

Outline

- Introduction
- Related Works
- Description of Item Metadata Attributes
- Deep Categorization Network (DeepCN) Model
- Dataset and Parameters
- Performance Measure and Comparison
- Advantages and Limitations
- Conclusion and Future Work

Description of Item Metadata Attributes

- Sellers often register data by omitting many attributes. In this study, therefore, only six essential attributes are considered.
- An item *d* consisting of its leaf category label *y* and attribute vector *x* can be represented as following:

$$d = {\mathbf{x}, y} = {\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(6)}, y}$$

• By treating all the nominal values as textual words, the metadata attribute of an item i can be defined as the sequence of textual words as following:

7

$$\mathbf{x}^{(i)} = \{x_1^{(i)} x_2^{(i)} \dots x_n^{(i)}\}$$

Var	Attributes	Values	Example
x ⁽¹⁾	Item name	Word sequence	Stylish wallet
X ⁽²⁾	Brand name	Word sequence	Louis quatorze
X ⁽³⁾	High-level category	Word sequence	Miscellaneous goods / Women goods
x ⁽⁴⁾	Shopping Mall ID	Nominal	A023012
x ⁽⁵⁾	Maker	Word sequence	Louis quatorze
x ⁽⁶⁾	Image signature	Nominal	38720307
у	Leaf category	Nominal	3423(Women's wallet)

Deep Categorization Network (DeepCN) Model

- Activation function of the *m*-th RNN for *n*-th hidden layer:
 - The number of the RNN: **m**, Weight matrix between the (*n*-1)-th layer and the *n*-th layer: **W**, The number of the layer: **n**, Activation function: **f**, Timestamp: **t**, Bias Unit: **b**

$${}^{R}_{m}\mathbf{h}^{(n)}_{t} = {}^{R}_{m}f^{(n)}\left({}^{R}_{m}W^{(n-1)n}{}^{R}_{m}\mathbf{h}^{(n-1)}_{t} + {}^{R}_{m}W^{mn}{}^{R}_{m}\mathbf{h}^{(n)}_{t-1} + {}^{R}_{m}\mathbf{b}^{(n)}_{t}\right)$$

- Activation function of the *m*-th RNN for the 1st hidden layer:
 - Input Vector: x

$${}^{R}_{m}\mathbf{h}^{(1)}_{t} = {}^{R}_{m}f^{(1)}\left({}^{R}_{m}W^{x1}\mathbf{x} + {}^{R}_{m}W^{11}{}^{R}_{m}\mathbf{h}^{(1)}_{t-1} + {}^{R}_{m}\mathbf{b}^{(1)}\right)$$

Deep Categorization Network (DeepCN) Model

- **Hyperbolic tangent function** is used for both RNN and Fully Connected Layer as it performs better than the sigmoid function in RNN learning [1].
- Categorization error:

11

12

One-hot-encoding vector of the real category of the n-th item

$$E = \frac{1}{2} \sum_{n=1}^{N} \left\{ y^{(n)} - \hat{y}^{(n)} \right\}^2 \equiv \frac{1}{2} \sum_{n=1}^{N} \left\| \mathbf{y}^{(n)} - \hat{\mathbf{y}}^{(n)} \right\|^2$$

[1] Jozefowicz, R., Zaremba, W., and Sutskever, I. 2015. An Empirical Exploration of Recurrent Network Architectures. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2342-2350.

High-level category	# of leaf categories	Training (8)	Validation (2)	Test (1)	Total	Data size / leaf category
Fashion clothing	103	7,201,594	1,800,399	900,200	9,902,193	96,13
Miscellaneous goods	255	12,798,623	3,199,656	1,599,829	17,598,108	69,01
Cosmetic / Beauty	156	2,595,834	648,959	324,480	3,569,273	22,88
Digital & home electronic	642	13,341,844	3,335,462	1,667,731	18,345,037	28,57
Furniture / Interior	335	5,159,216	1,289,805	644,903	7,093,924	21,17
Childbirth / Infant care	473	5,162,732	1,290,684	645,342	7,098,758	15,00
Foods	432	1,610,087	402,522	201,261	2,213,870	5,12
Sports / Leisure	459	5,255,248	1,313,813	656,907	7,225,968	15,74
Life / Health	1,115	15,104,282	3,776,071	1,888,036	20,768,389	18,62
Trip / Culture	61	748,506	187,127	93,564	1,029,197	16,87
Tax free goods	85	25,196	6,299	3,150	34,645	40
Total	4.116	69,003,162	17,250,797	8,625,403	94,879,362	23,05

	DCN - 6R	DCN – 1R	BN_BOW
Fashion Clothing	1.004	0.984	0.696
Viscellaneous goods	0.895	0.866	0.443
Cosmetic / Beauty	1.011	0.976	0.823
Digital & home electronic	1.108	1.091	0.852
Furniture / Interior	0.983	0.952	0.665
Childbirth / Infant care	0.956	0.926	0.740
Food	1.033	1.005	0.791
Sports / Leisure	1.016	0.985	0.713
.ife / Health	0.992	0.963	0.628
Trip / Culture	1.197	1.193	0.930
Tax free goods	1.027	1.008	0.101

10

High Level Category	Excluding Image Signatures	Excluding Image Signatures Shopping mall id
Fashion Clothing	0.983	0.901
Miscellaneous goods	0.958	0.870
Cosmetic / Beauty	0.981	0.908
Digital & home electronic	0.975	0.929
Furniture / Interior	0.965	0.885
Childbirth / Infant care	0.970	0.882
Food	0.980	0.890
Sports / Leisure	0.977	0.888
Life / Health	0.966	0.884
Trip / Culture	0.997	0.974
Tax free goods	0.994	0.814

Effects on Accuracy after Excluding some Attributes

Advantages and Limitations

- · Advantages:
 - DCN 6R performs **significantly** better than Bayesian-BoW.
 - DCN 6R also performs better than DCN 1R.
- Limitations:
 - Performances for very long-tail leaf categories are not satisfactory. Can be improved using LSTM or GRU.

Conclusion and Future Work In summary, DeepCN consists of multiple RNNs and fully connected layers, a concatenation layer, one softmax layer and an output layer. Each metadata item has a dedicated RNN. Ambiguity emerging from concatenation of semantically heterogeneous word sequences have been . overcome. • Keeps the length of word sequences short. Number of RNN layers has more effects than number of Fully Connected Layers in terms of categorization accuracy and learning time. Metadata attributes such as image signatures and shopping mall id have effect on categorization. DeepCN can be applied to various text classifications such as sentiment analysis and document classification. CNN for item images can further improve the performance instead of using image signatures. . YORK