
York University EECS 4101/5101 March 7, 2019

Homework Assignment #6
Due: March 14, 2019 at 11:30 a.m.

1. Consider a B-tree with parameter t (so that each node except the root stores between t− 1 and 2t− 1 keys).
We assume duplicate keys are not permitted in the B-tree. In this question, we consider the number of nodes
of the B-tree that are written by an Insert or Delete operation. In the worst-case, this number can be
Θ(logt n) when the B-tree contains n keys: An Insert may split every node from the root to a leaf, and a
Delete may also have to modify every node along a path from the root to a leaf.

Show that, for the B-tree Insert and Delete operations described in the text, the amortized number
of nodes modified per operation is Ω(logt n). In other words, for all large m and n, describe a sequence of
m operations on a B-tree that initially contains n keys such that
(i) the total number of modifications to nodes by the entire sequence of operations is Ω(m logt n), and
(ii) the number of keys in the B-tree is O(n) at all times during the sequence of operations.

2. We now make two changes to the B-tree. Let t ≥ 2. First we allow nodes to store between t− 1 and 2t keys
(we have increased the upper limit by 1). Secondly, we use a more conservative strategy for repairing the
tree after an Insert or Delete that avoids some modifications that are not strictly necessary.

So, consider the following modified versions of the Insert and Delete operations. The global variable
root is a pointer to the root of the B-tree. We use path(k) to denote the search path for key k in the B-tree.

1 Insert(k)
2 if root has 2t keys then
3 split root into two nodes with t− 1 and t keys by promoting the tth key to a new node z

whose two children are the two split nodes
4 root← z
5 end if
6 % Follow path(k) to the appropriate leaf, remembering the lowest non-full node x on path(k)
7 current← root
8 x← root
9 loop
10 if current contains key k then
11 return Error % duplicate keys not allowed
12 end if
13 exit when current is a leaf
14 current← child of current on path(k)
15 if current contains fewer than 2t keys then
16 x← current
17 end if
18 end loop
19 % The remainder of this algorithm just mimics B-Tree-Insert-Nonfull(x, k), by splitting
20 % every node below x on path(k)
21 current← x
22 loop until current is a leaf
23 % invariant: current contains fewer than 2t keys and each node below current on
24 % path(k) contains 2t keys
25 next← child of current on path(k)
26 split next into two nodes containing t− 1 and t keys each by promoting next’s tth key into current
27 current← child of current on path(k)
28 end loop
29 add k to node current and return Done
30 end Insert

1 over. . .



EECS 4101/5101 Assignment 6 March 7, 2019

31 Delete(k)
32 % First follow the search path to k, and then onwards to the successor of k if k is in an internal node. Remember
33 % the node found containing k and the highest node x that will need to be modified by the deletion
34 current← root
35 x← root
36 found← nil
37 loop
38 % invariant: (1) if found = nil then current is on path(k) and k is not in any proper ancestor of current
39 % (2) if found 6= nil then found contains key k and current is on path(successor(k))
40 % (3) x is the last node on the path P from root to current having the following property: either x = root or
41 % x contains at least t keys or a child of x adjacent to the child of x on P contains at least t keys
42 if current contains k then
43 found← current
44 end if
45 exit when current is a leaf
46 if current contains k then
47 next← child of current to the right of key k
48 else if found 6= nil then
49 next← leftmost child of current
50 else
51 next← child of current on path(k)
52 end if
53 if next contains at least t keys then
54 x← next
55 else if a child of current adjacent to next contains at least t keys then
56 x← current
57 end if
58 current← next
59 end loop
60 if found = nil then
61 return Error % key to be deleted is not in the tree
62 else if found is an internal node then % we shall replace k by k′ = successor(k) and delete k′ from a leaf
63 k′ ← minimum key in current
64 else % we found k in a leaf, so we will delete k′ = k from a leaf
65 k′ ← k
66 end if
67 % starting from x, move down path(k′), ensuring each node we visit below x has at least t keys when we move to it
68 current← x
69 loop until current is a leaf
70 next← child of current on the search path for k′

71 if a child sib of current adjacent to next contains more than t keys then
72 rotate a key from sib into current, one key from current into next, and move the

appropriate child pointer from sib into next (as described in 3(a) on page 502)
73 else
74 merge the contents of an adjacent sibling of next into next, and move one key

from current into next (as described in 3(b) on page 502)
75 if current = root and root now has only one child (namely, next) then
76 root← next
77 end if
78 end if
79 current← next
80 end loop
81 replace k in found by k′ % This has no effect if k was found in a leaf because then k = k′

82 remove k′ from current
83 return Done
84 end Delete

Although the pseudocode may look a little complicated, it is just doing what the original B-tree algorithm
does, except without the eager strategy: the pseudocode presented here avoids some changes to the B-tree

2 cont’d. . .



EECS 4101/5101 Assignment 6 March 7, 2019

that are not strictly necessary. (The downside is that we may have to make two passes along the search path
for a single operation instead of just one pass.) We do still eagerly split a full root in the Insert, just to
make the code a little simpler.

The first loop in each algorithm searches for the appropriate leaf, remembering the highest node x on
the path that has to be modified. (For the Insert, this is just the last non-full node on the path. For the
Delete algorithm invariant (3) of the first loop means, intuitively, that deleting a key from a leaf descendant
of current need not modify any node above x.) The second loop traverses the path from x to the leaf where
a key must be added or removed, peforming modifications at each step, just like the textbook algorithms do.

Our goal is to show that the amortized number of node writes per Insert or Delete is O(1) if we use
the algorithms described above.

(a) Consider an Insert operation O. Consider any iteration of line 26 that is not the first iteration of that
line during O. How many keys can be in current before the line is executed? (I.e., give all possible
values of the number of keys in current before the line is executed.)

(b) Consider a Delete operation O. Consider any iteration of line 74 that is not the first iteration of that
line during O. How many keys can be in current before the line is executed?

(c) What is the maximum number of times that line 72 can be performed during a Delete operation?
Briefly justify your answer.

(d) Define a potential function as follows. As usual, it is meant to measure how bad the current state of
the data structure is. The structure is bad when nodes contain t − 1 or 2t keys, because removing a
key from a node with t − 1 keys or adding a key to a node with 2t keys will require modifications to
the tree. Let Φ(root) = 0. For any node v other than the root, define Φ(v) to be

• a if v contains t− 1 keys,

• b if v contains 2t keys, or

• 0 otherwise.

(It will be your job to figure out non-negative values for the constants a and b to make the analysis
work.) Then, define the potential Φ of the B-tree to be the sum, over all nodes v, of Φ(v).

Notice that the only lines that modify nodes are lines 3, 26, 29, 72, 74, 81 and 82. Thus, these are the
only lines that cause nodes to be written and they are the only lines that can change the value of Φ.

Fill in the following table. I have filled in one row for you. For some entries, it may be sufficient to
give an upper bound on the value, as long as you can use your table entries to answer part (f) below.
Briefly explain your reasoning for each row.

Line # nodes written ∆Φ # nodes written + ∆Φ
3
26 (first iteration)
26 (non-first iteration)
29 1 ≤ b ≤ 1 + b
72
74 (first iteration)
74 (non-first iteration)
81
82

(e) Notice that some rows described in the table above only occur once per Insert or Delete, and others
can occur many times in an operation.

Choose non-negative constants a and b so that the rightmost column of the table in part (d) has values
that are less than or equal to 0 in each row that can happen more than once per operation.

(f) Define a constant c and argue that (for all m) the total number of node writes performed by any
sequence of m Insert and Delete operations (starting from an empty B-tree) is at most cm.

3


