
York University EECS 4101/5101 March 26, 2019

Homework Assignment #8
Due: April 2, 2019 at 11:30 a.m.

1. In class, we looked at a linearizable implementation of a counter object that stored an integer value and
provides two operations: Read and Inc. Now, consider a counter object that stores an integer and provides
three operations:

• Read returns the value stored,

• Inc adds one to the value stored (and returns Ack), and

• Dec subtracts one from the value stored (and returns Ack).

(a) Show that the following implementation is not linearizable. It uses an array A[1..n], where n is the
number of processes allowed to access the counter. The following code is executed by process i.

1 Inc
2 x← read A[i]
3 write x+ 1 into A[i]
4 return Ack
5 end Inc

6 Dec
7 x← read A[i]
8 write x− 1 into A[i]
9 return Ack
10 end Dec

11 Read
12 total← 0
13 for j ← 1..n
14 x← read A[j]
15 total← total + x
16 end for
17 return total
18 end Read

(b) Show that it is possible to implement a non-blocking, linearizable counter that supports Inc, Dec and
Read operations using only reads and writes of shared memory.

Hint: your answer can be quite short.

(c) Bonus question: The (incorrect) implementation in part (a) uses the fact that all processes are
assigned unique labels 1..n, so that process i can write its contributions to the counter’s value in
location A[i]. Your algorithm in part (b) likely uses this fact too. An implementation of a counter
is called anonymous if processes do not have unique labels, and for each of the three operations, all
processes have identical programme code.

Is there an anonymous implementation of a counter that is non-blocking and linearizable? Show your
answer is correct.

Hint: Think carefully about what happens when two processes trying to do the same operation run at
exactly the same speed.

1


