
Exploring Strategies for Training Deep

Neural Networks

Presenter: Hossein Pourmodheji

EECS 6412

Fall 20184

Motivation

It is suggested that deep multi-layer neural networks

architectures can be much more efficient than shallow

architectures, in terms of computational elements and

parameters required to represent some functions.

Not on every problem, but whenever the task is complex

enough, and there is enough data to capture that complexity.

Finding better learning algorithms for such deep networks

could be beneficial.

Training Challenges

Training deep multi-layered neural networks is known to be

hard.

The standard learning strategy consists of randomly initializing

the weights of the network and applying gradient descent using

Backpropagation.

It is known empirically to find poor solutions for networks with

3 or more hidden layers.

Challenge (I)

Gradient descent can easily get stuck in poor local minima or

plateaus of the non-convex training criterion.

With more layers, the number local minima or the width of plateaus

increase.

Challenge (II)

Gradient descent introduce low training error but very different
generalization errors

When gradient descent is able to find a (possibly local) good
minimum in terms of training error, there are no guarantees that
the associated parameter configuration will provide good
generalization.

The type of unsupervised initialization discussed here can help
to select basins of attraction (for the supervised fine-tuning
optimization phase) from which learning good solutions is
easier both from the point of view of the training set and of a
test set.

Exploring Two Training Algorithms

Stacked Restricted Boltzmann Machine Network (SRBM)

It is proposed a greedy layer-wise unsupervised learning procedure

relying on the training algorithm of restricted Boltzmann machines

(RBM) to initialize the parameters of a deep belief network (DBN).

Stacked Autoassociators Network (SAA)

SRBM was followed by the proposal of another greedy layer-wise

procedure, relying on the usage of autoassociator networks.

Paper Main Objectives

Studying these two algorithms empirically to better understand

their success, in the context of the optimization problem.

Showing that the greedy layer-wise unsupervised training

strategy helps the optimization by initializing weights in a

region near a good local minimum.

Showing that this strategy implicitly acts as a sort of

regularization that brings better generalization and encourages

internal distributed representations that are high-level

abstractions of the input.

Idea Behind these two Algorithm

An approach that has been explored with some success in the

past is based on constructively adding layers. (layer-wise)

Each layer in a multi-layer neural network can be seen as a

representation of the input.

Good internal representation of the data should disentangle the

factors of variation that inherently explain the structure of the

distribution.

Supervised vs. Unsupervised

When such a representation is going to be used for

unsupervised learning, we would like it to preserve information

about the input.

When a representation is going to be used in a supervised

prediction or classification task, we would like it to be such that

there exists a “simple” (i.e., somehow easy to learn) mapping

from the representation to a good prediction.

Supervised Representation Issues

To constructively build such a representation, it has been

proposed to use a supervised criterion at each stage.

However, the use of a supervised criterion at each stage may be

too greedy and does not yield as good generalization as using

an unsupervised criterion.

Aspects of the input may be ignored in a representation tuned to

be immediately useful (with a linear classifier) but these aspects

might turn out to be important when more layers are available.

Combining Supervised & Unsupervised

Combining unsupervised (e.g., learning about p(x)) and

supervised components (e.g., learning about p(y | x)) can be

helpful when both functions p(x) and p(y | x) share some

structure.

Three Principles for Training Deep NN

1) Pre-training one layer at a time in a greedy way.

2) Using unsupervised learning at each layer in a way that

preserves information from the input and disentangles factors

of variation.

3) Fine-tuning the whole network with respect to the ultimate

criterion of interest.

Unsupervised greedy layer-wise training procedure

SRBM

Stacking Restricted Boltzmann Machine (SRBM) provides a

good initialization strategy for the weights of a deep artificial

neural network.

SRBM: training upper RBMs on the distribution of activities

computed by lower RBMs

This approach is extended to

stacked autoassociators network (SAA)

non-linear autoencoders

deep convolutional neural network

RBM

 It is a generative model that uses a
layer of binary variables to explain its
input data.

Hinton (2006) argues that this
representation can be improved by
giving it as input to another RBM,
whose posterior over its hidden layer
will then provide a more complex
representation of the input.

Contrastive Divergence algorithm (CD-
k) is used to train an RBM

SAA

There are other non-linear, unsupervised learning models than

RBM that, when stacked, are able to improve the learned

representation at the last layer added.

An example of such a non-linear unsupervised learning model

is the autoassociator or autoencoder network.

Autoassociators are neural networks that are trained to compute

a representation of the input from which it can be reconstructed

with as much accuracy as possible.

SAA (Cont’s)

SAA Challenge

Some care must be taken so that the network does not learn a
trivial identity function, that is, finds weights that simply
“copy” the whole input vector in the hidden layer and then copy
it again at the output.

For example, a network with small weights Wjk between the
input and hidden layers and large weights Wjk

* between the
hidden and output layers could encode such an uninteresting
identity function.

An easy way to avoid such a pathological behavior in the case
of continuous inputs is to set the weight matrices WT and W to
be the same.

Experiments

SGD for both layer-wise unsupervised learning and global

supervised fine-tuning.

Data sets were separated in disjoint training, validation and

testing subsets.

All experiments correspond to classification problems.

The experiments are based on the MNIST data set and variants

of this problem where the input distribution has been made

more complex by inserting additional factors of variations, such

as rotations and background images

Validating the Unsupervised Layer-Wise Strategy

Evaluating the advantages brought by the unsupervised layer-

wise strategy by answering the following two questions:

1. To what extent does initializing greedily the parameters of

the different layers help?

2. How important is unsupervised learning for this procedure?

Comparison

The two learning algorithms for deep networks are compared

with the following algorithms:

Deep network without pre-training (1st question)

Deep network with supervised pre-training (2nd question)

Stacked logistic Autoregression network (2nd question)

Results

The unsupervised layer-wise pre-training improves

generalization.

Network Depth

Network Depth Effects on SRBM

Consider a hypothetical deep network where the top-level stacked
RBM has learned a representation made of units that are mostly
independent.

An additional RBM stacked on this representation would have no
statistical structure to learn.

This would initialize the weights of that new RBM to zero, which is
particularly troublesome as the representation at this level would
then contain no information about the input.

There is indeed an optimal number of hidden layers for the deep
networks, and that this optimum tends to be larger when
unsupervised greedy layer-wise learning is used.

Type of Network Architecture

The number of hidden layers of a deep network has already

been chosen and good sizes of the different layers must be

found.

The space of such possible choices is exponential in the number

of layers

Type of Network Architecture (Cont’d)

Three general cases, as the layer index increases, their sizes

either

increases (doubles)

decreases (halves)

does not change

The architecture that most often is among the best performing

ones across the different sizes of network is the one with equal

sizes of hidden layers.

MNIST-small

MNIST-rotation

Generating vs Encoding

The RBM is based on the learning algorithm of a generative

model, which is trained to be able to generate data similar to

those found in the training set.

The autoassociator is based on the learning algorithm of an

encoding model which tries to learn a new representation or

code from which the input can be reconstructed without too

much loss of information.

It is not clear which of the two approaches (generating or

encoding) is the most appropriate.

Generating

It is possible that the problem it is trying to solve is harder than

it needs to be, since ultimately we are only interested in coming

up with good representations or features of the input.

For instance, if one is interested in finding appropriate clusters

in a very high dimensional space, using a mixture of Gaussians

with full covariance matrix can quickly become too

computationally intensive, whereas using the simple k-means

algorithm might do a good enough job.

Encoding

As for encoding models, they do not require to be interpretable

as a generative model and they can be more flexible because

any parametric or non-parametric form can be chosen for the

encoder and decoder, as long as they are differentiable.

Conclusion

Discussed three principles for training deep neural networks:

Pre-training one layer at a time in a greedy way

Using unsupervised learning at each layer in a way that preserves

information from the input and disentangles factors of variation

Fine-tuning the whole network with respect to the ultimate criterion of

interest

Experimental evidence supports the claim that they are key

ingredients for reaching good results

Conclusion (Cont’d)

Unsupervised procedure helps the optimization of the deep

architecture, while initializing the parameters in a region near

which a good solution of the supervised task can be found.

There are cases where greater depth clearly helps, but too much

depth could be slightly detrimental.

