertDateTime tag, 171
convertDateTime tag attributes, 172-173
converter tag, 171
convertNumber tag, 171, 173-174
convertNumber tag attributes, 173-174

cookie parameters, 253
createBrowser method, 609
createTimer method, 309
credential, 464
Criteria API, 435-446

creating queries, 438-439
examples, 393-395
expressions, 441-442, 442-443
path navigation, 441
query execution, 445-446
query results, 441-443, 444-445

cryptography, public-key, 470
custom validators

validate method, 194
Validator implementation

backing bean methods, 192

D
data encryption, 484
data integrity, 454, 533, 534
data sources, 546
databases

See also transactions
clients, 264
connections, 293, 541
data recovery, 533
EIS tier, 36
message-driven beans and, 268

Index

667

databases (Continued)
multiple, 540, 542

DataSource interface, 546
debugging, Java EE applications, 73-74
declarative security, 450, 476, 504
delivery modes, JMS, 578-579

JMSDeliveryMode message header field, 573
DeliveryMode interface, 578-579
Dependency Injection for Java (JSR 330), 58, 329
deployer roles, 50
deployment, 285-287
deployment descriptors, 47, 450, 459, 476

enterprise bean, 459
enterprise beans, 276, 504, 506
Java EE, 47
runtime, 47
security-role-mapping element, 467-468
security-role-ref element, 492-493
web application, 81, 459

runtime, 81
web applications, 78

Destination interface, 568-569
destinations, JMS

See also queues, temporary destinations, topics
creating, 323-324, 597-598
injecting resources, 320, 568
introduction, 568-569
JMSDestination message header field, 573
temporary, 580, 638, 651-652

destroy method, 216
development roles, 48-50

application assemblers, 50
application client developers, 49
application component providers, 49-50
application deployers and administrators, 50
enterprise bean developers, 49
Java EE product providers, 49
tool providers, 49
web component developers, 49

digest authentication, 484
digital signatures, 470
DNS, 60
document roots, 81
doFilter method, 208, 209, 211

doGet method, 206
domains, 70
doPost method, 206
downloading, GlassFish Server, 66
DUPS_OK_ACKNOWLEDGE mode, 578
durable subscriptions, JMS, 581-583

examples, 623-625, 631-635

E
EAR files, 47
EIS tier, 42

security, 522-525
EJB, security, 503-513
EJB containers, 44

container-managed transactions, 534
message-driven beans, 587-589
onMessage method, invoking, 322-323
services, 263, 264, 503-513

EJB JAR files, 275
ejb-jar.xml file, 276, 459, 506
EJBContext interface, 539, 541
EL, 105, 123-135

backing beans, 183-184
composite expressions, 129
deferred evaluation expressions, 124
expression examples, 135
immediate evaluation expressions, 124
literal expressions, 129, 133
literals, 128
lvalue expressions, 124, 126
managed beans, 336
method expressions, 124, 130
operators, 134
overview, 123-124
parameterized method calls, 131
reserved words, 134
rvalue expressions, 124, 126
tag attribute type, 132
type conversion during expression evaluation, 129
value expressions, 124, 126

embeddable classes, See persistence: embeddable classes
end-to-end security, 457-458
enterprise applications, 33

Index

The Java EE 6 Tutorial • October 2010668

enterprise beans, 41, 54-55
See also business methods
See also Java EE components
See also message-driven beans
See also session beans
accessing, 269
classes, 275
compiling, 285-287
contents, 275-277
defined, 263
dependency injection, 269
deployment, 275
distribution, 271
exceptions, 316-317
getCallerPrincipal method, 510-511
implementor of business logic, 41
interfaces, 269-275, 275
isCallerInRole method, 510-511
JAX-RS resources, 256-258
JNDI lookup, 269
lifecycles, 278-281
local access, 271-273
local interfaces, 272
packaging, 275-276, 285-287
performance, 271
programmatic security, 510-511
remote access, 273-274
remote interfaces, 273
securing, 503-513
singletons, 256-257
timer service, 306-316
types, 264
web services, 265, 274, 303-306

Enterprise Information Systems, See EIS tier
entities

abstract, 367
abstract schema names, 406
application-managed entity managers, 372-373
cascading operations, 364-365

orphans, 365
collections, 418
container-managed entity managers, 371
creating, 387
discriminator columns, 369

entities (Continued)
entity manager, 371-375
finding, 373, 388
inheritance, 367-371, 392-393
inheritance mapping, 368-371
lifecycle, 373
managing, 371-376, 387-389
mapping to multiple tables, 385
non-entity superclasses, 368
overview, 355-366
persistent fields, 356-361
persistent properties, 356-361
persisting, 373-374
primary keys, 361-363
querying, 376-377
relationships, 388
removing, 374, 389
requirements, 356
superclasses, 367-368
synchronizing, 374-375
validating, 359-361

entity providers, 247-248
entity relationships

bidirectional, 363-364
many-to-many, 363, 391
many-to-one, 363
multiplicity, 363
one-to-many, 363
one-to-one, 363
query language, 364
unidirectional, 364

equals method, 362
event and listener model

See also value-change events
listener class, 192
ValueChangeEvent class, 180

examples, 65-74
basic authentication, 494-497
Bean Validation, 398-401
building, 71
CDI, 339-352
classpath, 286
Criteria API, 393-395
directory structure, 72

Index

669

examples (Continued)
JAX-RS, 254-259
JAX-WS, 228-236
JMS

asynchronous message consumption, 603-608
browsing messages in a queue, 608-613
durable subscriptions, 623-625
entities, 635-643
local transactions, 625-630
message acknowledgment, 620-623
multiple servers, 613-619, 643-649, 649-658
session beans, 631-635
synchronous message consumption, 594-603

persistence, 379-401
primary keys, 362
query language, 388-389, 407-411
required software, 65-69
security, 450-453

form-based authentication, 498-502
servlet, 218-220
servlets, 90-99, 284
session beans, 284, 289-295
singleton session beans, 296-303
timer service, 313-315
web clients, 284
web services, 303-306

exceptions
business methods, 293
enterprise beans, 316-317
JMS, 575-576
mapping to error screens, 96
rolling back transactions, 317, 539
transactions, 536, 537

expiration of JMS messages, 579-580
JMSExpiration message header field, 573

Expression Language
See EL

expressions
lvalue expressions, 183
tag attribute type, 132

F
Facelets, 109-122

Facelets (Continued)
See also EL
composite components, 119-121
configuring applications, 114-115
features, 109-111
resources, 122
templating, 117-119
XHTML pages, 112-114

Facelets applications, developing, 111-117
FacesServlet, mapping, 106
filter chains, 208, 211
Filter interface, 208
filters, 208

defining, 208
mapping to web components, 210
mapping to web resources, 210
overriding request methods, 210
overriding response methods, 210
response wrappers, 210

foreign keys, 381
form-based authentication, 482-483
form parameters, 253
forward method, 213

G
garbage collection, 281
GenericServlet interface, 202
getCallerPrincipal method, 510-511
getConnection method, 546
getRemoteUser method, 490
getRequestDispatcher method, 212
getRollbackOnly method, 541, 590
getServletContext method, 213
getSession method, 214
getStatus method, 541
getUserPrincipal method, 490
GlassFish Server

adding users to, 464-465
downloading, 66
enabling debugging, 74
installation tips, 66
securing, 460
server log, 73

Index

The Java EE 6 Tutorial • October 2010670

GlassFish Server (Continued)
SSL connectors, 469
starting, 69
stopping, 70
tools, 62-63

groups, 463
managing, 464-465

@GroupSequence annotation, 661-662

H
hashCode method, 362
header parameters, 253
helper classes, 275

session bean example, 294
HTTP, 227

basic authentication, 481-482
over SSL, 484

HTTP methods, 245-248
HTTP request URLs, 207

query strings, 207
request paths, 207

HTTP requests, 207
See also requests

HTTP responses, 208
See also responses
status codes, 96

HTTPS, 457, 469, 470, 479-480
HttpServlet interface, 202
HttpServletRequest interface, 207, 490
HttpServletResponse interface, 208
HttpSession interface, 214

I
identification, 454-455
implicit navigation, 104
include method, 213
init method, 206
InitialContext interface, 60
initParams attribute, 206
injectable objects, 332
integrity, 468

integrity (Continued)
of data, 454

internationalizing JavaServer Faces applications,
FacesContext.getLocale method, 172

invalidate method, 215
isCallerInRole method, 510-511
isUserInRole method, 490

J
JAAS, 62, 455, 521-522

login modules, 522
JACC, 59, 460
JAF, 61
JAR files, 47

query language, 417
JAR signatures, 456
JASPIC, 59
Java API for JavaBeans Validation, See Bean Validation
Java API for XML Binding, 61
Java API for XML Processing, 61
Java API for XML Web Services, See JAX-WS
Java Authentication and Authorization Service, 455

See also JAAS
Java Authentication Service Provider Interface for

Containers, 59
Java Authorization Contract for Containers, 59

See also JACC
Java BluePrints, 72
Java Cryptography Extension (JCE), 455
Java Database Connectivity API, See JDBC API
Java DB, 63

starting, 71
stopping, 71

Java EE 6 platform, APIs, 51-59
Java EE applications, 35-42

debugging, 73-74
deploying, 285-287
iterative development, 287
running on more than one system, 643-649,

649-658
tiers, 35-42

Java EE clients, 38-39
application clients, 38-39

Index

671

Java EE clients, application clients (Continued)
See also application clients

web clients, 77-99
See also web clients

Java EE components, 38
Java EE Connector Architecture, 530
Java EE Connector architecture, 58
Java EE modules, 47, 48

See also web modules
application client modules, 48
EJB modules, 48, 275
resource adapter modules, 48

Java EE platform, 35-42
JMS and, 561-562

Java EE security model, 43
Java EE servers, 44
Java EE transaction model, 43
Java Generic Security Services, 455
Java GSS-API, 455
Java Message Service (JMS) API, 58

See also message-driven beans
Java Message Service API, See JMS
Java Naming and Directory Interface API, 60-61

See also JNDI
Java Persistence API, 56-57
Java Persistence API query language, See query language
Java Persistence Criteria API, See Criteria API
Java Secure Sockets Extension, 455
Java Servlet technology, 55, 201-220

See also servlets
Java Transaction API, See JTA
JavaBeans Activation Framework, 61
JavaBeans components, 39
JavaMail API, 59
JavaServer Faces application development, 104-108

backing beans, 181-184
bean property, 186
Bean Validation, 196-200
web pages, 137-167

JavaServer Faces applications
HTML tags, 138-165
lifecycle, 106-107
queueing messages, 195

JavaServer Faces core tag library, 137, 166

JavaServer Faces core tag library (Continued)
See also validator tags
action attribute, 150
actionListener tag, 166, 176
attribute tag, 166
convertDateTime tag, 166, 171
convertDateTime tag attributes, 172-173
converter tag, 166, 171
converterId attribute, 170
convertNumber tag, 166, 171, 173-174
convertNumber tag attributes, 173-174
facet tag, 152, 166
loadBundle tag, 166
metadata tag, 163
param tag, 149, 166
selectItem tag, 140, 155, 156, 157-158, 166
selectItems tag, 140, 155, 156, 157-158, 166
type attribute, 175
validateDoubleRange tag, 167, 176
validateLength tag, 167, 176
validateLongRange tag, 167, 176, 178
validator tag, 167
valueChangeListener tag, 166, 175
viewparam tag, 163

JavaServer Faces HTML tag library, See component tags
JavaServer Faces tag libraries, 110

JavaServer Faces core tag library, 137, 166
JavaServer Faces HTML tag library, 137
namespace directives, 138

JavaServer Faces technology, 40, 55-56, 101-108
See also component tags
See also Facelets
advantages, 103-104
FacesContext class

Validator interface, 194
features, 102-103

JavaServer Pages Standard Tag Library, See JSTL
javax.servlet.http package, 202
javax.servlet package, 202
JAX-RS, 57, 239-259

introduction, 224-225
other information sources, 259
reference implementation, 239

JAX-WS, 62

Index

The Java EE 6 Tutorial • October 2010672

JAX-WS (Continued)
defined, 227
examples, 228-236
introduction, 224
service endpoint interfaces, 228
specification, 237

JAXB, 61
JAXP, 61
JCE, 455
JDBC API, 60, 530-531, 546
JMS

achieving reliability and performance, 576-585
application client examples, 594-619
architecture, 563
basic concepts, 562-566
definition, 560
examples, 319-325, 593-658
introduction, 559-562
Java EE platform, 561-562, 585-591
messaging domains, 563-565
programming model, 566-576

JMSCorrelationID message header field, 573
JMSDeliveryMode message header field, 573
JMSDestination message header field, 573
JMSException class, 575-576
JMSExpiration message header field, 573
JMSMessageID message header field, 573
JMSPriority message header field, 573
JMSRedelivered message header field, 573
JMSReplyTo message header field, 573
JMSTimestamp message header field, 573
JMSType message header field, 573
JNDI, 60-61, 545

data source naming subcontexts, 60
enterprise bean lookup, 269
enterprise bean naming subcontexts, 60
environment naming contexts, 60
jms naming subcontext, 568
namespace for JMS administered objects, 567-569
naming contexts, 60
naming environments, 60
naming subcontexts, 60

JSR 299, See Contexts and Dependency Injection (CDI)
for the Java EE platform

JSR 311, See JAX-RS
JSSE, 455
JSTL, 56
JTA, 57

See also transactions, JTA
JTS API, 540

K
Kerberos, 455, 456
key pairs, 470
keystores, 456, 470-472

managing, 470
keytool utility, 470

L
LDAP, 60
lifecycle, JavaServer Faces, 106-107
listener classes, 202

defining, 202
listener interfaces, 202
listeners

HTTP, 460
IIOP, 460

local interfaces, defined, 272
local transactions, JMS, 583-585
localization, Bean Validation, 661
log, server, 73
login

configuring, 481-487
login configuration, 486-487
login method, 488-490
login modules, 521-522
logout method, 488-490

M
managed beans, defined for CDI, 331-332
Managed Beans specification, 57, 329
MapMessage interface, 574
matrix parameters, 253

Index

673

message acknowledgment, JMS
bean-managed transactions, 591
introduction, 577-578
message-driven beans, 588

message bodies, JMS, 574-575
message consumers, JMS, 571-572
message consumption, JMS

asynchronous, 566, 603-608
introduction, 566
synchronous, 566, 594-603

message-driven beans, 54, 267-269
accessing, 267
coding, 321-323, 633, 638, 652
defined, 267
examples, 319-325, 631-635, 635-643, 643-649,

649-658
garbage collection, 281
introduction, 587-589
onMessage method, 268, 322-323
requirements, 321-323
transactions, 534, 540

message headers, JMS, 573-574
message IDs, JMSMessageID message header field, 573
Message interface, 574
message listeners, JMS, 267
message listeners, JMS

examples, 604, 638, 651-652
introduction, 571-572

message producers, JMS, 570
message properties, JMS, 574
message security, 477
message selectors, JMS, introduction, 572
MessageBodyReader interface, 247-248
MessageBodyWriter interface, 247-248
MessageConsumer interface, 571-572
MessageListener interface, 571-572
MessageProducer interface, 570
messages

integrity, 484
MessageFormat pattern, 149, 166
outputFormat tag, 149
param tag, 149, 166
parameter substitution tags, 166
queueing messages, 195

messages (Continued)
securing, 457-458

messages, JMS
body formats, 574-575
browsing, 575
definition, 563
delivery modes, 578-579
expiration, 579-580
headers, 573-574
introduction, 573-575
persistence, 578-579
priority levels, 579
properties, 574

messaging, definition, 559-560
messaging domains, JMS, 563-565

common interfaces, 565
point-to-point, 564
publish/subscribe, 564-565

metadata annotations
resource adapters, 554-555
security, 458

Metamodel API, 435-437
using, 393, 437-438

method expressions, 178
method permissions, 506

annotations, 507-509
mutual authentication, 484-485

N
naming contexts, 60
naming environments, 60
navigation model

action attribute, 150, 178, 179
action methods, 192
ActionEvent class, 179
logical outcome, 192
referencing methods that perform navigation, 179,

192
writing a backing bean method to perform

navigation processing, 192-193
NDS, 60
NetBeans IDE, 68
NIS, 60

Index

The Java EE 6 Tutorial • October 2010674

NON_PERSISTENT delivery mode, 578
non-repudiation, 454

O
ObjectMessage interface, 574
objects, administered (JMS), 567-569
onMessage method

introduction, 571-572
message-driven beans, 268, 322-323, 587

P
package-appclient tool, 63
parameters, extracting, 250-253
path parameters, 252
path templates, 243-245
permissions, security policy, 460
persistence

BLOBs, 386
cascade operations, 385-386
CLOBs, 386
collections, 357-359
configuration, 375
context, 371-376
embeddable classes, 366
entities, 355-366
examples, 379-401
JMS example, 635-643
JMS messages, 578-579
many-to-many, 391
maps, 358
one-to-many, 381
one-to-one, 380-381
overview, 355-377
persistence units, 375-376
persistent fields, 357
primary keys, 361-363

compound, 382-385
generated, 382

properties, 357
queries, 355-377, 388-389, 404-405

See also query language

persistence, queries (Continued)
creating, 438-439
Criteria, 435-446
dynamic, 404
executing, 445-446
expressions, 441-442, 442-443
joins, 440
parameters, 405
path navigation, 441
results, 441-443, 444-445
static, 404
typesafe, 435-446

query language, 364
relationships, 380-381
scope, 375-376
self-referential relationships, 380
temporal types, 387

persistence units
query language, 403, 417

PERSISTENT delivery mode, 578
pluggable audit modules, 460
pluggable authorization providers, 460
point-to-point messaging domain, 564

See also queues
POJOs, 34
policy files, 456
primary keys, 381

compound, 382-385
defined, 361-363
examples, 362
generated, 382

principal, 464
PrintWriter class, 207
priority levels, for messages, 579

JMSPriority message header field, 573
producer methods, 337-338
programmatic security, 450, 459, 476, 504
programming model, JMS, 566-576
properties, See message properties, JMS
providers, JMS, 563
proxies, 227
public key certificates, 484
public-key cryptography, 470

Index

675

publish/subscribe messaging domain
See also topics
durable subscriptions, 581-583
introduction, 564-565

Q
qualifiers, using, 333
Quality of Service, 455
query language

ABS function, 428
abstract schemas, 404, 406, 418
ALL expression, 426
ANY expression, 426
arithmetic functions, 426-428
ASC keyword, 433
AVG function, 431
BETWEEN expression, 410, 423
Boolean literals, 421
Boolean logic, 429
case expressions, 428-429
collection member expressions, 418, 425
collections, 418, 425
compared to SQL, 408, 417, 419
comparison operators, 411, 423
CONCAT function, 427
conditional expressions, 409, 421, 422, 430
constructors, 432
COUNT function, 431
DELETE expression, 411
DELETE statement, 406
DESC keyword, 433
DISTINCT keyword, 407
domain of query, 403, 416, 417
duplicate values, 407
enum literals, 421
equality, 430-431
ESCAPE clause, 424
examples, 388-389, 407-411
EXISTS expression, 426
FETCH JOIN operator, 419
FROM clause, 406, 416-419
grammar, 411-433
GROUP BY clause, 406, 433

query language (Continued)
HAVING clause, 406, 433
identification variables, 406, 416, 417-418
identifiers, 416-417
IN operator, 419, 423-424
INNER JOIN operator, 419
input parameters, 409, 422
IS EMPTY expression, 410
IS FALSE operator, 430
IS NULL expression, 410
IS TRUE operator, 430
JOIN statement, 408, 419
LEFT JOIN operator, 419
LEFT OUTER JOIN operator, 419
LENGTH function, 427
LIKE expression, 410, 424
literals, 421
LOCATE function, 427
LOWER function, 427
MAX function, 431
MEMBER expression, 425
MIN function, 431
MOD function, 428
multiple declarations, 417
multiple relationships, 409
named parameters, 408, 422
navigation, 408-409, 409, 418, 420-421
negation, 430
NOT operator, 430
null values, 424-425, 429-430
numeric comparisons, 430
numeric literals, 421
operator precedence, 422-423
operators, 422-423
ORDER BY clause, 406, 433
parameters, 407
parentheses, 422
path expressions, 404, 419-421
positional parameters, 422
range variables, 418
relationship fields, 404
relationships, 404, 408, 409
return types, 431
root, 418

Index

The Java EE 6 Tutorial • October 2010676

query language (Continued)
scope, 403
SELECT clause, 406, 431-432
setNamedParameter method, 408
SIZE function, 428
SQRT function, 428
state fields, 404
string comparison, 430
string functions, 426-428
string literals, 421
subqueries, 425-426
SUBSTRING function, 427
SUM function, 431
syntax, 406, 411-433
TRIM function, 427
types, 420, 430
UPDATE expression, 406, 411
UPPER function, 427
WHERE clause, 406, 421-431
wildcards, 424

query parameters, 251
query roots, 439-440
Queue interface, 568-569
QueueBrowser interface, 575

JMS client example, 608-613
queues

browsing, 575, 608-613
creating, 568-569, 597-598
injecting resources, 320
introduction, 568-569
temporary, 580, 638

R
realms, 461, 462-463

admin-realm, 463
certificate, 462

adding users, 465
configuring, 460
file, 462

recover method, 578
redelivery of messages, 577, 578

JMSRedelivered message header field, 573
referencing backing bean methods, 178-180

referencing backing bean methods (Continued)
for handling action events, 179, 194
for handling value-change events, 180
for performing navigation, 179, 192
for performing validation, 179-180, 194

relationship fields, query language, 404
relationships

direction, 363-365
unidirectional, 381

reliability, JMS
advanced mechanisms, 581-585
basic mechanisms, 577-580
durable subscriptions, 581-583
local transactions, 583-585
message acknowledgment, 577-578
message expiration, 579-580
message persistence, 578-579
message priority levels, 579
temporary destinations, 580

remote interfaces, defined, 273
Remote Method Invocation (RMI), and

messaging, 559-560
request method designator, 245-248
request method designators, 240-253
request parameters, extracting, 250-253
request/reply mechanism

JMSCorrelationID message header field, 573
JMSReplyTo message header field, 573
temporary destinations and, 580

RequestDispatcher interface, 212
requests, 206

See also HTTP requests
customizing, 210
getting information from, 206

Required transaction attribute, 591
resource adapters, 58, 530, 550-553

metadata annotations, 554-555
security, 523-525

resource bundles, Bean Validation, 660-661
resource classes, 240-253
resource injection, 547-550
resource methods, 240-253
resources, 530-531, 545-557

See also data sources

Index

677

resources (Continued)
JMS, 586

ResponseBuilder class, 247-248
responses, 207

See also HTTP responses
buffering output, 207
customizing, 210
setting headers, 206

RESTful web services, 57, 239-259
defined, 239-240

roles, 463
application, 467-468
declaring, 487-488
mapping to groups, 467-468
mapping to users, 467-468
referencing, 507-509
security, 466-467, 487-488, 506, 507-509

rollback method, 539, 540, 541
rollback method (JMS), 583-585
rollbacks, See transactions, rollbacks
root resource classes, 240
run-as identity, 511-513

S
SAAJ, 61
SASL, 455
schema, deployment descriptors, 459
schemagen tool, 63
scopes, using, 334-335
secure connections, 468-472
Secure Socket Layer (SSL), 468-472
security

annotations, 458, 495, 504
web applications, 476

application, 456
characteristics of, 454-455

application client tier
callback handlers, 521-522

application clients, 521-522
callback handlers, 521
constraints, 477-481
container trust, 513
containers, 450-455, 458-459

security (Continued)
context

enterprise beans, 510-511
declarative, 450, 459, 476, 504
deploying enterprise beans, 513
EIS applications, 522-525

component-managed sign-on, 523
container-managed sign-on, 523

end-to-end, 457-458
enterprise beans, 503-513
example, 450-453
groups, 463
introduction, 449-473
JAAS login modules, 522
Java SE, 455-456
login forms, 521
login modules, 521-522
mechanism features, 453
mechanisms, 455-458
message, 477
message-layer, 457-458
method permissions, 506

annotations, 507-509
policy domain, 464
programmatic, 450, 459, 476, 488-493, 504
propagating identity, 511-513
realms, 462-463
resource adapters, 523-525
role names, 487-488, 507-509
roles, 463, 466-467, 487-488, 506
run-as identity, 511-513
transport-layer, 457, 468-472
users, 463
web applications, 475-502

overview, 475
web components, 475-502

security constraints, 477-481
multiple, 480-481

security domain, 464
security identity

propagating, 511-513
specific identity, 512

security-role-mapping element, 467-468
security-role-ref element, 492-493

Index

The Java EE 6 Tutorial • October 2010678

security role references, 492-493
security roles, 466-467, 506
send method, 570
server, authentication, 484
server log, 73
servers, certificates, 470-472
servers, Java EE

deploying on more than one, 643-649, 649-658
running JMS clients on more than one, 613-619

service methods, servlets, 206
Servlet interface, 202
ServletContext interface, 213
ServletInputStream class, 206
ServletOutputStream class, 207
ServletRequest interface, 206
ServletResponse interface, 207
servlets, 40, 202

binary data, 206, 207
character data, 206, 207
compiling, 285-287
creating, 205-206
examples, 90-99, 218-220, 284
finalizing, 216
initializing, 206
lifecycle, 202-204
lifecycle events, 202
packaging, 285-287
service methods, 206, 217
tracking service requests, 216

session beans, 54, 265-267
activation, 278
bean-managed concurrency, 297, 300
business interfaces, 269
clients, 265
concurrent access, 297-300
container-managed concurrency, 297
databases, 539
eager initialization, 296
examples, 284, 289-295, 296-303, 303-306, 631-635
handling errors, 300
no-interface views, 269
passivation, 278
requirements, 290
singleton, 266, 296-303

session beans (Continued)
stateful, 265, 266
stateless, 265-266, 267
transactions, 534, 539, 540
web services, 274, 304-305

Session interface, 569-570
sessions, 214-215

associating attributes, 214
associating with user, 215
invalidating, 215
notifying objects associated with, 214

sessions, JMS
introduction, 569-570
managing in enterprise bean applications, 586

SessionSynchronization interface, 539
setRollbackOnly method, 539, 541, 590
sign-on

component-managed, 522, 523
container-managed, 522, 523

Simple Authentication and Security Layer, 455
SingleThreadModel interface, 205
SOAP, 223-225, 227, 237
SOAP messages, 46, 61

securing, 457-458
SOAP with Attachments API for Java, See SAAJ
SQL, 60, 408, 417, 419
SQL92, 429
SSL, 457, 468-472, 479-480, 484

connectors
GlassFish Server, 469

handshake, 469
verifying support, 469

standard converters
converter tags, 166, 171
NumberConverter class, 170
using, 169-174

standard validators
See also validator tags
using, 176-178

state fields, query language, 404
StreamMessage interface, 574
subscription names, for durable subscribers, 581
substitution parameters, defining, See messages, param

tag

Index

679

synchronous message consumption, 566
JMS client example, 594-603

T
templating, Facelets, 117-119
temporary JMS destinations, 580

examples, 638, 651-652
TextMessage interface, 574
timer service, 306-316

automatic timers, 306, 311-312
calendar-based timer expressions, 307-309
cancelling timers, 312
creating timers, 309-311
examples, 313-315
exceptions, 312
getInfo method, 312
getNextTimeout method, 312
getTimeRemaining method, 312
getting information, 312
programmatic timers, 306, 309-311
saving timers, 312
transactions, 313

timestamps, for messages, JMSTimestamp message
header field, 573

Topic interface, 568-569
topics

creating, 568-569, 597-598
durable subscriptions, 581-583
introduction, 568-569
temporary, 580, 651-652

transactions, 529-530, 533-543
application-managed, 372-373
attributes, 535-538
bean-managed, 540-541, 541, 590
boundaries, 534, 539, 540
business methods

See business methods, transactions
commits, 534, 539
container-managed, 534-539, 590
container-managed transaction demarcation, 534
defined, 534
distributed, JMS, 589-591
examples, 625-630

transactions (Continued)
exceptions

See exceptions, transactions
JDBC, 542
JMS and enterprise bean applications, 587
JTA, 540
local, JMS, 583-585
managers, 537, 540, 542
message-driven beans, 268

See also message-driven beans, transactions
nested, 534, 540
Required attribute, 591
rollbacks, 534, 539, 540
scope, 535
session beans

See session beans, transactions
timeouts, 541
timer service, 313
web components, 543

transport-guarantee element, 479-480
transport guarantees, 479-480
transport-layer security, 457, 468-472
truststores, 470-472

managing, 470

U
UnavailableException class, 206
undeploying, modules and applications, 89
unified expression language, See EL
Uniform Resource Identifiers (URIs), 239
URI path parameters, 252
URI path templates, 243
user-data-constraint element, 479-480
user data constraints, 478, 479-480
users, 463

adding to GlassFish Server, 464-465
managing, 464-465

UserTransaction interface, 539, 540, 541, 543
message-driven beans, 590

using pages, 121
utility classes, 275

Index

The Java EE 6 Tutorial • October 2010680

V
validation

customizing, 659-660
entities, 359-361
groups, 661-662
localization, 661
messages, 660-661
ordering, 661-662

validation model
referencing a method that performs

validation, 179-180
validator attribute, 146, 178, 179, 194
Validator interface, 192, 194-195
writing a backing bean method to perform

validation, 194-195
Validator implementation classes, 176-177

DoubleRangeValidator class, 167, 176
LengthValidator class, 167, 176
LongRangeValidator class, 167, 176, 178

validator tags, 167
validateDoubleRange tag, 176
validateLength tag, 176
validateLongRange tag, 176, 178

validators
custom validators, 167
registering, 177

value binding
acceptable types of component values, 185
properties, 185-190
value attribute, 184
value expressions, 186

value-change events
processValueChangeEvent method, 195
referencing methods that handle value-change

events, 180
type attribute, 175
ValueChangeEvent class, 175
valueChangeListener attribute, 146, 178, 195
ValueChangeListener class, 175, 195
valueChangeListener tag, 166, 175
writing a backing bean method to handle

value-change events, 195-196
value expressions, 183

ValueExpression class, 183

W
W3C, 61, 227, 237
WAR files, 47
web applications, 81

configuring, 78, 90
deployment descriptors, 78
document roots, 81
maintaining state across requests, 214-215
presentation-oriented, 77
securing, 475-502
security

overview, 475
service-oriented, 77
specifying context parameters, 94
specifying initialization parameters, 95
specifying welcome files, 93

web beans, See Contexts and Dependency Injection
(CDI) for the Java EE platform

web clients, 38, 77-99
examples, 284

web components, 40, 77-79
See also Java EE components
applets bundled with, 40
concurrent access to shared resources, 205
forwarding to other web components, 213
including other web resources, 213
invoking other web resources, 212

Web components, JMS and, 591
web components

mapping exceptions to error screens, 96
mapping filters to, 210
scope objects, 204
securing, 475-502
sharing information, 204
transactions, 543
types, 40
utility classes bundled with, 40
web context, 213

web containers, 44, 78
loading and initializing servlets, 202
mapping URLs to web components, 90

web modules, 48, 81
deploying, 86-87
dynamic reloading, 88

Index

681

web modules (Continued)
undeploying, 89
updating, 88
viewing deployed, 87-88

web pages
XHTML, 105, 110

web-resource-collection element, 478
web resource collections, 478
web resources, 81

Facelets, 122
mapping filters to, 210
unprotected, 478

web services, 45-46
See also enterprise beans, web services
declaring references to, 98-99
endpoint implementation classes, 304
examples, 228-236, 303-306
introduction, 223
JAX-RS compared to JAX-WS, 223-225

web.xml file, 81, 459, 506
welcome files, specifying, 93
work flows, 266
writing backing bean methods, 192-196

for handling action events, 194
for handling value-change events, 195-196
for performing navigation, 192-193
for performing validation, 194-195

writing backing bean properties
converters, 191-192
listeners, 191-192
validators, 191-192

WSDL, 46, 223-225, 227, 237
wsgen tool, 63
wsimport tool, 63

X
xjc tool, 63
XML, 45-46, 227

Index

The Java EE 6 Tutorial • October 2010682

	The Java EE 6 Tutorial
	Preface
	Before You Read This Book
	Oracle GlassFish Server Documentation Set
	Related Documentation
	Symbol Conventions
	Typographic Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Introduction
	Overview
	Java EE 6 Platform Highlights
	Java EE Application Model
	Distributed Multitiered Applications
	Security
	Java EE Components
	Java EE Clients
	Web Clients
	Application Clients
	Applets
	The JavaBeans Component Architecture
	Java EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	Java EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format

	Java EE Application Assembly and Deployment
	Packaging Applications
	Development Roles
	Java EE Product Provider
	Tool Provider
	Application Component Provider
	Enterprise Bean Developer
	Web Component Developer
	Application Client Developer

	Application Assembler
	Application Deployer and Administrator

	Java EE 6 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Faces Technology
	JavaServer Pages Technology
	JavaServer Pages Standard Tag Library
	Java Persistence API
	Java Transaction API
	Java API for RESTful Web Services
	Managed Beans
	Contexts and Dependency Injection for the Java EE Platform (JSR 299)
	Dependency Injection for Java (JSR 330)
	Bean Validation
	Java Message Service API
	Java EE Connector Architecture
	JavaMail API
	Java Authorization Contract for Containers
	Java Authentication Service Provider Interface for Containers

	Java EE 6 APIs in the Java Platform, Standard Edition 6.0
	Java Database Connectivity API
	Java Naming and Directory Interface API
	JavaBeans Activation Framework
	Java API for XML Processing
	Java Architecture for XML Binding
	SOAP with Attachments API for Java
	Java API for XML Web Services
	Java Authentication and Authorization Service

	GlassFish Server Tools

	Using the Tutorial Examples
	Required Software
	Java Platform, Standard Edition
	Java EE 6 Software Development Kit
	SDK Installation Tips

	Java EE 6 Tutorial Component
	To Obtain the Tutorial Component Using the Update Tool
	To Obtain the Tutorial Component from the java.net Web Site

	NetBeans IDE
	To Install NetBeans IDE without GlassFish Server
	To Add GlassFish Server as a Server in NetBeans IDE

	Apache Ant
	To Obtain Apache Ant

	Starting and Stopping the GlassFish Server
	Starting the Administration Console
	To Start the Administration Console in NetBeans IDE

	Starting and Stopping the Java DB Server
	To Start the Database Server Using NetBeans IDE

	Building the Examples
	Tutorial Example Directory Structure
	Getting the Latest Updates to the Tutorial
	To Update the Tutorial Through the Update Center

	Debugging Java EE Applications
	Using the Server Log
	To Use the Log Viewer

	Using a Debugger
	To Debug an Application Using a Debugger

	The Web Tier
	Getting Started with Web Applications
	Web Applications
	Web Application Lifecycle
	Web Modules: The hello1 Example
	Examining the hello1 Web Module
	To View the hello1 Web Module Using NetBeans IDE

	Packaging a Web Module
	To Set the Context Root
	To Build and Package the hello1 Web Module Using NetBeans IDE
	To Build and Package the hello1 Web Module Using Ant

	Deploying a Web Module
	To Deploy the hello1 Web Module Using NetBeans IDE
	To Deploy the hello1 Web Module Using Ant

	Running a Deployed Web Module
	To Run a Deployed Web Module

	Listing Deployed Web Modules
	To List Deployed Web Modules Using the Administration Console
	To List Deployed Web Modules Using the asadmin Command

	Updating a Web Module
	To Update a Deployed Web Module

	Dynamic Reloading
	To Disable or Modify Dynamic Reloading

	Undeploying Web Modules
	To Undeploy the hello1 Web Module Using NetBeans IDE
	To Undeploy the hello1 Web Module Using Ant

	Configuring Web Applications: The hello2 Example
	Mapping URLs to Web Components
	Examining the hello2 Web Module
	To View the hello2 Web Module Using NetBeans IDE

	Building, Packaging, Deploying, and Running the hello2 Example
	To Build, Package, Deploy, and Run the hello2 Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the hello2 Example Using Ant

	Declaring Welcome Files
	Setting Context and Initialization Parameters
	To Add a Context Parameter Using NetBeans IDE
	To Create a web.xml File Using NetBeans IDE
	To Add an Initialization Parameter Using NetBeans IDE

	Mapping Errors to Error Screens
	To Set Up Error Mapping Using NetBeans IDE

	Declaring Resource References
	Declaring a Reference to a Resource
	Declaring a Reference to a Web Service

	Further Information about Web Applications

	JavaServer Faces Technology
	What Is a JavaServer Faces Application?
	JavaServer Faces Technology Benefits
	Creating a Simple JavaServer Faces Application
	Developing the Backing Bean
	Creating the Web Page
	Mapping the FacesServlet Instance
	The Lifecycle of the hello Application
	To Build, Package, Deploy, and Run the Application in NetBeans IDE

	Further Information about JavaServer Faces Technology

	Introduction to Facelets
	What Is Facelets?
	Developing a Simple Facelets Application
	Creating a Facelets Application
	Developing a Backing Bean
	Creating Facelets Views

	Configuring the Application
	Building, Packaging, Deploying, and Running the guessnumber Facelets Example
	To Build, Package, and Deploy the guessnumber Example Using NetBeans IDE
	To Build, Package, and Deploy the guessnumber Example Using Ant
	To Run the guessnumber Example

	Templating
	Composite Components
	Resources

	Expression Language
	Overview of the EL
	Immediate and Deferred Evaluation Syntax
	Immediate Evaluation
	Deferred Evaluation

	Value and Method Expressions
	Value Expressions
	Referencing Objects Using Value Expressions
	Referring to Object Properties Using Value Expressions
	Where Value Expressions Can Be Used

	Method Expressions
	Parameterized Method Calls

	Defining a Tag Attribute Type
	Literal Expressions
	Operators
	Reserved Words
	Examples of EL Expressions

	Using JavaServer Faces Technology in Web Pages
	Setting Up a Page
	Adding Components to a Page Using HTML Tags
	Common Component Tag Attributes
	The id Attribute
	The immediate Attribute
	The rendered Attribute
	The style and styleClass Attributes
	The value and binding Attributes

	Adding HTML Head and Body Tags
	Adding a Form Component
	Using Text Components
	Rendering a Text Field with the h:inputText Tag
	Rendering a Password Field with the h:inputSecret Tag
	Rendering a Label with the h:outputLabel Tag
	Rendering a Hyperlink with the h:outputLink Tag
	Displaying a Formatted Message with the h:outputFormat Tag

	Using Command Component Tags for Performing Actions and Navigation
	Rendering a Button with the h:commandButton Tag
	Rendering a Hyperlink with the h:commandLink Tag

	Adding Graphics and Images with the h:graphicImage Tag
	Laying Out Components with the h:panelGrid and h:panelGroup Tags
	Displaying Components for Selecting One Value
	Displaying a Check Box Using the h:selectBooleanCheckbox Tag
	Displaying a Menu Using the h:selectOneMenu Tag

	Displaying Components for Selecting Multiple Values
	Using the f:selectItem and f:selectItems Tags
	Using the f:selectItems Tag
	Using the f:selectItem Tag

	Using Data-Bound Table Components
	Displaying Error Messages with the h:message and h:messages Tags
	Creating Bookmarkable URLs with the h:button and h:link Tags
	Using View Parameters to Configure Bookmarkable URLs
	Resource Relocation Using h:output Tags

	Using Core Tags

	Using Converters, Listeners, and Validators
	Using the Standard Converters
	Converting a Component’s Value
	Using DateTimeConverter
	Using NumberConverter

	Registering Listeners on Components
	Registering a Value-Change Listener on a Component
	Registering an Action Listener on a Component

	Using the Standard Validators
	Validating a Component’s Value
	Using LongRangeValidator

	Referencing a Backing Bean Method
	Referencing a Method That Performs Navigation
	Referencing a Method That Handles an Action Event
	Referencing a Method That Performs Validation
	Referencing a Method That Handles a Value-Change Event

	Developing with JavaServer Faces Technology
	Backing Beans
	Creating a Backing Bean
	Using the EL to Reference Backing Beans

	Writing Bean Properties
	Writing Properties Bound to Component Values
	UIInput and UIOutput Properties
	UIData Properties
	UISelectBoolean Properties
	UISelectMany Properties
	UISelectOne Properties
	UISelectItem Properties
	UISelectItems Properties

	Writing Properties Bound to Component Instances
	Writing Properties Bound to Converters, Listeners, or Validators

	Writing Backing Bean Methods
	Writing a Method to Handle Navigation
	Writing a Method to Handle an Action Event
	Writing a Method to Perform Validation
	Writing a Method to Handle a Value-Change Event

	Using Bean Validation
	Validating Null and Empty Strings

	Java Servlet Technology
	What Is a Servlet?
	Servlet Lifecycle
	Handling Servlet Lifecycle Events
	Defining the Listener Class

	Handling Servlet Errors

	Sharing Information
	Using Scope Objects
	Controlling Concurrent Access to Shared Resources

	Creating and Initializing a Servlet
	Writing Service Methods
	Getting Information from Requests
	Constructing Responses

	Filtering Requests and Responses
	Programming Filters
	Programming Customized Requests and Responses
	Specifying Filter Mappings
	To Specify Filter Mappings Using NetBeans IDE

	Invoking Other Web Resources
	Including Other Resources in the Response
	Transferring Control to Another Web Component

	Accessing the Web Context
	Maintaining Client State
	Accessing a Session
	Associating Objects with a Session
	Session Management
	To Set the Timeout Period Using NetBeans IDE

	Session Tracking

	Finalizing a Servlet
	Tracking Service Requests
	Notifying Methods to Shut Down
	Creating Polite Long-Running Methods

	The mood Example Application
	Components of the mood Example Application
	Building, Packaging, Deploying, and Running the mood Example
	To Build, Package, Deploy, and Run the mood Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the mood Example Using Ant

	Further Information about Java Servlet Technology

	Web Services
	Introduction to Web Services
	What Are Web Services?
	Types of Web Services
	“Big” Web Services
	RESTful Web Services

	Deciding Which Type of Web Service to Use

	Building Web Services with JAX-WS
	Creating a Simple Web Service and Clients with JAX-WS
	Requirements of a JAX-WS Endpoint
	Coding the Service Endpoint Implementation Class
	Building, Packaging, and Deploying the Service
	To Build, Package, and Deploy the Service Using NetBeans IDE
	To Build, Package, and Deploy the Service Using Ant

	Testing the Methods of a Web Service Endpoint
	To Test the Service without a Client

	A Simple JAX-WS Application Client
	Coding the Application Client
	Building, Packaging, Deploying, and Running the Application Client
	To Build, Package, Deploy, and Run the Application Client Using NetBeans IDE
	To Build, Package, Deploy, and Run the Application Client Using Ant

	A Simple JAX-WS Web Client
	Coding the Servlet
	Building, Packaging, Deploying, and Running the Web Client
	To Build, Package, Deploy, and Run the Web Client Using NetBeans IDE
	To Build, Package, Deploy, and Run the Web Client Using Ant

	Types Supported by JAX-WS
	Web Services Interoperability and JAX-WS
	Further Information about JAX-WS

	Building RESTful Web Services with JAX-RS
	What Are RESTful Web Services?
	Creating a RESTful Root Resource Class
	Developing RESTful Web Services with JAX-RS
	Overview of a JAX-RS Application
	The @Path Annotation and URI Path Templates
	Responding to HTTP Resources
	The Request Method Designator Annotations
	Using Entity Providers to Map HTTP Response and Request Entity Bodies

	Using @Consumes and @Produces to Customize Requests and Responses
	The @Produces Annotation
	The @Consumes Annotation

	Extracting Request Parameters

	Example Applications for JAX-RS
	A RESTful Web Service
	To Create a RESTful Web Service Using NetBeans IDE

	The rsvp Example Application
	Components of the rsvp Example Application
	Running the rsvp Example Application
	To Run the rsvp Example Application in NetBeans IDE
	To Run the rsvp Example Application Using Ant

	Real-World Examples

	Further Information about JAX-RS

	Enterprise Beans
	Enterprise Beans
	What Is an Enterprise Bean?
	Benefits of Enterprise Beans
	When to Use Enterprise Beans
	Types of Enterprise Beans

	What Is a Session Bean?
	Types of Session Beans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	When to Use Session Beans

	What Is a Message-Driven Bean?
	What Makes Message-Driven Beans Different from Session Beans?
	When to Use Message-Driven Beans

	Accessing Enterprise Beans
	Using Enterprise Beans in Clients
	Portable JNDI Syntax

	Deciding on Remote or Local Access
	Local Clients
	Accessing Local Enterprise Beans Using the No-Interface View
	Accessing Local Enterprise Beans That Implement Business Interfaces

	Remote Clients
	Web Service Clients
	Method Parameters and Access
	Isolation
	Granularity of Accessed Data

	The Contents of an Enterprise Bean
	Packaging Enterprise Beans in EJB JAR Modules
	Packaging Enterprise Beans in WAR Modules

	Naming Conventions for Enterprise Beans
	The Lifecycles of Enterprise Beans
	The Lifecycle of a Stateful Session Bean
	The Lifecycle of a Stateless Session Bean
	The Lifecycle of a Singleton Session Bean
	The Lifecycle of a Message-Driven Bean

	Further Information about Enterprise Beans

	Getting Started with Enterprise Beans
	Creating the Enterprise Bean
	Coding the Enterprise Bean Class
	Creating the converter Web Client
	Building, Packaging, Deploying, and Running the converter Example
	To Build, Package, and Deploy the converter Example in NetBeans IDE
	To Build, Package, and Deploy the converter Example Using Ant
	To Run the converter Example

	Modifying the Java EE Application
	To Modify a Class File

	Running the Enterprise Bean Examples
	The cart Example
	The Business Interface
	Session Bean Class
	Lifecycle Callback Methods
	Business Methods

	The @Remove Method
	Helper Classes
	Building, Packaging, Deploying, and Running the cart Example
	To Build, Package, Deploy, and Run the cart Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the cart Example Using Ant
	The all Task

	A Singleton Session Bean Example: counter
	Creating a Singleton Session Bean
	Initializing Singleton Session Beans
	Managing Concurrent Access in a Singleton Session Bean
	Container-Managed Concurrency
	Bean-Managed Concurrency

	Handling Errors in a Singleton Session Bean

	The Architecture of the counter Example
	Building, Packaging, Deploying, and Running the counter Example
	To Build, Package, Deploy, and Run the counter Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the counter Example Using Ant

	A Web Service Example: helloservice
	The Web Service Endpoint Implementation Class
	Stateless Session Bean Implementation Class
	Building, Packaging, Deploying, and Testing the helloservice Example
	To Build, Package, and Deploy the helloservice Example Using NetBeans IDE
	To Build, Package, and Deploy the helloservice Example Using Ant
	To Test the Service without a Client

	Using the Timer Service
	Creating Calendar-Based Timer Expressions
	Specifying Multiple Values in Calendar Expressions
	Using Wildcards in Calendar Expressions
	Specifying a List of Values
	Specifying a Range of Values
	Specifying Intervals

	Programmatic Timers
	The @Timeout Method
	Creating Programmatic Timers

	Automatic Timers
	Canceling and Saving Timers
	Getting Timer Information
	Transactions and Timers
	The timersession Example
	Building, Packaging, Deploying, and Running the timersession Example
	To Build, Package, Deploy, and Run the timersession Example Using NetBeans IDE
	To Build, Package, and Deploy the timersession Example Using Ant
	To Run the Web Client

	Handling Exceptions

	A Message-Driven Bean Example
	simplemessage Example Application Overview
	The simplemessage Application Client
	The Message-Driven Bean Class
	The onMessage Method

	Packaging, Deploying, and Running the simplemessage Example
	Creating the Administered Objects for the simplemessage Example
	To Build, Deploy, and Run the simplemessage Application Using NetBeans IDE
	To Build, Deploy, and Run the simplemessage Application Using Ant
	Removing the Administered Objects for the simplemessage Example

	Contexts and Dependency Injection for the Java EE Platform
	Introduction to Contexts and Dependency Injection for the Java EE Platform
	Overview of CDI
	About Beans
	About Managed Beans
	Beans as Injectable Objects
	Using Qualifiers
	Injecting Beans
	Using Scopes
	Giving Beans EL Names
	Adding Setter and Getter Methods
	Using a Managed Bean in a Facelets Page
	Injecting Objects by Using Producer Methods
	Configuring a CDI Application
	Further Information about CDI

	Running the Basic Contexts and Dependency Injection Examples
	The simplegreeting CDI Example
	The simplegreeting Source Files
	The Facelets Template and Page
	Configuration Files
	Building, Packaging, Deploying, and Running the simplegreeting CDI Example
	To Build, Package, and Deploy the simplegreeting Example Using NetBeans IDE
	To Build, Package, and Deploy the simplegreeting Example Using Ant
	To Run the simplegreeting Example

	The guessnumber CDI Example
	The guessnumber Source Files
	The @MaxNumber and @Random Qualifier Interfaces
	The Generator Managed Bean
	The UserNumberBean Managed Bean

	The Facelets Page
	Building, Packaging, Deploying, and Running the guessnumber CDI Example
	To Build, Package, and Deploy the guessnumber Example Using NetBeans IDE
	To Build, Package, and Deploy the guessnumber Example Using Ant
	To Run the guessnumber Example

	Persistence
	Introduction to the Java Persistence API
	Entities
	Requirements for Entity Classes
	Persistent Fields and Properties in Entity Classes
	Persistent Fields
	Persistent Properties
	Using Collections in Entity Fields and Properties
	Validating Persistent Fields and Properties

	Primary Keys in Entities
	Multiplicity in Entity Relationships
	Direction in Entity Relationships
	Bidirectional Relationships
	Unidirectional Relationships
	Queries and Relationship Direction
	Cascade Operations and Relationships
	Orphan Removal in Relationships

	Embeddable Classes in Entities

	Entity Inheritance
	Abstract Entities
	Mapped Superclasses
	Non-Entity Superclasses
	Entity Inheritance Mapping Strategies
	The Single Table per Class Hierarchy Strategy
	The Table per Concrete Class Strategy
	The Joined Subclass Strategy

	Managing Entities
	The EntityManager Interface
	Container-Managed Entity Managers
	Application-Managed Entity Managers
	Finding Entities Using the EntityManager
	Managing an Entity Instance’s Lifecycle
	Persisting Entity Instances
	Removing Entity Instances
	Synchronizing Entity Data to the Database

	Persistence Units

	Querying Entities
	Further Information about Persistence

	Running the Persistence Examples
	The order Application
	Entity Relationships in the order Application
	Self-Referential Relationships
	One-to-One Relationships
	One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
	Unidirectional Relationships

	Primary Keys in the order Application
	Generated Primary Keys
	Compound Primary Keys

	Entity Mapped to More Than One Database Table
	Cascade Operations in the order Application
	BLOB and CLOB Database Types in the order Application
	Temporal Types in the order Application
	Managing the order Application’s Entities
	Creating Entities
	Finding Entities
	Setting Entity Relationships
	Using Queries
	Removing Entities

	Building, Packaging, Deploying, and Running the order Application
	To Build, Package, Deploy, and Run order UsingNetBeans IDE
	To Build, Package, Deploy, and Run order Using Ant
	The all Task

	The roster Application
	Relationships in the roster Application
	The Many-To-Many Relationship in roster

	Entity Inheritance in the roster Application
	Criteria Queries in the roster Application
	Metamodel Classes in the roster Application
	Obtaining a CriteriaBuilder Instance in RequestBean
	Creating Criteria Queries in RequestBean's Business Methods

	Automatic Table Generation in the roster Application
	Building, Packaging, Deploying, and Running the roster Application
	To Build, Package, Deploy, and Run roster Using NetBeans IDE
	To Build, Package, Deploy, and Run roster Using Ant
	The all Task

	The address-book Application
	Bean Validation Constraints in address-book
	Specifying Error Messages for Constraints in address-book
	Validating Contact Input from a JavaServer Faces Application
	Building, Packaging, Deploying, and Running the address-book Application
	Building, Packaging, Deploying, and Running the address-book Application in NetBeans IDE
	Building, Packaging, Deploying, and Running the address-book Application Using Ant

	The Java Persistence Query Language
	Query Language Terminology
	Creating Queries Using the Java Persistence Query Language
	Named Parameters in Queries
	Positional Parameters in Queries

	Simplified Query Language Syntax
	Select Statements
	Update and Delete Statements

	Example Queries
	Simple Queries
	A Basic Select Query
	Eliminating Duplicate Values
	Using Named Parameters

	Queries That Navigate to Related Entities
	A Simple Query with Relationships
	Navigating to Single-Valued Relationship Fields
	Traversing Relationships with an Input Parameter
	Traversing Multiple Relationships
	Navigating According to Related Fields

	Queries with Other Conditional Expressions
	The LIKE Expression
	The IS NULL Expression
	The IS EMPTY Expression
	The BETWEEN Expression
	Comparison Operators

	Bulk Updates and Deletes
	Update Queries
	Delete Queries

	Full Query Language Syntax
	BNF Symbols
	BNF Grammar of the Java Persistence Query Language
	FROM Clause
	Identifiers
	Identification Variables
	Range Variable Declarations
	Collection Member Declarations
	Joins

	Path Expressions
	Examples of Path Expressions
	Expression Types
	Navigation

	WHERE Clause
	Literals
	Input Parameters
	Conditional Expressions
	Operators and Their Precedence
	BETWEEN Expressions
	IN Expressions
	LIKE Expressions
	NULL Comparison Expressions
	Empty Collection Comparison Expressions
	Collection Member Expressions
	Subqueries
	Functional Expressions
	Case Expressions
	NULL Values
	Equality Semantics

	SELECT Clause
	Return Types
	The DISTINCT Keyword
	Constructor Expressions

	ORDER BY Clause
	GROUP BY and HAVING Clauses

	Using the Criteria API to Create Queries
	Overview of the Criteria and Metamodel APIs
	Using the Metamodel API to Model Entity Classes
	Using Metamodel Classes

	Using the Criteria API and Metamodel API to Create Basic Typesafe Queries
	Creating a Criteria Query
	Query Roots
	Querying Relationships Using Joins
	Path Navigation in Criteria Queries
	Restricting Criteria Query Results
	The Expression Interface Methods
	Expression Methods in the CriteriaBuilder Interface

	Managing Criteria Query Results
	Ordering Results
	Grouping Results

	Executing Queries
	Single-Valued Query Results
	Collection-Valued Query Results

	Security
	Introduction to Security in the Java EE Platform
	Overview of Java EE Security
	A Simple Security Example
	Step 1: Initial Request
	Step 2: Initial Authentication
	Step 3: URL Authorization
	Step 4: Fulfilling the Original Request
	Step 5: Invoking Enterprise Bean Business Methods

	Features of a Security Mechanism
	Characteristics of Application Security

	Security Mechanisms
	Java SE Security Mechanisms
	Java EE Security Mechanisms
	Application-Layer Security
	Transport-Layer Security
	Message-Layer Security

	Securing Containers
	Using Annotations to Specify Security Information
	Using Deployment Descriptors for Declarative Security
	Using Programmatic Security

	Securing the GlassFish Server
	Working with Realms, Users, Groups, and Roles
	What Are Realms, Users, Groups, and Roles?
	What Is a Realm?
	What Is a User?
	What Is a Group?
	What Is a Role?
	Some Other Terminology

	Managing Users and Groups on the GlassFish Server
	To Add Users to the GlassFish Server
	Adding Users to the Certificate Realm

	Setting Up Security Roles
	Mapping Roles to Users and Groups

	Establishing a Secure Connection Using SSL
	Verifying and Configuring SSL Support
	Working with Digital Certificates
	Creating a Server Certificate
	To Use keytool to Create a Server Certificate

	Further Information about Security

	Getting Started Securing Web Applications
	Overview of Web Application Security
	Securing Web Applications
	Specifying Security Constraints
	Specifying a Web Resource Collection
	Specifying an Authorization Constraint
	Specifying a Secure Connection
	Specifying Separate Security Constraints for Various Resources

	Specifying Authentication Mechanisms
	HTTP Basic Authentication
	Form-Based Authentication
	Digest Authentication
	Client Authentication
	Mutual Authentication
	Specifying an Authentication Mechanism in the Deployment Descriptor

	Declaring Security Roles

	Using Programmatic Security with Web Applications
	Authenticating Users Programmatically
	Checking Caller Identity Programmatically
	Example Code for Programmatic Security
	Declaring and Linking Role References

	Examples: Securing Web Applications
	To Set Up Your System for Running the Security Examples
	Example: Basic Authentication with a Servlet
	Specifying Security for Basic Authentication Using Annotations
	To Build, Package, and Deploy the Servlet Basic Authentication Example Using NetBeans IDE
	To Build, Package, and Deploy the Servlet Basic Authentication Example Using Ant
	To Run the Basic Authentication Servlet

	Example: Form-Based Authentication with a JavaServer Faces Application
	Creating the Login Form and the Error Page
	Specifying Security for the Form-Based Authentication Example
	To Build, Package, and Deploy the Form-Based Authentication Example Using NetBeans IDE
	To Build, Package, and Deploy the Form-Based Authentication Example Using Ant
	To Run the Form-Based Authentication Example

	Getting Started Securing Enterprise Applications
	Securing Enterprise Beans
	Securing an Enterprise Bean Using Declarative Security
	Specifying Authorized Users by Declaring Security Roles
	Specifying an Authentication Mechanism and Secure Connection

	Securing an Enterprise Bean Programmatically
	Accessing an Enterprise Bean Caller’s Security Context

	Propagating a Security Identity (Run-As)
	Configuring a Component’s Propagated Security Identity
	Trust between Containers

	Deploying Secure Enterprise Beans

	Examples: Securing Enterprise Beans
	Example: Securing an Enterprise Bean with Declarative Security
	Annotating the Bean
	To Build, Package, Deploy, and Run the Secure Cart Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the Secure Cart Example Using Ant

	Example: Securing an Enterprise Bean with Programmatic Security
	Modifying ConverterBean
	Modifying ConverterServlet
	To Build, Package, and Deploy the Secure Converter Example Using NetBeans IDE
	To Build, Package, and Deploy the Secure Converter Example Using Ant
	To Run the Secure Converter Example

	Securing Application Clients
	Using Login Modules
	Using Programmatic Login

	Securing Enterprise Information Systems Applications
	Container-Managed Sign-On
	Component-Managed Sign-On
	Configuring Resource Adapter Security
	To Map an Application Principal to EIS Principals

	Java EE Supporting Technologies
	Introduction to Java EE Supporting Technologies
	Transactions
	Resources
	The Java EE Connector Architecture and Resource Adapters
	Java Database Connectivity Software

	Java Message Service

	Transactions
	What Is a Transaction?
	Container-Managed Transactions
	Transaction Attributes
	Required Attribute
	RequiresNew Attribute
	Mandatory Attribute
	NotSupported Attribute
	Supports Attribute
	Never Attribute
	Summary of Transaction Attributes
	Setting Transaction Attributes

	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean’s Instance Variables
	Methods Not Allowed in Container-Managed Transactions

	Bean-Managed Transactions
	JTA Transactions
	Returning without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Transaction Timeouts
	To Set a Transaction Timeout

	Updating Multiple Databases
	Transactions in Web Components
	Further Information about Transactions

	Resource Connections
	Resources and JNDI Naming
	DataSource Objects and Connection Pools
	Resource Injection
	Field-Based Injection
	Method-Based Injection
	Class-Based Injection

	Resource Adapters and Contracts
	Management Contracts
	Lifecycle Management
	Work Management Contract

	Generic Work Context Contract
	Outbound and Inbound Contracts

	Metadata Annotations
	Common Client Interface
	Further Information about Resources

	Java Message Service Concepts
	Overview of the JMS API
	What Is Messaging?
	What Is the JMS API?
	When Can You Use the JMS API?
	How Does the JMS API Work with the Java EE Platform?

	Basic JMS API Concepts
	JMS API Architecture
	Messaging Domains
	Point-to-Point Messaging Domain
	Publish/Subscribe Messaging Domain
	Programming with the Common Interfaces

	Message Consumption

	The JMS API Programming Model
	JMS Administered Objects
	JMS Connection Factories
	JMS Destinations

	JMS Connections
	JMS Sessions
	JMS Message Producers
	JMS Message Consumers
	JMS Message Listeners
	JMS Message Selectors

	JMS Messages
	Message Headers
	Message Properties
	Message Bodies

	JMS Queue Browsers
	JMS Exception Handling

	Creating Robust JMS Applications
	Using Basic Reliability Mechanisms
	Controlling Message Acknowledgment
	Specifying Message Persistence
	Setting Message Priority Levels
	Allowing Messages to Expire
	Creating Temporary Destinations

	Using Advanced Reliability Mechanisms
	Creating Durable Subscriptions
	Using JMS API Local Transactions

	Using the JMS API in Java EE Applications
	Using @Resource Annotations in Enterprise Bean or Web Components
	Using Session Beans to Produce and to Synchronously Receive Messages
	Resource Management
	Transactions

	Using Message-Driven Beans to Receive Messages Asynchronously
	Managing Distributed Transactions
	Using the JMS API with Application Clients and Web Components

	Further Information about JMS

	Java Message Service Examples
	Writing Simple JMS Applications
	A Simple Example of Synchronous Message Receives
	Writing the Clients for the Synchronous Receive Example
	Starting the JMS Provider
	To Create JMS Administered Objects for the Synchronous Receive Example
	Building, Packaging, Deploying, and Running the Clients for the Synchronous Receive Example
	To Build and Package the Clients for the Synchronous Receive Example Using NetBeans IDE
	To Deploy and Run the Clients for the Synchronous Receive Example Using NetBeans IDE
	To Build and Package the Clients for the Synchronous Receive Example Using Ant
	To Deploy and Run the Clients for the Synchronous Receive Example Using Ant and the appclient Command

	A Simple Example of Asynchronous Message Consumption
	Writing the Clients for the Asynchronous Receive Example
	To Build and Package the AsynchConsumer Client Using NetBeans IDE
	To Deploy and Run the Clients for the Asynchronous Receive Example Using NetBeans IDE
	To Build and Package the AsynchConsumer Client Using Ant
	To Deploy and Run the Clients for the Asynchronous Receive Example Using Ant and the appclient Command

	A Simple Example of Browsing Messages in a Queue
	Writing the Client for the Queue Browser Example
	To Build, Package, Deploy, and Run the MessageBrowser Client Using NetBeans IDE
	To Build, Package, Deploy, and Run the MessageBrowser Client Using Ant and the appclient Command

	Running JMS Clients on Multiple Systems
	To Create Administered Objects for Multiple Systems
	Changing the Default Host Name
	To Change the Default Host Name Using the Administration Console
	To Change the Default Host Name Using the asadmin Command

	To Edit, Build, Package, Deploy, and Run the Clients Using NetBeans IDE
	To Edit, Build, Package, Deploy, and Run the Clients Using Ant and the appclient Command

	Undeploying and Cleaning the Simple JMS Examples

	Writing Robust JMS Applications
	A Message Acknowledgment Example
	To Build, Package, Deploy, and Run the ackequivexample Using NetBeans IDE
	To Build, Package, Deploy, and Run ackequivexample Using Ant

	A Durable Subscription Example
	To Build, Package, Deploy, and Run durablesubscriberexample Using NetBeans IDE
	To Build, Package, Deploy, and Run durablesubscriberexample Using Ant

	A Local Transaction Example
	To Build, Package, Deploy, and Run transactedexample Using NetBeans IDE
	To Build, Package, Deploy, and Run transactedexample Using Ant and the appclient Command

	An Application That Uses the JMS API with a Session Bean
	Writing the Application Components for the clientsessionmdb Example
	Coding the Application Client: MyAppClient.java
	Coding the Publisher Session Bean
	Coding the Message-Driven Bean: MessageBean.java

	Creating Resources for the clientsessionmdb Example
	To Build, Package, Deploy, and Run the clientsessionmdb Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the clientsessionmdb Example Using Ant

	An Application That Uses the JMS API with an Entity
	Overview of the clientmdbentity Example Application
	Writing the Application Components for the clientmdbentity Example
	Coding the Application Client: HumanResourceClient.java
	Coding the Message-Driven Beans for the clientmdbentity Example
	Coding the Entity Class for the clientmdbentity Example

	Creating Resources for the clientmdbentity Example
	To Build, Package, Deploy, and Run the clientmdbentity Example Using NetBeans IDE
	To Build, Package, Deploy, and Run the clientmdbentity Example Using Ant

	An Application Example That Consumes Messages from a Remote Server
	Overview of the consumeremote Example Modules
	Writing the Module Components for the consumeremote Example
	Creating Resources for the consumeremote Example
	Using Two Application Servers for the consumeremote Example
	To Build, Package, Deploy, and Run the consumeremoteModules Using NetBeans IDE
	To Build, Package, Deploy, and Run the consumeremote Modules Using Ant

	An Application Example That Deploys a Message-Driven Bean on Two Servers
	Overview of the sendremote Example Modules
	Writing the Module Components for the sendremote Example
	Coding the Application Client: MultiAppServerClient.java
	Coding the Message-Driven Bean: ReplyMsgBean.java

	Creating Resources for the sendremote Example
	To Use Two Application Servers for the sendremote Example
	To Build, Package, Deploy, and Run the sendremote Modules Using NetBeans IDE
	To Build, Package, Deploy, and Run the sendremote Modules Using Ant

	Advanced Bean Validation Concepts and Examples
	Creating Custom Constraints
	Using the Built-In Constraints To Make a New Constraint

	Customizing Validator Messages
	The ValidationMessages Resource Bundle
	Localizing Validation Messages

	Grouping Constraints
	Customizing Group Validation Order

	Index

