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Motivation 

It is suggested that deep multi-layer neural networks 

architectures can be much more efficient than shallow 

architectures, in terms of computational elements and 

parameters required to represent some functions. 

Not on every problem, but whenever the task is complex 

enough, and there is enough data to capture that complexity. 

Finding better learning algorithms for such deep networks 

could be beneficial. 



Training Challenges 

Training deep multi-layered neural networks is known to be 

hard. 

The standard learning strategy consists of randomly initializing 

the weights of the network and applying gradient descent using 

Backpropagation. 

It is known empirically to find poor solutions for networks with 

3 or more hidden layers. 



Challenge (I) 

Gradient descent can easily get stuck in poor local minima or 

plateaus of the non-convex training criterion. 

With more layers, the number local minima or the width of plateaus 

increase. 

 

 

 



Challenge (II) 

Gradient descent introduce low training error but very different 
generalization errors 

When gradient descent is able to find a (possibly local) good 
minimum in terms of training error, there are no guarantees that 
the associated parameter configuration will provide good 
generalization. 

The type of unsupervised initialization discussed here can help 
to select basins of attraction (for the supervised fine-tuning 
optimization phase) from which learning good solutions is 
easier both from the point of view of the training set and of a 
test set. 



Exploring Two Training Algorithms 

Stacked Restricted Boltzmann Machine Network (SRBM) 

It is proposed a greedy layer-wise unsupervised learning procedure 

relying on the training algorithm of restricted Boltzmann machines 

(RBM) to initialize the parameters of a deep belief network (DBN). 

 

Stacked Autoassociators Network (SAA) 

SRBM was followed by the proposal of another greedy layer-wise 

procedure, relying on the usage of autoassociator  networks. 

 



Paper Main Objectives 

Studying these two algorithms empirically to better understand 

their success, in the context of the optimization problem. 

Showing that the greedy layer-wise unsupervised training 

strategy helps the optimization by initializing weights in a 

region near a good local minimum. 

Showing that this strategy implicitly acts as a sort of 

regularization that brings better generalization and encourages 

internal distributed representations that are high-level 

abstractions of the input. 



Idea Behind these two Algorithm 

An approach that has been explored with some success in the 

past is based on constructively adding layers. (layer-wise) 

 

Each layer in a multi-layer neural network can be seen as a 

representation of the input. 

 

Good internal representation of the data should disentangle the 

factors of variation that inherently explain the structure of the 

distribution. 



Supervised vs. Unsupervised 

When such a representation is going to be used for 

unsupervised learning, we would like it to preserve information 

about the input. 

 

When a representation is going to be used in a supervised 

prediction or classification task, we would like it to be such that 

there exists a “simple” (i.e., somehow easy to learn) mapping 

from the representation to a good prediction. 

 



Supervised Representation Issues 

To constructively build such a representation, it has been 

proposed to use a supervised criterion at each stage. 

However, the use of a supervised criterion at each stage may be 

too greedy and does not yield as good generalization as using 

an unsupervised criterion. 

Aspects of the input may be ignored in a representation tuned to 

be immediately useful (with a linear classifier) but these aspects 

might turn out to be important when more layers are available. 



Combining Supervised & Unsupervised 

Combining unsupervised (e.g., learning about p(x)) and 

supervised components (e.g., learning about p(y | x)) can be 

helpful when both functions p(x) and p(y | x) share some 

structure. 



Three Principles for Training Deep NN 

1) Pre-training one layer at a time in a greedy way. 

 

2) Using unsupervised learning at each layer in a way that  

preserves information from the input and disentangles factors 

of variation. 

 

3) Fine-tuning the whole network with respect to the ultimate 

criterion of interest. 



Unsupervised greedy layer-wise training procedure 

 



SRBM 

Stacking Restricted Boltzmann Machine (SRBM) provides a 

good initialization strategy for the weights of a deep artificial 

neural network. 

SRBM: training upper RBMs on the distribution of activities 

computed by lower RBMs 

This approach is extended to 

stacked autoassociators network (SAA) 

non-linear autoencoders 

deep convolutional neural network 



RBM 

 It is a generative model that uses a 
layer of binary variables to explain its 
input data. 

Hinton (2006) argues that this 
representation can be improved by 
giving it as input to another RBM, 
whose posterior over its hidden layer 
will then provide a more complex 
representation of the input. 

Contrastive Divergence algorithm (CD-
k) is used to train an RBM 



SAA 

There are other non-linear, unsupervised learning models than 

RBM that, when stacked, are able to improve the learned 

representation at the last layer added. 

An example of such a non-linear unsupervised learning model 

is the autoassociator or autoencoder network. 

Autoassociators are neural networks that are trained to compute 

a representation of the input from which it can be reconstructed 

with as much accuracy as possible. 



SAA (Cont’s) 



SAA Challenge 

Some care must be taken so that the network does not learn a 
trivial identity function, that is, finds weights that simply 
“copy” the whole input vector in the hidden layer and then copy 
it again at the output. 

For example, a network with small weights Wjk between the 
input and hidden layers and large weights Wjk

* between the 
hidden and output layers could encode such an uninteresting 
identity function. 

An easy way to avoid such a pathological behavior in the case 
of continuous inputs is to set the weight matrices WT and W to 
be the same. 



Experiments 

SGD for both layer-wise unsupervised learning and global 

supervised fine-tuning. 

Data sets were separated in disjoint training, validation and 

testing subsets. 

All experiments correspond to classification problems. 

The experiments are based on the MNIST data set and variants 

of this problem where the input distribution has been made 

more complex by inserting additional factors of variations, such 

as rotations and background images 



Validating the Unsupervised Layer-Wise Strategy 

Evaluating the advantages brought by the unsupervised layer-

wise strategy by answering the following two questions: 

 

1. To what extent does initializing greedily the parameters of 

the different layers help? 

2. How important is unsupervised learning for this procedure? 



Comparison 

The two learning algorithms for deep networks are compared 

with the following algorithms: 

Deep network without pre-training (1st question) 

Deep network with supervised pre-training (2nd question) 

Stacked logistic Autoregression network (2nd question) 



Results 

The unsupervised layer-wise pre-training improves 

generalization. 

 



Network Depth 



Network Depth Effects on SRBM 

Consider a hypothetical deep network where the top-level stacked 
RBM has learned a representation made of units that are mostly 
independent. 

An additional RBM stacked on this representation would have no 
statistical structure to learn. 

This would initialize the weights of that new RBM to zero, which is 
particularly troublesome as the representation at this level would 
then contain no information about the input. 

There is indeed an optimal number of hidden layers for the deep 
networks, and that this optimum tends to be larger when 
unsupervised greedy layer-wise learning is used. 



Type of Network Architecture 

The number of hidden layers of a deep network has already 

been chosen and good sizes of the different layers must be 

found. 

The space of such possible choices is exponential in the number 

of layers 



Type of Network Architecture (Cont’d) 

Three general cases, as the layer index increases, their sizes 

either 

increases (doubles) 

decreases (halves) 

does not change 

The architecture that most often is among the best performing 

ones across the different sizes of network is the one with equal 

sizes of hidden layers. 



MNIST-small 

 



MNIST-rotation 

 



Generating vs Encoding 

The RBM is based on the learning algorithm of a generative 

model, which is trained to be able to generate data similar to 

those found in the training set. 

The autoassociator is based on the learning algorithm of an 

encoding model which tries to learn a new representation or 

code from which the input can be reconstructed without too 

much loss of information. 

It is not clear which of the two approaches (generating or 

encoding) is the most appropriate. 



Generating 

It is possible that the problem it is trying to solve is harder than 

it needs to be, since ultimately we are only interested in coming 

up with good representations or features of the input. 

 

For instance, if one is interested in finding appropriate clusters 

in a very high dimensional space, using a mixture of Gaussians 

with full covariance matrix can quickly become too 

computationally intensive, whereas using the simple k-means 

algorithm might do a good enough job. 



Encoding 

As for encoding models, they do not require to be interpretable 

as a generative model and they can be more flexible because 

any parametric or non-parametric form can be chosen for the 

encoder and decoder, as long as they are differentiable. 

 



Conclusion 

Discussed three principles for training deep neural networks: 

Pre-training one layer at a time in a greedy way 

Using unsupervised learning at each layer in a way that preserves 

information from the input and disentangles factors of variation 

Fine-tuning the whole network with respect to the ultimate criterion of 

interest 

Experimental evidence supports the claim that they are key 

ingredients for reaching good results 



Conclusion (Cont’d) 

Unsupervised procedure helps the optimization of the deep 

architecture, while initializing the parameters in a region near 

which a good solution of the supervised task can be found. 

There are cases where greater depth clearly helps, but too much 

depth could be slightly detrimental. 


