The ground transformation DB_{G} of DB is defined as follows:

 \bullet for each clause ${\cal C}$ in $D\!B$

for each grounding substitution θ from the variables of \mathcal{C} to

constants in $\mathbf{L}_{\scriptscriptstyle D\!B}$

* add clause $\mathcal{C}\theta$ to $\mathbf{D\!B_{G}}$

Call $\mathcal{C}\theta$ a ground rule.

Note that $\mathbf{DB}_{\mathbf{g}}$ may be infinite, because an infinite number of constants exist in the domain of discourse as we have defined it. This does not pose a problem, as we only use $\mathbf{DB}_{\mathbf{g}}$ in definitions and never in actuality transform a \mathbf{DB} into $\mathbf{DB}_{\mathbf{g}}$.

Unfounded Sets for the Well-founded Semantics

Let a program \mathcal{P} , its associated Herbrand base $\operatorname{HB}_{\mathcal{P}}$, and a partial interpretation I be given. We say $\mathcal{A} \subseteq I$ is an *unfounded set of* \mathcal{P} with respect to I if each atom $p \in \mathcal{A}$ satisfies the following condition: For each ground rule r of \mathcal{P} whose head is p, (at least) one of the following holds:

- 1. Some positive subgoal q or negative subgoal $\mathbf{not}(q)$ of the body occurs in $\neg I$ (i.e., is consistent with I);
- 2. Some positive subgoal of the body occurs in \mathcal{A} .

A literal that makes 1 or 2 true is called a witness of unusability for rule r (with respect to I).

There is a greatest unfounded set with respect to I.

 A. van Gelder, K. Ross, & J. Schlipf. Unfounded Sets and Well-Founded Semantics for General Logic Programs. *Proceedings of* the 7th Symposium on Principles of Database Systems (PODS).
pp. 221–230, 1988.

Horn Transformation for the Stable Model Semantics

The Horn transformation horn (DB, I) of ground DB with respect to interpretation I is defined as follows:

- for each clause \mathcal{C} in **DB** (which is ground since **DB** is)
 - $-\operatorname{let} \mathcal C$ be represented by

$$a \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \dots, b \langle \vec{y} \rangle_m, \text{not } d \langle \vec{z} \rangle_1, \dots, \text{not } d \langle \vec{z} \rangle_n.$$

if $\{ d \langle \vec{z} \rangle_1, \dots, d \langle \vec{z} \rangle_n \} \cap I \neq \emptyset$ then
* do nothing (discard the clause)
else

 \ast add the clause

$$a \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \dots, b \langle \vec{y} \rangle_m.$$

to horn (\mathbf{DB}, I)

Stable Model Semantics

The interpretation I is a *stable model* of **DB** *iff*

 $I = M_{\mathbf{DB}_{\mathbf{C}}^{I}}$

Here, M stands for the minimum model.

Let us denote the set of stable models of **DB** by \mathcal{S}_{DB} . We call a database

DB stable iff **DB** has at least one stable model; that is, S_{DB} is non-empty.

 M. Gelfond & V. Lifschitz. The Stable Model Semantics for Logic Programming. Proceedings of the 5th International Conference and Symposium on Logic Programming. Eds R.A. Kowalski and K.A. Bowen. pp. 1070-1080, August 1988.

Well-Supported Models Equivalent to Stable Model Semantics

A model $I \subseteq \mathbf{HB}_{DB}$ is *well supported* with respect to **DB** *iff* there exists a well founded partial order '>/2' on $I \times I$ such that, for each atom $p \langle \vec{c} \rangle \in I$, there exists a rule \mathcal{C} for p in **DB**,

$$\mathcal{C}: \quad p \ \langle \vec{x} \rangle \leftarrow b \ \langle \vec{y} \rangle_1, \dots, \ b \ \langle \vec{y} \rangle_m, \text{ not } d \ \langle \vec{z} \rangle_1, \dots, \text{ not } d \ \langle \vec{z} \rangle_n.$$

and a grounding substitution θ from the variables of C to constants in \mathbf{L}_{DB} such that $p \langle \vec{c} \rangle = p \langle \vec{x} \rangle \theta$ and

1. $b \langle \vec{y} \rangle_1 \theta, \dots, b \langle \vec{y} \rangle_m \theta \in I$, 2. $d \langle \vec{z} \rangle_1 \theta, \dots, d \langle \vec{z} \rangle_n \theta \notin I$, and 3. $p \langle \vec{c} \rangle > b \langle \vec{y} \rangle_i \theta$, for every $i \in \{1, \dots, m\}$.

 $I \in \mathcal{S}_{DB}$ (*I* is a stable model of **DB**) *iff I* is a well supported model of **DB**.

• F. Fages. A new fixpoint semantics for general logic programs compared with the well-founded and the stable model semantics. *New Generation Computing*, 9:425–443, 1991.

Well-Founded Semantics Advantages and Disadvantages

Advantages

- There is always exactly *one* well-founded partial model.
- For datalog¬, polynomial (in the size of the database!) algorithms are known.

Disadvantages

- Intuitively seems weak to some.
 - E.g., Cannot reason by case in the negative.

Stable Model Semantics Advantages and Disadvantages

Advantages

- Intuitively more satisfying to some.
 - Does reason over case in the negative.
 - Each stable model is a minimal model of the database (treating not as if it were '¬'); vice-versa is not true, though.

Disadvantages

- There are datalog \neg databases with no stable models.
- There are datalog¬ databases with *more than one* stable model. (Bothers some people.)
- For datalog¬, it is exponential (in the size of the database!) in worst-case to compute.
- It is not "stable". Huh?!
 - Add a rule or delete a rule, and the database may cease to have any stable models.

For Locally Stratified Datalog¬ Semantics?

For any locally stratified Datalog \neg database, there is *exactly one* stable model, and its well-founded model is *complete*. Also

- the perfect model,
- the stable model, and
- the well-founded model

are all equivalent.