
York University EECS 4101/5101 May 26, 2020

Homework Assignment #2
Due: June 2, 2020 at 11:30 a.m.

1. Let m ≥ 2 be a fixed positive integer. Consider the following ADT. A state of the ADT is an m-tuple of
integers 〈v1, v2, . . . , vm〉. The ADT supports two operations:

• Increment(i) which increases the value of vi by 1.

• Max returns an index of the maximum value, that is it returns an i such that vi ≥ vj for all j.

Assume that the initial state of the ADT is 〈0, 0, . . . , 0〉. We shall use m as the measure of the size of the
ADT and state time complexity in terms of m.

Our goal is to design a data structure for this ADT. Each component vi will be stored in binary in
a dynamically-sized table Ti. Each entry of Ti stores a single bit of vi. This allows each component to
grow arbitrarily large, because we can resize the table to get longer and longer as the value grows. Assume
size[i] stores the current size of the dynamically-sized table Ti. It gets updated automatically whenever Ti

is enlarged. Initially, size[i] = 1 for all i.
If this is all we do for the data structure, Increments will have good amortized time but Max operations

could be very expensive (as you will show in part (b)). In part (c), you will see how to make the Max
operation faster by storing some additional information in the data structure.

(a) Given two numbers represented in binary, give a simple algorithm to compare them. It should output
0 if they are the same, 1 if the first number is bigger, and −1 if the second one is bigger. If accessing
a bit takes O(1) time, the time required by your comparison algorithm should be linear in the lengths
of the input numbers.

(b) Suppose we compute the Max as follows.

1 Max
2 res← 1
3 for i← 2..m
4 if (number represented in Ti) > (number represented in Tres) then
5 res← i
6 end if
7 end for
8 return res
9 end Max

Line 4 uses your algorithm from part (a).

Show that there is a sequence of s operations (starting from the initial state 〈0, 0, . . . , 0〉) that takes a
total of at least s · 2m steps. This proves that the amortized cost per operation is Ω(2m).

Hint: start by doing lots of Increment operations to make the values big so that the comparisons
needed by Max will be slow.

(c) We now add a little more information to our data structure. We store the index max of a maximum
component. Now a Max operation can simply return max. But we need to do some work to update
max when an Increment occurs. To do so efficiently, we also store an array diff[1..m], where diff[i] is
the index of the most significant position where component Ti differs from the maximum component.
Assume the least significant bit is indexed by 0. If Ti is a maximum component, then diff[i] = −1. For
example, if m = 4 and

T1 = 1001001011

T2 = 0010010101

T3 = 1001000110

T4 = 1001001011

1 over. . .



EECS 4101/5101 Assignment 2 May 26, 2020

then, max can be either 1 or 4 and

diff[1] = −1

diff[2] = 9

diff[3] = 3

diff[4] = −1

Give pseudocode for Increment(i), including how it updates max and diff, and use the accounting
method or the potential method to prove that the amortized time per Increment operation is O(m)
using your scheme.

You do not have to give a formal proof of correctness for your algorithm but your code should be well
commented so that a reader can understand how and why it works.

2


