
York University EECS 4101/5101 June 9, 2020

Homework Assignment #4
Due: June 17, 2020 at 12:00 noon

1. In class, we discussed how various priority queue implementations can be used to implement Prim’s algorithm
for finding minimum spanning trees (MST).

Now we consider a different greedy MST algorithm. Its input is a connected graph G = (V,E) with a
positive edge weight w(e) for each edge e. We assume the vertices of the graph are labelled 1..n. Assume
the input graph is provided in an adjacency list representation (see Section 22.1 of the textbook).

1 MST(G)
2 T ← {} // set that will store the edges of the MST
3 for i← 1..n
4 Vi ← {i}
5 Ei ← {(i, j) : j is a vertex and (i, j) is an edge of G} // set of all edges incident with vertex i
6 end for
7 while there is more than one set Vi

8 choose any Vi

9 extract minimum weight edge (u, v) from Ei

10 one of the endpoints u of this edge is in Vi; let Vj be the set that contains the other endpoint v
11 if i 6= j then
12 T ← T ∪ {(u, v)}
13 combine Vi and Vj into Vi (destroying Vj)
14 combine Ei and Ej into Ei (destroying Ej)
15 end if
16 end while
17 return T
18 end MST

Your goal is to implement this algorithm using Fibonacci heaps to store each of the sets Vi and Ei.

(a) Explain in detail how Fibonacci heaps could store the information needed by the algorithm. Would
you have to add any additional fields to nodes in the heaps or use any additional data structures?

(b) Explain how you would use your data structure in part (a) to implement line 5, 10, 11, 13 and 14. In
order to achieve good efficiency, when would you run the Consolidate routine?

(c) Draw a picture of the state of all your data structures after executing two iterations of the while loop
in the algorithm on the following input graph. Assume that in each of those two iterations, you chose
the Vi that contains vertex 1.

2

1

2
3

4
5

2

1
3

5

4

4

(d) If the input graph has n nodes and m edges, give a good bound on the worst-case running time of the
algorithm using your data structure.

1 over. . .



EECS 4101/5101 Assignment 4 June 9, 2020

Remark: Let’s check that this algorithm does indeed produce a MST. The while loop satisfies the
following loop invariant.

1. The Vi sets form a partition of the vertices of G. (I.e., each vertex of G is in exactly one Vi.)

2. At least one endpoint of each edge in Ei is in Vi. Moreover, Ei includes every edge that connects a
vertex in Vi to a vertex that is not in Vi.

3. Two vertices are in the same set Vi if and only if there is a path connecting them that uses only edges
of T .

4. There exists a MST T ∗ such that T ⊆ T ∗ ⊆ T ∪
⋃
i

Ei

The first three are trivial to prove. We’ll prove the fourth one. We use Tk to denote the value of the set T
after k iterations of the while loop.
Base case: After 0 iterations, T0 is empty and the Ei’s contain all the edges of G. So any MST of G satisfies
the invariant.
Induction step: Let k > 0. Suppose there is a MST T ∗ that satisfies the claim for the set Tk−1. We must
prove there is a MST T̂ that satisfies the claim for the set Tk. We consider several cases.

• Suppose the test on line 11 is true and the edge (u, v) chosen on line 9 is in T ∗. Then T̂ = T ∗ satisfies
the claim for Tk.

• Suppose the test on line 11 is true and the edge (u, v) chosen on line 9 is not in T ∗. Since T ∗ is a MST,
there is a path from u to v in T ∗. Let (x, y) be the first edge along this path such that x ∈ Vi and
y /∈ Vi. Such an edge must exist, since u ∈ Vi and v /∈ Vi. By invariant (2), (x, y) ∈ Ei. Since (u, v)
was a minimum weight edge in Ei, we have w(u, v) ≤ w(x, y). Let T̂ = T ∗ ∪ {(u, v)} − {(x, y)}. Note
that T̂ is still a spanning tree: there is still a path from x to y in T̂ since T̂ contains a path from x
to u, the edge (u, v), and a path from v to y. Moreover, the swap we made to change T ∗ to T̂ cannot
increase the total weight of the spanning tree. Thus T̂ is still a MST.

By the induction hypothesis, Tk−1 ⊆ T ∗. Moreover, by invariant (2), (x, y) /∈ Tk−1. So, Tk−1 ⊆
T ∗ − {(x, y)}. Hence, Tk = Tk−1 ∪ {(u, v)} ⊆ T ∗ ∪ {(u, v)} − {(x, y)} = T̂ . Finally, we show that
T̂ ⊆ Tk ∪

⋃
i

Ei. Consider any edge (y, z) in T̂ . If (y, z) = (u, v) then (y, z) ∈ Tk. If (y, z) 6= (u, v), then

(y, z) ∈ T ∗. By the induction hypothesis, either (y, z) was in Tk−1 and therefore also in Tk, or (y, z)
was in one of the Ei sets at the beginning of this iteration of the loop and it is still in Ei at the end
of the iteration, since (y, z) 6= (u, v).

• Suppose the test on line 11 is false. Then u and v lie in the same set Vi. By invariant (3), there is a
path from u to v in Tk−1. If (u, v) ∈ Tk−1 then T̂ = T ∗ satisfies the claim for Tk. If (u, v) /∈ Tk−1 then
(u, v) cannot be in T ∗, since then T ∗ would contain a cycle. So, T̂ = T ∗ satisfies the claim for Tk in
this case too.

This completes the proof of invariant (4).
To see that the loop terminates, notice that the total size of all the Ei sets decreases by 1 in each iteration,

so eventually all the Ei sets will become empty (if the algorithm does not terminate). When that happens,
all vertices of G are in a single set Vi, by invariant (2) and the fact that the input graph is connected. So,
the while loop will terminate.

When the loop terminates, all vertices are in a single set Vi. By invariant (3), T is a spanning tree of G.
Moreover, it is a subset of a minimum spanning tree T ∗ by invariant (4). So T = T ∗ and the set returned
by the algorithm is a MST.

2


