1.3. FORMALIZING ADTS 5

1.3 Formalizing ADTs

If we wish to prove either
e that an algorithm that uses an ADT is correct, or
e that a data structure correctly implements an ADT,

then it is useful to have a formal specification of the correct behaviour of the
ADT. Let’s consider one method of describing an abstract data type (ADT)
formally.

A deterministic ADT can be specified by stating the following 5 items.

A set () of states.

A set Qg C @ of possible initial states.

A set OPS of possible operations (including their arguments).

A set RES of possible responses.

A transition function 0 : Q x OPS — RES x Q.

If 6(q,0p) = (res,q’), then when the ADT is in state ¢ and the operation op
is applied to it, the operation returns the response res and the ADT moves
to state ¢'.

This specification completely determines the set of legal histories of the
ADT as follows. A finite sequence

op1,T1 0p2,72 op3,T3, OPn;Tn
4o Uil 2 7o dn

or an infinite sequence

op1 77'1\ op2,72 op3,73
4o q1 p) s

is called a legal history if
® ¢ € Qo, and

e for all i, 5(q;—1,0p;) = (resi, q;).



6 CHAPTER 1. INTRODUCTION

These legal histories are intended to capture all possible behaviours of the
ADT (suitably initialized); i.e., what responses should be returned when the
ADT is accessed by a sequence of operations.

A non-deterministic ADT can be specified in a similar way, except that
the transition function is of the form 6 : @ x OPS — P(RES x Q). Instead of
giving a single outcome of operation op being applied to the ADT in state ¢,
d(g, op) now gives the set of all possible outcomes. Thus, (res, ') € d(q, op)
indicates that if the ADT is in state () and the operation op is applied to
it, one possible outcome is that the operation gets the response res and the
ADT moves to state ¢. The definition of legal histories is similar, except the
second condition changes to

e for all i, (res;, q;) € 6(qi_1, 0p;).

We should strive for simplicity when writing a formal specification of an
ADT. For example, we should not put any unnecessary structure on the
states. In other words, we should try to make the set () as small as possi-
ble. If every sequence of operations and responses starting from a state q; is
also legal starting from state ¢ and vice versa, then ¢; and ¢ are indistin-
guishable, so there is no reason not to collapse the two states into a single
state.

Example 1. The familiar (and deterministic) stack ADT can be specified
as follows. Let D be a set. Items to be placed on the stack are from this
domain. D might be finite or infinite.

e () = D* (i.e., the set of all finite strings of elements of D).

e )y = {e}, where ¢ denotes the empty string. (Here, we are assuming
that the stack is initially empty.)

e OPS ={PusH(d)} U {Por}.
e RES = DU{AcK, EMPTY}.
e In the following definition of the transition function, we use - to denote

string concatenation.
d(s,PusH(d) = (AcK,s-d), VseQ,Vde D

i(e,Por) = (EMPTY,¢)
i(s-d,Popr) = (d,s), Vs e Q,Vd e D



1.3. FORMALIZING ADTS 7

Intuitively, the state represents the contents of the stack as a string, with the
top of the stack represented by the right end of the string.

Example 2. A bag ADT stores a finite set of values and provides two opera-
tions: INSERT adds an element to the set and REMOVE removes and returns
an arbitrary element of the set. Here, we assume the bag cannot contain du-
plicates. The REMOVE operation is inherently non-deterministic: making it
deterministic would put unnecessary restrictions on implementations of the
bag. So we model it as a non-deterministic ADT as follows.

Let D be a set. Elements stored in the set are drawn from D.

e () is the set of all finite subsets of D.

Qo = {{}}. (Here, we assume that the bag must be empty initially.)

OPS = {INSERT(d) : d € D} U {REMOVE}.

RES = D U {Succegss, FAIL}.

The transition function is defined as follows.

d(S,INSErT(d)) = {(Success,SU{d})}, VvVSeQ,vdeD-S
d(S,INSERT(d)) = {(FaAIL,S)}, VSeQ,vde S
0({},REMOVE) = {(EmpTY,{})}

d(S,REMOVE) = {(d,S—{d}):de S}, VSeQ withS#{}



